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Abstract— We present a model-free reinforcement learning
algorithm to synthesize control policies that maximize the prob-
ability of satisfying high-level control objectives given as Linear
Temporal Logic (LTL) formulas. Uncertainty is considered in
the workspace properties, the structure of the workspace, and
the agent actions, giving rise to a Probabilistically-Labeled
Markov Decision Process (PL-MDP) with unknown graph
structure and stochastic behaviour, which is even more general
than a fully unknown MDP. We first translate the LTL speci-
fication into a Limit Deterministic Biichi Automaton (LDBA),
which is then used in an on-the-fly product with the PL-MDP.
Thereafter, we define a synchronous reward function based on
the acceptance condition of the LDBA. Finally, we show that the
RL algorithm delivers a policy that maximizes the satisfaction
probability asymptotically. We provide experimental results
that showcase the efficiency of the proposed method.

I. INTRODUCTION

Control synthesis for Markov Decision Processes (MDPs)
under Linear Temporal Logic (LTL) specifications has been
studied recently in [1]-[4]. Common in these works is
that, in order to synthesize policies that maximize the
satisfaction probability, exact knowledge of the MDP is
required. Specifically, these methods construct a product
MDP by composing the MDP that captures the underlying
dynamics with a Deterministic Rabin Automaton (DRA) that
represents the LTL specification. Then, given the product
MDP, probabilistic model checking techniques are employed
to design optimal control policies [5], [6].

In this paper, we address the problem of designing optimal
control policies for MDPs with unknown stochastic behaviour
so that the generated traces satisfy a given LTL specification
with maximum probability. Unlike previous work, uncertainty
is considered both in the environment properties and in the
agent actions, provoking a Probabilistically-Labeled MDP
(PL-MDP). This model further extend MDPs to provide a way
to consider dynamic and uncertain environments. In order
to solve this problem, we first convert the LTL formula into
a Limit Deterministic Biichi Automaton (LDBA) [7]. It is
known that this construction results in an exponential-sized
automaton for LTL\gy, and it results in nearly the same
size as a DRA for the rest of LTL. LTL\gy is a fragment
of linear temporal logic with the restriction that no until
operator occurs in the scope of an always operator. On the
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other hand, the DRA that are typically employed in relevant
work are doubly exponential in the size of the original LTL
formula [8]. Furthermore, the semantics of the acceptance
condition of a Biichi automaton is simpler than that of a Rabin
automaton [4], [9], which makes our algorithm much easier to
implement. Once the LDBA is generated from the given LTL
property, we construct on-the-fly a product between the PL-
MDP and the resulting LDBA and then define a synchronous
reward function based on the acceptance condition of the
Biichi automaton over the state-action pairs of the product.
Using this algorithmic reward shaping procedure, a model-
free RL algorithm is introduced, which is able to generate
a policy that returns the maximum expected reward. Finally,
we show that maximizing the expected accumulated reward
entails the maximization of the satisfaction probability.

Related work — A model-based RL algorithm to design
policies that maximize the satisfaction probability is proposed
in [10], [11]. Specifically, [10] assumes that the given MDP
model has unknown transition probabilities and builds a
Probably Approximately Correct MDP (PAC MDP), which
is composed with the DRA that expresses the LTL property.
The overall goal is to calculate a finite-horizon (1-step) value
function for each state, such that the obtained value is within
an error bound from the probability of satisfying the given
LTL property. The PAC MDP is generated via an RL-like
algorithm, then value iteration is applied to update state
values. A similar model-based solution is proposed in [12]:
this also hinges on approximating the transition probabilities,
which limits the precision of the policy generation process.
Unlike the problem that is considered in this paper, the work
in [12] is limited to policies whose traces satisfy the property
with probability one. Moreover, [10]-[12] require to learn all
transition probabilities of the MDP. As a result, they need a
significant amount of memory to store the learned model [13].
This specific issue is addressed in [14], which proposes an
actor-critic method for LTL specification that requires the
graph structure of the MDP, but not all transition probabilities.
The structure of the MDP allows for the computation of
Accepting Maximum End Components (AMECs) in the
product MDP, while transition probabilities are generated
only when needed by a simulator. By contrast, the proposed
method does not require knowledge of the structure of the
MDP and does not rely on computing AMECs of a product
MDP. A model-free and AMEC-free RL algorithm for LTL
planning is also proposed in [15]. Nevertheless, unlike our
proposed method, all these cognate contributions rely on the
LTL-to-DRA conversion, and uncertainty is considered only
in the agent actions, but not in the workspace properties.



