
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 10/10 pp750–762
DOI: 10 .26599 /TST.2018 .9010144
Volume 24, Number 6, December 2019

A Deep Adaptive Learning Method for Rolling Bearing Fault Diagnosis
Using Immunity

Yuling Tian� and Xiangyu Liu

Abstract: The extraction of rolling bearing fault features using traditional diagnostic methods is not sufficiently

comprehensive and the features are often chosen subjectively and depend on human experience. In this paper, an

improved deep convolutional process is used to extract a set of features adaptively. The hidden multi-layer feature

of deep convolutional neural networks is also exploited to improve the extraction features. A deterministic detection

of low-confidence samples is performed to ensure the reliability of the recognition results and to decrease the rate

of false positives by evaluating the diagnosis of the deep convolutional neural network. To improve the efficiency of

the continuous learning elements of the rolling bearing fault diagnosis, a clone learning strategy based on cloning

and mutation operations is proposed. The experimental results show that the proposed deep convolutional neural

network model can extract multiple rolling bearing fault features, improve classification and detection accuracy by

reducing the false positive rate when diagnosing rolling bearing faults, and accelerate learning efficiency when

using low-confidence rolling bearing fault samples.
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1 Introduction

Large electromechanical devices are complicated
nonlinear dynamic systems characterized by
uncertainty, nonlinearity, and time-variance, resulting
in complicated fault statuses with many interfering
factors. Rolling bearings are important parts of
mechanical equipment and often present as the source
of faults[1]. An intelligent fault diagnosis system can
predict faults to a certain extent, and provide an early
warning in the event of a weak fault. In so doing, it
can effectively avoid any chain reaction that might
otherwise arise from the fault, and obviate the need for
replacement of the entire piece of equipment.

With the development of intelligent technology, many
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algorithms based on deep learning have been applied
to fault diagnosis[2]. The advantage of deep learning
methods lies in the integration of feature extraction
and classification, and the adaptive extraction of fault
features from fault signals[3]. The main deep learning
algorithm models with applications in the field of fault
diagnosis include self-encoding, deep belief networks,
Convolutional Neural Networks (CNN)[4], and long
short-term memory networks[5]. Tran et al.[6] proposed
a hybrid deep belief network, adopting the deep belief
network for pre-training and classifing faults by the
Simplified Fuzzy ARTMAP (SFAM) to recognize the
single and combined faults of suction and discharge
valves in a reciprocating compressor. A method based
on stacked denoising auto-encoding and the Gath-Geva
clustering algorithm for roller bearing fault diagnosis
without a data label has also been proposed[7]. Meng
et al.[8] suggested obtaining the training data using
a new data pre-processing method, changing the unit
numbers of each layer to alter the hyperparameter of
autoencoders, and adopting multivariate norm penalties
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to get a better sparse representation, and finally
reusing the data points between the adjacent samples to
improve the fault identifying rate. A fault classification
method using the compressed sensing and a deep
neural network has been presented in Ref. [9]. By
utilizing the deep belief network’s learning ability,
the proposed method can adaptively fuse multi-feature
data and identify various bearing faults[10]. Tran et
al.[11] presented an approach implementing vibration,
pressure, and current signals for fault diagnosis of the
valves in reciprocating compressors. A pre-processing
step has been proposed to improve the performance
of the CNN by extracting Envelope Spectrums (ES)
on the raw fault signals. As ES demodulates the
signals to provide the fault information, the CNN
can learn to extract distinctive features to diagnose
bearing defects effectively[12]. When using CNN for
fault diagnosis, the two-Dimensional (2D) images are
generated by the time and frequency domain waveform
of the raw fault signals and used as the input data
of CNN to extract the fault features[13, 14]. A two-
layered scheme for the bearing faults identification
has also been proposed in Ref. [15], combining the
feature pool and the sparse stacking automatic encoder
to extract more discriminating information from the
raw vibration signals and identify the multiple faults.
When an unknown fault occurs, the deep learning model
is unable to adjust and the model must be retrained,
resulting in poor model adaptation. Inspired by the
biological immune system, the artificial immune system
provides new approaches for intelligent fault detection
and diagnosis[16]. Such approaches, providing noise
tolerance, successive learning, memory acquisition, and
requiring no non-self samples[17], have the advantage of
an evolutionary learning mechanism and the potential
to provide novel methods to solve fault diagnosis
problems[18].

