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ABSTRACT An electrochemical lithium-ion battery model is well known to be suited for effectively
describing the microstructure evolution in charging and discharging processes of a lithium-ion battery with
practically realizable complexity. This paper presents a neural network-based parameter estimation scheme
to identify the parameters of an electrochemical lithium-ion battery model in a near-optimal and real-time
manner in order to consistently observe the electrochemical states of batteries. The network is first trained
to learn the dynamics of the electrochemical lithium-ion battery model, and then, it is applied to estimate
the parameters with available finite-time measurements of voltage, current, temperature, and state of charge.
In order to efficiently learn the dynamic characteristics of a lithium-ion battery, a well-known recurrent
neural network, called a long short-term memory model, is employed with other techniques such as batch
normalization, dropout, and stochastic gradient descent with warm restarts for learning speed enhancement
and regularization. Using synthetic and experimental data, we show that the proposed estimation scheme
works well, finding parameters and recovering the voltage profiles within the root-mean-square error
of 0.43% and 26 mV, respectively, even with measurements obtained within a sufficiently short interval
of time.

INDEX TERMS Electrochemical battery model, lithium-ion battery, long short-term memory, real-time

parameter estimation, recurrent neural network, synthetic data generation.

I. INTRODUCTION

As one of the most promising energy storage devices, lithium-
ion batteries have been actively used in various fields. The
advantages of a lithium-ion battery over other types of energy
storage devices include high energy and power density with
the least amounts of memory effect and resulting capacity
loss. With these advantages, lithium-ion batteries have been
expanding their applications to the fields of energy storage
systems [1] and electric vehicles [2], [3]. However, despite
these advantages and applications, the lithium-ion battery
suffers from problems caused by undesired side reactions.
For example, a surface film formed on a graphite nega-
tive electrode, called solid electrolyte interface (SEI) layer,
becomes thicker with continuous consumption of electrolyte
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solvents and lithium-ions during the charging process. Such
an SEI layer can cause safety issues in connection with
ignition or explosions resulting from separator damage or fre-
quent improper operations. Therefore, it is important to con-
tinually observe the physico-chemical changes inside the bat-
tery in order to properly adjust the operating conditions and
prevent safety issues. The so-called electrochemical lithium-
ion battery model could be usefully employed for identifying
those internal changes [4]-[6].

The electrochemical lithium-ion battery model represents
the internal states of a battery in a more realistic way since it
is derived from the microstructure of a lithium-ion battery [7].
Since this model covers actual physico-chemical phenomena
such as those associated with the conservation laws of lithium
and electrons, it can be said that each model parameter is
directly related to the physico-chemical properties of the
actual battery. In addition, the degrees of undesired side

81789


https://orcid.org/0000-0002-3332-0911
https://orcid.org/0000-0001-8771-9031
https://orcid.org/0000-0002-9831-3499
https://orcid.org/0000-0003-4608-7597

IEEE Access

H. Chun et al.: Real-Time Parameter Estimation of an Electrochemical Lithium-lon Battery Model

reactions are expressed with lumped parameter values by
reflecting them quantitatively in the model [4]. Therefore,
if the parameters of the electrochemical lithium-ion battery
model could be estimated, it is possible to observe the current
state of the battery in accordance with the estimated param-
eter values. However, it is very challenging to accurately
estimate the parameters because the electrochemical lithium-
ion battery model is composed of complicatedly coupled
partial differential equations, and the model involves a large
number of parameters and boundary conditions.

Many studies have been conducted to accurately estimate
the parameters of the electrochemical lithium-ion battery
model. Some of these are based on Jacobian-based algorithms
such as the Gauss-Newton method or Levenberg-Marquardt
method, which have the advantage of fast convergence within
a few iterations [8], [9]. However, since the electrochemical
lithium-ion battery model is highly nonlinear, the Jacobian-
based parameter estimation algorithms are likely to converge
to the local optima and hence show the poor parameter esti-
mation accuracy [9], [10]. Empirical studies have also been
conducted to estimate the parameters of the electrochemical
lithium-ion battery model using meta-heuristic algorithms
such as the genetic algorithm, particle swarm optimization,
and harmony search [11]-[16]. Since the meta-heuristic algo-
rithms try to obtain the globally optimal solution through
random searches, they are less likely to trap into the local
optima. However, such algorithms require many iterations
for convergence, and thus, considerable time is required to
estimate the parameters of the electrochemical lithium-ion
battery model [16], [17]. In order to observe the internal
states of the actual battery and ensure its safe and healthy
performance, a more sophisticated real-time parameter esti-
mation algorithm is needed. This paper proposes a parameter
estimation method based on deep learning to overcome the
disadvantages of the existing parameter estimation schemes.

