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ABSTRACT The traditional Cubature Kalman Filter (CKF) and its derived algorithms cannot work 
without the two hypotheses of Kalman Filter (KF), one is that the system model is accurate and the other is 
the system is only influenced by independent white noise with known statistical characteristics. However, it 
is difficult to fully guarantee the above hypotheses in actual operation. The presence of multiplicative noise 
undermines the first hypothesis, while the additive noise correlation undermines the second hypothesis. 
Given invalid hypotheses, the estimated performances of CKF and its derivative algorithms are degraded 
drastically. To solve this issue, this paper proposes Multiplicative Noises and Additive Correlated Noises 
Cubature Kalman Filter (MACNCKF), which solves state estimation problems involving multiplicative 
noise and additive noise while maintaining CKF advantages. Moreover, this algorithm has been testified to 
be correct and easy to be transplanted to CKF and its derivative algorithm after strict mathematical 
derivation. When the system lacks multiplicative noise and additive noise, the algorithm is degraded to 
corresponding algorithm in a general form, which helps extend the application environment of CKF and its 
derivative algorithms, thus improving robustness. Numerical simulation and experiments on quadruped 
robot system indicate that MACNCKF can effectively solve state estimation problem involving both 
multiplicative noise and additive noise. Given time consumption in MACNCKF basically comparable to 
that in CKF, MACNCKF has improved estimation accuracy, robustness and reliability. 

INDEX TERMS Quadruped Robot; State Estimation; MACNCKF; IMU; Kinematics. 

I. INTRODUCTION 
A key aspect of robotics today is estimating the state, such 
as position and orientation, of a robot as it moves through 
the world. Most robots and autonomous vehicles depend on 
noisy data from sensors such as cameras or laser 
rangefinders to navigate in a three-dimensional world [1]. A 
sensor has limited accuracy, even the best sensor has a 
certain degree of uncertainty, which thus raises the problem 
of state estimation. An important approach for state 
estimation is to establish a system mathematical model with 
random disturbances for related problems, and then make 
an optimal estimation of the system state variable based on 
the model. When establishing a mathematical model of an 
system, random interference is usually viewed as an 
additive noise. For example, classical Kalman Filter (KF) 

theory is modeled in this way. However, in many 
application fields, actual systems are often complex and 
changeable, which is impossible to be described by pure 
linear models. Such systems are generally known as non-
linear systems. Estimation algorithms are generally based 
on several improved forms of the KF algorithm, such as 
Extended Kalman Filter (EKF) [2], Unscented Kalman 
Filter (UKF) [3], and Cubature Kalman Filter (CKF) [4]. 
Therefore, it can be said that these multi-sensor fusion 
algorithms developed from KF theory default to two 
hypotheses of KF theory: the system model is accurate; the 
system is only affected by mutually independent white 
noise with known statistical characteristics. Moreover, to 
guarantee convenient algorithm design, it is usually 
assumed that the system's process noise and observation 
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noise are additive noise independent of each other. These 
are quite ideal hypotheses about parameter accuracy and 
noise characteristics in the system model for the sake of 
convenient construction of the filtering algorithm. The state 
estimation performance of the designed nonlinear filtering 
algorithm can only be guaranteed when the assumed ideal 
conditions are met. However, in practical applications, 
mathematical models are approximated, and the existence 
of bias is always inevitable. Due to approximation of the 
model degree, linear approximation of the nonlinear system, 
and errors brought by parameter identification, there is a 
certain error between the acquired mathematical model and 
the actual system. Moreover, due to changes in the 
surrounding environment and presence of several 
unpredictable disturbances, the system model has the 
above-mentioned uncertainties. It can be seen that the two 
hypotheses of KF theory are quite ideal, which can hardly 
be met in the actual system. In the fields such image 
information processing [5], pattern recognition [6], 
underwater target tracking [7], aircraft tracking [8], space 
target tracking [9], and robot state estimation [10], there 
exists another type of non-ideal circumstances that in the 
process of signal transmission, there will be delay, 
distortion, attenuation or channel interference, the random 
uncertainty of system model parameters will be caused by 
modeling error, model simplification and random 
disturbance, the ranging noise of the sensor varies with the 
increase of the distance and appears as multiplicity noise 
[11]. These circumstances cannot be indicated by additive 
noise in classical systems. If the actual disturbance is 
ignored in use of fusion algorithm on the basis of ideal 
hypothesis, the derived fusion result may be very 
unsatisfactory. Hence, multiplicative noise systems can 
characterize a wider range of practical systems. 

In spite of this fact, as it is difficult to determine the 
statistical characteristics of observation noise and dynamic 
noise, many researchers assume system noise and 
observation noise as independent white noise. The current 
fusion estimation methods for integrated navigation and 
positioning mainly focus on fusion positioning under 
hypotheses of independent noise and related noise. However, 
independence between measurement noise and system noise 
represents an ideal hypothesis. For practical systems, sensors 
affected by the working environment are often prone to 
interference sources, making the system and the sensor 
jointly influenced by relevant noise in the working process. 
This is manifested as the correlation between process noise 
and observation noise in description of the system model, 
and will be affected by uncertain factors. 