In this paper, to solve the problem of the time needed
for the detection and learning of an adaptive algorithm
model, the combination of a Deep Convolutional Neural
Network (DCNN) and antibody immunity is proposed
for the real-time rolling bearing fault diagnosis. The
DCNN is used to extract the characteristics of the
time domain and frequency domain signals of rolling
bearings, realizing a direct mapping from raw data
to diagnostic result. In the detection phase, the fault
types are determined by comparing the time domain
and frequency domain diagnosis results. In the learning
phase, the efficiency of learning unknown faults is

improved by a cloning strategy and a continuous
mutation operation.

2 Self-Adaptive DCNN Detection Model

The Self-adaptive DCNN (Sel-DCNN) fault diagnosis
model is made up of three main parts. The first part
is feature extraction and recording, mainly using the
constructed time and frequency domain DCNN models
to perform waveform signal feature extraction and
record the extracted features and diagnostic results. The
second part is the diagnosis of known faults, which
includes two functions: firstly, to evaluate the records
and determine the fault type; secondly, to store the
fault detectors obtained through learning. Each fault
type corresponds to an antibody population and each
antibody population has a tag corresponding to the
fault type, which facilitates quick matching when a
known fault occurs. The third part is the learning of
unknown faults. Its main function is to complete the
learning of unknown faults and generate detectors.
In the process of antibody production, an antigen-
centered antibody initialization generation strategy is
suggested with the main purpose of accelerating the
optimization of antibodies during the learning phase[19].
In the process of fault diagnosis, the concept of
an evaluation threshold based on multiple diagnosis
results is also adopted to avoid the occurrence of
misjudgments arising from mutations in the operating
status. Figure 1 shows the overall architecture of the
model. First, it uses the DCNN time domain and
frequency domain model for diagnosis, and records the
extracted features and preliminary diagnostic results.
In the fault diagnosis part, it diagnoses the fault
types based on the preliminary diagnostic results and
records of the previous stage. Known fault detection
and unknown fault learning are both realized in the
model. The unknown fault detection uses the detectors
in the memory knowledge base. After an unrecognized
situation occurs, fault learning is performed. The main
operations include cloning, mutation, and selection.
Unknown faults are learnt to produce a mature detector
and place it in the memory knowledge base for rapid
detection when this type of fault occurs again.

2.1 Parameter selection for the DCNN fault
diagnosis model

When using a DCNN, the network’s structure is built
first, then the parameters are chosen for the specific
application field. During the process of constructing
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Fig. 1 Self-adaptive DCNN fault diagnosis model.

fault diagnosis models based on DCNNs, parameter
selection is based on a 32�32 frequency domain signal.
The parameters consist of the number of feature maps of
the convolutional layer and the size of the convolutional
kernel. The number of convolution layers is 4 and the
selection of the number of feature maps is made in
accordance with three different models. The first model
type is an “incremental” model, in which the number of
feature maps of each convolutional layer is gradually
increasing; the number of feature graphs extracted is
then 30�50�80�100. The second “constant” model
means that the number of feature maps of each
convolution layer is fixed; the number of selected
feature maps in this model is 60. The third “decreasing”
model is one in which the number of feature maps
of each convolutional layer is gradually decreasing,
in this case, the extracted number is 100�80�50�30.
The convolution operation is mainly used for the
feature extraction of images. The convolution kernel
size is usually selected after determining the number of

convolution layer feature maps. In this case, there are
three convolution kernels of different sizes (i.e., 3�3,
4�4, and 5�5). The pooling kernel is set to the most
commonly used size, which is 2�2 in this case. Along
with the increasing of iteration times, the appropriate
number of training batches is increasing. The selections
of the subsequent time domain model and frequency
domain model are completed based on the selections of
these three parameters. Table 1 shows the accuracy of
each parameter set for the training and test set. The
appropriate parameters are selected based on the test
results.

