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ABSTRACT Noting the shortcomings of current methods in detecting small objects in image-based remote
sensing applications, in this paper, we propose a novel implementation of single shotmultibox detector (SSD)
networks based on dilated convolution and feature fusion. We call this algorithm dilated convolution and
feature fusion single shot multibox detector (DFSSD). This algorithm removes the random clipping steps
of data preprocessing layers in conventional SSD networks and utilizes the structure of feature pyramid
network (FPN) network to fuse the low-level feature map with high resolution and the high-level feature
map with rich semantic information. It also enhances the receptive field of the third-level feature map of the
DFSSD network by using dilated convolution. In the data processing step of the model, we use the image
segmentation of the feature point region proposals to improve the training sample size. The mean average
precision (mAP) value of the proposed DFSSD network, when tested on remote sensing datasets, achieves
76.51%, which is significantly higher than that of the SSD model (69.81%).

INDEX TERMS Small object detection, feature fusion, dilated convolution, DFSSD network.

I. INTRODUCTION
Object detection has always been a research hotspot in the
field of computer vision [1]. Detecting objects from gen-
eral classes is the supporting technology for a large number
of applications including intelligent monitoring [2], intelli-
gent robotics [3], and many other applications. For instance,
several methods are developed for face detection [4] and
pedestrian detection [5] for surveillance systems and self-
driving cars that are mature and achieve reasonable per-
formances. However, the detection accuracy for a general
class of objects with heterogeneous shapes, sizes, patterns,
colors, and morphology is far from satisfactory. The source
of difficulty is developing a unified method to capture object-
specific features of an object with diverse size, shape, color
and etc. It is difficult to find common features, especially
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for traditional machine learning methods that rely on man-
ually designed feature extraction methods. Recently, more
and more researchers have turned their attention to deep
learning (DL) methods [6]. There exist many excellent object
detection methods based on deep learning architectures and
platforms such as AlexNet [7], ZFnet [8], VGGNet [9],
GoogleNet [10], R-CNN [11], Faster R-CNN [12], SSD [13],
and etc...Among them, the single shot multibox detector
(SSD)model is a network architecture based on convolutional
neural networks (CNN) with relatively high accuracy and
near real-time performance. In this paper, the size of remote
sensing image data set is from 800×800 to 4000×4000, the
pixel value of small object is between 10 × 10 and 50 × 50,
and the pixel value of medium object is between 50 × 50
and 300 × 300. However, the feature map of SSD model
used for prediction is not reused, lack of sufficient semantic
information, and the detection effect of overlapping object
and small object is poor.
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Many scholars have carried out research on improving
the small object detection capability of the SSD model.
Li et al. [14] proposed the feature fusion single shot
multibox detector (FSSD) model, which reconstructs the
multi-scale features of the model through feature fusion and
down-sampling operation, and enriches the feature details
to improve the detection performance on small objects.
Liu et al. [15] proposed the DeepSat classification frame-
work based on the ‘‘hand-made’’ features and deep belief
network (DBN). The framework augments a CNN with
handcrafted features (instead of using DBN-based architec-
ture) for classification. This method achieves superior per-
formance on sat-4 and sat-6 datasets with the accuracies of
99.90% and 99.84% respectively. Zhou et al. [16] proposed
a multi-level feature extraction method to solve the prob-
lem of object loss of discontinuous object tracking in the
image-based remote sensing systems. Chen et al. [17] pro-
posed an improved semantic segmentation Neural Network
Based on DeepLabv3, which adopts dilated convolution,
a fully connected (FC) fusion path and pre-trained encoder for
the semantic segmentation task of HRRS imagery, reaching
the classification accuracy of 91%. Duarte et al. [18] pro-
posed three multi-resolution CNN feature fusion methods to
improve the classification accuracy of building damage in
the remote sensing images, reaching the accuracy of 88.7%
on the satellite and aerial (unmanned) cases. Ni et al. [19]
proposed a learnable framework of CNN based on the multi-
layer energized locality constrained affine subspace coding
(MELASC), which improved the accuracy of scene classifi-
cation for image-based remote sensing applications.

