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Abstract—Hyperspectral unmixing refers to a source separa-
tion problem of decomposing a hyperspectral imagery (HSI)
to estimate endmembers and their corresponding abundances.
Recently, matrix-vector nonnegative tensor factorization (MV-
NTF) was proposed for unmixing to avoid structure information
loss, which is caused by the HSI cube unfolding in nonnegative
matrix factorization (NMF)-based methods. However, MV-NTF
ignores local spatial information due to directly dealing with
data as a whole, meanwhile, the forceful rank constraint in
low-rank tensor decomposition loses some detailed structures.
Unlike MV-NTF works at the original data, the pixel-based
NMF is more adaptive to learn local spatial variations. Hence,
from the perspective of multi-view, it is significant to utilize
the complementary advantages of MV-NTF and NMF to fully
preserve the intrinsic structure information and exploit more
detailed spatial information. In this paper, we propose a sparsity-
constrained coupled nonnegative matrix-tensor factorization (SC-
NMTF) model for unmixing, wherein MV-NTF and NMF are
subtly coupled by sharing endmembers and abundances. Since
the representations for abundances in MV-NTF and NMF are
distinct, abundance sharing is achieved indirectly by introducing
an auxiliary constraint. Furthermore, the L1/2 regularizer is
adopted to promote the sparsity of abundances. A series of ex-
periments on synthetic and real hyperspectral data demonstrate
the effectiveness of the proposed SCNMTF method.

Index Terms—Hyperspectral unmixing, nonnegative matrix
factorization (NMF), nonnegative tensor factorization (NTF),
coupled decomposition, sparsity constraint.

I. INTRODUCTION

HYPERSPECTRAL imagery (HSI) contains a range of
spectra from ultraviolet to infrared bands, providing

affluent information to detect and identify ground objects.
Therefore, HSI advances active research in various fields:
classification [1], object detection [2], and data fusion [3], etc.
Due to the limited spatial resolution of spectrometer, diverse
materials present in the scene, and multiple scattering, the
spectrum of an observed pixel is generally a combination of
these spectra of several materials, resulting in mixed pixel.
The prevalence of mixed pixel has a negative impact on the
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follow-up analysis for hyperspectral data. Hence, hyperspectral
unmixing offers a possible solution. Given an observed mixed
pixel, unmixing aims at estimating the individual materials
involved (named as endmembers) and their corresponding
fractional proportions (named as abundances), which actually
is a source separation problem [4].

Linear mixture model (LMM) assumes the spectrum of each
pixel is a linear mixture of all endmember spectra associated
with their abundances [4], which is the basis of many classi-
cal unmixing algorithms. Geometry-based methods conjecture
that endmembers correspond to the vertices of a simplex
formed by a HSI in the feature space, whose representative
methods include independent component analysis (ICA) [5],
N-FINDR [6], vertex component analysis (VCA) [7], and
minimum volume simplex analysis (MVSA) [8]. However,
this category focuses on extracting endmembers, thus needs to
further combine with abundance estimation algorithms, such
as fully constrained least squares (FCLS) [9]. Another kind
of unmixing methods is based on sparse regression where a
spectral library is used to replace the endmember set [10]–
[12].

Hyperspectral unmixing can be seen as a blind source sepa-
ration (BSS) which simultaneously estimates the endmembers
and the abundances from a statistical perspective [13]–[15]. A-
mong them, nonnegative matrix factorization (NMF) [16]–[19]
has drawn much attention owing to its nonnegativity, less prior
requirements, and desirable performance. NMF decomposes
an given HSI data into two nonnegative matrices, representing
endmembers and abundances, respectively. The model non-
convexity of NMF usually leads to a local optimal solution.
Consequently, a variety of constraints have been added to
improve unmixing performance [20]–[24]. Nevertheless, the
loss of spatial information and potential correlation between
different dimensions is inevitable when a three-dimensional
(3D) HSI data is unfolded into a two-dimensional (2D) ma-
trix. In order to make up for the information loss, various
assumptions and constraints have been integrated into NMF.
For instance, methods in [25], [26] added total variation
(TV) constraint on abundance maps to promote piecewise
smoothness. The graph-regularized L1/2-NMF was proposed
by embedding manifold structure [27]. Wang et al. [28] added
semantic information to exploit spectral-spatial joint structure.
Nonetheless, these methods compensate information loss in an
indirect way and still cannot fully preserve HSI structures.

As the high-dimensional extension of matrix, a third-order
tensor is more suitable for HSI data cube, which has been
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widely used in data compression [29], feature extraction [30],
and denoising [31]. In order to effectively preserve the intrinsic
information of HSI, nonnegative tensor factorization (NTF)
was firstly applied to unmixing by using canonical polyadic
decomposition (CPD) in [32], [33]. However, these traditional
tensor factorization methods, like CPD and Tucker decompo-
sition [32]–[35], lack an explicit link with LMM and physical
interpretation. Recently, Qian et al. [36] proposed a matrix-
vector nonnegative tensor factorization (MV-NTF) unmixing
method, which was the first to construct a straightforward link
between LMM and tensor factorization. MV-NTF is a low-
rank tensor decomposition based on block term decomposition
(BTD) [37], where a HSI tensor is decomposed into a sum of
component tensors, and each of which is treated as an outer
product of a matrix and a vector, representing endmember
and abundance, respectively. The experimental result in [36]
shows that MV-NTF outperforms some state-of-the-art NMF-
based unmixing methods in most cases. Similar to NMF, three
constraints were integrated into MV-NTF in [38], including
sparseness, minimum volume, and robust nonlinearity. Xiong
et al. [39] incorporated TV regularization on abundance maps.