According to the accuracy of the training set and the
test set, which can be read from Table 1, it can be seen
that when the feature map is selected as “decreasing”
(the model with better overall performance), the
accuracy is higher than that when either of the other two
models are selected. DCNNs return better diagnostic
results when the convolution kernel is 4�4. When
selecting the number of training batches, the detection

Table 1 Main parameters selection of network model.
Training
batches

Convolution
layer number

Number of
feature maps

Convolution
kernel size

Training set
accuracy (%)

Test set
accuracy (%)

Number selection of
feature maps

50 4 30�50�80�100 3�3 99.87 98.86
50 4 60�60�60�60 3�3 99.77 98.14
50 4 100�80�50�30 3�3 99.83 99.19

Selection of convolution
kernel size

50 4 100�80�50�30 3�3 99.83 99.19
50 3 100�80�50 4�4 99.93 99.13
50 3 100�80�50 5�5 99.96 98.62

Selection of training
batch size

40 3 100�80�50 4�4 99.94 98.76
60 3 100�80�50 4�4 99.96 99.16
80 3 100�80�50 4�4 99.96 98.75
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accuracy has reached its optimum when the number of
batches increases or is equal to 60. Beyond this, even if
the number of batches is increased further, there is no
significant impact on the test results.

2.2 Size selection of the input time domain and
frequency domain signal

After selecting the main parameters of the DCNN,
the next step is to determine the number of layers
and the size of the input time domain and frequency
domain signals. DCNN does not have a unified model
at the time of construction, and there is no standard
definition for the size of an input image. In different
application areas, the DCNN operates with different
network structures and different input image sizes are
chosen in accordance with the specific situation. The
network structure is determined by contrasting the
detection accuracy of training set and test set with
different input image sizes. According to the results
of the parameter selection, the optimal size of the
convolution kernel is 4�4, the size of the pooling kernel
is the commonly used 2�2, the number of feature maps
suggests a “decreasing” model, and the optimal number
of training batch sets is 60. Five different input signal
sizes and corresponding network layer numbers are
set. Tables 2 and 3 report the diagnostic results of the
time and frequency domain on the training set and test
set, respectively. The time domain signal size selection
is shown in Table 2, while the frequency domain signal
size selection is shown in Table 3.

It can be seen from Tables 2 and 3 that different
input time domain and frequency domain waveforms
correspond to different network model structures. In
the time domain waveform diagnosis results, the use
of the same network structure for different waveform
sizes is mainly achieved through a complementary edge
operation. As the input waveform signal increases, the
network layer is deepened, and a nine-layer network

Table 2 Time domain signal size selection.
Image
size

(pixel)

Network
layer

numbers

Convolution
kernel
size

Pooling
size

Train set
accuracy

(%)

Test set
accuracy

(%)
15�15 7 4�4 2�2 98.83 96.10
20�20 8 4�4 2�2 99.69 98.19
25�25 8 4�4 2�2 99.87 97.95
28�28 9 4�4 2�2 99.88 98.00
32�32 9 4�4 2�2 99.83 98.19

Table 3 Frequency domain signal size selection.
Image
size

(pixel)

Network
layer

numbers

Convolution
kernel
size

Pooling
size

Train set
accuracy

(%)

Test set
accuracy

(%)
15�15 7 4�4 2�2 99.80 97.90
20�20 8 4�4 2�2 99.93 99.10
25�25 8 4�4 2�2 99.91 99.38
28�28 9 4�4 2�2 99.93 99.14
32�32 9 4�4 2�2 99.96 99.16

model structure with a size of 32�32 achieves the
highest accuracy of recognition of the time domain
signal. When choosing the frequency domain network
model, there is almost no difference in the accuracy
of the training set, but a slightly larger difference can
be seen in the accuracy of the test set. The highest
accuracy is achieved when the input frequency domain
waveform size is 25�25 and the network structure has
eight layers. The recognition effect of the frequency
domain diagnosis model is better compared to that of
the time domain diagnosis model.