In recent years, state estimation algorithms under non-
ideal conditions are deeply concerned by relevant researchers. 
Fruitful research results have been achieved and linear 
filtering algorithms under non-ideal conditions have well 
developed [12-18]. The main idea is to construct pseudo state 
equation. Redefinition of process noise is no longer formally 
related to existing observation noise, but there are few non-
linear filtering algorithms under non-ideal conditions. Chang 

G [19] studied noise-related processing approaches under the 
existing nonlinear filtering algorithm framework, and its 
main idea was similar to the method in [12-18], representing 
application of such idea in non-linear filtering algorithms. In 
addition, Chang G also pointed out that process noise has 
correlation with observation noise, so the former's 
conditional probability density against the latter is greater 
than the former's own probability density, which means that 
the state accuracy derived based on conditional probability 
density is higher. Moreover, a method was proposed to deal 
with synchronization-related noise by using the properties of 
conditional Gaussian distribution. However, the results are 
only applicable to linear Kalman filtering algorithm 
framework. Simon D [20] took an aircraft control system 
model as an example to illustrate that process noise has 
correlation with observation noise in the system model under 
the influence of random gusts. Saha S [21] used conditional 
distribution to modify the proposal distribution in the 
algorithm under the condition of noise synchronization, 
which was similar to the processing method in [20]. For the 
issue of multiplicative noise, Hu [11] proposed Generalized 
Kalman Filter (GKF), which used definitions of mean, 
covariance, and cross-covariance for mathematical derivation, 
and improved calculation equation for estimates and variance 
of measured updated state variables in the KF framework. 
Wang [22] proposed a KF + ML filtering method by 
combining maximum likelihood estimation (ML) and KF. 
Basin [23] approximated the system to a polynomial form 
and proposed a root mean square filter. The above researches 
on non-linear filtering algorithms under non-ideal conditions 
only focus on one of the non-ideal conditions, that is, either 
multiplicative noise or additive noise correlation. As far as 
we know, there is no non-linear filtering algorithm 
considering both multiplicative noise and correlated noise. 
Therefore, to avoid the two ideal hypotheses of KF at the 
same time and make the nonlinear filtering algorithm more 
applicable to practical situations, this paper proposes a 
Multiplicative Noises and Additive Correlated Noises 
Cubature Kalman Filter (MACNCKF) based on CKF with 
the best comprehensive performance. The algorithm can 
solve nonlinear system state estimation problem involving 
both multiplicative noise and correlated noise , which cannot 
only be easily transplanted into the third-degree, fifth-degree, 
seventh-degree, and mixed-order CKF without the restriction 
of the sampling strategy of CKF algorithm, but also applied 
to CKF using square root for iteration free from the limitation 
of iterative strategy. 

After simulation and experiments on a quadruped robot 
platform, it is testified that the algorithm can effectively 
solve state estimation problem of non-linear systems with 
both multiplicative noise and synchronous additive noise. 
With real-time performance comparable to CKF, its 
computation complexity is not greatly increased, which fully 
meets real-time requirements. Moreover, the estimation 
accuracy is greatly improved compared with CKF, which 
verifies the correctness and effectiveness of MACNCKF. 
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II.  MULTIPLICATIVE NOISES AND ADDITIVE 
CORRELATED NOISES CUBATURE KALMAN FILTER 
The standard CKF does not take into account multiplicative 
noise, process noise and observation noise in the system 
equation. Based on CKF, this section proposes an improved 
CKF algorithm to solve the problems related to 
multiplicative noise, process noise and observation noise. 
The following nonlinear system with multiplicative and 
additive noise is considered: 
 ( )1 ,k k k k kx M f x u w+ = +  (1) 

 ( ),k k k k kz N h x u v= +  (2) 

Where, 1
a

kx R+ ∈  is the system state vector at the moment 
1k + , b

kz R∈  is the system observation vector at the 
moment k ; ( )f ⋅  and ( )h ⋅  are respectively state equation 
and observation equation of the time-varying system. 

a
kw R∈  is the system process noise, b

kv R∈  is the system 
observation noise, which are synchronously related zero-
mean Gaussian white noise, and 

k k kT T
k k klT

k k k

w Q C
E w v

v C R
δ

      = =          
. kQ  is the process 

noise variance, kR  is the observation noise variance, kC  is 
the covariance between the two, klδ  represents the 
Kronecker function. Generally, the random parameter 
disturbance is Gaussian white noise with zero mean, then 
there is Gaussian white noise 

( ) ( )1  ,...,  1k a a
M diag m k m k

×
= + +    with mean m  and 

variance 2
mσ ; Gaussian white noise 

( ) ( )1  ,...,  1k b b
N diag n k n k

×
= + +    with mean n  and 

variance 2
nσ . 

The standard CKF algorithm is detailed in [4], which will 
not be further described here due to space limitations. 
Similarly, the improved MACNCKF algorithm consists of 
two steps: time prediction and observation update. Since this 
algorithm is commonly used in CKF and its various 
derivative algorithms, to avoid loss of generality, the 
sampling strategy and iterative strategy are not discussed 
here. The specific expression of MACNCKF is as follows: 

A. TIME PREDICTION 
Given the estimated value 1/ 1ˆk kx − −  and the covariance matrix 

1/ 1k kP − −  of the state variable at the moment 1k − , the 
posterior covariance matrix , 1/ 1zz k kP − −  of the observation 
quantity is calculated accordingly, then the one-step 
prediction estimate and one-step prediction covariance 
matrix of the state variable kx  at the moment k  can be 
calculated accordingly: 

 
( ) ( ){ }

( ){ } ( ){ } ( ){ }( )
2

, 1/ 1 1 1

2
1 1 1

1 2zz k k k k

T
n k k k

P n n Var h x R

Var h x E h x E h xσ

− − − −

− − −

= + + + +

+

…
 (3) 