MV-NTF works in the high-dimensional tensor space, and
can avoid the loss of original structure information caused
by data unfolding in NMF. Unfortunately, the local spatial
information is not fully exploited in MV-NTF. This may
be caused by the strict rank constraint in low-rank tensor
decomposition, which cannot adequately capture small vari-
ations. In addition, MV-NTF is more concerned with global
structures but ignores local spatial structures when directly
deals with data as a whole. As a consequence, the abundance
maps estimated by MV-NTF are more likely to lose small-
scale details and be oversmoothing. On the contrary, NMF
works in the vector space, and does not require compulsory
consideration of contextual information through dealing with
HSI at the pixel level, which can characterize more local
spatial details. Hence, there is a complementarity between MV-
NTF and NMF, as demonstrated in Section III-A.

From the perspective of multi-view, it is significant to inte-
grate NMF into MV-NTF model to make full use of their indi-
vidual advantages. Therefore, in this paper, MV-NTF and NMF
are coupled with each other by artfully sharing endmembers
and abundances to retrain the intrinsic structure information
of HSI data and exploit more detailed spatial information. It
is noteworthy that, this coupled scheme is explored in two
different dimensional spaces, which differs from the coupled
matrix (or tensor) factorization based on the same dimensional
space in HSI fusion [40], [41]. Specifically, the given HSI data
in our proposed method is simultaneously represented as a
third-order tensor for MV-NTF and unfolded into a matrix for
NMF. Since the representations for abundances in these two
decompositions are distinct, the abundance sharing cannot be
achieved simply by using the same abundance variable. To
tackle this problem, an auxiliary constraint is introduced to
impose these two abundances equal. Moreover, when one of
the abundance variables is optimized, the representation for the
other one in the abundance sharing constraint is transformed
into the same as it to facilitate optimization.

In this paper, a new hyperspectral unmixing method called

sparsity-constrained coupled nonnegative matrix-tensor factor-
ization (SCNMTF) is proposed, which is proven to be effective
with the benefits of the coupled model and the sparsity of
abundances. The major contributions of our proposed SCN-
MTF method are given as follows.

• To take the advantages of decompositions over different
dimensional spaces from multi-view, it is the first attempt
to incorporate NMF into MV-NTF by coupling, which
can retain the original structure information by MV-NTF
and characterize more local spatial details by the pixel-
based NMF. In addition, the L1/2 regularizer is adopted to
promote the sparsity of abundance matrix by exploiting
the fact that most pixels are mixed only by a few of
endmembers.

• Due to the representations for two abundances in differ-
ent dimensional decompositions are distinct, abundance
sharing cannot be achieved by directly using the same
abundance variable, but by introducing an auxiliary con-
straint. Besides, in order to simplify optimization, the
representation for one of the abundance variables in the
constraint is transformed into the same as the other one
currently being optimized.

• From the mathematical perspective, such coupling can
be seen as an implicit constraint to further reduce the
solution space and enhance stability. Furthermore, the
coupled model can avoid sensitive parameters introduced
by extra constraints. Experimental results on synthetic
and real hyperspectral data illustrate the advantage of our
proposed SCNMTF method.

The rest of this paper is organized as follows. Section II
introduces previous work related to spectral unmixing. Section
III presents the proposed SCNMTF model, as well as its
solution estimation process and update rules. A series of
experiments are conducted in Section IV. Finally, Section V
draws conclusions and discusses future work.

II. RELATED WORK

A. Concepts and Operations

Some notations and concepts of multilinear algebra involved
in latter work are introduced here. Euler script letter represents
tensor, e.g., Y; a matrix is a second-order tensor denoted by
boldface capital letter, e.g., Y; a vector is a first-order tensor
denoted by bold lowercase letter, e.g., y; a scalar is a tensor
of order zero denoted by lowercase letter, e.g., y.

Definition 1 : A N th-order tensor Y ∈ RI1×···×IN can be
unfolded into matrix from different mode-n (1 ≤ n ≤ N ).
The entries of matrix Y(k) ∈ RI1···Ik−1Ik+1···IN×Ik unfolded
from mode-k are given as

Y(k)(i1 · · · ik−1ik+1 · · · iN , ik) = yi1i2···iN (1)

where i1 · · · ik−1ik+1 · · · iN is the multi-index, and defined as
i1 · · · ik−1ik+1 · · · iN = i1 + (i2− 1)I1 + (i3− 1)I1I2 + · · ·+
(iN − 1)I1 · · · IN−1 for in = 1, 2, · · · , In, n = 1, 2, · · · , N .

Definition 2 : Let ⊗ denotes the Kronecker Product, the
Khatri-Rao product of two matrices A ∈ RI×J and B ∈
RP×J with the same number of columns J is defined as

A�B = (a1 ⊗ b1 · · · aJ ⊗ bJ). (2)
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Definition 3 : Given A = [A1 · · ·AR] and B = [B1 · · ·BR]
with the same number of submatrices, their generalized Khatri-
Rao product is defined as

A�̄B = (A1 ⊗B1 · · · AR ⊗BR). (3)

B. Linear Mixture Model

The LMM assumes that the spectrum of a mixed pixel
is a linear mixture of these spectra of all endmembers.
Y := [y1,y2, · · · ,yP ] ∈ RK×P denotes the observed data
with P pixels and K spectral bands, in which yi represents the
signature corresponding to the ith mixed pixel in HSI. C :=
[c1, c2, · · · , cR] ∈ RK×R refers to endmember matrix with
R endmembers. Abundance matrix S := [s1, s2, · · · , sP ] ∈
RR×P refers to the corresponding proportions of all endmem-
bers in each pixel. Then, LMM can be formulated as