2.3 Design of the time domain and frequency
domain fault diagnosis models

The time domain diagnosis model has a nine-layer
structure, as shown in Fig. 2. The first layer is the
input layer, and the input signal of the real-time
domain is a grayscale image, the size of which is
32�32. The second layer is a convolutional layer.
After one convolution it obtains 100 feature maps of

Fig. 2 DCNN time domain model.
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29�29 size. The third layer is the pooling operation.
Because the pooling kernel is 2�2, the dimension of
the previous convolution layer cannot be divisible, and
a complementary edge operation is performed with 100
feature maps of 15�15 size obtained by the pooling
operation. The fourth layer is a convolution operation
and obtains 50 feature maps of 12�12 size. The fifth
layer gets 50 feature maps of 6�6 size after the pooling
operation; after the sixth layer convolution, 30 feature
maps of 3�3 size are obtained. The seventh layer gets
a one-dimensional vector by complementing edge and
convolution operations. The eighth layer of the neural
unit consists of two parts; one part is obtained using
a 1�1 convolution kernel for the seventh layer, and
the other part is obtained by the convolution operation
for the sixth layer feature maps. The ninth layer is
the Softmax layer, and each output unit corresponds
to a fault type. In order to obtain fuller features, a
full convolutional layer instead of a fully connected
layer is used in the network’s construction. Through
the convolution operation, the common features of
the sixth and seventh layers are integrated into the
Softmax function for classification, thus improving the
recognition accuracy.

Tables 4 and 5 detail the construction of the time
domain and the frequency domain signal model. The
input waveform signal used in the frequency domain
diagnostic model has a size of 25�25, for a total of
eight layers. The convolution and pooling processes in
the frequency domain and the time domain are the same
so that the details will not be repeated here.

2.4 DCNN model initialization and training
process

The DCNN model begins training once construction is

Table 4 Time domain signal model structure.
Layer

number
Number of

feature maps
Feature

map size
Layer

number
Number of

feature maps
Feature

map size
1 1 32�32 6 30 3�3
2 100 29�29 7 30 1�1
3 100 15�15 8 50 1
4 50 12�12 9 7 1
5 50 6�6

Table 5 Frequency domain signal model structure.
Layer

number
Number of

feature maps
Feature

map size
Layer

number
Number of

feature maps
Feature

map size
1 1 25�25 5 50 4�4
2 100 22�22 6 30 1�1
3 100 11�11 7 50 1
4 50 8�8 8 7 1

completed. The data set uses the processed time domain
and frequency domain waveform signal data. In this
paper, we select data set from the Western Reserve
University Bearing Data Center, the initialization and
training processes are as follows.
� After the data set is divided and the grayscale is

preprocessed, the obtained sample is stored under the
folder.
� Deep convolutional neural network model is

constructed according to the selected parameters and
the network structure.
� Data set is divided into a training set and a test set,

using a 4:1 ratio.
� Steps for convolution and pooling operations are

set to 1 and 2, respectively, and the number of offsets is
set to equal the number of feature maps.
� Convolution kernel performs random

initialization, the bias initialization is set to zero,
the learning rate is set to 0.001, and other related
parameters are set.
� In the forward propagation process, the

convolution operation uses the following formula:
xi

j D f .
X

i�Mj

xl�1
i �Kl

ij C b
l
j / (1)

where l represents the layer number, K is the
convolution kernel,Mj is the receptive field of the input
layer, b represents the offset; x indicates a feature map,
and f .�/ represents the activation function.

The pooling operation uses the largest pooling
method. The selection of the activation function is
ReLU, which avoids the problem of the disappearing
gradient and has a faster convergence speed. Its
calculation formula is Eq. (2), with x representing the
input value of the neuron,

f .x/ D max .0; x/ (2)
� The DCNN model is constructed by pre-processed

time domain and frequency domain, using the random
gradient descent training method to adjust the error
through back propagation. Finally, the trained rolling
bearing diagnostic network model is obtained.
� The test set is tested by the trained deep

convolutional neural network model, thus the influence
of a deep convolutional neural network on fault
diagnosis and feature extraction of rolling bearings is
verified.

3 Immune Deterministic Detection

3.1 Problem definition

In the adaptive DCNN fault diagnosis model, the
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input data is waveform signal of the time domain
and frequency domain. The feature extraction of the
time domain and frequency domain waveform signals
is performed using the DCNN, and the Softmax
function is used for classification. When encountering
an unknown fault, it is necessary to perform immune
component mapping on the extracted features. In the
fault diagnosis module, there is a memory knowledge
base, which stores learned fault detectors, with each
type of fault recorded with an antibody population and
a DCNN diagnosis result. The function of the unknown
fault learning module is to train the optimal antibody
population, which includes the operations of cloning,
mutation, and selection of antibodies.