In this paper, we propose an image double segmentation
method based on feature point region, which segments the
original remote sensing images, maximally retains all the
information of an image, and reduces the adverse effects
of the segmented image. More specifically, we propose the
dilated convolution and feature fusion single shot multibox
detector (DFSSD) network, which combines the high-level
feature map and the low-level feature map to improve the
spatial semantic information of the low-level feature map. At
the same time, the dilated convolution [20] is used to allow the
third-layer features to participate directly in the prediction,
further enriching the detailed information of the network
features. The performance of [the proposed] DFSSD network
on remote sensing datasets including700 aircraft and 938 car
remote sensing images is not inferior to that of the same type
of the networks, while themAP is increased by 4%. compared
with the original SSD network model.

II. RELATED WORK
Compared with the traditional image-based object detection
methods, object detection using aerial images encounters
problems such as the difficulty of detecting small objects, and
the lack of sufficient representative features for objects. Tra-
ditional methods generally use scale-invariant feature trans-
form (SIFT) [21], speeded up robust features (SURF) [22],
features from accelerated segment test (FAST) [23], Binary

robust invariant scalable keypoints (BRISK) [24] and so forth
to detect objects. Although these methods yield reasonable
performance for object detection under plain backgrounds,
they do not achieve good results under complex backgrounds.
Therefore, deep learning methods with higher capabilities in
capturing intricate patterns received increased attention by
the research community and have been applied to various
tasks related to image-based remote sensing applications such
as military guidance, object tracking, urban planning and so
forth. Themost popular and successful deep learningmethods
are based on CNN architecture due to their enhanced perfor-
mance in modeling visual information. At present, DL-based
object detection methods can be divided into two main cat-
egories including the object detection algorithms based on
the candidate region and object detection algorithms based
on regression models.

The calculation process of the object detection algorithm
based on candidate region includes the following steps.
Firstly, n regions of interest (ROI) are extracted from the
input image according to the region selection algorithm. The
commonly used selection algorithms are selective search,
edge boxes, region proposal network (RPN) and so on. Then,
a multi-layer convolution neural network is used to extract the
above regions of interest and classify the extracted features.
Finally, the bounding box regression is used to correct the
output window and provide the final result. Some imple-
mentations of the object detection algorithm based on the
candidate region include R-CNN [11], Fast R-CNN [25],
Faster R-CNN [12], R-FCN [26].

Although the above-mentioned object detection algorithms
based on the candidate region can provide high accuracy, they
cannot detect the moving object in real-time videos. Indeed,
the object detection methods without RPN networks have
more advantages in terms of operation speed. The deep learn-
ing object detection algorithm based on regression models
can identify the objects in multiple locations of the original
image or the feature map, and directly obtain the type and
the location of the object. Some successful implementations
include Yolo [27], SSD [13], YOLO9000 [28], DSSD [14],
RSSD [16], FSSD [14].

More and more CNN-based methods were used in the field
of image-based remote sensing [29], [30]. Zhang et al. [31]
constructed an iterative weakly supervised learning frame-
work, which can automatically mine and augment the training
datasets from the original images. This method combines
the framework with the candidate RPN to locate an air-
craft in large-scale and extremely high-resolution images.
Cai B et al. [32] designed an end-to-end convolution neu-
ral network to realize the detection of airport objects. The
authors of this work proposed a method of mining difficult
samples to train the end-to-end deep convolutional neural
network for airport detection in complex situation, reach-
ing the accuracy of 83.02% on a optical remote sensing
dataset acquired from Google Earth and integrated them
into the network architecture. Pang et al. [33] proposed a
unified and self-reinforced network called remote sensing
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region-based convolutional neural network (R2-CNN) to
detect small and medium objects in remote sensing images.
The network is composed of backbone Tiny-Net, intermedi-
ate global attention block, and final classifier and detector,
having the high recall and precision in GF-1 images and
GF-2 images. Zhao et al. [34] proposed a method of aircraft
detection based on the Block-Level F-CNN remote sensing
images, combining the image block-level fully convolutional
neural network model and the multi-scale structure for object
detection, reaching the accuracy of 83.02% on an aircraft
dataset from the Beijing capital international airport. Liu
et al. [2] Proposed an end-to-end multi-component fusion
network (MCFN) to realize the small airport objects detection
of remote sensing images, composing of dual pyramid fusion
network (DPFN), relative region proposal network (RRPN)
and contextual information network (CIN).