Deep learning has been used to some extent in research
pertaining to lithium-ion batteries. Attempts have been made
to estimate parameters such as the battery’s remaining useful
capacity or state of health (SOH) [18]-[20]. Such partial
and superficial information, however, poses limitations with
regard to identifying the internal problems associated with the
physico-chemical parameters of the battery, as mentioned ear-
lier. Therefore, in this paper, a network is designed to estimate
not only the capacity of the battery, but also the additional
parameters representing its electrochemical states. For this
purpose, a recurrent neural network (RNN) is used to consider
the correlation between the time-series data comprising the
voltage, current, temperature, and state of charge (SOC) of the
battery used in network learning and hence grasp its dynamic
characteristics. Specifically, as one of the most representative
and widely used RNNs [21], the long short-term memory
(LSTM) model is employed to explicitly avoid the long-term
dependency problem and maintain good performance even
with long time-series data. Overall, the proposed RNN-based
model is composed of LSTM modules and fully connected
layers (FCLs), and further improved in terms of the learning
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performance of the network by applying techniques such as
batch normalization layer, dropout, and stochastic gradient
descent with warm restarts (SGDR) [22]-[24].

In this paper, actual battery aging mechanisms are con-
sidered to generate data for training the RNN, which can be
reasonably described by properly setting the parameter values
of the electrochemical lithium-ion battery model. To begin
with, the aging mechanism-related parameters are chosen
to represent the progress of the performance degradation
and the reduced life span of the battery according to the
general chemical reaction rate formulas. After applying the
designated parameter values to an electrochemical lithium-
ion battery model, practically measurable data such as volt-
age, current, temperature, and SOC are synthesized and then
used for training the RNN. While it takes a long time to run
existing parameter estimation schemes based on the origi-
nal electrochemical lithium-ion battery model, the proposed
trained RNN achieves real-time parameter estimation with
the knowledge that is already learned. Using simulations and
experiments, this study shows that the proposed estimation
scheme accurately finds the parameters in a sufficiently short
interval of time.

In summary, even though the electrochemical lithium-ion
battery model parameter estimation is of growing importance
for the safe and efficient operation, many battery management
system (BMS) could not achieve it in real-time manner. In this
perspective, the overall contributions of this study are as
follows:

o To estimate the electrochemical lithium-ion battery
model parameters in near-optimal and real-time manner
by using a neural network-based estimation scheme.

o To generate a large amount of the synthetic data in
consideration with the aging phenomena from the elec-
trochemical lithium-ion battery model.

« To validate the feasibility of the neural network-based
estimation scheme trained with the synthetic data as well
as the experimental data.

This paper is organized as follows. Section II describes
an electrochemical lithium-ion battery model and discusses
the parameters to be estimated. Section III provides a brief
introduction to deep learning and RNN by employing the
LSTM, and shows the proposed network structure used in this
paper. Section IV discusses how the training and testing data
can be generated by varying the parameter values to be esti-
mated based on the aging phenomena occurrence scenarios.
Section V illustrates the accuracy of the estimated parameters
and the computation time. The conclusions are described in
Section VI.

Il. AN ELECTROCHEMICAL MODEL AND ITS PARAMETER
DESCRIPTION

A. A PSEUDO TWO-DIMENSIONAL MODEL

As an electrochemical lithium-ion battery model provides
accurate and detailed information about the microstructure
dynamics, it has been widely employed in various fields.
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FIGURE 1. Electrochemical reactions inside a lithium-ion battery during the discharging process, showing lithium-ion concentration and electric
potential distributions over pseudo two-dimensional space (x, r) at a certain time ¢. (The light-colored lines of the bottom plots refer to previous

distributions. The lighter the lines, the earlier the distribution).

Unlike other battery models, it covers physico-chemical phe-
nomena occurring in the microstructure inside the battery. In
addition to macroscopic information such as the voltage and
current profiles, it shows microscopic information such as the
lithium concentration or electric potential distributed in the
solid particles and electrolyte, as shown in Fig. 1.

