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Abstract
This paper presents a new algorithm belonging to the class of swarm intelligence methods, called the adaptive simpli-
fied PSO (ASPSO)-based algorithm, for solving reliability–redundancy allocation problems. In this constrained nonlinear 
mixed-integer problem, both the number of redundant components and their reliability in each subsystem are to be decided 
simultaneously so as to maximize the reliability of the system. The proposed ASPSO operates with a new updating model to 
adjust the position of particles, without dealing with velocity. In addition, a randomization technique, based on the dispersion 
of particle bests through the search space, is used to speed up the convergence of the proposed approach and prevent it from 
being trapped within the local optimum. Moreover, to control the balance between exploration and exploitation, during the 
search process, two adaptive functions are utilized. The simulation results of four different benchmarks for the reliability–
redundancy allocation problem are reported and compared. Accordingly, the solutions given by the new presented approach 
are all superior to those best known solutions provided by several methods in the literature.

Keywords Reliability optimization · Redundancy allocation · Particle swarm optimization · Particles dispersion · Adaptive 
function

1 Introduction

The main challenge for industries is to produce high-quality 
products at minimum cost. This goal is directly related to 
the reliability, maintainability and availability of the dif-
ferent components of production systems. However, with 
the technological development and industrial revolution, 
manufacturing systems are more and more complex. These 

systems should be operational and available over the produc-
tion time. Nevertheless, their failure is inevitable. Therefore, 
in the recent years, improving system/product reliability 
has become an important issue to reach satisfactory perfor-
mances in real-world engineering systems. Reliability can be 
defined as the probability that a component, device, system 
or process will perform its intended function without failure 
for a given time when operated correctly under specified 
environmental conditions. Hence, reliability studies aim to 
predict and estimate the probability of failure in order to 
optimize the operational management related to the provi-
sion of failure in maintenance policies.

The redundancy strategy is a helpful approach to assist 
the operational system design for reliability. Using redun-
dant components is much more affordable to improve the 
system reliability instead of costing too much to enhance 
the component reliability. This approach has been applied 
in several engineering fields [1–3]. The optimal site of sys-
tem parts is addressed as the redundancy allocation prob-
lem (RAP). System reliability can be maximized by adding 
suitable redundant parts to each subsystem, while fulfill-
ing particular system-level constraints such as cost, weight 
and volume. Thus, the main goal of the RAP is to choose 
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a set of available components and to determine the opti-
mal redundancy levels of components [4]. These levels are 
treated as a set of discrete variables, and so, the RAP can be 
considered as a constrained integer programming problem 
[5]. With the growth of advanced technology, component 
reliability is more controllable even in the design stage. 
Consequently, the possibility to improve system reliability 
via the optimization of the reliability and redundancies of 
components has arisen a more interesting problem: the reli-
ability–redundancy allocation problem (RRAP) [6, 7]. For-
mally, the RRAP is expressed as a nonlinear mixed-integer 
optimization problem. Decision variables are the number of 
redundancies (positive integers) as well as component reli-
abilities (floating-point variables fall between zero and one). 
In addition, from the complexity point of view, the RRAP 
has proven to be an NP-hard optimization problem [5, 8].

Over the past decades, several deterministic methods have 
been used to solve the RRAP, such as the heuristic methods 
[9–11], the branch and bound method [12, 13], the integer 
programming [14] and the dynamic programming method 
[15, 16]. However, these methods have shown some weak-
nesses. Indeed, heuristic techniques require derivatives for 
all nonlinear constraint functions that are not derived eas-
ily because of the high computational complexity. In the 
branch and bound method, effectiveness depends on the 
sharpness of the bound and is suitable only for small-sized 
problems, due to its highly required memory. The dynamic 
programming method is suitable only for special structures, 
such as parallel–series and series–parallel designs, of the 
objective function and constraints that are decomposable. 
To overcome this faintness, several meta-heuristics have 
been selected and successfully applied to solve various reli-
ability optimization problems. These methods include the 
genetic algorithm (GA) [17–25], Tabu search (TS) [26–28], 
ant colony optimization (ACO) [29, 30], immune algorithm 
(IA) [31, 32], firefly algorithm (FA) [33], artificial bee col-
ony (ABC) algorithm [34, 35], artificial fish swarm (AFS) 
algorithm [36], harmony search (HS) [37, 38], imperial-
ist competitive algorithm (ICA) [39], Cuckoo search (CS) 
[40]. Furthermore, some novel meta-heuristic methods have 
been recently introduced to RRAP such as grey wolf opti-
mizer algorithm [41] and biogeography-based optimization 
(BBO) [42] to name a few. Although meta-heuristic meth-
ods are able to find the optimal solution within a reasonable 
computation time, they have undergone several alterations, 
through embedding some innovative operators and strate-
gies, to further enhance their global search abilities and 
quality solution for solving complex optimization problems, 
particularly RRAPs. For instance, in [23], GA is coupled 
with simulated annealing (SA) method for solving nonlinear 
integer reliability problems. Jang et al. [28] developed a TS-
based algorithm with new mechanisms to tackle Multiple 
Multi-level RAP. Agarwal and Sharma [29] presented an 

