
The Visual Computer (2019) 35:837–848
https://doi.org/10.1007/s00371-019-01674-x

ORIG INAL ART ICLE

Multiresolution visualization of massive black oil reservoir models

Frederico Abraham1 ·Waldemar Celes1

Published online: 10 May 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Recent advances in parallel architectures for numerical simulation of natural black oil reservoirs have allowed the use of very
discretized domains. As a consequence, these simulations produce an unprecedented volume of data, whichmust be visualized
in 3D environments for careful analysis and inspection. Conventional scientific visualization techniques are not viable on
such large models, creating a demand for the development of scalable visualization solutions. In this paper, we propose a
hierarchical multiresolution technique to render massively large black oil reservoir meshes. A new simplification algorithm
specialized for such models is presented, which accurately represents boundary surfaces, while keeping the hexahedral mesh
with good quality. Original model properties, wireframe and surface normals are mapped onto the simplified meshes through
texture mapping. This allows the system to reuse the structure for different simulations that use the same geometry model.
The viewer application is designed to guarantee a minimum refresh rate, allocating geometric detail where it is most needed,
given the available hardware. Experimental results, considering up to 1.2 billion cell models, demonstrate the effectiveness
of the proposed solution.

Keywords Real-time rendering · Reservoir model rendering · Mesh simplification algorithm · Multiresolution rendering ·
Massive model visualization

1 Introduction

Black oil reservoirs are formed through the accumulation
of hydrocarbons in sedimentary rocks [6]. After wells are
drilled along the reservoir field, oil andgas are extractedusing
natural or induced underground pressures, pumping them to
the surface using a pipeline network. The oil industry uses
numerical simulators to predict the fluid flow throughout the
production time of oil and gas fields. Reservoir maximum
economic return is pursued through many simulations of dif-
ferent well arrangements and configurations. Simulations are
also used later in the production process, using past produc-

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00371-019-01674-x) contains
supplementary material, which is available to authorized users.

B Frederico Abraham
devotion97@gmail.com; fabraham@tecgraf.puc-rio.br

Waldemar Celes
celes@tecgraf.puc-rio.br

1 Computer Science Department, Tecgraf/PUC-Rio Institute,
Pontifical Catholic University of Rio de Janeiro,
Rua Marquês de São Vicente 225, Rio de Janeiro, Brazil

tion data to adjust model parameters. This process reduces
uncertainties by improving future predictions.

In order to enable the analysis of such models, which can
be composed of very large data sets, a number of scientific
visualization techniques are applied.One of the greatest chal-
lenges of black oil reservoir visualization nowadays is the
ability to handle very large models. The increasing availabil-
ity of computer power has allowed engineers to drastically
improve simulation accuracy by modeling very discretized
domains. Models are now composed of tens of millions
of cells, and advances in parallel simulations have allowed
the simulation of billion-cell reservoirs [11,13]. Such model
sizes are unprecedented, requiring the construction of scal-
able visualization systems in order to inspect these models
at interactive frame rates.

Most approaches to handle massive models either employ
distributed visualization or level-of-detail techniques. Dis-
tributed visualization handles the issue by using more com-
puting power, but this introduces challenges on hardware and
software complexities [1]. Scalability is also a concern, as
with any distributed algorithm. On the other hand, level-of-
detail techniques can do a better job at spending the available
computing power where it is needed. This is done by sim-
plifying complex geometry without perceptible quality loss

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-019-01674-x&domain=pdf
https://doi.org/10.1007/s00371-019-01674-x

838 F. Abraham, W. Celes

in the visualization. Another advantage of the multiresolu-
tion approach is its simpler hardware setup, offering quality
visualizations on off-the-shelf graphics hardware.

To the best of our knowledge, no simplification scheme
was proposed for black oil reservoir meshes. Its partic-
ularities require a specialized solution. In this paper, we
present a new multiresolution technique to render large-
scale reservoir meshes. A new simplification algorithm
specialized for such models is presented, which exploits
the layered nature of their geometry. A set of cell column
collapse operators was devised to simplify the reservoir
mesh, aiming to maintain hexahedrons with good shapes
and boundary surfaces with accurate geometry represen-
tation. The algorithm receives and produces meshes com-
posed of hexahedral cells only, allowing the use of most
visualization algorithms devised for regular sized reser-
voir models. A multiresolution structure was used for out-
of-core partition, construction and visualization of such
meshes.

Our proposal includes the use of global topological coor-
dinates, which are per-vertex [i, j, k] coordinates. These
coordinates are added as original vertex attributes and
interpolated throughout the simplification process. In visual-
ization time, original model properties and surface normals
associated with each cell [i, j, k] are stored in packed 3D
textures. The interpolated topological coordinates allow us
to map the original model wireframe, properties and surface
normals onto the simplified meshes. Decoupling geometry
simplification from property mapping effectively allows the
reuse of the built multiresolution structure for different sim-
ulations that use the same geometry model.

Our multiresolution visualization system has proven to be
scalable in relation to state-of-the-art simulators, currently
allowing the visualization of a reservoir model with 1.2 bil-
lion cells on off-the-shelf computer hardware.

The remainder of this paper is organized as follows:
in the next section, related works on mesh simplifica-
tion, multiresolution hierarchies and texture mapping are
presented. Section 3 briefly describes black oil reservoir
models and enumerates multiresolution structure require-
ments for such models. Section 4 presents our proposed
reservoir mesh simplification algorithm and multiresolu-
tion hierarchy. The techniques proposed to map the orig-
inal wireframe, properties and normals onto the simpli-
fied mesh are presented in Sect. 5. Section 6 presents
our out-of-core viewer application, including data layout
and view-dependent visualization algorithm. Experimental
results are detailed in Sect. 7, demonstrating the effective-
ness and efficiency of our solution. Finally, in Sect. 8,
concluding remarks are presented and future work is dis-
cussed.