Y = CS + N (4)

where N ∈ RK×P denotes the noise matrix.
Generally, all components in C and S should be nonnegative

under the physical mechanism. Besides, the sum of entries in
each si should be equal to one. The abundance sum-to-one
constraint (ASC) can be expressed as

1T
RS = 1T

P . (5)

C. Matrix-Vector Nonnegative Tensor Factorization

MV-NTF is a special case of BTD, and whose solution is
hard to be unique unless rigorous conditions are met [42], [43].
MV-NTF decomposes an original third-order data into a sum
of component tensors, and each of which is treated as an outer
product of a matrix (abundance) and a vector (endmember).
MV-NTF builds an explicit physical link with LMM. The cost
function of MV-NTF is formulated as

min
A,B,C

1

2
‖Y−

R∑
r=1

(ArB
T
r ) ◦ cr‖2F +

δ

2
‖1I×J−ABT ‖2F (6)

where Y ∈ RI×J×K represents the observed HSI data cube
with K spectral bands and I×J pixels; cr and ArB

T
r ∈ RI×J

are the rth endmember and its associated abundance matrix,
respectively; R is the number of endmembers; ◦ denotes the
outer product of a matrix and a vector; 1I×J is a matrix with
all elements equal to one, and δ is the ASC parameter. The
first term is about the reconstruction error and the second term
denotes the ASC. The Frobenius norm for a third-order tensor
is defined as

‖Y‖F = (
∑
i

∑
j

∑
k

y2ijk)
1
2 . (7)

In the optimization for the cost function (6), each Ar ∈
RI×L is a component matrix of A, i.e., A = [A1 · · ·AR] ∈
RI×RL. Similarly, Br ∈ RJ×L, B = [B1 · · ·BR] ∈ RJ×RL,
and C = [c1 · · · cR]. Here, L denotes the column number of
Ar and Br, whose value needs to be manually determined
and is related to the rank of abundance matrix.

III. PROPOSED SPARSITY-CONSTRAINED COUPLED
NONNEGATIVE MATRIX-TENSOR FACTORIZATION-BASED

UNMIXING MODEL

A. Motivation

As is well known, high-dimensional tensor-based unmixing
methods have a superiority in preserving the intrinsic structure
of HSI data than the matrix-based ones. However, for MV-
NTF, the forceful rank constraint and the way of directly
dealing with data tensor may lead to the lose of local details.
In contrast, NMF works in vector space, where unmixing is
performed at the pixel level, without requiring compulsory
consideration of contextual information. Thus, tiny spatial
structures are more easily learned by NMF. There are com-
plementary merits between MV-NTF and NMF.

Fig. 1 displays one set of abundance maps estimated by
basic MV-NTF and NMF with only ASC and ANC. This
experiment is conducted on synthetic data whose generation
process is given in Section IV. From the RMSE results, MV-
NTF generally performs better than NMF, demonstrating that
the abundance maps by MV-NTF are closer to the real ones.
However, the RMSE result obtained by NMF is more desirable
when the real abundance map contains more local spatial
variations, e.g., Fig. 1(b) and (c). From the visual comparison,
it can be evidently observed that the abundance maps estimated
by NMF have more exquisite and detailed edges, while MV-
NTF yields in smoother abundance maps. This phenomenon
is also consistent with the comparison between MV-NTF-
based and NTF-based methods in [38], similarly revealing
that the tensor works better with smoother images, whereas
has no advantage for high-spatial resolution images containing
abundant small-scale details.

B. SCNMTF Model

Through the above experimental analysis, it is significant to
couple MV-NTF and NMF for incorporating their individual
merits. Let MV-NTF and NMF share endmembers and abun-
dances, the cost function of coupled model is formulated as

min
A,B,C,S

1

2
‖Y −

R∑
r=1

(ArB
T
r ) ◦ cr‖2F +

1

2
‖Y −CS‖2F

s.t. F(sr) = ArB
T
r , 1T

RS = 1T
P

A � 0, B � 0, C � 0, S � 0

(8)

where the first and second terms denote the reconstruction
errors of tensor factorization and matrix factorization, re-
spectively. Here, Y is obtained by unfolding the original
tensor data Y into a matrix. cr in MV-NTF is the column
vector of endmember matrix C in NMF, for direct endmember
sharing. However, due to the totally different representations
for abundances in MV-NTF and NMF, abundance sharing
cannot be achieved by directly using the same abundance
matrix. As a result, an auxiliary constraint F(sr) = ArB

T
r

is presented to impose them equal, wherein the operation
F : RP −→ RI×J reshapes sr (the rth row vector of S)
into an I × J matrix, and P = I × J . This constraint is an
indirect abundance sharing.
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Fig. 1. Abundances of one endmember estimated from synthetic datas with different mixing levels (controlled by parameter θ). From top to bottom: reference,
NMF, and MV-NTF. (a) θ = 0.5. (b) θ = 0.6. (c) θ = 0.7. (d) θ = 0.8.