In [16] safety-critical settings in RL are addressed in which
the agent has to deal with a heterogeneous set of MDPs in
the context of cyber-physical systems. [17] further employs
DDL [18], a first-order multi-modal logic for specifying and
proving properties of hybrid programs.

The first use of LDBA for LTL-constrained policy synthesis
in a model-free RL setup appears in [19], [20]. Specifically,
[20] propose a hybrid neural network architecture combined
with LDBAs to handle MDPs with continuous state spaces.
The work in [19] has been taken up more recently by [21],
which has focused on model-free aspects of the algorithm
and has employed a different LDBA structure and reward,
which introduce extra states in the product MDP. As we have
shown in the extended version of this work in [22], [21] has
overlooked that the algorithm in [19] is episodic, and allows
the discount factor to be equal to one. Unlike [19]-[21], in
this work we consider uncertainty in the workspace properties
by employing PL-MDPs.

Summary of contributions — First, we propose a model-
free RL algorithm to synthesize control policies for unknown
PL-MDPs which maximizes the probability of satisfying
LTL specifications. Second, we define a synchronous reward
function and we show that maximizing the accumulated
reward maximizes the satisfaction probability. Third, we
convert the LTL specification into an LDBA which, as a
result, shrinks the state-space that needs to explored compared
to relevant LTL-to-DRA-based works in finite-state MDPs.
Moreover, unlike previous works, our proposed method does
not require computation of AMECs of a product MDP, which
avoids the quadratic time complexity of such a computation
in the size of the product MDP [5], [6].

II. PROBLEM FORMULATION

Consider a robot that resides in a partitioned environment
with a finite number of states. To capture uncertainty in both
the robot motion and the workspace properties, we model the
interaction of the robot with the environment as a PL-MDP,
which is defined as follows.

Definition 2.1 (Probabilistically-Labeled MDP [3]):

A PL-MDP is a tuple M = (X,x0, A, Pc, AP, Pr),
where X is a finite set of states; xg € X is the initial
state; A is a finite set of actions. With slight abuse of
notation A(z) denotes the available actions at state © € X;
Po: X x Ax X — [0,1] is the transition probability
function so that Po(z,a,2’) is the transition probability
from state x € X to state ' € X’ via control action a € A
and ), s Po(z,a,2") = 1, for all a € A(z); AP is a set
of atomic propositions; and Pr, : X x 247 — [0, 1] specifies
the associated probability. Specifically, Pr(z,£) denotes the
probability that £ € 247 is observed at state € X, where
Y veoar Pr(z,0) =1,Vz € X. |

The probabilistic map P, provides a means to model dy-
namic and uncertain environments. Hereafter, we assume that
the PL-MDP 90 is fully observable, i.e., at any time/stage ¢,
the current state, denoted by zt, and the observations in
state z*, denoted by ¢! € 247 are known.

At any stage 7' > 0 we define the robot’s past path as
X1 = zgz ... 27, the past sequence of observed labels as
Ly = 0oty ... by, where £, € 24P and the past sequence of
control actions as Ar = agay ...ar—1, where a; € A(xy).
These three sequences can be composed into a complete past
run, defined as Ry = xolpapxif1ay ... xply. We denote by
Xr, L7, and Ry the set of all possible sequences X, Lp
and Ry, respectively.

The goal of the robot is accomplish a task expressed as
an LTL formula. LTL is a formal language that comprises a
set of atomic propositions AP, the Boolean operators, i.e.,
conjunction A and negation —, and two temporal operators,
next () and until U. LTL formulas over a set AP can
be constructed based on the following grammar: ¢ ::=
true | m | p1 AP | 79| O¢| ¢1 U ¢, where m € AP.
The other Boolean and temporal operators, e.g., always
O, have standard syntax and meaning [23]. An infinite
word o over the alphabet 247 is defined as an infinite
sequence o = ToW My - € (2“47’)‘“, where w denotes
infinite repetition and 7, € 247, Vk € N. The language
{o € (247)*|o |= ¢} is defined as the set of words that
satisfy the LTL formula ¢, where =C (247)% x ¢ is the
satisfaction relation.