Definition 1: Antigen. The antigen is composed
of features extracted by the DCNN in the time and
frequency domain. The tag of the antigen is composed
of the initial diagnostic results of the feature extraction
and recording module, represented by two characteristic
bits. The features are derived from the input data of
the Softmax layer. The feature numbers extracted by
the time domain and frequency domain recognition
models of the DCNN are the number of training
data classifications. The antigen Ag is defined by the
following expression:
Ag D .TD;FD;T1; : : : ;Tn;Ft1; : : : ;Ftn; Rag/ (3)

where TD and FD are the results of the time
domain and frequency domain recognition of the
DCNN, respectively. Tn and Ftn are the feature vectors
extracted by DCNN in the time domain and the
frequency domain, respectively. And mapped as the
characteristic attributes of the antigen, Rag is the radius
of the antigen.

Definition 2: Antigen population. When unknown
faults occur, the waveforms will appear as continuous
abnormal situations, and the features extracted and the
diagnostic results will be recorded each time. Each
record is an antigen, and there are N stored records that
are directly mapped by an antigen population. The Agp
is the antigen population characterized by

Agp D .TDr ; FDr ; Ag1; Ag2; : : : ; Agn/ (4)

where TDr and FDr are the diagnosis results of the
DCNN in the time domain and the frequency domain,
respectively. The values of TDr and FDr are the
most frequently fault type of N diagnostic records, and
then the antigen records are stored. Each antigen Agn

corresponds to one sample.
Definition 3: Antibody population. In fault

diagnosis, the antibody corresponds to a fault detector.
The resulting antibodies are preferably able to cover
all antigens and have a high affinity. We propose an
improved initial antibody production strategy in which
the gravity center of the triangle consisted of three
antigens becomes the center of a new antibody based
on the antigen population, i.e., radius. The antibody
population is Abp and defined as

Abp D
C3

Agi
C C3

Agj
C C3

Agk

3
(5)

Definition 4: Average affinity. In the artificial
immune algorithm, the affinity is used to indicate the
degree of match between the antibody and the antigen.
However, the affinity in fault diagnosis is the degree of
match between the detector and the extracted feature.
Among these, the antibody and the antigen have the
same vector dimensions, while the average affinity has a
higher reliability and can avoid the misjudgment caused
by detection and recognition of the single antibody
edge. The training phase is the average affinity of the
antibody for all antigens, but the detection phase is the
average affinity of the antigen for all antibodies. The
average affinity uses a method based on the distance
defined by the antibody and the antigen,

Fi D
n

nP
jD1

jAbj � Agi j

(6)

where n represents the size of the initial antibody
population, Abj represents an antibody in the antibody
population, Agi represents an antigen in the population,
and Fi represents the average affinity of an antigen.

Definition 5: Clone operation. After calculating the
average affinity of the initial antibody, the average
affinity is ranked. According to the defined affinity
calculation formula, the larger the affinity, the more the
antibodies and antigens match. The size of an antibody
clone is proportional to the average affinity, K is a
clonal factor, Num is the initial antibody population
size, and AbNi is the initial population size of the
antibody,

AbNi D K �Num � Fi (7)
Definition 6: Mutation operation. The mutation

probability is defined based on the average affinity. The
greater the average affinity, the smaller the probability
of mutation. The formula for calculating the mutation
probability is

Pi D
˛

Fi

(8)

where Pi is the probability of mutation of the antibody
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i ; the greater it’s value, the greater the probability
that the antibody will mutate. ˛ is a mutation factor.
When performing the mutation, the mutation center
of the antibody is randomly selected and the mutation
operation formula is as follows,

At.t C 1/d D At.t/d C "
Rag

Fi

(9)

whereAt.t C 1/d denotes the position of the dimension
d of the antibody in the .t C 1/-th generation, At.t/d
denotes the position of the d dimension of the antibody
in the t -th generation, and " is a random number
between 0 and 1.

3.2 Antibody learning

When an unknown fault occurs, if the memory
knowledge base cannot cognize it, immune learning of
antibodies is performed to generate a new fault detector.
The antibody learning process is as follows.

(1) Map the features extracted from the rolling
bearing deep convolutional neural network to the
initial antigen population (Agp). The number of initial
antigens is the recording threshold.

(2) Generate the initial antibody population using an
antigen center-based antibody production strategy after
the initial antigen production.