As we know, diverse constraints based on intrinsic prop-
erties of HSI can further facilitate physical interpretation.
Among them, sparsity constraint is a useful scheme to improve
unmixing performance, under the assumption that most pixels
in HSI are mixed by a small subset of all endmembers. Thus,
the widely used L1/2 regularizer is embedded into (8) to
promote the sparsity of abundances. In the meantime, let the
constraint F(sr) = ArB

T
r be absorbed into the equation,

then, the cost function of our proposed SCNMTF model is
formulated as

min
A,B,C,S

1

2
‖Y −

R∑
r=1

(ArB
T
r ) ◦ cr‖2F +

1

2
‖Y −CS‖2F

+
u

2

R∑
r=1

‖F(sr)−ArB
T
r ‖2F + λ‖S‖1/2

s.t. A � 0, B � 0, C � 0, S � 0, 1T
RS = 1T

P

(9)

where u controls the similarity between S and
∑R

r ArB
T
r ,

and a larger u represents a higher similarity. λ balances the
trade-off between the reconstruction error and the sparseness
of S. ‖S‖1/2 is defined as

‖S‖1/2 =

R,P∑
r,p=1

(sr,p)1/2. (10)

C. Optimization

As mentioned in Section II, the optimization of MV-NTF
treats all submatrices as a whole, i.e., A = [A1 · · ·AR] is
updated as an independent variable in iterations. However, the

constraint ‖F(sr) − ArB
T
r ‖2F is discrete for the individual

submatrice, i.e., Ar and Br. For this reason, this constraint
term is supposed to be in the same form as the first MV-
NTF term to facilitate optimization. To this end, all abundance
maps F(sr) for R endmembers are stacked into a tensor S ∈
RI×J×R, i.e., S:,:,r = F(sr). Then, the cost function (9) is
further reformulated as

min
A,B,C,S

1

2
‖Y −

R∑
r=1

(ArB
T
r ) ◦ cr‖2F +

1

2
‖Y −CS‖2F

+
u

2
‖S −

R∑
r=1

(ArB
T
r ) ◦ er‖2F + λ‖S‖1/2

s.t. A � 0, B � 0, C � 0, S � 0, 1T
RS = 1T

P

(11)

where er is a column vector of length R and is a component
of the identity matrix E = [e1 · · · eR].

Now the optimization problem can be split into the corre-
sponding individual subproblems by ADMM [44], and each
one is solved by the augmented multiplicative algorithm. In
each iteration, one variable is updated with other variables
being fixed to their current values.

1) Update Rules for A and B: With other variables being
fixed, the suboptimization for A is presented as

G(A) =
1

2
‖Y(1) −QAT ‖2F +

u

2
‖S(1) −MAT ‖2F + Tr(ΦTA)

(12)
where Q = B�̄C, M = B�̄E, and Φ is the Lagrange
multiplier. Fixed other variables, the suboptimization for A
is a linear problem. By taking the partial derivative of G(A)
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with respect to A:

∇AG(A) =YT
(1)Q−AQTQ + u(ST

(1)M−AMTM)− Φ.
(13)

Then, the Karush-Kuhn-Tucker (K-K-T) conditions are ap-
plied to (13), i.e., ∇AG(A) = 0 and Φ. ∗A = 0, resulting in
the update rule for A as

A← A. ∗ (YT
(1)Q + uST

(1)M)./(AQTQ + uAMTM).
(14)

Similarly, the suboptimization for B is given as

G(B) =
1

2
‖Y(2) −QBT ‖2F +

u

2
‖S(2) −MBT ‖2F + Tr(ΨTB)

(15)
where Q = C�̄A and M = E�̄A. Then, the update rule for
B is

B← B. ∗ (YT
(2)Q + uST

(2)M)./(BQTQ + uBMTM).
(16)

2) Update Rule for C: The suboptimization problem for C
is formulated as

G(C) =
1

2
‖Y(3) −QCT ‖2F +

1

2
‖Y −CST ‖2F + Tr(ΓTC)

(17)
where Q = [(A1 �B1)1L · · · (AR �BR)1L], and 1L is the
all-one column vector of length L.

Similarly, the update rule for C is

C← C. ∗ (YT
(3)Q + YST )./(CQTQ + CSST ). (18)

3) Update Rule for S: Since the abundance matrix S of NMF
is discrete in the

∑R
r=1 ‖F(sr)−ArB

T
r ‖2F term in (12), this

term is rewritten as
‖S−H‖2F (19)

where Hr = F−1(ArB
T
r ) is the ith row in H, and F−1 :

RI×J −→ RP is the reverse operation of F . Thereby, the
suboptimization function for S is formulated as

G(S) =
1

2
‖Yf−CfS‖2F +

u

2
‖S−H‖2F +λ‖S‖1/2+Tr(ΘTS)

(20)
in which ASC is absorbed into the augmented matrices Yf

and Cf , and is controlled by β as

Yf =

[
Y
β1T

P

]
, Cf =

[
C
β1T

R

]
. (21)

Then, the update rule for S is

S← S. ∗ (CT
f Yf + uH)./(CT

f CfS + uS +
λ

2
S−1/2). (22)

D. Complexity Analysis and Implementation Issues

The optimization procedure for the proposed SCNMTF
unmixing algorithm is summarized in Algorithm 1. Firstly,
we analyse the computational complexity. For (14) and (16),
the number of floating-point operations needed are RL(4I +
2IJK + 2JKRL + 4IRL + JK + 2IJR + 2JR2L + JR)
and RL(4J + 2IJK + 2IKRL + 4JRL + IK + 2IJR +
2IR2L+ IR), respectively; for (18), the number is R(4K +
4IJK + 4IJR + 4KR + 3IJL); and for (22), the number
is R(6IJ + 2IJK + 2KR + 2R + 2IJR + I2J2R). Thus,

Algorithm 1 SCNMTF for Hyperspectral Unmixing
Input: An observed HSI data Y ∈ RI×J×K .

The number of endmembers R.
The parameters L, u, β, λ.