In what follows, we define the probability that a stationary
policy for 901 satisfies the assigned LTL specification. Specif-
ically, a stationary policy & for 90 is defined as & = &p&; - . -,
where & : X x A — [0,1]. Given a stationary policy &,
the probability measure IP’fm, defined on the smallest o-
algebra over R, is the unique measure defined as Pé, =
HtT:o Po(xy, ap, xi41) Pr (2, £0)& (2, ay), where & (x4, ar)
denotes the probability that at time ¢ the action a; will be
selected given the current state x; [S], [24]. We then define
the probability of 91 satisfying ¢ under policy £ as [5], [6]

P8 () = Py (Roo : Loo = 0) - (1)

The problem we address in this paper is summarized as
follows.

Problem 1: Given a PL-MDP 9t with unknown transition
probabilities, unknown label mapping, unknown underlying
graph structure, and a task specification captured by an LTL
formula ¢, synthesize a deterministic stationary control policy
¢ that maximizes the probability of satisfying ¢ captured in
(1), ie., £ = argmax, Pgﬁ(qb).l O

III. A NEW LEARNING-FOR-PLANNING ALGORITHM

In this section, we first discuss how to translate the LTL
formula into an LDBA 2 (see Section III-A). Then, we define
the product MDP ‘33, constructed by composing the PL-MDP
O and the LDBA 2( that expresses ¢ (see Section III-B).
Next, we assign rewards to the product MDP transitions
based on the accepting condition of the LDBA 2. As we
show later, this allows us to synthesize a policy p* for B3
that maximizes the probability of satisfying the acceptance

IThe fact that the graph structure is unknown implies that we do not
know which transition probabilities are equal to zero. As a result, relevant
approaches that require the structure of the MDP, as e.g., [14] cannot be
applied.



conditions of the LDBA. The projection of the obtained
policy p* over model 90t results in a policy £€* that solves
Problem 1 (Section III-C).

A. Translating LTL into an LDBA

An LTL formula ¢ can be translated into an automaton,
namely a finite-state machine that can express the set of words
that satisfy ¢. Conventional probabilistic model checking
methods translate LTL specifications into DRAs, which are
then composed with the PL-MDP, giving rise to a product
MDP. It is known that this conversion results, in the worst
case, in automata that are doubly exponential in the size
of the original LTL formula [8]. By contrast, in this paper
we propose to express the given LTL property as an LDBA,
which results in a much more succinct automaton [7], [9].
This is the key to the reduction of the state-space that needs
to be explored; see also Section V.

Before defining the LDBA, we first need to define the
Generalized Biichi Automaton (GBA).

Definition 3.1 (Generalized Biichi Automaton [5]): A GBA
A = (9Q,q0, %, F,0) is a structure where Q is a finite set
of states, qg € Q is the initial state, > = 2AP is a finite
alphabet, 7 = F1,..., F¢ is the set of accepting conditions
where F; C Q,1 < j < f,andé: Qx¥ — 2%isa
transition relation. (|

An infinite run p of 2A over an infinite word ¢ =
momima - € X, 1 € ¥ = 247 Yk € N, is an infinite
sequence of states g € Q, i.e., p = qoq1 ---qk - - -, such that
qk+1 € 6(qx, ). The infinite run p is called accepting
(and the respective word o is accepted by the GBA) if
Inf(p) N F; # 0,V5 € {1,...,f}, where Inf(p) is the
set of states that are visited infinitely often by p.

Definition 3.2 (Limit Deterministic Biichi Automaton [7]):

A GBA A = (Q,qo, X, F,9d) is limit deterministic if Q
can be partitioned into two disjoint sets Q = Qn U Op,
so that (i) 6(q,m) C Qp and [0(g, )| = 1, for every state
g € Qp and 7 € ¥; and (ii) for every F; € F, it holds that
Fj C Qp and there are e-transitions from Oy to Qp. [

An e-transition allows the automaton to change its state
without reading any specific input. In practice, the e-
transitions between Qu and Qp reflect the “guess” on reach-
ing Qp: accordingly, if after an e-transition the associated
labels in the accepting set of the automaton cannot be read,
or if the accepting states cannot be visited, then the guess is
deemed to be wrong, and the trace is disregarded and is not
accepted by the automaton. However, if the trace is accepting,
then the trace will stay in Qp ever after, i.e. Qp is invariant.