 
( )( )

( ) ( ) ( )

1
/ 1 1 , 1/ 1 1 1 1/ 1

1 1 1/ 1 1/ 1 1

ˆ ˆ

ˆ1 ; ,

k k k zz k k k k k k

k k k k k k k

x C P z N h x

m f x x x P dx

−
− − − − − − − −

− − − − − − −

= − +

+

…

∫ Ν
 (4) 

 ( ) ( ){ }
( ){ } ( ){ } ( ){ }( )

1
/ 1 1 1 , 1/ 1 1

2
1

2
1 1 1

1 2

T
k k k k zz k k k

k

T
m k k k

P Q C P C

m m Var f x

Var f x E f x E f xσ

−
− − − − − −

−

− − −

…= − +

+ + +…

+

 (5) 

Where, ( )ˆ;  , x x PΝ  indicates Gaussian probability density 
function of the variable x . 

B. OBSERVATION UPDATE 
 ( ) ( ) ( )/ 1 / 1 / 1ˆˆ 1 ; ,k k k k k k k k kz n h x x x P dx− − −= + ∫ Ν  (6) 

 
( ) ( ){ }

( ){ } ( ){ } ( ){ }( )
2

, / 1

2

1 2zz k k k k

T
n k k k

P n n Var h x R

Var h x E h x E h xσ

− = + + +

+

…+
 (7) 

 

( ) ( )( )

( ) ( ){ }
( ){ } ( ){ }
( ) ( ){ }

2
, / 1 *

1

1

1

1 1

cov ,

cov ,

xz k k

k k

T
k k

k k

P m n
where

f x h x

E f x E h x

f x h x

β γ δσ

β

γ

δ

−

−

−

−

=

=

= + +

=

+ +

 (8) 

 1
, / 1 , / 1k xz k k zz k kK P P−

− −=  (9) 

 ( )/ / 1 / 1ˆ ˆ ˆk k k k k k kkx x K z z− −= + −  (10) 

 / / 1 , / 1
T

k k k k k zz k k kP P K P K− −= −  (11) 
Demonstration: 

 

( )( ){ }
( ) ( ){ }

( ){ }( ) ( ) ( ){ }
( ) ( ){ }

( ){ } ( ){ } ( ){ }( )

, 1/ 1 1 1/ 1 1 1/ 1 1

2
1 1

2 2
1 1 1

2
1 1

2
1 1 1

ˆ ˆ

1

   1

1 2

   

T
zz k k k k k k k k k

k k

T
k k k

k k

T
n k k k

P E z z z z D

n Var h x R

E n k n E h x h x D

n n Var h x R

Var h x E h x E h xσ

− − − − − − − − −

− −

− − −

− −

− − −

= − −

= + + +…

− −

= + + + +…

+

(12) 

Equation (3) is proved. 

 
{ }

( ){ } { }
/ 1 1

1 1 1 1 1

ˆk k k k

k k k k k

x E x D

E M f x D E w D
− −

− − − − −

=

= +
 (13) 

It can be known from Lemma [2] that 

 ( )
1 11 1/ 1

1 , 1/ 11 1/ 11 1/ 1

ˆ 0
~ ,

ˆˆ
k kk k k
T
k zz k kk k kk k k

Q Cw x
C PN h xz x

− −− − −

− − −− − −− − −

      
               

Ν (14) 

The conditional probability density of the noise 1kw −  with 
respect to the observation 1kz −  is 

 
( ) ( )

( )( )

1
1 1 1 1 1 , 1 1

1
1 , 1 1 1 1

ˆ , ,

ˆ

T
k k k k k zz k k

k zz k k k k

P w x z Q C P C

where
C P z N h x

σ

σ

−
− − − − − − −

−
− − − − −

= −

= −

Ν

 (15) 

Since 1kw −  is irrelevant with observation sequence 2kD − , 
then 
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 ( ) ( )1 1/ 1 1 1 1/ 1 1ˆ ˆ, ,k k k k k k k kP w x z P w x D− − − − − − − −=  (16) 
That is, 
 { } ( )( )1

1 1 1 , 1/ 1 1 1 1/ 1ˆk k k zz k k k k k kE w D C P z N h x−
− − − − − − − − −= −  (17) 

 { } 1
1 1 1 1 1 , 1/ 1 1

T T
k k k k k zz k k kE w w D Q C P C−
− − − − − − − −= −  (18) 

 
( )( )

( ) ( ) ( )

1
/ 1 1 , 1/ 1 1 1 1/ 1

1 1 1/ 1 1/ 1 1

ˆ ˆ

ˆ1 ; ,

k k k zz k k k k k k

k k k k k k k

x C P z N h x

m f x x x P dx

−
− − − − − − − −

− − − − − − −

= − +

+

…

∫ Ν
 (19) 

Equation (4) is proved. 