ACO-based method coupled with an adaptive function and 
a local search technique for solving the constrained RAP for 
binary systems. Similarly, in [29, 30], ACO was combined 
with a neighborhood search procedure to improve the solu-
tion quality of large-scale reliability optimization problems. 
In [31], the author proposed a penalty-guided immune algo-
rithm (IA), which effectively and efficiently explored the 
search space, to find a feasible optimal solution. Likewise, 
an immune two-phase approach was designed so as to solve 
the RRAP [32]. In the first phase, the allocation problem was 
solved using the IA. In the second phase, a procedure was 
applied to enhance the solutions by the IA. Coelho et al. [33] 
presented a chaotic FA approach coupled with (FAC) chaotic 
sequences. In pursuit of the same goal, Garg et al. [34] pro-
posed a two-phase method based on ABC for solving RRAP. 
In the first phase, a ABC algorithm is created to solve the 
allocation problem. In the second phase, the number of com-
ponent redundancy, obtained by the first phase, is fixed and a 
developed procedure is employed to enhance the component 
reliability allocation. A novel artificial fish swarm algorithm 
(NAFSA) was developed by He et al. [36] to tackle large-
scale RRAPs. Two information sources, which were fish 
self-information and environment information, were used 
to regulate the balance of diversity and convergence. Zou 
et al. [37, 38] presented a modified global harmony search 
algorithm coupled with concepts from the PSO algorithm 
to solve several reliability problems. Afonso et al. [39] sug-
gested the classical ICA combined with an attraction and 
repulsion concept. An efficient BBO algorithm, proposed by 
Garg [42], was utilized in order to solve RRAPs.

Particle swarm optimization (PSO), originally created by 
Kennedy and Eberhard [43, 44], is an interesting population-
based stochastic optimization algorithm which mimics the 
behavior of a swarm of birds or a school of fish. In PSO, 
each particle is characterized by a position and a velocity. 
During the optimization process, a particle adjusts its veloc-
ity with respect to its personal experience and the experi-
ence of the whole swarm. The new position of a particle 
is then determined based on its previous position and its 
new velocity. Due to its simple concept, fast convergence, 
inexpensive computation and ease of implementation, it has 
been successfully applied to various engineering optimiza-
tion problems including engineering design [45, 46], system 
identification [47], system control [48] and neural networks 
[49]. A comprehensive survey on PSO applications can be 
found in [50]. Despite all these merits, PSO has shown some 
faintness. The use of velocity updating and position updat-
ing is suitable to the convergence of PSO. Nevertheless, it 
is also harmful to head off premature convergence. Inco-
herently, its strong convergence is desirable. However, its 
poor performance to avoid falling into a local optimum is 
undesirable. Over the past decades, several attempts have 
been made to tackle these weaknesses effectively, resulting 
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in the development of a large number of PSO variants [51]. 
These new algorithms propose new updating rules, use vari-
ous operators or combine PSO with other existing methods 
to produce new hybrid algorithms. The main goal of these 
variants is to enhance swarm diversity, to avoid premature 
convergence and improve convergence rate. For instance, 
to solve RRAPs, Coelho [52] put forward an efficient PSO 
algorithm simultaneously based on the Gaussian distribu-
tion and the chaotic sequence. Similarly, Yeh [53] designed 
a two-stage discrete PSO (2DPSO) approach so as to solve 
the multiple multi-level RAP in series systems. The pro-
pounded method utilized a simple mechanism to update 
particle’s positions without velocity. Wu et al. [54] devel-
oped an improved PSO (IPSO) algorithm using two position-
updating strategies. The former, used during early iterations, 
allowed each particle to benefit from its own best experience 
with a large probability. The latter, employed during the late 
iterations, lets each particle to profit from the experience of 
the best particle in the swarm. In addition, a mutation opera-
tor was used to prevent premature convergence. Huang [55] 
developed a simplified PSO algorithm with two updating 
mechanisms. The first mechanism adjusted the integer vari-
ables, and the second one updated the variables of compo-
nents reliability, which were real numbers. In addition, an 
orthogonal array test was implemented to determine the best 
combination of the related parameters utilized in the updat-
ing mechanisms. Recently, Ouyang et al. [56] have sug-
gested a stochastic perturbation PSO (SPPSO) algorithm to 
solve RRAPs with heterogeneous components. The authors 
embedded into the standard particle swarm method three 
operators: a perturbation operator, a convergence operator 
and a decentralization operator, to improve both global and 
local search abilities of the algorithm.