Definition 3.3 (Non-accepting Sink Component): A non-
accepting sink component in an LDBA 2l is a directed graph
induced by a set of states Qgnr C Q such that (1) it
is strongly connected, (2) does not include all accepting
sets F;, j = 1,..., f, and (3) there exist no other strongly
connected set @' C Q, Q' # Qgnk that Qg C Q. We
denote the union set of all non-accepting sink components
as Qsinks' O

B. Product MDP

Given the PL-MDP 97t and the LDBA 2, we define the
product MDP P = 9t x A as follows.

Definition 3.4 (Product MDP): Given a PL-MDP 9t =
(X, 20, A, Po, AP, Pr) and an LDBA 2 = (Q, qo, %, F, ),
we define the product MDP P = 9t x A as P = (S, so,
Ay, Py, Fp), where (i) S = X x 247 x Q is the set
of states, so that s = (2,0,q) € S, x € X, £ € 247,
and ¢ € Q ; (i) so = (x0,%),qo) is the initial state;
(iii) Ay is the set of actions inherited from the MDP,
so that Ap(s) = A(zx), where s = (x,4,q); (iv) Py :
Sx AxS :[0,1] is the transition probability function, so that
Py([z,4,q],a,[2', 0, q']) = Pco(z,u,z’)Pr(z’,¢'), where
[z,0,q) € S, [2/,0,¢] € S, a € Alx) and ¢’ = 6(¢,0');
V) Fp = {(F;p),j = 1,...,f} is the set of accepting
states, where ]-"?3 = X x 247 x F;. In order to handle &-
transitions in the constructed LDBA we have to add the
following modifications to the standard definition of the
product MDP [9]. First, for every e-transition to a state
¢ € Q we add an action gq in the product MDP, i.e.,
Ap(s) = Ap(s) U{eq,s = [z,0,4¢],¢d € Q}. Second,
the transition probabilities of e-transitions are given by

1 f = ! £ - f’ (S 1) = !
qu(s,a75/): ! (x x)/\( )/\((q’€Q) q)
0, otherwise,
2
where s = (2,£,q) and ' = (o', ¢'). 0

Given any policy p for B3, we define an infinite run pgg of P
to be an infinite sequence of states of i3, i.e., p% = 505182 ...,
where Py (s¢, po(s¢), S¢41) > 0. By definition of the accepting
condition of the LDBA %, an infinite run pfq‘3 is accepting,
i.e., p satisfies ¢ with a non-zero probability (denoted by
= @), if Inf(pl) N FP £0,Vj € {1,..., f}.

In what follows, we design a synchronous reward function
based on the accepting condition of the LDBA so that
maximization of the expected accumulated reward implies
maximization of the satisfaction probability. Specifically, we
generate a control policy p* that maximizes the probability of
(i) reaching the states of Fsz from s¢ and (ii) the probability

that each accepting set ]:]‘33 will be visited infinitely often.

C. Construction of the Reward Function

To synthesize a policy that maximizes the probability of
satisfying ¢, we construct a synchronous reward function for
the product MDP. The main idea is that (i) visiting a set F,
1 < j < f yields a positive reward r > 0; and (ii) revisiting
the same set F; returns zero reward until all other sets Fy,
k # j are also visited; (iii) the rest of the transitions have zero
rewards. Intuitively, this reward shaping strategy motivates
the agent to visit all accepting sets JF; of the LDBA infinitely
often, as required by the acceptance condition of the LDBA
without introducing extra monitoring states in the automaton;
see also Section IV.

To formally present the proposed reward shaping method,
we need first to introduce the accepting frontier set A, which
is initialized as the family set {Fk}izl. This set is updated
on-the-fly every time a set F; is visited as A < AF(q,A)



where AF(q,A) is the accepting frontier function defined as
follows.

Definition 3.5 (Accepting Frontier Function): Given an
LDBA A = (Q,qo, %, F,6), we define AF : Q x 22 — 22
as the accepting frontier function, which executes the
following operation over any given set A € 2<:

A\ F (g e FH)NA#£F)
{FH_\F; : @eF)AA=F). O

In words, given a state ¢ € F; and the set A, AF outputs

AF(q,A) :{

a set containing the elements of A minus F; (first case).