2 Related work

Sousa et al. [16] present a map of the complex processes
and tasks involved in dealing with geoscience and reservoir
models. They outline the major problems and challenges that
motivate research on interactive visual computing systems
for such models. Their work indicates that one of the major
concerns in the development of such applications is han-
dling the exponential increase in data volume. In this work,
we focus on visualizing massive black oil reservoir models,
characterized by a complex set of hexahedral cells. No previ-
ous proposal was presented for managing scalability of such
models. However, there is a vast literature on mesh simplifi-
cation andmultiresolution schemes for surface visualization.
As we explore the layered composition of reservoir mod-
els, metrics and simplification operators for surfaces can be
adapted for our purpose.

Garland and Heckbert [8] have presented a surface sim-
plification algorithm based on iterations of vertex pair
contractions. The work computes a good approximation of
the error committed at each contraction by using a quadric
metrics. A symmetric 4× 4 quadric matrix Q is built to pro-
vide the sum of the squared distances of any vertex to a set of
planes, in the case, the planes of the original mesh faces that
contain the vertex. Such matrices are computed and stored at
each original mesh vertex. Quadric matrices can be added:
given a contraction (v1, v2) → v̄, the matrix Q̄ = Q1 + Q2

is a good approximation for the quadric matrix associated
with v̄. The error at any vertex v can be computed as vTQ v.
Quadric matrices are a very compact error representation,
requiring the storage of only 10 floating points. We employ
their scheme to evaluate the error in reservoir layer elevations
and external faces when simplifying the model.

Wu and Kobbelt [21] presented a new mesh decimation
framework based on the probabilistic optimization technique
ofmultiple-choice algorithms. The idea is to replace the com-
monly used priority queue of iterative greedy algorithms.
By selecting the best among a small number of randomly
selected local operations,manyheavyoperations are avoided,
such as the construction of the priority queue on initializa-
tion, the processing of the geometrical change for all entities
involved in a local operation, and the subsequent update of
their positions in the priority queue. This simple modifica-
tion has achieved simplification times 2.5 times smaller than
the greedy version of the algorithm, while producing meshes
with the same quality.

Daniels et al. [7] proposed a quad mesh simplifica-
tion algorithm that treats the difficult problem of keeping
quadrilateral connectivity throughout the simplification. The
method uses unit operations applied to the dual mesh repre-
sentation, improving the mesh structure and maintaining the
topological genus. The proposal includes an extension to the
quadric error metrics for quadrilateral meshes, also prioritiz-

123

Multiresolution visualization of massive black oil reservoir models 839

ing collapses that restore vertex valences to the ideal number
of four and collapses that create square elements. Tarini et
al. [19] presented an incremental method for quadrilateral
mesh simplification, with an objective function that allows
the progressive generation of a mesh with convex, right-
angled and equally sided quads. Their set of local operations
is very simple yet very powerful. Another important feature
is that it only uses quad elements, not requiring temporary
triangles. These quadrilateral mesh simplification strategies
are used as inspiration to preserve good hexahedral element
shapes, as we adopt a simplification scheme based on column
collapses.

Cignoni et al. [5] introduced Adaptive TetraPuzzles, a
technique for out-of-core construction and visualization of
very large surface models. They utilize a regular conformal
hierarchy of tetrahedra to spatially partition the model. Each
tetrahedron cell contains a precomputed simplification of the
original model, which is stored using a format optimized for
rendering. The multiresolution structure is constructed dur-
ing a fine-to-coarse simplification of the surface contained
in diamonds, which are sets of tetrahedral cells sharing their
longest edge. Given appropriate boundary constraints dur-
ing the simplification phase, all conforming subdivisions of
the tetrahedron hierarchy result in correctly matching sur-
face patches. In visualization time, the hierarchy is traversed
top-to-bottom given the screen and camera parameters. A
tetrahedron node is loaded and its associate mesh is rendered
if its error metrics is accepted when projected to the screen;
otherwise, traversal continues to its children. To guide our
column-based simplification algorithm, we use a 2D version
of such scheme, creating a conformal hierarchy of triangles
projected on the horizontal plane.

Celes and Abraham have proposed the wireframe tex-
ture [4] for mesh wireframe rendering based on texture
mapping. We extend that approach for 3D meshes and also
use it for normal and property mapping.

3 Black oil reservoir model

The black oil reservoir model is created by discretizing the
reservoir domain into a tridimensional topological grid with
ni × nj × nk hexahedral cells. Each cell with topological
coordinates [i, j, k] has the cells [i + 1, j, k], [i − 1, j, k],
[i, j + 1, k], [i, j − 1, k], [i, j, k + 1] and [i, j, k − 1] as
its topological neighbors. The geometry associated with this
topological grid is usually irregular, as shown in Fig. 1. Geo-
logical faults result in discontinuities in elevation, causing
topological neighbor cells to not share faces. Some cells
might be set as inactive, possibly resulting in irregular and/or
disconnected cell groups. All cells with the same k coordi-
nate are said to be in the same layer; the top faces of the

Fig. 1 Reservoir model with irregular geometry

cells in a layer resemble an irregular terrain with possible
discontinuities.

The reservoir is characterized by assigning geophysi-
cal and geological properties to its cells. Given a well
arrangement and its associated production plan, the simu-
lator computes oil (and gas) flows and other properties, such
as bottom-hole pressures, based on its numerical model. The
simulation also outputs physical properties associated with
each grid cell for each simulation time step, such as oil, gas
and water saturations, pressures and temperatures. In this
work, the focus is on rendering very large reservoir mod-
els with their cell properties. It is also important to allow
the visualization of the mesh wireframe, since it helps the
specialist to judge the quality of the numerical simulation.