From the aforementioned literature overview, it is evident 
that PSO has undergone significant modifications to cope 
with the complexity of the RRAPs. However, the major-
ity of the proposed variants are time-consuming, due to the 
implantation of complex procedures, and need a large num-
ber of iterations to reach the optimum or a near-optimum 
solution. Moreover, the simplicity of the basic PSO, which is 
the main cause of its attractiveness, is sacrificed. Motivated 
by the above observations, we introduce in this paper an 
adaptive simplified PSO (ASPSO)-based algorithm, which 
exhibits a competitive advantage over many state-of-the-art 
metaheuristic methods in terms of global search ability and 
convergence speed on four benchmark problems of RRAP 
tested in this paper. The ASPSO algorithm speeds up the 
search process toward converging to the global optimum by 
using a simple, yet efficient, position-updating rule without 
dealing with velocity. Each particle position is adaptively 
adjusted utilizing both global best and personal best posi-
tions. In addition, a new vector, created based on the disper-
sion of personal best positions through the search space, is 

combined with the updating mechanism to ensure the diver-
sity of the swarm during the optimization process as well 
as to avoid premature convergence. Moreover, two adaptive 
functions are employed: The former adjusts the attraction of 
particles toward the global best and the personal best. The 
latter controls the degree of randomness added to the solu-
tion. To validate the performance of the ASPSO algorithm, 
four well-known benchmarks of RRAPs are used to test its 
solution accuracy and convergence speed. It is observed that 
the computational results provided by the ASPSO algorithm 
outperform the existing results of many other approaches in 
the literature.

The remaining content of this paper is structured as fol-
lows. In Sect. 2, the mathematical model of the RRAP is 
defined and four benchmark RRAPs (series, series–parallel, 
bridge and overspeed protection systems) are illustrated. The 
standard PSO algorithm is described briefly in Sect. 3. In 
Sect. 4, the suggested (ASPSO) algorithm is presented and 
described in detail. In Sect. 5, numerical experiments are 
carried out to test the performance of ASPSO for reliability 
optimization problems. Finally, conclusions are summarized 
in Sect. 6.

2  Problem formulation: RRAP

The RRAP of maximizing the system reliability can be 
formulated as a constrained mixed-integer programming 
problem:

subject to:

where Rs is the system reliability; f (.) is the objective func-
tion for the overall system reliability; g(.) is the set of non-
linear constraint functions, which are usually associated with 
system’s weight, volume and cost; r = (r1, r2, r3,…,rm) is 
the vector of component reliability for the system; n = (n1, 
n2, n3,…,nm) is the vector of the redundancy allocation for 
the system; ri and ni are the reliability and the number of 
redundant components in the ith subsystem, respectively; 
l is the vector of resource limitation and m is the number 
of subsystems in the system. As it can be noted, the RRAP 
belongs to the class of constrained nonlinear mixed-integer 
optimization problems, since the number of redundancies 
ni represents the positive integer values, and the component 
reliability ri denotes the real values between 0 and 1. The 
objective of the problem is to simultaneously determine 
the number of components ni and components’ reliability 

(1)Maximize Rs = f (�, �)

(2)g(�, �) ≤ �

0 ≤ ri ≤ 1, ri ∈ ℝ, ni ∈ ℤ
+, 1 ≤ i ≤ m
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ri in each subsystem so as to maximize the overall system 
reliability.

In this study, four well-known benchmark problems of 
the RRAP are considered. The first three problems with 
nonlinear constraints, used by [16–18, 25, 31–33, 35–39, 
52–54], are a series system, a series–parallel system and a 
complex (bridge) system. The fourth problem, investigated 
by [4, 17–25, 35–39, 52–54], is of an overspeed protection 
system. The four benchmarks are shown to maximize system 
reliability subject to multiple nonlinear constraints, and they 
can be stated as mixed-integer nonlinear programming prob-
lems. For each problem, both component reliabilities and 
redundancy allocations are to be decided simultaneously. 
The mathematical formulations of the four benchmark prob-
lems are outlined in the next subsections.

2.1  Notations and symbols

i, j  Indexes of subsystems and constraints, respectively; 
1 ≤ i ≤ m, 1 ≤ j ≤ M

m  Number of subsystems in the system
M  Number of constraints
n  Vector of redundancy allocation of the system; 

� =
(
n1, n2,… , nm

)
ni  Number of components in ith subsystem
r  Vector of component reliabilities of the system; 

� =
(
r1, r2,… , rm

)
ri  Reliability of each components in ith subsystem
gj  jth constraint function
wi  Weight of each component in ith subsystem
ci  Cost of each component in ith subsystem
vi  Volume of each component in ith subsystem
Ri  Reliability of the ith subsystem; Ri = 1 −

(
1 − ri

)ni
Qi  Unreliability of the ith subsystem, Qi = 1 − Ri

ni,max  Maximum number of components in the ith 
subsystem

Rs  System reliability
W  Upper bound on system weight
V  Upper bound on system volume
C  Upper bound on system cost
ℤ

+  Set of nonnegative integers
N  Population size
tmax  Maximum number of iterations
d  Number of design parameters
�, �  Two adaptive functions
a1, a2  Two user-defined parameters; 0 ≤ a1, a2 ≤ 1

�  Vector of standard deviation of design parameters; 
� =

(
�1, �2,… , �d

)
�k  Standard deviation of kth design parameter; 