In short, existing object detection methods have some lim-
itation in remote sensing images. First, because of the limita-
tions of CNN, the low-level featuremap semantic information
is relatively scarce but accurately presents the object location.
In contrast, high-level feature semantic information is rich but
imprecisely presents the object location. In addition, previous
methods cannot adequately extract the features of a small
object. Finally, when the object is in a complex scene the
accuracy of previous algorithms will be decreased.

III. PROPOSED WORK
A. IMAGESEGMENTATION OF FEATUREPOINT REGION
PROPOSALS
When facing complex scenes, the human visual system can
quickly perceive different interest objects and give preference
to them. This is the perception ability of the human visual
attention mechanism independent of the detection environ-
ment, which operates solely based on detecting the contrast
between the desired objects and the background [35]. In the
field of computer vision, using this biology-inspired feature,
we can reduce the redundancy of information and quickly
detect the object information under various environmental
interference [36], [37].

Since the scale of remote sensing images is typically too
large, the direct processing of the original image by the con-
volution networks may cause the training of the network to
diverge. Even if it converges, the accuracy of the subsequent
object detection and the generalize ability of the model may
not be ideal. Therefore, inspired by the characteristics of the
human vision system, in this paper, we propose an image
double segmentation method based on feature point region,
which are used to generate the feature point map of the remote
sensing images, as shown in Figure1.

In particular, the human visual attention mechanism is
based on quickly perceiving the objects with large color
changes. In this paper, we use feature points to represent the
objects in the pictures, and automatically select the regions
with a relatively large number of feature points as the training
data set. The original size of the utilized remote sensing

TABLE 1. Image size test.

image data set is from 800 × 800 to 4000 × 4000. After
the image size test step, as shown in Table 1, the size of
the segmented image is reduced to 512 x 512. To find the
feature points, we use the binary robust invariant scalable
keypoints (BRISK) method [24], which has desirable proper-
ties like rotation invariance, scale invariance, robustness, and
relatively fast speed. Finally, we use double segmentation on
the remote sensing imagewith feature points to get segmented
images of different regions, count the number of feature
points in each small image, keep pictures with at least 30
to 60 feature points in each small image, generate an XML
file labeled with the object data in each small image, and the
number of pictures is increased from 1638 to 31560.

The method of double segmentation is to cut the original
image twice from two directions. For the first time, it starts
from the lower left corner of the original image to the upper
right corner, and the segmentation size is 512. If the length of
the original image is less than 512, it will not be segmented in
the horizontal direction; similarly, if the width of the original
image is less than 512, it will not be segmented in the vertical
direction; if the length and width of the original image are less
than 512 when it is segmented to the rightmost and topmost
sides, this part of the image will be discarded. The second
time starts from the upper left corner to the lower right corner,
and the segmentation method is the same as the first time.
If there is no object in the segmented image, the image will
not be used as training data and be removed directly.

According to the annotation mapping formula as shown
in formula (1), the corresponding sub segmented image data
annotation XML file is generated:

f (xmin) =

{
0 xmin ≤ ls, n ≥ 30
xmin − ls xmin > ls, n ≥ 30

f (ymin) =

{
0 ymin ≤ ws, n ≥ 30
ymin − ws ymin > ws, n ≥ 30

f (xmax) =

{
C xmax ≥ C, n ≥ 30
xmax − lend xmax < lend , n ≥ 30

f (ymax) =

{
C ymax ≥ C, n ≥ 30
ymax − wend ymax < wend , n ≥ 30

(1)

where xmin, ymin, xmax , ymax is the information of the anno-
tation box, ls is the starting position of the abscissa of the
cut image on the original image, lend is the ending position
of the abscissa of the cut image on the original image, ws is
the starting position of the ordinate of the cut image on the
original image, wend is the ending position of the ordinate
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FIGURE 1. Extracted feature points from an exemplary remote sensing image.

of the cut image on the original image, C is the size of
the cut image (C = 512 in this paper), n is the number of
characteristic points in the cut area.