The most fundamental electrochemical lithium-ion bat-
tery model, called a microscale model, is very complicated
since it reflects the microstructure of the battery thoroughly
by considering the solid and electrolyte phases separately.
To decrease the computation burden, this study uses a contin-
uum model derived by applying the volume averaging tech-
nique to the microscale model [25]. Such a continuum model
is reduced once more assuming zero y-axis and z-axis gradi-
ents. This reduced model is called a pseudo two-dimensional
(P2D) model, which considers only the gradients of the x-axis
(lithium-ion flow direction) and r-axis (radial direction of the
solid particle). The P2D model has been employed in various
battery simulation fields because it has practically realizable
complexity while describing the physico-chemical character-
istics of the battery as efficiently as the conventional com-
plicated microscale model. The P2D model consists of five
governing equations arising from conservation of charge and
mass (lithium) in the solid particles, conservation of charge
and mass (lithium) in the electrolyte, and intercalation rate
of lithium-ions between the solid particles and the electrolyte
[26], [27]. The geometric parameters or material properties
employed in the P2D model simulation were sourced from
the battery specifications provided by the manufacturer or the
literature [26]. Some physico-chemical parameter values of
the lithium-ion battery might change as the temperature
increases or decreases. Thus, an additional thermal dynamic
model is combined with the P2D model to achieve more
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physically accurate and realistic results. Also, an SEI layer
precipitation model is considered so that the dynamics of the
P2D model reflect the resistance of the SEI layer. The overall
governing equations and the corresponding parameters for the
employed models are represented in Table 1 and 2, respec-
tively.

B. AGING-RELEVANT PARAMETERS

Since an electrochemical lithium-ion battery model describes
actual physico-chemical phenomena, the parameters of the
model also represent specific physical and chemical proper-
ties of the battery. The aging phenomena cause the change in
the internal parameters of the battery. For example, SEI layer
formation, which arises when charging the battery, increases
the film resistance of the solid particles in the negative elec-
trode. In addition, the surface area and conductivity of the
solid particles could change due to the aging-related chemical
side reactions caused by the decomposition of the solid par-
ticles or electrolytes. If such parameters could be estimated
accurately on a real-time basis, it might be easier to predict
the aging of a real battery. In this paper, the parameters to be
estimated are highly affected by the aging phenomena [28].
They are as follows: two solid particle surface areas (cath-
ode and anode), two solid particle conductivities (cathode
and anode), SEI layer thickness, and normalized available
capacity. The parameters to be estimated are denoted by 6
as follows:

0= [a}y,» ai, 0}5» U;,Ya SEI, Capnorm] (D
which are also described in Table 2. The manner in which
the parameters in (1) are related to the aging phenomena is

discussed in detail in the next section.
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TABLE 1. Governing equations and boundary conditions for electrochemical and thermal lithium battery models.

Electrochemical (P2D) battery model

Charge conservation in solid particles:

Boundary conditions:

8 s Ods ) _ - 99 — —
( ;ff @IS)—G‘SF] azslz:Ln*O =0
* 0%, depends on o , —Lp+Ls+L, = ;ii”p 6¢5 |z=0 = Aiip”
ef) 5 P O'eff Ueff
Mass conservation in solid particles: Boundary conditions:
dcs 1 r2 dc s Oc _ dc _
55 = 5o (D> 52) Diyporlr=ny, = —J or Ir=0 =0
* D(Ssz depends on Dy
Charge conservation in electrolyte: Boundary conditions:
3 ;0o ¢ 9 Olnce \ __ ¢ aln(‘f ¢ dlnc
( éff a;)+ (Hefj a;)+%(;{D axp)—o fo 5o T KD =5 le=0 = eff 52 T kD=5 p|gg Ln+Ls+L, =0
d¢ ol nc _ [229) ﬂc _
Kgrtaa tED S5 la=L, = K¢y B +rp? e le=Lp,+L, = — 52
Mass conservation in electrolyte: Boundary conditions:
a [e] . a
€p,n i?ct = (D:ff a(;)+as(1*t+)] Celz 0= c;‘z:Ln+Ls+Lp =0
dce __ dc
st = 55 (Depr 5
Lithium movement between solid particle and electrolyte:
c (L’IW{J'I‘_L*)L 1 o F
j= e {eap(UF7En) — exp(—§hm)}
Thermal dynamic model
Thermal capacity & generation: Boundary conditions:
oT 9 oT oT
pp,'n,cpﬁ = %()\p,n oz ) + Qoh'm + Qr:cn + QTev ACu%‘z:U* = AP%'J:O‘F
A fLT‘ = fLT‘
"9z le=Ln+Ls+Lp+0- = MAlgg le=Ln+Ls+Lp+0t