Output: C and S.
Initialize: C and S by the VCA and FCLS.

A and B by the NMF of S.
Repeat:

Update A by (14).
Update B by (16).
Update C by (18).
Update S by (22).

until the stopping criterion is satisfied.

the computational complexity is O(tIJKRL + tIKR2L2 +
tJKR2L2 + tI2J2R2) after t iterations.

Then, some important preliminaries are discussed in detail.
The first issue is the initialization of variable matrices. In
our experiments, VCA [7] and FCLS [9] are adopted to
initialize the endmember matrix C and the abundance matrix
S, respectively. With regard to A and B, the rth abundance
F(sr) is decomposed into two nonnegative matrices by NMF
to initialize Ar and Br, respectively.

The second crucial issue is the determination of parameters.
There are five parameters R, L, u, β, and λ in our proposed
method. The number of endmembers R can be known as a
prior knowledge in synthetic data, while determined by an
approximation in real data. L controls the rank of abundance
matrix, and is set as L = 2

3 min(I, J) according to [36]. The
determination of u is vital in unmixing, which is related to the
strength of coupling. The optimal value for u is determined
through the experiments in next section. β controls the ASC
and is experientially set to 10. λ is dependent on the sparsity
of abundances, hence, its adaptive selection is discussed in
next experimental analysis. Besides, it is worth noting that
SCNMTF with λ = 0 becomes CNMTF method.

About the stopping criterion, the main loop in algorithm 1
is terminated by two criteria. One is the maximum iteration
number and set to be 2000. The other is a predefined error
tolerance for the relative changes of abundance matrix and
endmember matrix, which is set to be 1× 10−3. If either one
is met, the optimization procedure stops.

IV. EXPERIMENTS AND DISCUSSION

In this section, a series of experiments using synthetic and
real hyperspectral data have conducted to verify the effec-
tiveness of our proposed method. TV-RSNMF, L1/2-NMF,
and MV-NTF are selected for comparison. To evaluate the
performance, spectral angle distance (SAD) and root-mean-
square error (RMSE) are chosen as quantitative metrics. The
SAD is used to measure the dissimilarity of the rth estimated
endmember ĉr and its real endmember cr, and is defined by

SADr = arccos
( cTr ĉr
‖cTr ‖‖ĉr‖

)
. (23)

The RMSE is used to measure the difference between the
rth estimated abundance Ŝr and its real abundance Sr, which
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Fig. 2. Performance of SCNMTF with respect to parameter µ.
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Fig. 3. Performance of SCNMTF with respect to parameter λ.

is defined by

RMSEr =
( 1

P
|Sr − Ŝr|2

) 1
2

. (24)

To avoid randomness, each experiment is run ten times and
the average result with standard deviation is reported.

A. Experiments on Synthetic Data

Six spectral signatures (R = 6) are randomly selected from
the U.S. Geological Survey (USGS) digital spectral library for
the generation of synthetic data, which are Carnallite NMN-
H98011, Ammonioalunite NMNH145596, Almandine WS478,
Biotite HS28.3B, Axinite HS342.3B, and Chlorite HS179.3B,
respectively. The spectrum of each material comprises 224
spectral bands and its reflectance values distribute from 0.38
to 2.5 µm. We adopted the same manner in [36] to create
abundance maps and mixed pixels. Details of this generation
method are provided as follows: a given image with z2 × z2
pixels is divided into z2 regions, each of which is filled with
a kind of endmember randomly. Then, a spatial low-pass filter
((z + 1) × (z + 1)) is applied to generate mixed pixels. In
order to eliminate pure pixels, if the abundance of a pixel
is larger than the threshold θ (0 ≤ θ ≤ 1), the pixel will
be replaced by a mixture of all six endmembers with equal
proportions. After clean synthetic data is produced, Gaussian
noise is further added. The noise level is determined by signal-
to-noise (SNR), and is defined as

SNR = 10log10
E[yty]

E[ntn]
(25)

where E[·] denotes the expectation operator, y is the clean
synthetic pixel and n is the additive noise.

1) Parameter Analysis: The most crucial parameter µ con-
trols the similarity of abundances between two decomposition-
s. In other words, µ is in charge of the coupling level between
NMF and MV-NTF. In this experiment, six different values of
the parameter µ (1, 5, 10, 50, 1e2, 1e3) are tested with other
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Fig. 4. Results of (a) SAD and (b) RMSE with different noise levels.

parameters fixed, i.e., sparse regularization parameter λ = 0,
image size 64 × 64 (z = 8), mixing level θ = 0.8, and SNR
= 20 dB. Fig. 2 depicts the SAD and RMSE results with
standard deviation. Obviously, the unmixing performance is
stable when µ is in the range [1, 100]. Then, the value of µ is
fixed to 10 in the following experiments.

Next, we analyse the effect of parameter λ. Other parame-
ters of data generation are set to the same as before. The test
values for λ are {1e-3, 5e-3, 1e-2, 3e-2, 5e-2, 8e-2, 0.1, 0.2,
0.3, 0.5}. The SAD and RMSE results are shown in Fig. 3. It
can be seen that the values of SAD and RMSE are stable when
λ is less than 0.2. It is worth noting that when the value of λ
is close to 0 (the sparsity constraint is weak in these cases),
the SAD and RMSE values increase, which means sparsity
constraint has a positive effect on unmixing. On account of
the sparsity related to the actual abundances, λ is set to 0.05
in all synthetic data experiments for simplicity.