If n ≥ 50, the annotation information of this object will
be kept completely, and the difficult item in the XML file
will be set to 0.If 30 ≤ n < 50, the annotation box will be
kept, but the difficult item in the XML file will be set to 1,
if n < 30, the annotation information of this object will be
removed. In this way, we can not only keep the segmented
object information as much as possible, but also eliminate the
increase of false detection caused by too little information and
too much background information.

In this paper, we propose an image segmentation method
based on feature points. This method has two advantages: (1)
retaining the useful information of the original image. In a
remote sensing image, the background information accounts
for the most part, and the object information only accounts
for a small portion of the image. Using this method, we can
reduce the background information as much as possible to
keep useful information, and reduce the redundancy; (2)
improving the diversity and quantity of the dataset. In this
paper, the result of image segmentation using this method is
shown in Fig.2.

B. NETWORKINFRASTRUCTURES
The proposed DFSSD network can be viewed as an improved
version of the SSD network. The benchmark SSD network
uses vgg-16 as the basic feature extraction layer, replacing
the full connection layers FC6 and fc7 of vgg-16 network
structure with two convolution layers, removing the dropout
layer and the classification layer in vgg-16, and adding
four additional groups of convolution layers. Each group
uses 3 × 3 convolution kernel and 1 × 1 convolution core
to reduce the channel number of the feature map. Different
levels of the feature maps are used for the border offset of

FIGURE 2. Image segmentation results: (a):original image, (b):six images
as the result of segmentation stage.

differently-scaled objects as well as the prediction of different
class scores [38]. Finally, the detection results are obtained
by the non-maximum suppression (NMS) [39] applied to
prediction layer. The feature pyramid network (FPN) network
uses the characteristics of multi-scale feature map to detect
small objects with low-level and high-resolution feature maps
and large objects with high-level and large receptive field
feature maps to ensure that objects of different scales can be
detected.

C. DFSSDNETWORKSTRUCTUREDESIGN
In this paper, we note the property of small object sizes in
remote sensing images. The data enhancement of the SSD
network can be consideredmainly a random clipping process,
which makes the small object with less information lose
parts of the information randomly and potentially lead to the
decreased detection ability of the final training model for
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TABLE 2. Horizontal base layer parameters.

small objects. To avoid this issue, we propose an image seg-
mentation method based on the feature point region proposals
method. This method not only compensates for the lack of
sample richness, but also improves the detection accuracy.

When using the SSD network, we find out that the predic-
tion layer of the SSD network does not make full use of the
local and global semantic features of the lower layer, which
leads to the poor detection ability of small objects. For the
remote sensing images, the conv4 layer in the SSD network
has undergone three down-sampling operations, and the res-
olution of the resulting feature map is not enough to detect
small objects. Therefore, we consider using the Conv3_3
layer feature map. If we use the large convolution kernel or
several small convolution kernels to convolute the Conv3_3
layer directly, the semantic information of the feature graph
is increased at the cost of increased computation load of the
network model training. In order to reduce the computation
complexity and accelerate the speed of the training phase,
we propose to use dilated convolution to operate the Conv3_3
layer, and combine it with the FPN network structure. We call
this method as dilated convolution and feature fusion single
shot multibox detector (DFSSD), which improves the size
of the receptive field of the feature layer, and increases the
semantic information. The detailed network structure of the
proposed DFSSD method is shown in Fig. 3.

The proposed DFSSD network model comprises an
improved SSD layer, a horizontal base layer, an up-sampling
layer, a fusion layer, and a prediction layer. The improved
SSD layer is based on the original SSD model, and the
detailed parameters following some prior works in the lit-
erature including [13]. In this study, we use two dilated
convolutions with dilation rates of 12 and 18 for the features
of Conv3_3 layer, and then fuse the feature maps of different
receptive fields obtained by the convolution operation/layer.
At the same time, the convolution kernel of 3 × 3 is used to
eliminate the aliasing effect caused by the fusion of different
feature maps. The horizontal base layer, the up-sampling
layer, the fusion layer, and the prediction layer are improved
according to the FPN network structure. Table 2 shows the
size of the convolution kernels, the number of the convolu-
tion kernels, the strides and the padding of the convolution
layers, and the size of the convoluted feature maps. The
purpose of this layer is to reduce the number of channels
and prepare them to be fused with the latter feature map. The

TABLE 3. Feature layer default box scale comparison table.

fused feature map not only retains the high-resolution of the
lower-level feature map, but also represents better semantic
information.