Solid particle electrolyte interface (SEI) layer dynamic model

Overpotential in negative electrode:

Nn = ¢s — Pe — Uref - %Rﬁlm

film resistance:

Sfilm
szlm = Rspr + RSEI

Ill. RNN WITH USING LSTM

A. DEEP LEARNING AND NEURAL NETWORK

Deep learning, one of the machine learning algorithms, has
been usefully employed in various fields since even novices
can easily conduct end-to-end learning without human inter-
vention. That is, if a sufficient amount of data are available,
it is possible for non-experts to train a neural network to
have high performance, even up to or higher than human
levels. In general, the deep learning algorithm is implemented
through artificial neural networks that consist of what is
known as neurons and nodes, and it mimics the decision-
making process of the chain reaction of neurons in a human
brain. Weight and bias values are assigned to each connec-
tion, and the neural network tries to find the appropriate
weight and bias values in the training process in order to
produce the expected outputs corresponding to the already-
known references or labels. As the neural network learns the
dynamics of the P2D model, it is expected to result in shorter
computation time and higher model accuracy compared to
other typical simple battery models such as single particle
models and equivalent circuit models, as shown in Fig. 2. For
achieving the desired result, the neural network is trained with
the synthetic data generated from the P2D model as briefly
shown in Fig. 3.
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FIGURE 2. Comparisons of computation time and model accuracy among
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Also, it could be said that the given finite-time measure-
ment data are utilized more effectively since the neural net-
work considers the time correlation between the measure-
ments or their change patterns over time.
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TABLE 2. List of parameter symbols and descriptions in the P2D model.

Symbol Description
bs Solid particle potential
Pe Electrolyte potential
Oorr Effective solid particle conductivity
Opon Solid particle conductivity
Lpsn Thickness
fapp Applied current
j Ionic flux
Apon Solid particle surface area
R; . Solid particle radius
A Surface area of the electrode
off Effective solid particle diffusivity
D; . Solid particle diffusivity
Dy Effective electrolyte diffusivity
Cs Lithium concentration in solid particle
Ce Lithium-ion concentration in electrolyte
cg Maximum solid particle concentration
cs Surface concentration
D. Electrolyte diffusivity
ty Transference number
€p,s,n Porosity
Kepf Effective electrolyte conductivity
KD Diffusional conductivity
kpn Reaction rate constant
EF Reaction constant activation energy
R Universal gas constant
F Faraday’s constant
« Transfer coefficient
n Overpotential
Pp.n Density
Cp Specific heat
AAlp,s,n,Cu Thermal conductivity
T Temperature
Qohm Ohmic generation rate
Qran Reaction generation rate
Qrev Reversible generation rate
Mn Overpotential in negative electrode
Uprey Equilibrium potential
Ryiim Film resistance
Rser Initial SEI layer resistance
O fitm Formed film thickness
KSEI SEI layer conductivity
Capnorm Normalized available capacity

* p, s, and n indicate the cathode, separator, and anode.
* Al, and Cu indicate the Al and Cu current collector.

B. LSTM NETWORK STRUCTURE

Typically, the important physical quantities of the battery,
namely its voltage, current, temperature, and SOC, are mea-
sured and logged at a fixed sampling rate. An RNN is a
class of artificial neural networks to process such time series
data and learn their implicit dynamics for decision, pattern
analysis, modeling, and so on. In the RNN, the neurons
are networked with feedback connections to also accommo-
date time series data arising from complicated and uncer-
tain dynamics. In this study, LSTM, one of the widely used
recurrent units for RNN, is adopted for effective learning.
Notably, LSTM is effective for capturing hidden dynamics
from past information, so it is expected that this advantage can
help estimate the parameters of the battery from its captured
dynamics. Overall, as shown in Fig. 4, the proposed neural
network consists of one LSTM layer and two FCL. In Fig. 4,
an FCL is added at the front to extract the features of the input
values in advance, that is, before entering the LSTM network.
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FIGURE 4. Proposed LSTM-based neural network architecture for
estimating the P2D model parameters.

Then, all the hidden state outputs of the LSTM layer are used
as input values of the rear FCL for post-processing. In the end,
the parameter values are estimated from the last outputs of
the FCL. In the LSTM layer, the hidden state dropout layers
are added to the back of the LSTM layer to regularize the
output results, and a batch normalization layer is also attached
to each FCL layer for accurate and rapid learning. In Fig. 4,
the networks in the black dashed boxes are repeatedly drawn
for the series input values, which implies that at every time
point, input data pass through a network sharing identical
weights and biases. [V, I, T, SOC]; is the #-th input vector
composed of voltage, current, temperature, and SOC series.
Each & in [hy, ho, h3, ..., hpxg—1, hrs<g] is a hidden state
output from the LSTM network. L and H denote the sequence
length of the input and the hidden state dimension of the
LSTM layer, respectively.