When designing our multiresolution scheme for reservoir
models, we set ourselves the challenge to preserve, as far as
possible, some characteristics of the original model:

– The structure of layers and columns of cells should be
preserved;

– The generatedmeshes should be composed of hexahedral
cells only;

– Hexahedral cells should be well shaped, with internal
angles close to 90◦;

– A good approximation of the model active cell boundary
must be pursued, including geological faults;

– Mesh wireframe and cell properties should be visualized
with minimal distortions;

– Simplification should be decoupled from properties, to
allow reuse ondifferent simulations of the samegeometry
model.

In special, preserving the topological structure of layers
and columns using only hexahedral cells allows easy adapta-
tion of traditional visualization algorithms used for reservoir
model inspection, such as positioning arbitrary cutting planes
and filtering regions of interest.

123

840 F. Abraham, W. Celes

(a)

(b)

Fig. 2 a Element close operator for quad meshes. b Element column
collapse for hexahedral meshes

4 Multiresolution hierarchy construction

In this section, we describe our proposal to build multireso-
lution representations of reservoir models. First, we describe
a column-based simplification algorithm to reduce the num-
ber of cells of a given sub-mesh; then, we present how this
simplification algorithm is used to create the multiresolution
hierarchy; finally, we describe how to extract information to
feed traditional iso-contouring visualization algorithms.

4.1 Reservoir hexahedral mesh simplification

Blacker and Stephenson [3] defined the element close oper-
ator for quadrilateral meshes, which merges two opposite
nodes of a quadrilateral, reducing the mesh quad count by
one, as shown in Fig. 2a. Staten et al. [18] considered the
extension of this operator for hexahedral meshes, which
removes element columns, defined as a sequence of hexa-
hedral elements adjacent to one another through their top
and bottom faces, as illustrated in Fig. 2b.

Our proposed algorithm for mesh simplification receives
a target number of cells. The input reservoir mesh has an
active flag associated with each cell. We also set the topo-
logical coordinates as vertex attributes, which are carried out
during simplification by linear interpolation. The algorithm
always performs the collapse of element columns, defined, in
the case of reservoir models, as the set of cells with the same
i and j topological coordinates. Only reservoir columns con-
taining at least one active cell are considered. Some columns
are incomplete, containing both active and inactive cells, as
pictured in Fig. 3a. We propose completing all columns con-

(b)(a)

Fig. 3 a Original model. b Selected columns with active cells marked
in blue

sidered in the simplification, including their inactive cells as
part of the model, as illustrated in Fig. 3b. This guarantees
all collapses are performed on columns with nk cells, sim-
plifying many algorithm design decisions. Separated layer
visualization is also naturally supported.

In order to keep a good measure of geometric errors
throughout the mesh simplification, we associate a quadric
matrix with each original mesh vertex, as in [8]. Layer sepa-
ration support requires the consideration of all top and bottom
faces of active cells (faces of type 1 in Fig. 4) when comput-
ing quadric matrices, so their planes are accumulated in their
vertex quadric matrices. A side face only contributes to its
vertex quadrics if it belongs to an active cell and is external.
Displacements from internal side faces do not impose error
on the external reservoir surface. Three types of external side
faces exist (see Fig. 4):

– Faces that represent the boundary between active and
inactive cells (type 2);

– Faces modeling a geological fault, which are not shared
by two cells that are adjacent on the topological grid
(type 3);

– Faces that compose the external model boundary—faces
at the limits of the topological grid (type 4).

The planes of these faces are accumulated at each of their ver-
tex quadrics with a weight set to a very large value,1 guiding
our simplification process to respect model boundaries as
much as possible.

A column collapse joins vertices through all model layers.
The quadric associated with each new vertex is computed
as the sum of the quadrics associated with the vertices it
replaces, as in [8]. The cost associated with each column col-
lapse is computed as the maximum error among the affected
vertices.

Our simplification algorithm relies on a set of five collapse
operators, illustrated with 2D top views in Figs. 5, 6 and 7.

1 We used a weight of 10,000 in our experiments.

123

Multiresolution visualization of massive black oil reservoir models 841

Fig. 4 Side view of a reservoir mesh showing the considered face types
when computing quadric matrices. The rightmost cell at the top is inac-
tive. Considered face types: (1) top and bottom faces; (2) side faces
shared between active and inactive cells; (3) side faces on geological
faults; (4) side faces on the external model boundaries

The first operator type (Fig. 5a) collapses an internal mesh
column: the quadric of each new vertex v̄ is given by Q̄ =
Q1+Q2.Weonly consider onedirection of collapse,merging
v1 and v2. This direction is chosen by considering the vertex
lateral valence, which is the number of side faces sharing
the vertex, corresponding to the number of incident edges
in the top view illustrations presented. The idea is to keep
the mesh with low lateral valences, producing meshes with
good quality. We then choose the direction that contains the
vertex with the lowest valence between the four vertices. If
there is a tie between the two directions, the one with the
smallest new vertex valence (val(v̄) = val(v1)+val(v2)−2)
is chosen, and a random direction is chosen if the tie persists.
The lateral valences of vertices in the other direction, vr1 and
vr2, are reduced by one after the collapse.

The second collapse operator type (Fig. 5b) is applied on
columnswhere top and bottom faces have one or two vertices
at the model side boundary. These collapses are evaluated
in both directions in order to preserve model boundaries as
much as possible. The direction with the smallest associated
error is chosen. Note that the lateral valences of vr1 and vr2
are again reduced by one with this collapse.

The third collapse operator type (Fig. 5c) is our proposal to
remove columns with two consecutive boundary side faces,
including corner columns. The quadric of the new vertex v̄,
joining vertices v1, v2 and v3, is given by Q̄ = Q1+Q2+Q3.
The position of the new vertex v̄ is set to be the position with
the smallest quadric error among v1, v2 and v3.