The up-sampling layer enlarges the feature map to twice
the original size. In the process of the feature map enlarge-
ment, there will be many vacancies without pixel values. The
vacancies are filled with bilinear interpolation. The number
of channels of the feature map is 256. The sizes of the output
feature maps in the up-sampling layer are 64 × 64, 32× 32,
16× 16, 8 × 8, and 4 × 4. The purpose of the up-sampling
layer is to obtain a feature map of the size needed for the
fusion layer. The prediction box scale of the DFSSD network
prediction layer is calculated as shown in formula 2:

sk = smin +
smax − smin

m− 2
(k − 1) k ∈ [2,m] (2)

where smin represents the minimum scale of the default frame
in the original image, smax represents the maximum scale of
the default frame in the original image, and M represents the
number of characteristic maps in the prediction layer. In this
paper, smin = 0.1, smax = 0.9, m = 7 are set. The default
frame size of conv3 is set manually. When k = 1, set = 0.06,
and the default frame size of conv3 layer feature map is 3%
- 6% of the original map. Table3 shows the default box scale
for each feature map.

The fusion layer implements the pixel addition operation
between the feature map obtained from the horizontal base
layer and the feature map obtained from the up-sampling
layer. The sizes of output feature maps are 64× 64, 32× 32,
16× 16, 8× 8 and 4× 4.
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FIGURE 3. The architecture of the proposed DFSSD framework including three main parts: Benchmark SSD, Deconvolution Layer, and
multi-feature pyramid network (MFPN). The basic features are extracted by the Benchmark SSD network. In the Deconvolution Layer,
we use the dilated convolution to deconvolute the Conv3_3 layer of the SSD to obtain rich low-level feature information. The MFPN
module comprises there three parts: the horizontal convolution layer, the up-sampling layer, and the fusion layer. We use the horizontal
convolution layer to reduce the dimension of the feature map, fuse the feature map of the upper sampling layer, and obtain the final
feature map of the prediction layer through the fusion layer. Finally, we use the non-maximum suppression (NMS)to choose the best
bounding box. The proposed method can detect small objects in complex scenes.

Table 4 shows the parameters of the prediction layer. The
prediction layer is obtained by the normal convolution of the
fusion layer and the dilated convolution of the features of
Conv3_3 layer. The purpose of using the convolution kernel
of size 3 x 3 is to deblur the feature map of the fusion layer.
In the feature image enlargement step, a bilinear interpolation
method is used to fill in the vacancies, which may cause
the pixel values of the blocks to be similar. This effect may
undermine the clarity of the contours around the target objects
and make the objects to appear fuzzy, which highlights the
need for this operation.

D. LOSS FUNCTION
When training the detection network, it is necessary to save
the true value box information for each vehicle position
marked in the input image. For each candidate box, the offset
of the center point of the candidate box from the center point
of the truth box as well as the confidence of the object encom-
passed by the candidate box should be calculated at the same
time. In the training phase, all candidate boxes and the two
truth value boxes are first matched according to the Jaccard
matching algorithm [40]. The candidate boxes are regarded as
matching boxes, whose matching coefficients with the truth
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TABLE 4. Parameters of the prediction layer.

FIGURE 4. The loss comparison results of the DFSSD, SSD and faster
RCNN methods.

value boxes are greater than 0.5. They will be marked as
positive samples denoted by c1, and other candidate boxes
that do not satisfy the minimummatching rate are considered
negative samples, denoted by c0.
In the process of network training, the total loss function

includes the classification loss and the location regression
loss, calculated as

L(p, d, g) =
(
1
N

)
(Lcls (p)+ Lloc(d, g)) (3)

where p represents the confidence of the category, d repre-
sents the candidate box, g represents the true value box, n
represents the number of positive samples, Lcls represents the
classification loss function, and Lloc represents the position
regression loss function. The resulting total loss function for
the image comparison is shown in Fig. 4.