 

( )( ){ }
( ){ } ( ){ } ( ){ }( )

( ) ( ){ }

/ 1 / 1 / 1 1

2
1 1 1

2
1

1
1 1 , 1/ 1 1

ˆ ˆ

 

1   

  

2

T
k k k k k k k k k

T
m k k k

k

T
k k zz k k k

P E x x x x D

Var f x E f x E f x

m m Var f x

Q C P C

σ

− − − −

− − −

−

−
− − − − −

= − −

= + +

+ …+ +

−

 (20) 

Since the observation noise variance is 
{ } 1

1 1 1 1 1 , 1/ 1 1
T T

k k k k k zz k k kE v v D Q C P C−
− − − − − − − −= − , equation (5) is 

proved. 
Measurement update 

 
( ){ }

( ) ( ) ( )
/ 1 1

/ 1 / 1

ˆ

ˆ1 ; ,

k k k k k k

k k k k k k k

z E N h x V D

n h x x x P dx

− −

− −

= +

= + ∫ Ν
 (21) 

Equation (6) is proved. 

 

( )( ){ }
( )( ) ( ) ( ){ }

( ) ( ){ }( ) ( ) ( ){ }
( )( ) ( ) ( ){ }

( ) ( ){ } ( ){ } ( ){ }( )

, / 1 / 1 / 1 1

1

1 1

1

2
* 1 1

ˆ ˆ

1 1 cov ,

   1

1 1 cov ,

   cov ,

T
xz k k k k k k k k k

k k

T
k k k

k k

T
k k k k

P E x x z z D

m n f x h x

E m k n k mn E f x h x D

m n f x h x

f x h x E f x E h xσ

− − − −

−

− −

−

− −

= − −

= + + +…

− −

= + + +…

+

(22) 

If the two multiplicative noises are independent of each other, 
the cross covariance is 2

* 0σ = , Equation (7) is proved. 

 

( )( ){ }
( ) ( ){ }

( ){ } ( ){ } ( ){ }( )

, / 1 / 1 / 1 1

2

2

ˆ ˆ

1

 

2

  

T
zz k k k k k k k k k

k k

T
n k k k

P E z z z z D

n n Var h x R

Var h x E h x E h xσ

− − − −= − −

=

+

…+ + + +  (23) 

Equation (8) is proved. 
Substitute equations (4)~(8) into equations (9)~(11), it can 

be seen that when the system has no multiplicative noise, that 
is, 2 2 0m nm n σ σ= = = = , and the process noise is not 
synchronized with the observation noise, that is, 2

* 0σ = , 
MACNCKF degrades to the standard CKF, thus 
preliminarily verifying rationality of the algorithm design. 

C. MACNCKF IMPLEMENTATION BASED ON MSSRCKF 
The MACNCKF algorithm is commonly used in CKF and its 
various derivative algorithms. This section provides a 
discretized approximation algorithm flow based on Mixed-
degree Spherical Simplex-Radial Cubature Kalman Filter 
(MSSRCKF) [24]. MSSRCKF is a CKF algorithm adopting 
mixed-order simplest phase-path sampling strategy. In 

sampling, 2 3n +  volume points are collected based on 3th-
order surface integral and 5th-order radial integration, which 
has only 3 more volume points than the standard CKF, but 
the accuracy approaches to that of 5th-order CKF [25]. If the 
third-, fifth-, seventh-, or other-order CKFs are used, their 
steps are similar to MACNCKF steps based on MSSRCKF, 
with the only difference being the number and weights of 
volume points. Therefore, there will be no repetitions here, 
and collocation at will is possible according to actual needs. 
Square root of the state posterior covariance is used in the 
iteration. SVD decomposition or Cholesky decomposition 
can be performed, but for stability consideration, SVD 
decomposition is a decomposition method applicable to any 
matrix, with computation complexity equivalent to that of 
Cholesky decomposition. However, error in filtering process 
due to non-positive definiteness of the one-step prediction 
mean square error matrix is avoided after multiple loops, 
which improves robustness of the numerical calculation and 
also improves accuracy of the filtering. Therefore, SVD 
decomposition is adopted when calculating the volume points. 
If other iterative strategies are used, their steps are similar, 
which will not be repeated here. The steps of MACNCKF 
implementation based on MSSRCKF are given as follows: 
1) INITIALIZATION 
Suppose that the state estimation 1ˆkx −  and state variance 
matrix 1kP −  at the moment 1k −  are known, then according 
to the simplest phase-path sampling rule: 

Take a set of vectors ,1 ,2 ,[ , ,..., ]T
i i i i na a a a= ,i=1,2,…n+1, 

where n  is the state dimension. 

 

0.5

,
0.5

1 ,   
( 2)( 1)

0,

( 1)( 1) ,  
( 2)

i j

n j i
n n j n j

a j i

n n i j i
n n i

  +
− <  − + − +  
= >

 + − + =  − + 

 (24) 

The volume point of the filter is expressed as: 

 ( )
( )

0 ,    0

[ 2 ]  ,    1, 2,..., 1

[ 2 ]  ,    2,..., 2 2

i

i i

i i

i

n a i n

n a i n n

ξ

ξ

ξ

 = =
 = + = +


= − + = + +

 (25) 

Where, [ ]i  represents the calculated n  dimensional point 
set, the number of points is 1n + , and the weight 
corresponding to the volume point is: 

 

2  ,    0
2

 ,    1, 2,..., 2 2
2( 1)( 2)

i

i

i
n

n i n
n n

ω

ω

 = = +

 = = +
 + +

 (26) 

2) TIME UPDATE 
Perform SVD decomposition of the state variance 1kP − at the 
moment 1k − : 
 1/ 1 1/ 1 1/ 1 1/ 1

T
k k k k k k k kP U S V− − − − − − − −=  (27) 
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Where, ( )1 1, 2 1 2,..., ,0,... 0 , 0,k r rS diag s s s s s s− > >…= > >  

is the singular value of the matrix 1kP − ; 

1 1 1, , n n
k k kU S V R ×
− − − ∈ . 