We also propose a fourth collapse operator type (Fig. 6),
acting on columns with one internal side face and three
boundary side faces, with all vertices on the model boundary.
This configuration type appears after applying the second or
third collapse operator types. Two collapse options are given
by choosingwhich vertex of the internal side facewill remain
in the mesh (vr). The three other vertices (v1, v2 and v3) are
joined and placed at the position with smallest quadric error
among the three vertex positions.

The vertices remaining in the mesh after each collapse
were highlighted in blue in all figures and have their lateral
valences reduced by one. Whenever the lateral valence of a

(a)

(b)

(c)

Fig. 5 The first three column collapse operators

(a)

(b)

Fig. 6 Proposed collapse operator for columns with four boundary ver-
tices (top view): a first collapse option; b second collapse option. The
vertex remaining in the mesh is highlighted in blue

non-boundary vertex is reduced to 2, a configuration known
as a doublet is formed, where two adjacent columns share
two consecutive side faces, as illustrated in Fig. 7. Vertex vd
contains two internal angles which sum 360◦, so it is shared
by at least one element with an undesired shape. As in pre-
vious works [7,19], doublets are detected and removed, as
soon as they are formed, bymoving vertex vd to vertex vr . The

123

842 F. Abraham, W. Celes

Fig. 7 Doublet collapse, top view

quadric matrix of the new vertex v̄ is given by Q̄ = Qd+Qr.
This operation can form new doublets: vertices adjacent to
vd also have their lateral valences reduced by one. Therefore,
the process is repeated until no doublets are detected.

Several works on finite element mesh generation have
stated the importance of smoothing [14,17], in order to gen-
erate quad meshes with good quality, e.g., angles as close
to right angles as possible. The whole mesh should ideally
be smoothed after each column collapse, but that would be
extremely costly. We propose local smoothing at each step
of the simplification process. At each collapse, we perform
a local Laplacian smoothing for each layer (top and bottom
vertices). All created vertices and the vertices that remain
in the mesh participate in the smoothing process, as long as
they are not on the side boundary. New and smoothed ver-
tex attributes are also computed in the Laplacian smoothing
process. After determining the x and y coordinates of each
vertex, we minimize quadric errors in the z direction using
the partial derivative of the quadric error in the z direction.
The quadric error expression is given by �(v = {x, y, z}) =
vTQ v = q11x2 + 2q12xy + 2q13xz + 2q14x + q22y2 +
2q23yz + 2q24y + q33z2 + 2q34z + q44, where qi j are ele-
ments of the quadric matrix Q. The error partial derivative in
the z direction is δ�/δz = 2q13x + 2q23y + 2q33z + 2q34.
Given that x and y are fixed, the z coordinate with mini-
mum error can be found where the partial derivative is zero:
z = −q13x − q23y − q34

q33
, with q33 �= 0. After computing the

vertex coordinates of the top and bottom faces of a given col-
umn, we check for face fold-overs. If any face fold-over is
detected, the column collapse is deemed invalid for the given
simplification step.

Our simplification algorithm operates a series of column
collapses. The next column to be collapsed is chosen based
on the committed quadric error, as in previousworks [7,8,21].
As in the work of Wu and Kobbelt [21], the simplifica-
tion algorithm randomly selects eight column collapses and
performs the one with the smallest cost. (In fact, we have
experimentally attested that maintaining a priority queue is
costlier.)

The following steps are made in each algorithm iteration:

– Choose eight column collapse candidates:

– Obtain a random column;
– Select the collapse operator type based on local topol-
ogy;

Fig. 8 Used multiresolution hierarchy: triangular regions with associ-
ated meshes

– Compute potential new vertices’ positions and attrib-
utes;

– Discard collapse if fold-overs are detected;
– Compute the quadric error to be committed if the
column is collapsed.

– Perform the collapse with smallest quadric error among
all candidates;

– Detect and remove any generated doublets;
– Stop simplification if target mesh size is reached.

4.2 Multiresolution hierarchy

Our multiresolution structure is a 2D version of the Adaptive
TetraPuzzles structure by Cignoni et al. [5]. The 2D model
bounding box (x and y ranges) is first divided into two trian-
gular regions sharing the box diagonal, forming the two roots
of the hierarchy. A recursive subdivision of each triangular
region is then initiated. If a region contains more model cell
columns than a given threshold Cmax, it is divided into two
triangular regions by the longest edge bisection. Otherwise,
the region becomes a hierarchy leaf. In this case, we form a
hexahedral meshwith the leaf cell columns, compute quadric
matrices and attributes for each vertex and save the result to
disk. This process is illustrated in Fig. 8.

A bottom-up simplification procedure is then initiated,
centered on the hierarchy diamonds [20], defined as the pairs
of triangular regions sharing their longest edge. The simplifi-
cation on each internal hierarchy diamond is done as follows:
first, the meshes associated with the children of the two trian-
gular regions of the diamond aremerged. The columns of this
resultant mesh that intersect the diamond external boundary
are locked. Themesh is simplified until each triangular region
holds Cmax cell columns. The meshes of the two triangular
regions are then saved to disk, including associated quadrics.
This process continues until all levels are generated, includ-
ing the top level, composed only by the root diamond.

123

Multiresolution visualization of massive black oil reservoir models 843

At visualization time, a conformal 2D space subdivision
is obtained by consistently subdividing the triangular regions
forming each diamond. Correctly matchingmesh patches are
intrinsically guaranteed by this scheme. Additionally, this
scheme allows diamonds of each level to be simplified in
parallel.

4.3 Simplification of side faces

After the whole multiresolution hexahedral mesh hierarchy
has been computed, it is time to prepare it for the desired
visualization techniques. Our viewer application implements
traditional iso-contouring. To support it, the quadrilateral
meshes representing the external faces of each hexahedron
mesh are extracted in a preprocessing stage. Three meshes
are formed: the top face surface, the bottom face surface and
the side face surface.