(3) Calculate the average affinity of each antibody
for all antigens according to the cloning procedure
definition. In this step, the corresponding antibodies
will be cloned according to the cloning operation. The
number of cloned antibodies is proportional to the
average affinity between the antibody and the antigen;
the higher the average affinity, the larger the number of
clones of the antibody.

(4) Set a random probability threshold for each
cloned antibody. When the calculated mutation
probability is greater than the corresponding random
threshold, perform the mutation for the cloned
antibody, otherwise there is no mutation. The mutation
probability is inversely proportional to the average
affinity calculation value. Having set the threshold,
recalculate the average affinity of each antibody, both
cloned and antigen.

(5) Compute the affinity for the newly generated
antibodies and sequence in descending order. Select the
highest affinity (L) antibody as the next generation of
the initial antibody population.

(6) Repeat the cloning and mutation operation. When
the number of iterations reaches the specified number
or the antibody affinity satisfies the specified threshold,

terminate the execution.
(7) A certain number of new detectors will have been

generated by the completion of the algorithm. Add these
new detectors to the memory knowledge base.

3.3 Adaptive DCNN detection

With the record value threshold set to N and
the evaluation threshold to D, the adaptive DCNN
detection approach consists of the following main steps.

(1) Perform the recognition using the trained time
domain and frequency domain models of the DCNN,
record the diagnostic results and extracted features
each time. The record set is defined as Rec D fRe1;

Re2; : : : ; Reng, and Ren is defined in the form of
antigens.

(2) When the number of recordings reaches N ,
evaluate the diagnostic results of the records and
compare the tag of each Ren in the set. Set the number
of times as M when the diagnostic results of time
domain waveform and frequency domain waveform are
consistent. The time domain model diagnoses that the
maximum number of fault types is Tmax, the frequency
domain is Fmax, and the category tag corresponding
to the maximum number of times is the fault base,
represented by two characteristic bits.

(3) If M is less than the evaluation threshold D, then
an unknown fault has occurred, so subject the record
value to antigen mapping and perform step (5).

(4) If M is greater than the evaluation threshold D
and the evaluation result is in a normal state, clear
the record and perform the detection for the following
period. If the evaluation result is a fault type, define the
current state as the fault type and clear the record.

(5) When there is an unknown fault type, check
whether Tmax and Fmax are both greater than the
evaluation threshold D. If so, check the fault base
against the tag bit of the antibody population in the
memory knowledge base. If they match, then perform
the antibody detection steps; otherwise, perform the
unknown fault learning procedure. If Tmax and Fmax are
not both greater than the evaluation threshold D, call
the untagged antibody population detection. If it can
be identified, output the diagnosis result and clear the
record. If it is still not recognized, perform the online
learning procedure.

(6) If the memory knowledge base can identify an
unknown fault, consider the diagnosis to be completed
and clear the record; otherwise, perform the online fault
learning procedure.
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(7) If the memory knowledge base cannot identify
the unknown fault type, the feature data extracted by
the deep convolution neural network is passed to the
unknown fault learning module to generate a mature
detector.

4 Experimental Design and Analysis

4.1 Data pre-processing

The experimental data set is the rolling bearing data
set provided by Case Western Reserve University Data
Center[20]. The raw data is the vibration acceleration
signal, which is composed of hashed data points. When
generating the input layer data of the fault diagnosis
model, a time domain waveform is taken at every
interval and subjected to a Fourier transform to obtain
a corresponding frequency domain waveform. The
fault types in the data set include normal state, inner
ring fault, outer ring fault, and rolling element fault.
According to the diameter of the fault space region,
we classify each fault type into one of three states:
slight fault (0.1778 mm), moderate fault (0.3556 mm),
and severe fault (0.5334 mm). The data used for training
are in the normal, slight fault and severe fault states. We
select 1500 samples for each type of data, and 10 500
samples in time domain and frequency, respectively.

The size of signal map is 224�224 generated in each
time domain and frequency domain. In training the
DCNN, the time domain and frequency domain signals
are resized as input data to the DCNN. The waveforms
of the time domain and frequency domain of the bearing
faults are listed in Figs. 3 and 4; in the data set
the fault diameter is 0.1778 mm. It can be seen from
Figs. 3 – 10 that the differences in the time domain
waveforms are mainly manifested in the amplitude of
the vibration, whereas in the frequency domain they
appear in different frequency bands. From the overall
view of the signal waveforms in the time domain and the
frequency domain, it can be seen that the various faults
appear very differently based on the fault type, which
provides a basis for the feasibility of using DCNNs for
fault diagnosis and of the proposed algorithm model.