Note that the large fluctuations in the loss function occur
only at the beginning of the training phase for epochs below
20. This behavior is normal for deep learning methods, so it is
consistently observed across all methods including the SSD,
Faster RCN, and DFSSD methods. Therefore, it is sufficient
to use epoch numbers above 50 to achieve stable results.

The classification loss Lcls is based on the two-class soft-
max loss. When classifying, the confidence degree belonging

to the automobile category is expressed by p1, and the
confidence degree belonging to the background category is
expressed by p0. Therefore, the classification loss function is

Lcls(p) = −
∑N

i∈c1
ln(p̂1i )−

∑N

i∈c0
ln(p̂0i ) (4)

where ln(p̂) denotes the natural logarithm and we have p̂1i =
exp(p1i )

exp(p0i )+exp(p
1
i )
and p̂0i = 1− p̂1i .

The position regression loss function Lloc(d, g) is the
smooth L1 loss of the matching between candidate box d
and the truth value box g [21], which can not only ensure
that when the difference between the prediction box and the
ground truth is too large, the gradient value is not too large,
but also ensure that when the difference between the predic-
tion box and the ground truth is very small, the gradient value
is small enough. Following the position regression algorithm
in benchmark SSD, we calculate the coordinates of the center
points of the matching candidate box and the truth value box,
and the migration regression of the width and height as

Lloc(d, g) =
∑N

i∈c1

∑
SmoothL1(dki − ĝ

k
j ) (5)

where i represents the ith matched candidate box and j repre-
sents the jth true value box.

IV. EXPERIMENTALRESULTS ANDANALYSIS
A. INTRODUCTIONOF EXPERIMENTAL ENVIRONMENT
In this study, the experimental environment is centos7 system,
the processormodel is Inter (R) Xeon (R) CPU e5-2670V3@
2.30 GHz x 12, the graphics card model is NVIDIA GeForce
GTX 1080 Ti, the video memory is 11g, the memory is 32g,
the experimental framework is Pytorch deep learning frame-
work. Also, the learning rate parameter is 0.001, the weight
attenuation parameter is 0.0005. We use the small batch
gradient descent algorithm and the momentum optimization
algorithm to optimize the parameters, with the mini-batch
size of 16. The epoch number of iterations is 400, the number
of steps of each epoch is 1000 and the momentum factor
is 0.9. The loss function of the DFSSD is basically similar
to that of the SSD. The location information of a category
is obtained by the regression function, and the classification
confidence is predicted by the softmax function.
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FIGURE 5. Different size of datasets objects.

TABLE 5. Map result comparison table.

FIGURE 6. mAP curves for different models.

In this work, we have made a remote sensing image dataset
about car. According to the format of Pascal voc2007 and
2012 data sets, we use an unmanned aerial vehicle (UAV)
remote sensing system to collect vehicle objects in different
environments, with a total of 2045 pictures in the dataset
including 1138, 500, and 407 images, respectively, for train-
ing, verification, and test phases. The actual size of the object
in the remote sensing image is shown in Fig. 5.

B. EXPERIMENTALRESULTS
In order to verify the efficacy of the proposed object detection
method, we carry out different experiments. We compare
the performance of the proposed DFSSD method with the
benchmark SSD and Faster RCNN methods. To realize a fair
comparison, we train and test the three networks using the
same dataset. The achieved results are shown in Fig. 5, Fig. 6,
and Table 5.

From the mAP comparison results between the differ-
ent models in Table 5 and Fig. 6, it can be seen that the
mAP of the DFSSD model is more accurate than the other
methods. The achieved detection accuracy is 2% higher

TABLE 6. Comparison of experimental results.

than the Faster RCNN method and about 7% higher than
the baseline SSD method. The superior performance of the
DFSSD method in terms of the high detection rate is mainly
due to the use of deconvolution step, which enriches the
low-level features. At the same time, the fusion of different
levels of feature maps can effectively improve the detection
accuracy.