However, if A = F;, then the output is the family set of all
accepting sets of 2 minus F; (second case). Intuitively, A
always contains those accepting sets that are needed to be
visited at a given time and in this sense the reward function
is synchronous with the LDBA accepting condition.

Given the accepting frontier set A, we define the following
reward function

s ! ! / / !/
R(s,a){g lfq EAa S _(x7€uq)7

otherwise.

3)

In (3), s’ is the state of the product MDP that is reached
from state s by taking action a, and r» > 0 is an arbitrary
positive reward. In this way the agent is guided to visit all
accepting sets F; infinitely often and, consequently, satisfy
the given LTL property.

Remark 3.6: The initial and accepting components of the
LDBA proposed in [7] (as used in this paper) are both
deterministic. By Definition 3.2, the discussed LDBA is
indeed a limit-deterministic automaton, however notice that
the obtained determinism within its initial part is stronger
than that required in the definition of LDBA. Thanks to this
feature of the LDBA structure, in our proposed algorithm
there is no need to “explicitly build” the product MDP and
to store all its states in memory. The automaton transitions
can be executed on-the-fly, as the agent reads the labels of
the MDP states. O

Given ‘B3, we compute a stationary deterministic policy p*,
that maximizes the expected accumulated return, i.e.,

w'(s) = argmax U¥(s), 4)

where D is the set of all stationary deterministic policies over
S, and

UH(s) = ]E“[Z " R(Sn, t(8n))|s0 = 8], %)

n=0

where IE#[-] denotes the expected value given that the product
MDP follows the policy p [24], 0 < v < 1 is the discount
factor, and s, ..., S, is the sequence of states generated by
policy p up to time step n, initialized at sg = s. Note that
the optimal policy is stationary as shown in the following
result.

Theorem 3.7 ([24]): In any finite-state MDP, such as 3,
if there exists an optimal policy, then that policy is stationary
and deterministic. ]

Algorithm 1: RL for LTL objective

input :Reward function R, LDBA 2,vy,7
output : p*

1 Initialize C(s,a) =0, Q(s,a), Vs € S, Va € Ay

2 A=Ul_, F

3 episode-number := 0, iteration-number := 0
4 while Q is not converged do

5 eptsode-number + +
6
7
8
9

Scur = S0

€ = 1/(episode-number)

while (¢ € Qsinks) A (iteration-number < 1) do
iteration-number + +

10 Set Gy = argmax, Ag: Q(s, a) with probability
1 — € and set acyr as a random action in Ay with
probability e

11 Execute acyr and observe Snext = (Tnewt, lnext, qneat )s
and R(Scun acur)

12 if R(scur, acur) > 0 then

13 ‘ A = AF(Qnext, A),

14 C'(Seury Geur) + +

15 Q(Scurz acur) =

Q(Scun acur) + (l/c(scur, acur))[R(scur, acur) -
Q(Scun acur) + v max,/ (Snext7 a,))}

16 Scur = Snext

17 end

18 end

In order to construct p*, we employ episodic Q-learning
(QL), a model-free RL scheme described in Algorithm 1.2
Algorithm 1 requires as inputs (i) the LDBA £, (ii) the reward
function R defined in (3), and (iii) the hyper-parameters of
the learning algorithm.

Observe that we use an action-value function @ : S x
Agp — R in Algorithm 1 to evaluate p instead of U*(s),
since the MDP ‘B is unknown. The action-value function
Q(s,a) can be initialized arbitrarily. Note that U¥(s) =
maxge Ay Q(s,a). Also, we define a function C' : S x Ay —
N that counts the number of times that action a has been
taken at state s. The policy p is selected to be an e-
greedy policy, which means that with probability 1 — e,
the greedy action argmax,¢ 4, Q(s,a) is taken, and with
probability € a random action a is selected. Every episode
terminates when the current state of the automaton gets inside
Qsinks (Definition 3.3) or when the iteration number in the
episode reaches a certain threshold 7. Note that it holds
that p asymptotically converges to the optimal greedy policy
p* = argmax,c 4, @"(s,a) where Q" is the optimal Q
function. Further, Q(s, u*(s)) = U* (s) = V*(s), where
V*(s) is the optimal value function that could be computed
via Dynamic Programming (DP) if the MDP was fully known
[13], [25], [26]. Projection of p* onto the state-space of
the PL-MDP yields the finite-memory policy £* that solves
Problem 1.