2) Different Noise Levels: The synthetic data is generated
by θ = 0.8, z = 8. SNR varies from 15, 20, 25, 30 to 40
dB. As shown in Fig. 4, the performances of all algorithms
decrease with the increase of noise. Note that, both of CNMTF
and MV-NTF yield relatively poor results when SNR is small,
which demonstrates the advantage of sparsity constraint in
high noise level scenarios. Meanwhile, CNMTF yields more
accurate results than MV-NTF, indicating the availability of
coupling. Also, the SAD and RMSE of SCNMTF are slightly
lower than that of CNMTF when SNR is small, which is
probably because the strength of sparsity constraint is too
strong. Overall, SCNMTF and CNMTF perform better than
other three alternatives under different SNRs.
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Fig. 5. Results of (a) SAD and (b) RMSE with different mixing levels.

3) Different Mixing Levels: The mixing level is controlled by
parameter θ. A smaller θ value means a higher mixing level,
resulting in more difficulties for unmixing. The synthetic data
is produced by z = 8 and SNR= 20 dB, and the value of
θ changes from 0.5, 0.6, 0.7, 0.8, 0.9 to 1. The results are
presented in Fig. 5. As can be seen, all algorithms perform
better along with θ increases. Note that SCNMTF is superior
to other alternatives, revealing its effectiveness in exploiting
structure information. Furthermore, it is found that the RMSE
of SCNMTF is slightly worse than that of CNMTF when θ
is 0.5 and 0.6. This is probably because a high mixing level
results in a poor sparsity, which restricts the availability of
sparsity constraint.

4) Different Number of Pixels: More pixels contain more
intrinsic information, which is more favourable for unmixing.
The image size is selected as 25×25, 36×36, 49×49, 64×64,
81 × 81, and 100 × 100, corresponding to z = 5, 6, · · · , 10.
Fig. 6 plots the results at θ = 0.8 and SNR = 20 dB. As
expected, the values of SAD and RMSE for five algorithms
gradually decrease and tend to be stable as the size of synthetic
data grows. Moreover, the results obtained by CNMTF and
SCNMTF are more accurate than those of three other algo-
rithms. CNMTF performs a little better than SCNMTF when
the number of pixels is 25 × 25. This is mainly because the
fixed value of λ (0.05) is too large when the number of pixels
is small, so that the sparsity constraint is counterproductive. In
addition, the discrepancy between MV-NTF and our proposed
coupled method is more obvious as the number of pixels
increases. Therefore, the superiority of our proposed method
in exploiting data intrinsic information is further validated.
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Fig. 6. Results of (a) SAD and (b) RMSE with different number of pixels.
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Fig. 7. Results of (a) SAD and (b) RMSE versus incorrect number of
endmembers.

5) Incorrect Number of Endmembers: The aim of this
experiment is to measure the unmixing accuracy when the
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(a) (b) (c)

Fig. 8. (a) Cuprite subimage. (b) Samson subimage. (c) Jasper Ridge
subimage.

estimated number of endmembers is inaccurate, because this
situation is common in practical applications. To do this, the
value of R varies from 4 to 8, and the actual number of
endmembers in synthetic data is 6. Other parameters are the
same as before. As shown in Fig. 7, all algorithms achieve
the best performance when the number of endmembers is
estimated correctly (i.e., R = 6). Note that both of SADs and
RMSEs for the five algorithms show a sharp increase with the
estimated R is too less than the actual endmember number
(i.e., R = 4). Most importantly, SCNMTF still outperforms
others in all cases.

6) Comparison of Running Time: Last, the average running
time of 10 trials for each method was recorded, at SNR =
20 dB and θ = 0.8. All the experiments are implemented in
MATLAB R2018a on a personal computer with Inter Core i5
CPU @ 1.60 GHz and 8.00 GB RAM. The running time of
SCNMTF, CNMTF, MV-NTF, L1/2-NMF, and TV-RSNMF is
364.2s, 360.2s, 421.4s, 18.4s, and 30.6s, respectively. It can
be found that the proposed method reduces the running time
than the original MV-NTF, which is probably because that the
solution space is shrunk by coupling.

B. Experiments on Real Data

1) Cuprite Data Set: In order to evaluate the effectiveness of
our proposed method in real scenarios, we apply it to three real
hyperspectral data sets. The first data set is a subset extracted
from the well-known Cuprite data set captured by AVIRIS,
which consists of 250 × 191 pixels and is illustrated in Fig.
8(a). The original data is composed of 224 spectral channels
with the wavelength range of 0.4 µm to 2.5 µm. 188 bands are
remained in our experiment after removing water absorption
and low SNR bands. The actual number of endmembers
presented in Cuprite data has not yet been definitive. Thus, the
number of endmembers R is set to 12 according to [45]. Since
the reference abundance maps of Cuprite data are unavailable,
only the SAD values of all methods are measured to compare.

In this experiment, the parameters u and λ are set to 10
and 0.2, respectively. The SAD results of all methods are
listed in Table I. Apparently, the lowest mean SAD is obtained
by SCNMTF. Besides, CNMTF also achieves a satisfactory
performance. The comparisons of four signatures extracted by
different methods with the reference spectra are displayed in
Fig. 9. The abundance maps for each endmember estimated
by SCNMTF are shown in Fig. 10.

2) Samson Data Set: The Samson data set contains 952×952
pixels and 156 bands with the wavelengths from 0.401 µm to
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Fig. 15. Convergence analysis of the proposed SCNMTF and CNMTF. (a)
Synthetic Data. (b) Samson Data.