The side face surface can be further simplified for the
visualization of the whole model (without layer separation).
First, we recover a simplification error limit, equal to the
maximum quadric error committed in the simplified hexa-
hedral mesh vertices. Two constraints must be respected to
prevent mesh cracks. A vertex must be locked: (1) if it is
part of any external top or bottom face; (2) if it lies outside
the associated triangular region. The quad mesh is converted
into a triangle mesh and simplified until the maximum error
has been reached. A simple iterative edge collapse operator
is employed, prioritizing collapses with the smallest quadric
error. The final mesh triangle count can be greatly reduced,
specially if we are simplifying reservoirs with many layers.
Figure 9 illustrates the reduction in triangle mesh size of side
surfaces resulting from this procedure.

5 Property and grid mapping

One big challenge of multiresolution structures for scientific
visualization is the handling of the original model proper-
ties. In the case of reservoir models, each simulation can
contain many scalar and vector fields associated with each
mesh cell, and each field can vary over the simulation time
steps. Another challenge is to visualize the original mesh
wireframe, which can be useful to reveal structural informa-
tion about the underlying reservoir domain modeling. We
propose viewing wireframe and model properties on top of
the simplified meshes by employing texture mapping.

5.1 Wireframe rendering

This work relies on the work by Celes and Abraham [4] to
map the original grid wireframe onto the simplified meshes.
Their work introduces thewireframe texture, a carefully built
1D texture that allows a mesh wireframe to be rendered in a

(a) Mesh without side faces simplification

(b) Mesh with side faces simplification

Fig. 9 Simplification of the triangle surface mesh generated by side
face extraction: amesh without side face surface simplification; bmesh
with side face surface simplification. The meshes associated with each
triangular region have been painted with different colors

single pass along with polygon rasterization. A quadrilateral
can be renderedwithwireframeby enabling the texture in two
texture units, one for each quadrilateral direction, with tex-
ture coordinates set as − 1 and + 1, as shown in Fig. 10a [4].
In the case of structured quadmeshes, it is possible to specify
texture coordinates based on a global topological coordinate
system, using odd consecutive numbers along the two direc-
tions, as illustrated in Fig. 10b [4].

Let us consider a 2D reservoir mesh, where each cell is
represented by a quadwith indices i, j in ani×nj topological
grid. It is simple to attribute wireframe texture coordinates to
the vertices of this mesh: assuming all indices start in 0, the
following global texture coordinates are attributed to the ver-
tices of cell [i, j]: [2i+1, 2 j+1], [2(i+1)+1, 2 j+1], [2(i+
1)+1, 2(j+1)+1] and [2i+1, 2(j+1)+1].We denominate
coordinates i, j in this scheme as the topological coordinates
of each vertex. It is simple to verify that this coordinate attri-
bution schemeworkswell evenwith geological faults—there

123

844 F. Abraham, W. Celes

1st unit

1.0

1.0

s

-1.0

-1.0 2st unit

1.0

-1.0

s

1.0

-1.0

(a) Texture coordinates for quadri-
lateral wireframe rendering

1 5 9
1

5

3 7

3

7

s0

s1

(b) Global texture coor-
dinate system

Fig. 10 Texture coordinate attribution for quadrilateralmeshwireframe
rendering

Fig. 11 Grid mapping in 3D: i coordinates do not vary along the face

will be different vertices in the same topological position,
which is not an issue for their primitives rasterization.

The extension of this scheme to our semi-structured hex-
ahedral mesh is made by including the k coordinate. Since
we render the reservoir external faces, one extra step must be
made. Only two of the three topological coordinates must be
used to map the wireframe texture on each quadrilateral. The
excluded coordinate is the one with smaller variation along
the primitive. We employ a geometry shader to identify and
exclude the coordinate, computing a sort of “topological nor-
mal vector,” excluding the coordinate in the vector direction.
In the illustration in Fig. 11, the j and k coordinates will
be used to map the wireframe texture, since the topological
normal vector is in the i direction.

These global topological coordinates are included as
vertex attributes in our hexahedron mesh simplification algo-
rithm. They are first computed when extracting the original
meshes at leaf triangular regions. Then, each collapse inter-
polates the coordinates linearly whenever a vertex is created
or repositioned. Interpolation is also done when simplifying
side faces. This allows us to render the original wireframe
decoupled from the used hexahedral mesh, working well in
any hierarchy level. Figure 12 presents the visual results:
Fig. 12a shows a simplifiedmesh set; Fig. 12b shows the orig-
inal grid mapped over the simplified meshes. The obtained
image is practically identical to the one generated with the
original mesh, other than minor mapping distortions.

5.2 Property mapping

We also propose rendering original model properties based
on texture mapping, setting appropriate texture coordinates

(a) Simplified mesh

(b) Wireframe mapped over the simplified mesh

Fig. 12 Wireframe rendering decoupled from geometry support

at each rendered mesh vertex. At visualization time, we can
specify a 3D texture, here named the property texture, when-
ever a new property or new property time step is requested.
This 3D texture has ni×nj×nk voxels, where each voxel of
index i, j, k holds the property value associated with the cor-
responding cell in the original model. The property is defined
only for active cells.

Each fragment generated by the rasterization of an exter-
nal face must be painted according to the property value of
its associated cell in the original mesh. As done with the
wireframe, we can use the topological coordinates i, j, k
associated with each vertex to index the property texture.
(Texture filters must be disabled.)When rendering the model
external surface, the topological coordinates are adjusted
to avoid accessing absent texels or texels associated with
inactive cells. The topological coordinate that is constant
throughout the face is offset to the center of the cell: 0.5
is added or subtracted according to the face orientation. This
offsetting is implemented in a geometry shader. In the exam-
ple in Fig. 11, the i coordinate has to be adjusted to 2.5.