2Note that any other off-the-shelf model-free RL algorithm can also be
used within Algorithm 1, including any variant of the class of temporal
difference learning algorithms [13].



IV. ANALYSIS OF THE ALGORITHM

In this section, we show that the policy p* generated by
Algorithm 1 maximizes (1), i.e., the probability of satisfying
the property ¢. Furthermore, we show that, unlike existing
approaches, our algorithm can produce the best available
policy if the property cannot be satisfied. The proofs of the
following results are omitted owing to space limitations and
can be found in [22]. First, we show that the accepting frontier
set A is time-invariant. This is needed to ensure that the LTL
formula is satisfied over the product MDP by a stationary
policy.

Proposition 4.1: For an LTL formula ¢ and its associated
LDBA 2l = (Q, qo, 2, F,d), the accepting frontier set A is
time-invariant at each state of 2. |

As stated earlier, since QL is shown to converge to the
optimal Q-function [13], it can synthesize an optimal policy
with respect to the given reward function. The following the-
orem shows that the optimal policy produced by Algorithm 1
satisfies the given LTL property with non-zero probability.

Theorem 4.2: Assume that there exists at least one de-
terministic stationary policy in 3 whose traces satisfy the
property ¢ with positive probability. Then the traces of the
optimal policy p* defined in (4) satisfy ¢ with positive
probability as well.

Next we show that p* and, subsequently, its projection &*
maximize the satisfaction probability.

Theorem 4.3: If an LTL property ¢ is satisfiable by the
PL-MDP 91, then the optimal policy p* that maximizes the
expected accumulated reward, as defined in (4), maximizes
the probability of satisfying ¢, defined in (1), as well. O

Next, we show that if there does not exist a policy that
satisfies the LTL property ¢, Algorithm 1 will find the policy
that is the closest one to property satisfaction. To this end,
we first introduce the notion of closeness to satisfaction.

Definition 4.4 (Closeness to Satisfaction): Assume that
two policies p; and p, do not satisfy the property ¢.
Consequently, there are accepting sets in the automaton
that have no intersection with runs of the induced Markov
chains #1 and PB+2. The policy p, is closer to satisfying
the property if runs of 3#1 have more intersections with
accepting sets of the automaton than runs of 2. (]

Corollary 4.5: If there does not exist a policy in the PL-
MDP 9t that satisfies the property ¢, then proposed algorithm
yields a policy that is closest to satisfying ¢. ]

V. EXPERIMENTS

In this Section we present three case studies that illustrate
the efficiency of the proposed algorithm. In the first two
experiments, we consider a 10 x 10 discrete grid world; see
Fig. 1(a). The third case study is an adaptation of the Pacman
game, which is initialized in a configuration that is quite hard
for the agent to solve; see Fig. 1(b).

The first case study pertains to a temporal logic planning
problem in a dynamic and unknown environment with
AMECG s, while the second one does not admit AMECs. The
majority of the existing algorithms fail to provide a control
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(a) Case Studies I and II

(b) Case Study III

Fig. 1: Fig 1(a): PL-MDP that models the interaction of the robot
with the environment. The color of each region (square) corresponds
to the probability that some event can be observed there. Specifically,
gray, magenta, blue and green colours denote the presence with
non-zero probability of an obstacle, a user, target 1 and target 2,
respectively. The red trajectory represents a sample path of the robot
under the optimal control strategy £ for the first case study. The
red dot is the initial location of the robot. Fig. 1(b): Initial condition
in Pacman environment. The magenta square is labeled “food1” and
the green one “food2”. In both figures, a higher intensity of color
indicates a higher probability that the corresponding item appears.

R

7(s0)

Episodes 0t Episodes

(a) Case Study I (b) Case Study III

Fig. 2: Tllustration of the evolution of U (sp) with respect to
episodes. ft denotes the e-greedy policy, which converges to the
optimal greedy policy p*. Videos of Pacman can be found in [22].

policy when AMECs do not exist [2], [14], [27], or yield
control policies without satisfaction guarantees [12].