1 ≤ k ≤ d

�  Penalty coefficient, 𝜆 ≫ 0

2.2  P1: series system

The optimization problem of a series system (Fig. 1) is for-
mulated as follows:

subject to:

where ni is the number of components in the ith subsys-
tem, (1 ≤ i ≤ 5) , ri is the reliability of each component in 
subsystem i, qi = 1 − r

ni
i

 is the failure probability of each 
component in subsystem i, Ri

(
ni
)
= 1 − q

ni
i
 is the reliability 

of subsystem i, f (�, �) is system reliability, wi is the weight 
of each component in subsystem i, vi is the volume of each 
component in subsystem i, V is the upper limit of the sum 
of the subsystem’s products of volume and weight, C is the 
upper limit of the cost of the system and W is the upper limit 
on the weight of the system. The parameters �i and �i are the 
physical features of the ith system component. The first con-
straint g1(�, �) , given in Eq. (4), is a combination of weight, 
redundancy allocation and volume. The second constraint 
g2(�, �) , presented in Eq. (5), is a cost constraint. The last 
constraint g3(�, �) , given in Eq. (6), is a weight constraint. It 
may be noted that the second constraint involves both integer 
and continuous variables. The input parameters of the series 
system are provided in Table 1.

(3)Maximize f (�, �) =

5∏
i=1

Ri

(
ni
)

(4)g1(�, �) =

5∑
i=1

wi.v
2

i
.n2

i
≤ V

(5)g2(�, �) =

5∑
i=1

�i.

(
−
1000

ln ri

)�i

.
(
ni + e0.25ni

)
≤ C

(6)g3(�, �) =

5∑
i=1

wi. ni. e
0.25ni ≤ W

0 ≤ ri ≤ 1, ri ∈ ℝ, ni ∈ ℤ
+, i = 1, 2,… 5

1 2 3 4 5

Fig. 1  Series system
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2.3  P2: series–parallel system

The optimization problem of series–parallel systems 
(Fig. 2) is stated as follows:

subject to the same constraints g1(�, �) ,  g2(�, �) 
and g3(�, �) as  for  the  ser ies  problem,  and 
0 ≤ ri ≤ 1, ri ∈ ℝ, ni ∈ ℤ

+, i = 1, 2,… 5 . Table  1 illus-
trates the input parameters of the series–parallel system.

2.4  P3: complex (bridge) system

The complex (bridge) system optimization problem is 
stated as follows:

(7)
Maximize f (�, �) = 1 −

(
1 − R1R2

)(
1 −

(
1 − R3

)(
1 − R4

)
R5

)

subject to the same constraints g1(�, �) ,  g2(�, �) 
and g3(�, �) as  for  the  ser ies  problem,  and 
0 ≤ ri ≤ 1, ri ∈ ℝ, ni ∈ ℤ

+, i = 1, 2,… 5 . The input param-
eters of the complex (bridge) system (Fig. 3) are shown in 
Table 1.

2.5  P4: overspeed protection system

The fourth considered problem is the overspeed protec-
tion for a gas turbine system (Fig. 4) [17, 31–40, 42, 52, 
55]. This mixed-integer nonlinear problem is formulated 
as follows:

subject to:

(8)

Maximize f (�, �) = R1R2 + R3R4 + R1R4R5 + R2R3R5

− R1R2R3R4 − R1R2R3R5 − R1R2R4R5

− R1R3R4R5 − R2R3R4R5

+ 2R1R2R3R4R5

(9)Maximize f (�, �) =

4∏
i=1

(
1 −

(
1 − ri

)ni)

(10)g1(�, �) =

4∑
i=1

vi.n
2

i
≤ V

Table 1  Data of problems (P1, 
P2, P3 and P4)

Parameters P1, P3 P2 P4

105.�
i

(2.330, 1.450, 0.541, 8.050, 
1.950)

(2.500, 1.450, 0.541, 0.541, 
2.100)

(1, 2.3, 0.3, 2.3)

�
i

(1.5, 1.5, 1.5, 1.5, 1.5) (1.5, 1.5, 1.5, 1.5, 1.5) (1.5, 1.5, 1.5, 1.5)
w
i
.v
2

i
(1, 2, 3, 4, 2) (2, 4, 5, 8, 4) (1, 2, 3,2)

w
i

(7, 8, 8, 6, 9) (3.5, 4, 4, 3.5, 4.5) (6, 6, 8, 7)
V 110 180 250
C 175 175 400
W 200 200 500

1

3

2

5

4

Fig. 2  Series–parallel system

5

1 2

43

Fig. 3  Complex (bridge) system

Fig. 4  Overspeed protection system
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The input parameters defining the overspeed protection 
system are presented in Table 1.

3  Overview of standard PSO

The proposed (ASPSO) algorithm is based on the PSO 
method. Before discussing the suggested ASPSO, the stand-
ard PSO is briefly overviewed in this section.

As a swarm intelligence method, PSO is based on social 
interactions and individual experiences. In PSO, each indi-
vidual is called a “particle” which, in fact, represents a 
potential solution to a problem. Each particle is treated as 
a point in a d-dimensional space. The jth particle is rep-
resented as �j =

{
xj1, xj2,… , xjd

}
 , with j = 1, 2,… ,N  . 