0.889 µm. Due to the original image is too large, a subset
composed of 95× 95 pixels is utilized in this experiment and
is shown in Fig. 8(b). It assumes that three endmembers are
present in the Samson data set, which are soil, tree, and water,
respectively. In this experiment, λ is set to 0.5. The SAD
results of all methods are listed in Table II. Among them,
SCNMTF still obtains the smallest mean value of SAD. Since
the reference spectra and abundance maps of Samson data set
are available, the comparisons of signatures and abundance
maps by different methods are displayed in Fig. 11 and Fig. 12,
respectively. Obviously, the most of signatures and abundance
maps extracted by SCNMTF best match the reference ones.
The abundance maps of SCNMTF and CNMTF characterize
more features than that of MV-NTF.

3) Jasper Ridge Data Set: The Jasper Ridge data set is
composed of 512 × 614 pixels and contains 224 bands with
the wavelength range of 0.38 µm - 2.5 µm. A subimage with
100×100 pixels and 198 bands is selected in this experiment,
and is shown in Fig. 8(c). Four endmembers are assumed to
exist in the Jasper data set, which are soil, water, tree, and
road, respectively. In this experiment, λ is set to 1. Table III
lists the SAD values by five methods. From the Table, it can
be observed that the mean value of SAD by SCNMTF is the
smallest. The visual comparisons for the estimated signatures
and abundance maps by all methods are presented in Fig.
13 and Fig. 14, respectively. This experiment also reveals
that the proposed method outperforms other state-of-the-art
algorithms.

C. Convergence Analysis

In order to investigate the convergence of the proposed
SCNMTF and CNMTF, we experimentally records the objec-
tive function values in each iteration over synthetic and real
hyperspectral data. The synthetic data is generated by θ = 0.8,
z = 8, and SNR = 20 dB. The convergence curves are
illustrated in Fig. 15, where the maximum number of iterations
Tmax is set to 1000. From Fig. 15, all the objective function
values decrease monotonically and converge along with the
number of iterations increases, which verifies the convergence
of SCNMTF and CNMTF.

V. CONCLUSION

In this paper, we present a novel coupled nonnegative
matrix-tensor factorization framework for hyperspectral un-



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2020.3019706, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 9

TABLE I
MEANS AND STANDARD DEVIATIONS OF SAD BY DIFFERENT METHODS WITH THE CUPRITE DATA SET. THE MINIMUM VALUE IS MARKED IN BOLD,

AND THE SECOND MINIMUM IS UNDERLINED

Methods SCNMTF CNMTF MV-NTF L1/2-NMF TV-RSNMF

Alunite GDS82 Na82 0.1087±1.05% 0.1027±1.53% 0.1114±1.72% 0.1340±6.29% 0.1157±1.72%
Andradite WS487 0.0834±2.15% 0.0869±2.34% 0.0853±1.95% 0.0731±1.66% 0.0831±2.04%

Buddingtonite GDS85 D-206 0.0903±1.51% 0.0878±1.98% 0.0882±2.22% 0.1032±3.20% 0.0973±0.92%
Chalcedony CU91-6A 0.1446±1.22% 0.1532±1.78% 0.1521±2.65% 0.1504±1.53% 0.1406±1.60%

Kaolin/Smect H89-FR-5 30K 0.0624±1.73% 0.0694±1.80% 0.0771±2.04% 0.1004±3.83% 0.0524±1.05%
Kaolin/Smect KLF508 85%K 0.0962±2.85% 0.0964±2.92% 0.0879±2.04% 0.1163±3.78% 0.1215±4.46%

Kaolinite KGa-2 0.1386±3.36% 0.1435±3.82% 0.1634±4.97% 0.1520±5.67% 0.1352±2.81%
Montmorillonite+Illi CM37 0.0591±2.16% 0.0636±2.42% 0.0699±2.83% 0.0583±1.19% 0.0483±0.49%

Muscovite IL107 0.0962±1.55% 0.0933±1.19% 0.0930±1.00% 0.1045±2.59% 0.1021±0.86%
Nontronite NG-1.a 0.1135±1.83% 0.1181±2.07% 0.1227±3.09% 0.1261±1.34% 0.1086±1.48%

Pyrope WS474 0.0803±1.07% 0.0825±1.60% 0.0839±1.94% 0.1134±2.55% 0.0970±2.27%
Sphene HS189.3B 0.0761±0.75% 0.0651±0.60% 0.0695±0.81% 0.0680±1.69% 0.1028±1.62%

Mean 0.0958±0.40% 0.0969±0.34% 0.1003±0.26% 0.1083±0.72% 0.1004±0.28%
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Fig. 9. Cuprite results: Comparisons of the (blue dotted line) USGS library spectra with the (green solid line) signatures extracted by different methods of
4 endmembers. From top to bottom: Alunite GDS82 Na82, Andradite WS487, Buddingtonite GDS85 D-206, and Chalcedony CU91-6A. From left to right:
(a) SCNMTF. (b) CNMTF. (c) MV-NTF. (d) L1/2-NMF. (e) TV-RSNMF.