The LTL formula considered in the first two case studies
is: ¢1 = O(targetl) A OO(target2) A OO (user) A (—user U
target2) A O(—obs). In words, ¢, requires the robot to
(i) eventually visit target 1 (expressed as Qtargetl); (ii) visit
target 2 infinitely often and take a picture of it (JQtarget2);
(iii) visit a user infinitely often where, say, the collected
pictures are uploaded (captured by [lQuser); (iv) avoid
visiting the user until a picture of target 2 has been taken;
and (v) always avoid obstacles (captured by CJ(—obs)). The
LTL formula ¢; can be expressed as a DRA with 11
states. On the other hand, a corresponding LDBA has 5
states (fewer, as expected), which results in a significant
reduction of the state space that needs to be explored. The
interaction of the robot with the environment is modeled
by a PL-MDP 9 with 100 states and 10 actions per
state. The actions space is { Up, Right, Down, Left, None} x
{Take picture, Do not take picture}. We assume that the
targets and the user are dynamic, i.e., their location in
the environment varies probabilistically. Specifically, their
presence in a given region z € X is determined by the
unknown function P, from Definition 2.1 (Figure 1(a)).



In the first case study, we assume that there is no uncertainty
in the robot actions. In this case, it can be verified that AMECs
exist. Figure 2(a) illustrates the evolution of function U (sg)
over 260000 episodes, where p denotes the e-greedy policy.
The optimal policy was constructed in approximately 30
minutes. A sample path of the robot with the projection of
the optimal control strategy p* onto X, i.e., policy &7, is
given in Figure 1(a) (red path). In the second case study, we
assume that the robot is equipped with a noisy controller
and, therefore, that it can execute the desired action with
probability 0.8, whereas a random action among the other
available ones is taken with a probability of 0.2. In this case,
it can be verified that AMECs do not exist. Intuitively, the
reason why AMECs do not exist is that there is always a
non-zero probability with which the robot will hit an obstacle
while it travels between the user and target 2 and, therefore,
it will violate ¢. The optimal policy was synthesized in
approximately 2 hours.

The LTL formula specifying the task for Pacman (third
case study) is: ¢2 = O[(foodl A Ofood2) V (food2 A
Ofoodl)] A O(—ghost). Intuitively, the agent is tasked with
(i) eventually eating foodl and then food2 (or vice versa),
while (ii) avoiding any contact with the ghosts. This LTL
formula corresponds to a DRA with 5 states and to an LDBA
with 4 states. The agent can execute 5 actions per state
{Up, Right, Down, Left, None} and if the agent hits a wall
by taking an action it remains in the previous location. The
ghosts dynamics are stochastic: with a probability p, = 0.9
each ghost chases the Pacman (often referred to as “chase
mode”), and with its complement it executes a random action
(“scatter mode”). In this experiment, there is no uncertainty
in the execution of actions, namely the motion of the Pacman
agent is deterministic. Figure 2(b) shows the evolution of
UF(so) over 186000 episodes where  denotes the e-greedy
policy. On the other hand, the use of standard Q-learning
(without LTL guidance) would require either to construct a
history-dependent reward for the PL-MDP 9 as a proxy for
the considered LTL property, which is very challenging for
complex LTL formulas, or to perform exhaustive state-space
search with static rewards, which is evidently quite wasteful
and failed to generate an optimal policy in our experiments.

Note that given the policy £* for the PL-MDP, probabilistic
model checkers, such as PRISM [28], or standard DP methods
can be employed (if they scale) to compute the probability of
satisfying ¢ for the induced Markov chain. For instance, for
the first case study, the synthesized policy satisfies ¢ with
probability 1, while for the second case study, the satisfaction
probability is 0, since AMECs do not exist. Therefore, even
if the transition probabilities of the PL-MDP are known,
PRISM can not generate a policy for the second case study.
However, the proposed framework can synthesize the closest-
to-satisfaction policy, as shown in Corollary 4.5.

VI. CONCLUSIONS

In this paper we proposed a model-free RL algorithm to
synthesize control policies that maximize the probability of
satisfying high-level control objectives given as LTL formulas.

Theoretical results and numerical experiments support the
proposed framework.
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