The best previous position (the position giving the best fit-
ness value) of any particle is recorded and represented as 
�j =

{
pj1, pj2,… , pjd

}
 . The best particle among the whole 

swarm, known as the global best particle, is represented by 
�g =

{
pg1, pg2,… , pgd

}
 . The particle current velocity, which 

represent the rate of the position change for particle j, is 
denoted as �j =

{
vj1, vj2,… , vjd

}
 . The velocity and the posi-

tion are updated according to the following equations:

where t = 1, 2,… , tmax is the iteration step, c1 and c2 are 
constants named cognitive and social learning factors, 
respectively, c1 + c2 is usually limited to 4 [57]. and r1 and r2 
are two independent random numbers uniformly distributed 
in the range of [0,1]. Indeed, �j ∈

[
−�max �max

]
 , where 

�max is a problem-dependent constant defined in order 
to clamp the excessive roaming of particles. The velocity 
update equation, i.e., Eq. (13), of the PSO algorithm is a 
sum of three parts. The first part is that of exploration. The 
second part is the social part, which represents the collabo-
ration among the particles. The third part is the cognition 
part, which represents the private thinking of the particle 
itself [57].

(11)g2(�, �) =

m∑
i=1

�i.

(
−
1000

ln ri

)�i

.
(
ni + e0.25ni

)
≤ C

(12)g3(�, �) =

4∑
i=1

wi. ni. e
0.25ni ≤ W

0.5 ≤ ri ≤ 1 − 10−6, ri ∈ ℝ, 1 ≤ ni ≤ 10, ni ∈ ℤ
+, i = 1,… , 4

(13)�t+1
j

= �t
j
+ c1r1

(
�t
g
− �t

j

)
+ c2r2

(
�t
j
− �t

j

)

(14)�t+1
j

= �t
j
+ �t+1

j

4  Proposed adaptive simplified PSO 
algorithm for RRAP

4.1  Adaptive simplified PSO algorithm

While empirical research has confirmed the usefulness 
of PSO as an optimization algorithm, it has shown also 
its limits to tackle some complex and intricate problems, 
including RRAPs. Sometimes, PSO can be trapped in 
local optima and can, in a later period of the optimization 
process, have a weak convergence rate. To improve the 
overall performance, many PSO variants have been pro-
posed. Some of these algorithms have incorporated new 
operations and strategies, and others have combined some 
existing methods with PSO to produce new hybrid algo-
rithms. Although they have been stated much better than 
the basic PSO, many of them have introduced additional 
mathematical or logical processes, which subsequently 
produced more complicated algorithm and spent more 
processing time. For the purpose of enhancing the per-
formance of PSO while preserving its simplicity a novel 
adaptive simplified PSO algorithm (ASPSO) is put for-
ward in this paper. The ASPSO algorithm mainly differs 
from the standard PSO algorithm in that the candidate 
solutions are directly represented by the best particle posi-
tion �j and that it uses only a simple updating rule without 
dealing with velocity.

In order to increase the convergence of PSO, we can 
write the update of the particle position in a single equa-
tion, by substituting Eq. (13) into (14), as:

According to Gandomi et al. [58], this simplified updat-
ing model will give the same order of convergence. In 
addition, as can be noted, the velocity vanishes in the 
above equation, so avoiding velocity initialization as well 
as weaknesses related to the explosion phenomenon [57].

Similar to the updating rules of the classical PSO, the 
simplified updating model, Eq. (15), is based also on both 
the global best �g and the personal best �j . The main rea-
son of using the personal best is principally to increase 
diversity in the quality solution. As stated by Yang [59], 
this diversity can be simulated utilizing some randomness, 
and hence, there is no need for using personal best. Based 
on these interpretations, using the global best only will 
significantly improve the convergence of the algorithm. In 
contrast, it is well known that personal bests are responsi-
ble for maintaining good solutions found in the search 
space so far. Indeed, the personal bests are nothing but a 
memory which guides particles during the search process. 
Hence, depriving the particles of their own memories will 
decrease the diversity of the swarm and may lead particles 

(15)�t+1
j

= �t
j
+ �

(
�t
g
− �t

j

)
+ �

(
�t
j
− �t

j

)
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to converge to a local optimum prematurely. With the 
intension to further accelerate the PSO convergence, tak-
ing advantage of the above-mentioned interpretations, we 
propose to replace the third term of Eq. (15) by some ran-
domness, as suggested by Yang [59]. However, such ran-
domness is produced using a new technique that conveni-
ently exploits the memory of individuals (i.e., personal 
bests) gathered during the search process. Formally, the 
term 

(
�t
j
− �t

j

)
 in Eq. (15) is substituted by vector �j , com-

puted based on the dispersion of individuals best through 
the search space. The use of this new vector can improve 
the convergence of the algorithm and avoid premature con-
vergence. Consequently, the particle position will be gen-
erated by a simpler formula expressed as follows:

where �t
j
 is a row vector of a normally distributed (N × d) 

random matrix E =
[
�1 �2 ⋯ �N

]T , computed at each itera-
tion t. Each kth column (k = 1,… , d) of E is randomly gener-
ated with a mean zero and a standard deviation 
� =