Figure 13 presents the visual results obtained by mapping
the original property over the simplified meshes: Fig. 13a
shows the property mapped over the original model; Fig. 13b
shows the simplified meshes; Fig. 13c shows the property
mapped over the simplified meshes. As can be noted, the
first and third images are nearly identical.

5.3 Normal mapping

Surface lighting is also important to reveal shape. If we used
the polygon normals of simplified meshes, the illumination

123

Multiresolution visualization of massive black oil reservoir models 845

(a) Property mapped over original mesh

(b) Simplified meshes used on (c)

(c) Property mapped over the simplified meshes

Fig. 13 Property texture mapping

would become coarse as the meshes. We propose solving
this by mapping original surface normals of top and bottom
faces onto the simplified meshes. This is done in the same
way as regular properties, allowing us to implement pixel-
based illumination. In preprocessing time, original mesh
normals on top and bottom faces of each cell are com-
puted. They are stored with 2 bytes each, using the unit
normal quantization method by Baptista [2]. In visualiza-
tion time, normals can be mapped by building a 3D texture
with four components for each cell, x, y for the top face
normal and x, y for the bottom face normal. The z coordi-
nate is derived at the fragment shader exploiting the fact of
it being a unit normal and pointing up (top face) or down
(bottom face). We only employ normal mapping on top and
bottom faces; for side faces, we adopt the normals extracted
from the simplified meshes, since these meshes are mostly
plane.

5.4 Texture packing

If properties and normals were stored in complete 3D
textures, scalability would suffer. If each layer is viewed sep-
arately, it is simple to use a 2D texture, which presents no
problems in terms of graphics memory. For the visualiza-
tion of the whole model, properties and normals are mapped
only on the extracted external faces. A very large number of
voxels are never accessed. We propose employing the Per-
fect Spatial Hashing technique by Lefebvre and Hoppe [9].
It packs sparse data into a compact table, in our case, a cubic
3D texture containing only the voxels that can be accessed
in the rendering stage—those that are intersected by any
extracted external face in the i, j, k coordinate space. A sec-
ond, smaller 3D texture contains an offset table. Both the
offset table and the location of original data in the compact
3D texture are computed in order to avoid any collisions,
hence a perfect hash. These offsets and locations are also
computed to maintain good spatial coherence, increasing the
chance that two samples that are close in the original space
are also close in the compact table. Given an i, j, k coordi-
nate and the two 3D texture dimensions, it is very efficient
to index the offset table and then the associated voxel.

The inclusion of this memory optimization improved
graphics memory usage by an order of magnitude while pre-
serving good performance. It allows some very big models
to be viewed in the first place.

5.5 Decoupled visualization

The techniques described in this section allow the reuse of the
generated hierarchical structure for a reservoirmesh onmany
different simulations of the same model. This is possible
because the model partitioning, simplification, storage and
the used perfect hash only depend on the reservoir topology
and geometry. An actual simulation property and/or property
time step can be loaded and stored separately, even at visu-
alization time. This is particularly useful in the day by day
engineering work, where many simulations are performed
using the same base model grid.

6 View-dependent visualization

6.1 Data layout

Our viewer application supports the iso-contouring of reser-
voir cells, either viewing the whole model or each layer
separately. As other out-of-core viewers, all extracted tri-
angle meshes are compressed and concatenated into one big
binary file, with pointers to mesh offsets and sizes stored in
a separate file. The binary file is mapped to memory when

123

846 F. Abraham, W. Celes

the visualization engine starts. Our implementation uses the
LZO [12] library for lossless compression.

The binary file is first divided by layer, and then by tri-
angular region. The meshes for each individual layer come
first, and then the meshes of the whole model. For each mesh
vertex, we store a position and an interpolated topological
coordinate, summing 24 bytes for 6 floating point values. The
top, bottom and side faces are stored separately. We compute
normal cones [15] for the top and bottom meshes, allowing
us to perform quick back-face culling.

6.2 Projected error measurement

Mesh selection in visualization time is made by projecting
their simplification errors onto the screen.We use themethod
proposed by Lindstrom [10] to convert quadric errors into
units of distance. A consistent upper bound for the projected
error is the apparent size of a sphere, centered at the mesh
bounding volume point closest to the viewer, with radius set
to the square root of the quadric error.

Similar to the original Adaptive TetraPuzzles work [5],
we store bounding volumes (BVs) and model space errors
for each triangular region in a diamond-per-diamond basis.
They are made the same for both triangular regions in each
diamond: BVs enclosing the meshes of both regions and the
model space errors to be themaximum between the two asso-
ciated meshes. BVs and errors also monotonically decrease
when descending the hierarchy. This enables a simple state-
less top-down traversal of the binary trees [5] in visualization
time. Given a projected error tolerance, the decision to split
a node or not will always force the 2D space subdivision
to be conformal, guaranteeing correct matching of mesh
patches.

6.3 Real-time rendering

Our renderer is initialized by memory-mapping the binary
file and spawning a prediction/load thread. At every frame,
both the rendering thread and the prediction/load thread
receive the current frame parameters (view frustum and
screen space error tolerance). The prediction/load thread
tries to predict the view frustums of the next frames and
hint the memory map to load meshes that are not yet
loaded. Meshes loaded from disk are transferred to the
GPU in this separate thread, marking them as fully loaded
when the process is complete. A LRU-based memory bud-
get is also implemented in this thread to limit memory
usage.

Part of the rendering effort is geometry processing, so
we assume the frame rate is in part inversely proportional
to primitive count. The primitive count itself is inversely
proportional to the projected error tolerance. Given a tar-
get frame rate and based on previous rendering times, we

indirectly adjust the primitive count by adjusting the pro-
jected error tolerance. This allows our viewer application
to maintain the target frame rate, effectively applying geo-
metric detail where it is most needed, given the available
hardware.