Fig. 7 illustrates the enhanced detection accuracy of the
DFSSD model compared with the SSD and Faster RCNN
methods. Since the SSD and Faster RCNN methods are pri-
marily designed for object detection in natural scenes, they
cannot accommodate the requirements of the small-scaled
vehicle detection in remote sensing images. The DFSSD
model fully covers the requirements of the remote sensing
image through designing different levels of feature fusion
methods and enabling different candidate frame scales; there-
fore, deems effective for vehicle object detection in remote
sensing images.

C. COMPARETIVEEXPERIMENTOFOTHERREMOTESENS-
INGDATASETS
In order to further verify the usability of the proposedmethod,
we have carried out comparative experiments for the DFSSD
and SSDmethods using the nwpuvhr-10 dataset [41] and rsod
dataset [42]. The two networks use the same hyper param-
eters for learning. The initial learning rate is set to 0.001
and the number of epochs is set to 400. The SSD method
does not use our proposed data processing method, whereas
the DFSSD method uses the proposed preprocessing method
for training and testing. The experimental results are shown
in Table 6.
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FIGURE 7. Experimental results for different methods using three different images. Columns a-c represents the results
obtained by the SSD, Faster RCNN, and DFSSD methods, respectively.

D. SPEEDTEST
In order to confirm the feasibility of using the DFSSDmethod
in real-time applications, we carry out comparative experi-
ments on different networks. The input size of the SSD net-
work is 512, which uses vgg-16 basic network, and the input
size of the Faster RCNN network is1000 x 600, which uses
vgg16 basic network. Because of the large-scale difference
of the remote sensing images, we test the image in different
scale ranges, and set the resolution of image to 0-1000,1000-
2000,2000-3000, and 3000-4000. The test results are shown
in Fig. 8.

As can be seen in Fig. 9, the single forward inference time
for the DFSSD method is 59ms, which is 11ms longer than
that of the SSD. The main reason for the slightly decreased
speed is the more complex network structure used in the
DFSSD method. The DFSSD method apparently shows a big
advantage over the Faster RCNN in terms of the operation
speed. Overall, we conclude that the DFSSD method does

FIGURE 8. Speed test.

not compromise on the operation time while considerably
improving the detection accuracy.
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FIGURE 9. The object (vehicle) detection accuracy of the proposed method in six different scenes.

Fig. 9 present the final results of the proposed DFSSD
algorithm in terms of detecting vehicles at six different scenes
in aerial images. It can be seen that the proposed DFSSD
method obtains sufficient spatial structural information about
small objects. Themore semantic information obtained by the
DFSSD method enhances the feature representation of small
objects. The proposed method identifies more small samples
to use in the training, so it can make the model learn more
local information and small objects information. In different
scenes, the experimental results confirm the effectiveness of
the proposed method.

Compared with other methods, the proposed method is
more accurate, especially in the detection of small objects.
It is also very effective for objects with complex scenes and
occlusion. However, in some scenes, the distance between
the objects is very close, that is, many parts of the objects
are also connected together, so the proposed method cannot
detect them correctly.

V. CONCLUSION
In this paper, we proposed a novel deep learning method,
named DFSSD for small-scaled object detection with appli-
cations to aerial remote sensing images. The proposed
method significantly improves upon an already successful
method, called SSD. The key idea is an enhanced image seg-
mentation processing approach based on the extracted feature

points of remote sensing images, so that the resulting image
segments retain maximal information for the small-scaled
objects after scaling. The proposed method replaces the ran-
dom clipping step of the SSD network, and hence alleviates
the adverse effects of the random clipping on small objects
in the training phase. For small object detection in remote
sensing images, DFSSD uses two different dilated rate convo-
lution kernels to perform multi-scale fusion on the Conv3_3
layer, which expands the receptive field of the feature map.
At the same time, based on the FPN network structure,
a DFSSD network prediction layer is designed, and feature
maps of different layers are integrated to capture multi-scale
context information, which improves the network ability to
detect small objects. In the prediction phase, the overlapping
object frame is removed by non-maximum suppression of
the original image. The proposed method, on the premise of
ensuring the real-time detection speed of DFSSD network as
much as possible, improves the object detection accuracy of
remote sensing images by 4% compared with the benchmark
SSD network.
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