[
�1, �2,… , �k,… , �d

]
 , where �k is the standard devia-

tion of the kth design parameter of all individual best posi-
tions, computed as depicted in Fig. 5. As it can be noticed, 
�t
j
 is nothing but a vector holding information made from a 

random combination of particles memory. During the opti-
mization process, matrix E can be simply computed using 
t h e  M A T L A B  c o m m a n d : 
E = normrnd(0, repmat(std(�),Np, 1)) , where std, repmat 
and normrnd are three MATLAB functions. std(�) returns a 
row vector containing the standard deviations corresponding 
to each column of matrix P, whose rows are the individual 
bests. repmat(�,Np, 1) returns a matrix containing Np copies 
of the row vector � , and normrnd(0,�) generates a random 

(16)�t+1
j

= �t
j
+ �

(
�t
g
− �t

j

)
+ � �t

j

matrix, with the same size as A, from the normal distribution 
with mean parameter 0 and a standard deviation from A.

Furthermore, in order to improve search intensification, 
we propose to focus search in a promising region. This is a 
region which has a high probability of containing the global 
optimum. The promising region is determined as a region 
surrounding the individual best positions. This is done by 
substituting the current particle position �t

j
 , in Eq. (16), by 

its associate individual best position �t
j
 , yielding to the fol-

lowing equation:

showing that the new position is located in the neighbor-
hood of the best position found so far. We can rewrite the 
proposed updating model of the ASPSO, Eq. (17), as:

and schematically depicted in Fig. 6.
The parameters of the proposed model updating are � and 

� , and their values have a large influence on the ASPSO behav-
ior as well as on its convergence speed. According to Eq. (18), 
it is clear that the particles will converge toward the global best 
when � = 1 in any given step of the search process, even if the 
current global best is not the actual global best. In contrast, 
particles may explore search space without convergence 
toward optimum when � = 0 . Therefore, a well-tuned � , dur-
ing optimization process, is highly mandatory. Indeed, a vary-
ing � can be helpful to well balance the exploration and exploi-
tation abilities of the algorithm and to avoid convergence to 
local optima. In the same context, the randomization term � �t

j
 

provides the ability, for ASPSO, to explore the search space 
conveniently and to escape local optima if the parameter � is 
chosen adequately. Moreover, reducing the randomness as 
iterations proceed, by varying � , can improve solutions quality. 
Based on the above analysis, it will be advantageous to con-
sider � and � as two adaptive functions, defined as follows:

(17)�t+1
j

= �t
j
+ �

(
�t
g
− �t

j

)
+ � �t

j
,

(18)�t+1
j

= � �t
g
+ (1 − �)�t

j
+ � �t

j

(19)� = a1 × sin

(
�

2

t

tmax

)

Fig. 5  Schematic representation of σ computation

Fig. 6  Position updating strategy of ASPSO algorithm
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where t is the current iteration, tmax is the maximum itera-
tion number and a1 and a2 are two user-defined parameters 
in range [0,1]. As shown in Fig. 7, � is an increasing function 
which varies between 0 and a1 . According to Eq. (19), small 
values of � , at earlier iterations, give height control to the 
personal best position, �t

j
 , allowing the global exploration of 

a promising region, whereas, large values give a more influ-
ence of the global best position, �t

g
 , which favors solution 

(20)� = 1 − a2 × sin

(
�

2

t

tmax

) refinement. In contrast, the second adaptive function � 
decreases from 1 to 

(
1 − a2

)
 . Indeed, large values of � , at 

earlier iterations, favor global exploration, while small val-
ues, at later iterations, tend to enable exploitation. Accord-
ingly, the fine-tuning of a2 ensures that the exploration capa-
bility is stronger at initial iterations and it fades out during 
the search process to result in more exploitative capability. 
Based on a parametric study by varying a1 from 0.0 to 1.0 
and a2 from 0.5 to 1.0 by a step of 0.1, we found that a1 = 0.8 
and a2 = 0.5 are the best values for all considered RRAPs. 

Fig. 7  Flowchart of proposed 
ASPSO approach
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4.2  Constraint handling for ASPSO algorithm

Similar to other stochastic optimization methods, the proposed 
ASPSO algorithm is defined for unconstrained problems. 
However, during the optimization process, new positions may 
violate either the limits of the design variables or the problem 
specific constraints. For any position exceeding the boundary 
of the variable range, it is reset to the upper (or lower) bound-
ary value. On the other hand, to accommodate the inclusion 
of constraints, the penalty function method [60] is adopted, as 
seen in Eq. (21):

where f (�) is the objective function to be maximized, m is 
the number of constraints, gl(�) is a specific constraint value 
and 𝜆 > 0 represents the penalty coefficient and is set to  105 
in this paper.

4.3  Procedure of ASPSO algorithm

A detailed step-by-step procedure for the suggested ASPSO 
algorithm is described in the following, while the flowchart 
of the proposed approach is completely described in Fig. 7.