First, there is need to calculate iξ  according to equations 
(24) and (25), and perform the first volume point calculation: 
 , 1/ 1 1/ 1 1/ 1 1/ 1ˆ , 0,1,...2 2i k k k k k k i k kU S x i nχ ξ− − − − − − − −= + = + (28) 
Volume point propagation: 
 ( )*

, / 1 , 1/ 1 1, , 0,1,..., 2 2i k k i k k kf u i nχ χ− − − −= = +  (29) 

 ( ), 1/ 1 , 1/ 1 1,i k k i k k kZ h uχ− − − − −=  (30) 
Calculate the posterior observation estimate without 
multiplicative noise at the moment 1k − : 
 ( )1/ 1 1/ 1 1ˆ ,k k k k kz h x u− − − − −=  (31) 
Calculate the posterior observation variance estimate at the 
moment 1k − : 

 

( ) ( )2 2
, 1/ 1 1

2 2

, 1/ 1 , 1/ 1 1/ 1 1/ 1
0

2 2

, 1/ 1 , 1/ 1 1/ 1 1/ 1
0

2 2 2 2

, 1/ 1 , 1/ 1
0 0

1 2zz k k k n

n
T T

i i k k i k k k k k k
i

n
T T

i i k k i k k k k k k
i
n n

T
i i k k i i k k

i i

P n n a R b c

where

a Z Z z z

b Z Z z z

c Z Z

σ

ω

ω

ω ω

− − −

+

− − − − − − − −
=

+

− − − − − − − −
=

+ +

− − − −
= =

= + + + + +

 = − 
 

= −

= ⋅

∑

∑

∑ ∑

 

 

 (32) 

Calculate one-step prediction estimate of state variables 
without multiplicative noise at the moment k : 

 ( )
2 0

* 1
/ 1 , / 1 1 , 1/ 1 1 1/ 1

0

n

k k i i k k k zz k k k k k
i

x C P z zω χ
+

−
− − − − − − − −

=

= + −∑   (33) 

Calculate one-step prediction estimate of state variables 
without multiplicative noise at the moment k : 
Calculate one-step prediction estimate of the state variable at 
the moment k : 

 ( ) ( )
2 2

* 1
/ 1 , / 1 1 , 1/ 1 1 1/ 1

0

ˆ 1
n

k k i i k k k zz k k k k k
i

x m C P z zω χ
+

−
− − − − − − − −

=

= + + −∑  (34) 

Calculate one-step prediction estimate of the state variable 
variance at the moment k : 
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−
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+
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 = − 
 

= −

= ⋅

= −

∑

∑

∑ ∑

 

 

1
T
−

 (35) 

3) OBSERVATION UPDATE 

Perform SVD decomposition on the one-step prediction 
/ 1k kP −  of the state variable variance at the moment k : 

 / 1 / 1 / 1 / 1
T

k k k k k k k kP U S V− − − −=  (36) 
Second volume point calculation 
 , / 1 / 1 / 1 / 1ˆ , 0,1,..., 2 2i k k k k k k i k kU S x i nχ ξ− − − −= + = +  (37) 
Second volume point propagation 
 ( ), / 1 , / 1, , 0,1,..., 2 2i k k i k k kZ h u i nχ− −= = +  (38) 
Calculate one-step prediction estimate of observed variable 
without multiplicative noise at the moment k : 

 
2 2

/ 1 , / 1
0

n

k k i i k k
i

z Zω
+

− −
=

= ∑  (39) 

Calculate one-step prediction estimate of observed variable at 
the moment k : 

 ( )
2 2

/ 1 , / 1
0

ˆ 1
n

k k i i k k
i

z n Zω
+

− −
=

= + ∑  (40) 

Calculate one-step prediction estimate of the covariance at 
the moment k : 
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 (41) 

If the two multiplicative noises are uncorrelated, then 2
* 0σ = . 

Calculate one-step prediction estimate of observed variance 
at the moment k : 
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 (42) 

Calculate the state estimate and variance estimate at the 
moment k : 
 1

, / 1 , / 1k xz k k zz k kK P P−
− −=  (43) 

 ( )/ / 1 / 1ˆ ˆ ˆk k k k k k k kx x K z z− −= + −  (44) 

 / / 1 , / 1
T

k k k k k zz k k kP P K P K− −= −  (45) 

4) NUMERICAL EXPERIMENTS 
To verify and analyze feasibility of the MACNCKF 
algorithm proposed herein, the state equation (1) and 
observation equation (2) are simulated. 
 1k k k kx M Fx w+ = +  (46) 
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 ( )k k k kz N Hx U v= + +  (47) 

 

2

2

1 0 0 / 2 0
0 1 0 0 / 2
0 0 1 0 0

,
0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1

1 0 0 0 0 0 0.015
0 1 0 0 0 0 0.015

,
0 0 1 0 0 0 0.14
0 0 0 1 0 0 0.001

T T
T T

T
F

T

H U

 
 
 
 

=  
 
 
 
  
   
   
   = =
   
   
   

 (48) 

State variables [ ]Tk k k k k k kx yx x y x y=     ; 

kx , kx , kx respectively represent the position, velocity and 
acceleration on the coordinate axis x . ky , ky , ky  
respectively represent the position, velocity and acceleration 
on the coordinate axis y . The multiplicative noise matrixes 

kM  and kN  are randomly generated according to the 
definition, kw and kv  are randomly generated Gaussian 
white noise. The sampling time is set to 0.005T s= , 