7 Experimental results

We have tested our system using two computers. The first
computer handled the out-of-core partitioning, simplification
and packing of our multiresolution structure, equipped with
two Intel Xeon Silver processors with 48 2.1GHz threads
and 256GB of RAM. The second computer was used to view
the models in our out-of-core multiresolution renderer. It is
equipped with a 3.0GHz Intel i7 processor with 16GB of
RAM and a NVIDIA Geforce GTX 660 GPU with 2GB
of graphics memory. The hierarchy bottom-up simplifica-
tion was performed by 16 processes splitting the diamond
simplification work on each hierarchy level. The extraction
of external faces for iso-contour and simplification of side
faces was done by 24 processes in parallel. All solution com-
ponents were implemented in C++ and OpenGL.

Our solution was tested on three reservoir models with
refinements ranging from 100 million to 1.2 billion cells.
Table 1 shows the model sizes and preprocessing times. The
third column shows the time spent partitioning themodel and
saving the leaf meshes. The time spent performing the hier-
archy bottom-up simplification, external faces extraction and
side faces simplification is shown in the fourth column. The
fifth column shows the time spent packing the final binary
file and computing the perfect hash for 3D textures.

Table 2 shows the multiresolution file sizes for all the
models. The use of perfect hashing for our 3D textures was
also evaluated: the third and fourth columns present the total
sizes for full and packed 3D textures. The full size comprises
ni × nj × nk voxels, each using 2 bytes for the property
scalar and 4bytes for the top and bottom face normals. The
packed size sums the storage for the two textures: (1) perfect
hash offsets; (2) compact voxel table, also with 6 bytes per
voxel. The percentages show that employing perfect hashing

Table 1 Model sizes and preprocessing times for partitioning, simpli-
fying and packing the model

Model
name

Cell count
(M)

Part.
time (h)

Simpl.
time (h)

Packing
time (h)

Total
time (h)

A100 96 0.7 2.8 0.5 4.0

A217 217 1.6 3.9 1.1 6.6

B100 165 1.0 4.1 0.7 5.8

B240 378 2.3 7.5 1.8 11.6

C1200 1265 12.0 17.4 8.1 37.5

123

Multiresolution visualization of massive black oil reservoir models 847

Table 2 Multiresolution structure, full and packed 3D texture sizes

Model
name

Multiresolution
structure file
size (GB)

Full 3D texture
sizes (MB)

Packed 3D
texture sizes
(MB)

A100 17.8 1094 96 (8.8%)

A217 38.9 2463 161 (6.6%)

B100 15.1 1816 136 (7.5%)

B240 39.6 4163 266 (6.4%)

C1200 181.0 13,938 491 (3.5%)

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180

A
ve

ra
ge

 fr
am

es
 p

er
 s

ec
on

d
(H

z)

P
ro

je
ct

ed
 e

rr
or

 to
le

ra
nc

e

Time on camera path (s)

Average frames per second
Projected error tolerance

Fig. 14 Guarantee of a 20 FPSminimum frame rate during a navigation
over the C1200 model, which originally contains 1.2 billion cells

has reduced the graphics memory usage by more than one
order of magnitude, guaranteeing system scalability.

The real-time system performance was evaluated with our
biggest model, setting the target frame rate as 20 FPS. A
camera path with model manipulation and close navigation
to inspect the model was used on the test. We measured the
average frame rate and the projected error tolerances used
during the path, shown in Fig. 14. It shows the system allow-
ing the visualization of a 1.2 billion cell model interactively.
The tolerances set for projected error during the path have
successfully guaranteed at least 20 FPS during the whole
path.

8 Conclusion and future work

We have presented a new out-of-core multiresolution sys-
tem for rendering very large black oil reservoir models, a
demand of the oil industry for numerical simulations with
highly discretized domains. Experimental results have shown
the effectiveness and scalability of the proposed solution.We
highlight the following features of our proposal:

– A new simplification algorithm tailored specifically for
reservoirmeshes, preserving good hexahedral shapes and
boundary face approximations;

– A novel out-of-core multiresolution structure for reser-
voir grids, decoupled from simulation properties, allow-
ing its reuse in different simulations using the same
geometry model;

– Texture construction and mapping techniques that allow
the rendering of originalmodel properties, wireframe and
surface normals on top of the simplified meshes.

Our proposal has focused on the iso-contour visualization
of properties mapped on the mesh external faces. However,
we believe that other conventional visualization techniques
can be easily adapted since we preserve topological columns
and hexahedral cells. In future work, we plan to investigate
the application of arbitrary cutviews and selection of region
of interest on the simplified meshes. We also plan to explore
the use of GPU to efficiently implement such algorithms.We
also plan to investigate performance improvements of the
partitioning and simplification stages.

This work was carried out consulting reservoir specialists;
however, no formal evaluation was conducted. A qualita-
tive end-user evaluation is left as future work, focused on
achieved rendering quality and overall applicability in daily
industry workflows.