Step 1 Define the optimization problem and initialize the 
optimization parameters.

• Define the optimization problem as in Eqs. (1) and 
(2), the number of design variables (d) and the limits 
of design variables (Lb, Ub).

• Initialize the population size (N), the number of 
maximum iterations (tmax) and parameters a1 and a2.

Step 2 Initialize the population.

• Generate the initial swarm according to the popula-
tion size and the number of design variables. For 
ASPSO, the initial location of the jth particle is 
given as:
  

(21)F(�) =

⎧
⎪⎨⎪⎩

f (�) if � is feasible;

f (�) − �
m∑
l=1

max
�
0, gl(�)

�
otherwise

(22)�0
j
= �b + rand

(
�b − �b

)

where rand is a uniformly distributed random num-
ber between 0 and 1.

• Set �0
j
= �0

j
 , and find the global best position �0

g
 such 

that F
(
�0
g

)
= max

j

(
F
(
�0
j

))
,

Step 3 Repeat until the stopping criteria is met: 
(
t = tmax

)

• Update the iteration counter (t = t + 1).
• Update the adaptive functions � and � using Eqs. (19) 

and (20), respectively.
• Calculate the random matrix � , as defined in 

Sect. 4.1.
• Repeat for each particle, (j = 1,… ,N).

• Calculate a new position �t+1
j

 using Eq. (18) and 
calculate its fitness F

(
�t+1
j

)
.

• Update the jth best particle position �t
j
 : 

�t
j
=

{
�t
j

�t+1
j

, if F
(
�t+1
j

)
≥ F

(
�t
j

)

otherwise

• Find the current global best �t
g
.

Step 4 Output the global best particle position �t
g
 that 

holds the best-found solution.

5  Simulation results

Several reliability–redundancy optimization problems 
involve discrete variables, denoted as ni which represents 
the number of redundant components in the ith subsystem. 
During the optimization process, the integer variables ni are 
treated as real variables. In evaluating the objective func-
tions, the real values are transformed to the nearest integer 
values. The presented ASPSO algorithm is coded in MAT-
LAB programming software and simulation, and numeri-
cal solutions are run on an Intel Core i5-3337U 1.8-GHz 
personal computer with 6 GB of random-access memory 
(RAM) under a 64-bit Windows operating system. In order 
to eliminate stochastic discrepancy, in each case study, 50 
independent runs are performed for each problem. The 
parameters of ASPSO are set as follows: the population size 
N = 40 , the number of maximum iterations tmax = 5000 , 
and parameters a1 and a2 are set to 0.8 and 0.5, respectively. 
These parameters are empirically selected after numerous 

Table 2  Statistical analysis for 
all the problems

Problem no. Best Worst Mean SD Mean CPU (s)

P1 0.9316823875 0.9316820736 0.9316823618 4.94845 × 10−8 2.4389
P2 0.9999766491 0.9999647634 0.9999760436 2.50091 × 10−6 3.5551
P3 0.9998896375 0.9998893476 0.9998894750 1.42580 × 10−7 3.5298
P4 0.9999546747 0.9999546680 0.9999546738 1.58139 × 10−9 2.2830
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experiments and fine-tuned based on their typical values, 
defined in Sect. 4.1.

To assess the performance of the proposed algorithm, the 
statistical features of the best results achieved by the pre-
sented ASPSO are shown in Table 2 for each problem. Actu-
ally, best, worst and mean, respectively, stand for the best, 
worst and mean obtained solutions. Standard deviation (SD) 
is stated as SD =

�
1

49

∑50

k=1

�
fk − f̄

�2 , where fk is the kth 
converged objective function value, and f̄  represents the 
average objective function value. From these results, it can 
be concluded that the suggested approach performs quite 
well in terms of better solution on four RRAPs with a rea-
sonable average computational time.

In addition, the maximum possible improve-
ment (MPI) index [31] is used, and it is defined as: 
MPI(%) =