[ ]0.125, 0, 0.25, 0; 0, 0.125, 0, 0.25; 0.25, 0, 0.5, 0; 0, 0.25, 0, 0.5kQ = , 

kR  is eye(4), the initial state is 0 [3;  3; 0; 0; 0.5; 0]x = , and 

0P  is eye (4). 49.9312 10m −= − × , 42.2258 10n −= × , 
2 49.8014 10mσ

−= × , 2 41.0021 10nσ
−= × , 2 3

* -1.6 10σ −= × , 
0.4896kC = . In the simulation, the Root Mean Square Error 

(RMSE) is used as the comparison standard. Suppose that 
sampling interval is 0.005T s= and the number of Monte 
Carlo simulation times is 50. Figure 1 shows the northeast 
trajectory of simulation object in Monte Carlo simulation. 
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FIGURE 1.  Moving trajectory of simulation object in one Monte Carlo 
run. 

Figure 1 shows the North-East moving trajectory of 
simulation object in Monte Carlo simulation, where the solid 
line stands for the real position moving track, the dotted line 
denotes the position moving track estimated by CKF, and the 
dot dash line denotes the position moving track estimated by 
MACNCKF. In the experiment, there are multiplicative 
Gaussian white noise and additive correlated Gaussian white 

noise in the system process equations and observation 
equations. As can be seen from the actual motion trajectory, 
the motion is relatively violent, and big acceleration changes 
often occur, which results in rough motion curve and 
abundant burrs, showing a relatively extreme state of motion. 
In the case where both the system equation and the 
observation equation become inaccurate due to multiplicative 
noise, it can be seen that CKF has significantly decreased 
estimated performance, but still showing a tendency to track 
the actual trajectory movement. It can be seen from the figure 
that MACNCKF can still maintain very high tracking 
accuracy under non-ideal circumstance, which proves the 
correctness and superior performance of MACNCKF. The 
actual motion curve ends at the "T" point, and the CKF 
estimation curve ends at the "C" point, which are far from the 
actual position and thus unfavorable for navigation and 
positioning. The MACNCKF estimation curve in the figure 
ends at the "M" point, which almost coincides with the "T" 
point. For the convenience of observation, a partially 
enlarged view is added. It can be seen from the partially 
enlarged view that although the points "T" and "M" are not 
completely coincident, they are very close. On the one hand, 
it indicates that MACNCKF can deal with multiplicative 
noise and noise-related circumstances at the same time. On 
the other hand, it also suggests that there is room for 
improvement, which is worth further exploration. 

To more accurately verify performance of the MACNCKF 
proposed herein, Figure 2 takes root mean square error 
(RMSE) of the estimation results of the two filters as the 
evaluation index. 

It can be seen from Figure 2 that RMSE curve of CKF 
represented by the dashed line is much higher than that of 
MACNCKF represented by the solid line in Figures 2 (a)~2 
(d), which proves superiority of MACNCKF in performance. 
CKF has higher accuracy and better numerical stability under 
ideal conditions than well-known nonlinear filters such as 
UKF and EKF. Nevertheless, it can be seen from the 
experimental results that under non-ideal conditions with the 
presence of multiplicative noise and additive-related noise, 
CKF performance is severely affected, indicating that CKF is 
inapplicable to such environments. CKF is essentially a kind 
of UKF, so we have done the same simulation for EKF as 
well, but the results of EKF diverge seriously, so it is not 
shown in the figure. However, the results show that EKF 
cannot effectively deal with the state estimation problem 
under such non ideal conditions. In addition, it can be seen 
from Figure 2 (c) and Figure 2 (d) that RMSE value of 
MACNCKF is quite small compared to that of CKF. It shows 
that MACNCKF can estimate the physical variable of 
velocity very accurately, which is very beneficial to improve 
motion performance of simulation object.  

To verify the real-time performance of MACNCKF, we 
run CKF and MACNCKF 100,000 times in the presence of 
both multiplicative and correlated noise. The operation is 
conducted with CKF, MACNCKF, using a laptop with an 
Intel Core i5-9400F processor and 8GB RAM. We make 
Figure 3 based on data relationship in the experimental result.  
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(a) Northward position RMSE 
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(b) Eastward position RMSE 
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(c) Forward velocity RMSE 
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(d) Lateral velocity RMSE 

FIGURE 2.  Comparison of state estimation between CKF and 
MACNCKF of simulation object. 
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FIGURE 3.  Comparison of two algorithms running 100000 times. 

The results show that the average single run time of CKF 
is 56.1379e s− , and the average single run time of 
MACNCKF is 41.0659e s− , indicating that MACNCKF can 
fully meet real-time requirements of most systems. From 
Figure 3, it can be seen that MACNCKF has increased 
running time compared to CKF. This is because MACNCKF 
is an improved version based on CKF. However, the 
experimental results show that the time consumption is 
increased by less than one fold. The estimation accuracy is 
11 times higher than that of CKF. It suggests that CKF has 
sharply decreased estimation accuracy and can hardly be 
used in such non-ideal environment, while MACNCKF 
completely overcomes this problem and guarantees the 
estimation performance. 
5) VELOCITY ESTIMATION EXPERIMENT OF 
QUADRUPED ROBOT 
The experimental prototype of the quadruped robot 
employed is shown in Figure 3. Robot body is equipped with 
power system consisting of engine, variable pump, and 
hydraulic accessories.  