TABLE II
MEANS AND STANDARD DEVIATIONS OF SAD BY DIFFERENT METHODS WITH THE SAMSON DATA SET. THE MINIMUM VALUE IS MARKED IN BOLD,

AND THE SECOND MINIMUM IS UNDERLINED

Methods SCNMTF CNMTF MV-NTF L1/2-NMF TV-RSNMF

Soil 0.0247±0.07% 0.0268±0.07% 0.0290±0.07% 0.0272±0.02% 0.0315±0.14%
Tree 0.0496±0.12% 0.0519±0.14% 0.0544±0.16% 0.0368±0.03% 0.0526±0.13%

Water 0.1016±0.15% 0.1057±0.43% 0.1157±0.69% 0.1568±0.16% 0.1148±0.48%

Mean 0.0586±0.11% 0.0615±0.21% 0.0664±0.30% 0.0736±0.07% 0.0660±0.07%

mixing, which aims at taking the advantages of decompo-
sitions over different dimensional spaces by the multi-view
coupling. A given HSI data is represented by a tensor and
an unfolded matrix simultaneously, then jointly decomposed
by coupled MV-NTF and NMF through sharing endmembers
and abundances. However, the abundance sharing cannot be

achieved by directly using the same abundance variable owing
to the distinct representations for abundances in MV-NTF
and NMF. Thus, an auxiliary constraint is introduced to
enforce these two abundances equal. In addition, the L1/2

regularizer is imposed to promote the sparsity of abundances.
The proposed SCNMTF method can retain the advantage of
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Fig. 10. Cuprite results: Abundance maps estimated by SCNMTF of the 12 endmembers. (a) Alunite GDS82 Na82. (b) Andradite WS487. (c) Buddingtonite
GDS85 D-206. (d) Chalcedony CU91-6A. (e) Kaolin/Smect H89-FR-5 30K. (f) Kaolin/Smect KLF508 85%K. (g) Kaolinite KGa-2. (h) Montmorillonite+Illi
CM37. (i) Muscovite IL107. (j) Nontronite NG-1.a. (k) Pyrope WS474. (l) Sphene HS189.3B.
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Fig. 11. Samson results: Comparisons of the (blue dotted line) USGS library spectra with the (green solid line) signatures extracted by different methods.
From top to bottom: Soil, Tree, and Water. From left to right: (a) SCNMTF. (b) CNMTF. (c) MV-NTF. (d) L1/2-NMF. (e) TV-RSNMF.

TABLE III
MEANS AND STANDARD DEVIATIONS OF SAD BY DIFFERENT METHODS WITH THE JASPER RIDGE DATA SET. THE MINIMUM VALUE IS MARKED IN

BOLD, AND THE SECOND MINIMUM IS UNDERLINED

Methods SCNMTF CNMTF MV-NTF L1/2-NMF TV-RSNMF

Tree 0.1439±2.73% 0.1629±2.64% 0.1603±4.04% 0.1585±4.07% 0.1644±7.03%
Water 0.1534±8.32% 0.1741±5.66% 0.1819±5.07% 0.1287±5.04% 0.2101±7.04%
Soil 0.0793±2.36% 0.0943±4.20% 0.1207±5.54% 0.2044±3.11% 0.1380±10.52%
Road 0.6145±5.84% 0.6014±11.46% 0.6197±22.64% 0.6350±8.65% 0.5138±17.69%

Mean 0.2478±2.75% 0.2582±2.32% 0.2707±4.86% 0.2816±1.86% 0.2565±3.79%

MV-NTF in preserving the structure information of HSI, and
utilize NMF to exploit more detailed spatial structures. A
series of experiments on synthetic and real hyperspectral data
have manifested that our proposed method outperforms other
benchmarking algorithms. Nevertheless, we mainly focus on
exploring spatial information in SCNMTF. In our future work,

some prior information about endmembers can be introduced
into this model to further enhance unmixing performance.

REFERENCES

[1] L. Pan, H.-C. Li, H. Meng, W. Li, Q. Du, and W. J. Emery, “Hyperspectral
image classification via low-rank and sparse representation with spectral



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2020.3019706, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 11

20 40 60 80

10

20

30

40

50

60

70

80

90

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80

10

20

30

40

50

60

70

80

90

20 40 60 80

10

20

30

40

50

60

70

80

90

20 40 60 80

10

20

30

40

50

60

70

80

90

20 40 60 80

10

20

30

40

50

60

70

80

90

20 40 60 80

10

20

30

40

50

60

70

80

90

20 40 60 80

10

20

30

40

50

60

70

80

90

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80

10

20

30

40

50

60

70

80

90

20 40 60 80

10

20

30

40

50

60

70

80

90

20 40 60 80

10

20

30

40

50

60

70

80

90

20 40 60 80

10

20

30

40

50

60

70

80

90

20 40 60 80

10

20

30

40

50

60

70

80

90

20 40 60 80

10

20

30

40

50

60

70

80

90

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

20 40 60 80

10

20

30

40

50

60

70

80

90

(b)

20 40 60 80

10

20

30

40

50

60

70

80

90

(c)

20 40 60 80

10

20

30

40

50

60

70

80

90

(d)

20 40 60 80

10

20

30

40

50

60

70

80

90

(e)

20 40 60 80

10

20

30

40

50

60

70

80

90

(f)

Fig. 12. Samson results: Abundance maps estimated by different methods. From top to bottom: Soil, Tree, and Water. From left to right: (a) Reference. (b)
SCNMTF. (c) CNMTF. (d) MV-NTF. (e) L1/2-NMF. (f) TV-RSNMF.
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Fig. 13. Jasper Ridge results: Comparisons of the (blue dotted line) USGS library spectra with the (green solid line) signatures extracted by different methods.
From top to bottom: Tree, Water, Soil, and Road. From left to right: (a) SCNMTF. (b) CNMTF. (c) MV-NTF. (d) L1/2-NMF. (e) TV-RSNMF.
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Fig. 14. Jasper Ridge results: Abundance maps estimated by different methods. From top to bottom: Tree, Water, Soil, and Road. From left to right: (a)
Reference. (b) SCNMTF. (c) CNMTF. (d) MV-NTF. (e) L1/2-NMF. (f) TV-RSNMF.
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