4.2 DCNN feature extraction validation

4.2.1 Comparison of DCNN and feature extraction
techniques

The results of the experiment comparing the deep
convolutional neural network method with the
commonly used feature extraction fault diagnosis
techniques are shown in Table 6. Table 6 lists the
experimental results of the time domain recognition

Fig. 3 Normal state time signal.

Fig. 4 Normal state time and frequency domain signal sample.

Fig. 5 Slight rolling element fault time domain signal.
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Fig. 6 Slight rolling element fault time and frequency domain signal sample.

Fig. 7 Slight inner ring fault time domain signal.

Fig. 8 Slight inner ring fault time and frequency domain signal sample.

Fig. 9 Slight outer ring fault time domain signal.

Fig. 10 Slight outer ring fault time and frequency domain signal sample.

model of DCNN (DCNN-TD) and the frequency
domain recognition model of DCNN (DCNN-FD).
Feature Abstraction (FA) is based on the dimensionless
data feature extraction of earlier waveforms; the
extracted feature indices include waveform indicators,
peak indicators, pulse indicators, margin indicators,
and kurtosis indicators. The features extracted by

Empirical Mode Decomposition (EMD) and Ensemble
Empirical Mode Decomposition (EEMD) are the
energy characteristics of the decomposed IMF
components. Due to the randomness of the initial
parameter settings, the detection accuracy is taken
as the average of ten runs. From the accuracy
comparison reported in Table 6, it can be seen
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Table 6 Comparison of DCNN and feature extraction
techniques.

Technical method Train set
accuracy (%)

Test set
accuracy (%)

DCNN-TD-Softmax 99.83 98.19
DCNN-FD-Softmax 99.91 99.38

EMD-SVM 92.25 92.00
EMD-BP 86.03 81.64

EEMD-SVM 91.56 90.67
EEMD-BP 85.19 80.86
FA-SVM 81.83 81.08
FA-BP 80.55 80.23

that the recognition rate of fault diagnosis based on
the DCNN is clearly higher than both that of a BP
neural network approach based on feature extraction
and that of a fault feature recognition approach based
on Support Vector Machines (SVM). This reflects the
more comprehensive and appropriate nature of the
features extracted by the DCNN, and the suitability
of these extracted features for classification. Through
the comparison between the DCNN model and other
feature extraction technologies, it can be seen that the
DCNN model has great advantages in performing fault
feature extraction of rolling bearings.

4.2.2 Comparison of DCNN and Deep Belief
Network (DBN)

The DBN is a model based on the probability of energy
generation, comprising of multiple layers of restricted
Boltzmann machines. It is also commonly used for
fault feature mining and intelligent diagnosis. There
are two ways to process input layer data for a deep
belief network: the first is to take N most primitive

data points as an input sample, represented by an N -
dimensional vector; the second is to take the obtained
time domain and frequency domain signal waveforms
as the raw input data, and with each sample process the
2D data to generate a one-dimensional data vector. The
experimental data set is shown in Table 7. Based on the
DCNN model, seven types of fault data are used. When
the DBN is used for waveform signal identification, the
bearing fault data is a slight fault data set. Reference
[21] used the DBN for bearing fault diagnosis by
setting the input vectors of different sample lengths,
which showed the validity of the original vibration data
feature extraction. From the accuracy results of the
experiment on the training and test sets, it can be seen
that the CNN and DBN are both effective in identifying
bearing faults to a certain extent, however, when time
domain and frequency domain signals are used as input
data to a deep belief network, it is not effective at
classifying faults. These include time domain based on
deep belief network (named DBN-TD) and frequency
domain based on deep belief network (named DBN-
FD).