Acknowledgements Tecgraf/PUC-Rio is a research institute mainly
funded by Petrobras. This research was initiated during the Doctoral
Program of the first author, financially supported by CNPq (Brazilian
National Research and Development council).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

1. Abraham, F., Celes,W.: Distributed visualization of complex black
oil reservoir models. In: Eurographics Symposium on Parallel
Graphics and Visualization (EGPGV09), pp. 87–94. Eurograph-
ics Association (2009)

2. Baptista, R.: Higher Accuracy Quantized Normals. https://www.
gamedev.net/articles/programming/math-and-physics/higher-
accuracy-quantized-normals-r1252. Accessed in Feb. 2019

3. Blacker, T.D., Stephenson, M.B.: Paving: a new approach to auto-
mated quadrilateral mesh generation. Int. J. Numer. Methods Eng.
32(4), 811–847 (1991)

4. Celes, W., Abraham, F.: Fast and versatile texture-based wireframe
rendering. Vis. Comput. 27, 939–948 (2011)

5. Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Ponchio, F.,
Scopigno, R.: Adaptive tetrapuzzles: efficient out-of-core con-
struction and visualization of gigantic multiresolution polygonal
models. In: SIGGRAPH’04: International Conference on Com-

123

https://www.gamedev.net/articles/programming/math-and-physics/higher-accuracy-quantized-normals-r1252
https://www.gamedev.net/articles/programming/math-and-physics/higher-accuracy-quantized-normals-r1252
https://www.gamedev.net/articles/programming/math-and-physics/higher-accuracy-quantized-normals-r1252

848 F. Abraham, W. Celes

puter Graphics and Interactive Techniques, pp. 796–803. ACM
Press (2004)

6. Dake, L.P.: Fundamentals of Reservoir Engineering. Elsevier,
Amsterdam (1978)

7. Daniels, J., Silva, C.T., Shepherd, J., Cohen, E.: Quadrilateral mesh
simplification. ACM Trans. Graphics 27, 148:1–148:9 (2008)

8. Garland, M., Heckbert, P.S.: Surface simplification using quadric
error metrics. In: SIGGRAPH’97: Proceedings of the 24th Annual
Conference on Computer Graphics and Interactive Techniques, pp.
209–216. ACM Press, New York (1997)

9. Lefebvre, S., Hoppe, H.: Perfect Spatial Hashing. ACM Trans.
Graphics 25(3), 579–588 (2006)

10. Lindstrom, P.: Out-of-core construction and visualization of mul-
tiresolution surfaces. In: Symposium on Interactive 3D Graphics,
pp. 93–102. ACM Press, New York (2003)

11. Liu, H., Chen, Z.: A scalable thermal reservoir simulator for giant
models on parallel computers. CoRR (2018). arXiv:1812.03952

12. Oberhumer, M.F.X.J.: LZO Data Compression Library. http://
www.oberhumer.com/opensource/lzo. Accessed in Feb. 2019

13. Saudi Aramco Completes First Giga-Cell Reservoir Simula-
tion Run. http://www.rigzone.com/news/article.asp?a_id=70015.
Accessed in Feb. 2019

14. Shepherd, J.F., Dewey, M.W., Woodbury, A.C., Benzley, S.E.,
Staten, M.L., Owen, S.J.: Adaptive mesh coarsening for quadri-
lateral and hexahedral meshes. Finite Elem. Anal. Design 46(1–2),
17–32 (2009)

15. Shirman, L., Abi-Ezzi, S.: The cone of normals technique for fast
processing of curved patches. In: Eurographics, pp. 261–272. Euro-
graphics Association (1993)

16. Sousa, M.C., Vital Brazil, E., Sharlin, E.: Scalable and inter active
visual computing in geosciences and reservoir engineering. Geol.
Soc. 406(1), 447–466 (2015)

17. Staten, M., Canann, S.A.: Post refinement element shape improve-
ment for quadrilateral meshes. ASME Trends Unstruct. Mesh Gen.
220, 9–16 (1997)

18. Staten, M.L., Benzley, S., Scott, M.: A methodology for quadri-
lateral finite element mesh coarsening. Eng. Comput. 24, 241–251
(2008)

19. Tarini, M., Pietroni, N., Cignoni, P., Panozzo, D., Puppo, E.: Prac-
tical quad mesh simplification. Comput. Graph. Forum. (Special
Issue of Eurographics 2010 Conference) 29(2), 407–418 (2010)

20. Weiss, K., De Floriani, L.: Diamond hierarchies of arbitrary dimen-
sion. Comput. Graph. Forum 28(5), 1289–1300 (2009)

21. Wu, J., Kobbelt, L.: Fast mesh decimation bymultiple-choice tech-
niques. In: Vision, Modeling and Visualization, pp. 241–248. IOS
Press, Amsterdam (2002)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Frederico Abraham is a researcher
and developer at Tecgraf/PUC-Rio
Institute, where he works on sci-
entific visualization projects. He
received his B.S., M.S. and D.S.
degrees in computer science and
computer graphics in PUC-Rio,
the Pontifical Catholic University
of Rio de Janeiro, Brazil. His cur-
rent research interests include real-
time rendering, multiresolution
rendering, scientific visualization
and distributed visualization.

Waldemar Celes is an associate
professor of computer science at
PUC-Rio, the Pontifical Catholic
University of Rio de Janeiro,
Brazil, and an associate researcher
at Tecgraf/PUC-Rio Institute,
where supervises projects on sci-
entific visualization and numeri-
cal simulation in cooperation with
the industry. He is an co-author of
the Lua programming language.

123

http://arxiv.org/abs/1812.03952
http://www.oberhumer.com/opensource/lzo
http://www.oberhumer.com/opensource/lzo
http://www.rigzone.com/news/article.asp?a_id=70015

	Multiresolution visualization of massive black oil reservoir models
	Abstract
	1 Introduction
	2 Related work
	3 Black oil reservoir model
	4 Multiresolution hierarchy construction
	4.1 Reservoir hexahedral mesh simplification
	4.2 Multiresolution hierarchy
	4.3 Simplification of side faces

	5 Property and grid mapping
	5.1 Wireframe rendering
	5.2 Property mapping
	5.3 Normal mapping
	5.4 Texture packing
	5.5 Decoupled visualization

	6 View-dependent visualization
	6.1 Data layout
	6.2 Projected error measurement
	6.3 Real-time rendering

	7 Experimental results
	8 Conclusion and future work
	Acknowledgements
	References