 
FIGURE 4.  Platform of quadruped robot. 

Since the magnitudes of these robotic parameters differ 
significantly from each other, the error values of 
displacement, velocity, accelerator bias are regarded as state 
variables, which can be expressed by equation (36): 

So equation of state (37) can be rewritten as 
 1k k k kx F x w+ = +  (49) 
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In state variable ,
T

k k k a kx x x b = ∆ ∆ ∆  , kx∆  is the 

error value of displacement at the moment k , kx∆  is the 
error value of velocity at the moment k  , ,a kb∆  is the error 
value of accelerator bias at the moment k . ,a kδ∆  is the 
random error value of accelerator at the moment k  and 

,ba kδ∆  is the random error value of accelerator bias at the 

moment k . n
bC  is rotation matrix, which is time-varying 

itself, so the process equation of the robot is also time-
varying. IMU has a sampling frequency of 100HZ and a 
sensor sampling frequency of 200HZ, so 0.005T s= . 

If the variance of ,a kδ∆  is ,a kQ ，the variance of ,ba kδ∆  is 

,b kQ , the process noise variance is 
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(52) 

For the quadruped robot system, the observation equation 
is linearized. Based on this, MACNCKF needs only one 
volume point calculation for each filtering, which greatly 
reduces the calculation amount and improves real-time 
performance. 
 k k kz Hx v= +  (53) 
The above equation can be written as 

 

,

0 0
0 0

k

k k k

a k

x
I

z x v
I

b

 ∆
   = ∆ +      ∆ 

  (54) 

For the quadruped robot system herein, 6 9H R ×∈ , the 
observation noise covariance is 
 ( )T

k k kR E v v=  (55) 
The obtained state estimate is an estimate of the error, which 
needs to be compensated to IMU for correction. 
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    (56) 

where ,i kx , ,i kx  and ,i ka  are navigation calculation 

results at the moment k . ˆkx∆ , ˆ
kx∆   and ,â kb∆  are 

estimations of displacement and velocity errors at the 
moment k . ,c kx , ,c kx  and ,c ka  are position, velocity, and 
acceleration results of the robot in the navigation 
coordinate system after correction at the moment k . 
Figure 5 is a video screenshot of a quadruped robot 
walking in place with MACNCKF. It can be seen from 
Figure 5 that the quadruped robot steps in the trot gait. 
When a pair of diagonal legs are in a stable supporting 
state, the robot mass center does not move significantly, 
and then it alternates to another pair of diagonal legs as 
supporting legs. The whole process is smooth and stable. 
The correctness and validity of MACNCKF are testified 
by experiments. 

 
FIGURE 5.  A screenshot of a quadruped robot walking in place. (a) The 
robot is ready to start a new trot gait cycle; (b) The robot raises the left 
front leg and right hind leg on the diagonal line; (c) The left front leg and 
right hind leg of the robot are lifted to the highest point, and the robot 
chooses landing points according to the self motion state estimated by 
the state; (d) The left front leg and right hind leg of the robot are placed 
on the selected landing points to maintain balance and original state; (e) 
The robot lifts the right front leg and left hind leg on the diagonal line; (f) 
The right front leg and left hind leg of the robot are lifted to the highest 
point, and the landing points are selected according to the self motion 
state estimated by the state to maintain the balance and original state. 

This experiment will verify MACNCKF effectiveness in 
practical system application and its applicability in time-
varying systems. In fact, for a system with multiplicative 
noise, there is almost no time-invariant system. After 
polluting the original time-invariant system with 
multiplicative noise, the system becomes time-varying as 
multiplicative noise is time-varying. If this case is not 
detected in time, there will be unexpected results. The 
quadruped robot is a time-varying system as it introduces a 
rotation matrix in the modeling. Due to random uncertainties 
of the system model parameters caused by modeling errors, 
model simplification, random interference, and body buffet, 
it is very susceptible to multiplicative noise pollution. The 
same working environment makes additive noise no longer 
satisfy the hypothesis of mutual independence, so the 
application on quadruped robots seems very appropriate. 
Experimental noise variance and correlation, multiplicative 
noise mean and covariance of related additive noise can be 
statistically approximated by wavelet filtering and Allan 
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variance. Based on the information collected by the linear 
displacement sensors of the quadruped robot's legs, forward 
kinematics is calculated. The landing leg is determined using 
sole force sensor to further improve accuracy of the solution. 
The fusion estimation of the solution results with the IMU 
through CKF or MACNCKF is carried out to obtain more 
accurate results for robot control and navigation. The process 
is complicated and beyond the research content of this paper, 
which will not be discussed here. As the dynamic capture 
system cannot be used, the robot performs in-situ stepping in 
the experiment to ensure that the true value is easier to 
determine, and the experimental results are more clear and 
readable. The system is initialized for 10 seconds in the 
experiment, and then remains stationary, and in-situ stepping 
starts at 28th second and stops after 12 seconds. The result is 
shown in Figure 6. 