4.3 Analysis and comparison of experimental
results

4.3.1 Distinguishing the level of fault
In the case of the fault level discrimination test, the
algorithm model used is based on a well-selected time
domain and frequency domain DCNN model. The
data used is of the types slight fault (0.1778 mm) and
severe fault (0.5334 mm). The accuracy results of the
experiment are shown in Tables 8 and 9. From these

Table 7 Comparison of DCNN and DBN.
Algorithm model Input data Network layer number Train set accuracy (%) Test set accuracy (%)

DCNN-TD 32�32 9 99.83 98.19
DCNN-FD 25�25 8 99.91 99.38

DBN[21] 1024 4 99.40 none

DBN-TD
20�20 4 25.00 25.00
25�25 4 25.00 25.00
30�30 4 25.00 25.00

DBN-FD
20�20 4 25.00 25.00
25�25 4 25.00 25.00
30�30 4 25.00 25.00

Table 8 Train set accuracy for various fault types.
Algorithm

model
Inner ring
fault (%)

Outer ring
fault (%)

Rolling element
fault (%)

Severe inner
ring fault (%)

Severe outer
ring fault (%)

Severe rolling
element fault (%)

DCNN-TD 99.92 99.83 100 99.75 99.67 99.58
DCNN-FD 99.83 99.92 99.93 99.92 99.90 99.86
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Table 9 Test set accuracy of various fault types.
Algorithm

model
Inner ring
fault (%)

Outer ring
fault (%)

Rolling element
fault (%)

Severe inner
ring fault (%)

Severe outer
ring fault (%)

Severe rolling
element fault (%)

DCNN-TD 98.33 97.33 99.11 97.00 97.33 99.27
DCNN-FD 99.24 99.43 99.56 99.25 96.00 99.67

experimental results, it can be seen that the constructed
DCNN can distinguish the same fault at different fault
levels, indicating the ability of DCNNs to extract
nuanced features.
4.3.2 Diagnosis results of the adaptive DCNN
In Table 10, the experimental data was calculated using
the average of multiple runs. It can be seen from the
experimental results that the recognition rates of each
of the separate time domain and frequency domain
fault diagnosis models reach a level above 99%. The
proposed adaptive DCNN model can achieve good
results in the learning of unknown faults on the premise
of ensuring the accuracy of known fault recognition. It
overcomes the inability of the DCNN model to identify
unknown faults, and also has a lower false negative and
false positive rate.
4.3.3 Comparison of experimental results
An analysis of the experimental results was performed
to compare the proposed model with other methods
in the literature. The first three items in Fig. 11
are the experimental results from our work, with
the accuracy rate being the results from the test
set. The EHHT-CNNs algorithm model uses the
modified Hilbert-Huang transform to decompose the
instantaneous frequency spectrum at different scales
to obtain the instantaneous frequency vector, and then
transforms the vector into a 2D matrix suitable for the
convolutional neural network[22]. WDCNN proposed
a one-dimensional deep convolutional network model
and added a batch normalization layer to improve the
accuracy of detection[23]. Figure 11 shows a comparison
of the recognition accuracy of each of these algorithms.
It can be seen from the experimental results that the
recognition accuracy rate of our proposed model is
higher than that of the deep convolution network alone,
and also improves on the EHHT-CNNs and WDCNN
algorithm models.

Fig. 11 Comparison of accuracy of identification.

5 Conclusion

This paper combines a deep convolutional network
with an immunity algorithm for fault diagnosis by
integrating signal features in the time domain and
frequency domain. Based on an improved DCNN, an
immune adaptive DCNN model is proposed. The
new model aims to effectively identify unknown
faults on the premise of ensuring the recognition
of known faults. Compared with traditional feature
extraction and classifier recognition in other models
based on deep convolutional networks, the feature
extraction process in the proposed model becomes more
intelligent without relying on human factors, while also
extracting more complete results and achieving a higher
recognition accuracy rate. Additionally, in the fault
diagnosis phase, in order to achieve a result in real
time, a faster and more efficient DCNN diagnosis model
is proposed by introducing a cloning and mutation
strategy. Through the experimental comparison of the
detection efficiency of several algorithm models, the
proposed model is not only shown to be effective
in classifying faults, but also has higher recognition
efficiency.

Table 10 Sel-DCNN model diagnosis results.
Fault type Train set (%) Test set (%) Test false positive rate (%) Test missed rate (%)

Sel-DCNN
Known fault 99.92 99.42 0.28 0.57

Unknown fault none 98.32 2.16 1.85
DCNN-TD Known fault 99.83 98.19 2.67 1.89
DCNN-FD Known fault 99.91 99.38 0.34 0.72
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