(
fASPSO − fother

)/(
1 − fother

)
 , where fASPSO indi-

cates the best system reliability obtained by any other algo-
rithms in the existing literature. Clearly, greater MPI implies 
greater improvement by the new proposed approach. The 
numerical results for the four test problems are presented in 
Tables 3, 4, 5 and 6, wherein the best solutions of each prob-
lem and the slack of each constraint are reported. Here, the 
slack of each constraint is the difference between the avail-
able and used resources for the best-found solution. Table 3 
depicts the computation results corresponding to the series 
system (i.e., P1). Conspicuously, the best solution obtained 
by our approach, which is 0.9316823875, dominates those 
of several existing methods evaluated in [18, 31, 32, 35, 
36, 39, 54, 61, 62] with an improvement factor of 2.7507%, 
0.0079%, 0.4653%, 0.1526%, 0.0064%, 0.0035%, 0.0044%, 
0.0002%, 0.0006%, respectively. It is worth pointing out that 
the result achieved using the ABC [16] is unfeasible as it 
violates the cost constraint. The results of the experiment 
for the second test problem (i.e., series–parallel system), 
provided in Table 4, show that the best solution by the pro-
posed approach, which is 0.9999766491, is significantly bet-
ter than the previous best known solutions, so far given by 
[16, 18, 31, 32, 35, 36, 39, 54]. The improvement attained 
by the suggested ASPSO over the existing approaches is 
25.2771%, 9.5627%, 0.2950%, 0.0390%, 0.1672%, 0.0047% 
and 0.0004%, respectively, for Hikita et al. [16], Hsieh et al. 
[18], Chen [31], Wu et al. [54], Afonso et al. [39], He et al. 
[36] and Hsieh and You [32]. As it can be seen, the solution 
found by the proposed ASPSO is very close to that presented 
in [32]. However, even slight enhancements in reliability are 
critical and beneficial to system security and system effi-
ciency. It may again be mentioned that the solution by the 
ABC algorithm [35] is unfeasible, since it violates the cost 
constraint function. Table 5 indicates that the solution of 
the complex (bridge) system problem (i.e., P3) found by the 
suggested method is comparatively better than the solutions 
achieved by other approaches [16, 18, 31, 32, 36, 38, 39, 

52, 54]. Based on the MPI index, the improvement made 
by the presented algorithm over the existing approaches 
is 47.5962%, 8.6706%, 0.3859%, 0.0611%, 0.0159%, 
0.0068%, 0.0068%, 0.00136%, and 0.2594%, respectively, 
for Hikita et al. [16], Hsieh et al. [18], Chen [31], Coelho 
[52], Zou et al. [38], Wu et al. [54], Afonso et al. [39], He 
et al. [36], and Hsieh and You [32]. From Table 6, it can 
be noted that our approach can find solutions significantly 
better than those provided in [17, 31–33, 36, 38, 39, 52, 
54, 63] by an improvement factor 88.3781%, 91.4802%, 
21.8529%, 3.5632%, 0.0104%, 0.0104%, 0.0038%, 0.0104%, 
6.6188 × 10−5, and 0.00044%, respectively, from Dhingra 
[63], Yokota et al. [17], Chen [31], Coelho [52], Zou et al. 
[38], Wu et al. [54], Afonso et al. [39], Coelho et al. [33], He 
et al. [36], and Hsieh and You [32]. It can be also observed 
that the optimal component redundancy by the proposed 
algorithm is (5,5,4,6), which is completely different from 
the other methods [17, 31, 36, 38, 39, 52, 54, 63]. The solu-
tions given by the ABC algorithm [35] are unfeasible as well 
since they violate the cost constraint function. Based on the 
general observations of the computation results, we deduce 
that, overall, the presented ASPSO algorithm overcomes 
the other approaches in the literature in finding most effec-
tive solutions for the four reliability–redundancy allocation 
problems. Furthermore, the standard deviations of system 
reliabilities by our approach are quite low, given in Tables 3, 
4, 5 and 6, and they also indicate that the ASPSO method 
appears to be efficient to solve the RRAPs. Moreover, the 
mean CPU time for evaluating the problems is relatively less 
as compared to other recent metaheuristic algorithms [32, 
36] and is shown in their respective tables.

6  Conclusion

The main goal of this paper is to present an efficient 
approach to solve several reliability–redundancy allocation 
problems based on a new (ASPSO) algorithm. The proposed 
method was applied to four different types of RRAP prob-
lems including: series, series–parallel, complex (bridge) 
and overspeed protection systems. In these optimization 
problems, the redundancies and the corresponding reli-
ability of each component in each subsystem are decided 
simultaneously under cost, weight and volume constraints. 
The suggested ASPSO operates with a simple, yet efficient, 
updating model to adjust the position of particles, without 
dealing with velocity. In addition, a new randomization tech-
nique, based on the dispersion of the particle best through 
the search space, has been used to speed up the convergence 
of the ASPSO algorithm and prevent it from being trapped 
into the local optimum. Moreover, two adaptive functions 
have been utilized in order to control the balance between 
exploration and exploitation during the search process. To 
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evaluate the performance of the ASPSO algorithm, numeri-
cal experiments have been conducted and compared with 
the previous studies for mixed-integer reliability problems. 
From the computational results, it is seen that the best solu-
tions achieved by the proposed algorithm are all superior 
to the well-known best solutions in the literature for all test 
problems. The MPI index indicates that the improvements in 
our approach appear very small with respect to some previ-
ous heuristic techniques. However, even small enhancements 
in reliability are critical and beneficial to system security 
and efficiency. The robustness analysis reveals that ASPSO 
stably searches and explores the near-optimal solution with 
a very tiny standard deviation value. For further research, 
one can improve the suggested approach using self-adap-
tive techniques. Again, it will be interesting to investigate 
the application of the proposed algorithm to solve RRAP 
instances with more variables and/or larger-scale bench-
marks. Finally, we propose to embed the suggested ASPSO 
as a local search technique into a global search metaheuristic 
such as GA or DE in order to solve RRAPs and other engi-
neering problems such as damage detection.
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