As can be seen from Figure 5, the dashed line represents 
CKF estimation curve, and the solid line represents 
MACNCKF estimation curve. Considering the great 
overlapping parts of the curve, dotted line, solid line and a 
partially enlarged view are used for the convenience of 
observation. Figure 5 (a) represents the northward position of 
the robot in the world coordinate system; Figure 5 (b) 
represents the forward speed of the robot in the proprio-
coordinate system, with the forward direction being positive. 
Figure 5 (c) represents the eastward position of the robot in 
the world coordinate system; Figure 5(d) represents the 
lateral speed of the robot in the proprio-coordinate system, 
with the right direction being positive. To avoid ambiguity, 
the robot is oriented to the north in the experiment. The robot 
steps well on the spot and basically remained in situ. It can 
be seen from Figure 5(a) that the MACNCKF estimation 
curve shows only a slight movement. A slight northward 
movement can be seen in the partially enlarged view, which 
is consistent with the reality, demonstrating accuracy of 
MACNCKF. However, CKF estimation curve indicates that 
the robot reciprocates within a range of 5 meters, which is 
inconsistent with actual observation. Such an estimation error 
is very serious, which is unfavorable for robot control and 
navigation. The accuracy of CKF itself can reach the third-
order accuracy of Taylor series expansion. The reason for 
such a big error is that the working environment of the 
quadruped robot does not meet the basic hypothesis of 
Kalman filtering. It can be seen from MACNCKF curve in 
Figure 5(b) that the forward velocity of the robot has been 
alternated between 1 / ~ 1 /m s m s− , which is caused by in-
situ step control of the balance and accords with the control 
algorithm. Moreover, it is found from the partially enlarged 
diagram that MACNCKF velocity estimation waveform has 
greater pulse width in the positive direction than in the 
negative direction, making displacement after the velocity 
integration positive, which also verifies the observation that 
the robot moves slightly in a positive direction in Fig. 5(a). 
As a result, the correctness and accuracy of MACNCKF are 
further verified. The velocity estimation curve of CKF has 

great fluctuations, and the subsequent velocity estimation 
curve returns to zero more slowly than MACNCKF. 
Moreover, such estimation error will result in serious 
misjudgment of its own motion state by the robot, causing 
damage to the system security. It can be seen from Figure 5(c) 
that the MACNCKF eastward position estimation curve 
displays a slight east-west swing in the robot, which is 
related to orientation of the robot in the experiment. Since the 
robot is artificially oriented north, Figure 5(c) approximates 
the robot’s lateral position. After the system initialization, 
MACNCKF's eastward estimated value shows an eastward 
shift of 3.6mm in the robot, so the robot slowly 
autonomously adjusts the position westward. The partially 
enlarged view shows that with a slight swing, the robot 
moves slightly to the west, and the eastward position curve 
basically returns to zero when the step is stopped. It indicates 
that MACNCKF cooperates with the quadruped robot to 
achieve superior autonomous control. The eastward position 
estimation curve of CKF has big amplitude, which shows 
that MACNCKF has achieved precise control of the robot. 
Since the IMU can continue to work after the robot 
terminates the controller, it is observed that the robot 
deviated 2.6mm westward after 57s. Since the position and 
velocity of the robot in the vertical direction are not recorded, 
this westward displacement may be caused by body tilt after 
loss of control, which may be related to the gap during 
processing and installation. This normal phenomenon will 
not affect the experimental results. It can be seen clearly from 
the MACNCKF lateral velocity estimation curve in Figure 
5(d) that during autonomous robot adjustment, the body 
makes slight adjustment to maintain balance. These small 
details are accurately and clearly captured by MACNCKF 
via lateral velocity estimation curve, verifying accuracy and 
reliability of MACNCKF. It can be seen from the partially 
enlarged view that during the stepping phase, the velocity is 
biased to a negative value, that is, the left side of the body is 
westward during the experiment, which is consistent with the 
direction of motion adjustment in Figure 5(c). However, 
CKF lateral velocity estimation curve in the partially 
enlarged view not only features big amplitude, but also lacks 
obvious directivity. The above experimental results indicate 
that MACNCKF has good estimation accuracy and 
convergence velocity in practical applications, and can 
effectively solve state estimation problems involving both 
multiplicative and additive noise. It also suggests that 
although CKF demonstrates good estimation performance 
under ideal conditions, the estimation performance will drop 
sharply under non-ideal conditions, with lower estimation 
accuracy and convergence velocity compared to MACNCKF. 
The estimation result of CKF has bigger error and slower 
convergence velocity compared to that of MACNCKF. It can 
also be seen from the experimental results that the CKF 
estimation curve has big amplitude, which may be due to the 
robot’s buffet itself. However, it can also be seen that such 
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buffet has a small impact on MACNCKF and MACNCKF 
can well isolate such interference. 
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FIGURE 6.  Comparison of state estimation between CKF and 
MACNCKF of a quadruped robot. 

III.  CONCLUSION 
In this paper, MACNCKF is proposed to solve the state 
estimation problem involving both multiplicative and 
additive noise. While maintaining the advantages of CKF 
algorithm, it overcomes hypothetical limitation of KF. 
MACNCKF can be easily and conveniently transplanted into 
various derived filters of CKF. When multiplicative noise 
and additive noise are independent of each other, 
MACNCKF is degraded to corresponding filter in a general 
form, which extends application scope of CKF series filter, 
thus improving robustness and reliability of the filter. The 
entire algorithm has undergone strict mathematical derivation, 
and its correctness and real-time performance have been 
verified through simulation experiments. The application of 
MACNCKF in quadruped robot system further verifies its 
accuracy, feasibility and reliability. The above results 
demonstrate that MACNCKF has superior estimation 
performance and can effectively solve state estimation issues 
involving both multiplicative and additive noise. 
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