IV. DATA SYNTHESIS FOR LEARNING THE DYNAMICS OF
THE P2D MODEL

A. PARAMETER VARIATIONS ACCORDING TO AGING
PHENOMENA

The LSTM network is trained to learn the dynamics of the
P2D model from the dynamic relations between the model
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FIGURE 5. Typical changes in solid particle surface area with respect to
change in volume.

parameters and the corresponding time series data pertaining
to the voltage, current, temperature, and SOC of a battery.
For dynamics learning, such a dataset is provided by the
P2D model. For given P2D model parameters, if a current
profile is specified over a finite time interval, then voltage,
temperature, and SOC time series data can be generated from
the P2D model. Repeating the same procedure, this study
produces a variety of time series data for 100 s with diverse
P2D model parameter sets. In order to reflect realistic aging
mechanisms, the P2D model parameters should be chosen
appropriately over time. Motivated by general chemical reac-
tion rate equations [31], the following parameter evolution is
proposed:

N

ASOH
Oaging = OBoL — Z (fo klF —(F — l)x]Didx) )

i=1

where 0,4in, is the time-varying parameter value under aging
conditions, Oppr is the parameter value for a fresh battery,
N is the number of the aging phenomena affecting the corre-
sponding parameter, ASOH is the decrement in SOH or the
normalized capacity, k is the coefficient for variation range,
F is the parameter variation rate, and D; is a quantitative
occurrence degree of the i aging phenomenon. It is noted that
when the sign of k is positive, the parameter value decreases,
and vice versa. F, the variation rate, is independently assigned
to each parameter as a fixed value. If D; has larger value,
the rate of the parameter change increases. As an example
of the parameter variation, when the battery’s volume change
only is considered as a aging phenomena, or N =1 in 2, one of
the aging phenomena, each dashed line with a given D; value
produces a curved line under various SOH values, as seen
in Fig. 5. Consequently, the synthetic data are generated by
repeatedly changing the P2D model parameter values for
various D; and ASOH values.

B. DATA SYNTHESIS CONSIDERING AGING PHENOMENA

For the data generation, three major aging phenomena are
considered: anode electrolyte decomposition, cathode solid
particle decomposition, and volume change of the battery
[28]. The affected parameters of the battery differ depending
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on the aging phenomenon, as seen in Table 3. The anode
electrolyte decomposition influences the anode solid particle
surface area (a)) and the thickness of the SEI layer (SEI).
The cathode solid particle decomposition affects the cathode
solid particle surface area (a;) and the thickness of the SEI
layer (SEI). Finally, the volume change of the battery affects
the anode and cathode solid particle surface areas (a';,‘,,),
thickness of the SEI layer (SEI), and anode and cathode
solid particle conductivities (O’,f’n) [28]. In order to monitor
the above-mentioned three aging phenomena, a total of six
parameters (solid particle surface areas and conductivities of
the anode and cathode, SEI layer thickness, and normalized
available capacity) are estimated by the LSTM-based scheme
proposed in the previous section. As discussed earlier, such
parameters are varied over the normalized ASOH according
to the occurrence degree of the aging phenomena.

However, depending on the occurrence degree of the
aging phenomena, five parameters (except for the normalized
capacity) could have almost identical values even though the
designated SOHs are different. This means that some data
could be generated under similar physical quantities even for
distinct SOHs. To avoid such cases, five additional param-
eters known to vary with the battery usage are assumed to
change linearly with the normalized available capacity only.
At the anode, these parameters are reaction rate, solid particle
diffusivity coefficient, and current collector conductivity, and
at the cathode, these parameters are reaction rate and solid
particle diffusivity coefficient. Thus, it becomes possible to
reasonably distinguish all synthetic data and hence produce
more realistic data.

By varying the conditions, three sets of data are gener-
ated for training, validating, and testing. The aging-related
parameters are as follows: k is 0.2 for the decreasing param-
eters and —0.2 for the increasing parameters. The chosen
variation rates F for the solid particle surface areas of the
anode and cathode, conductivities of the anode and cathode,
and SEI layer thickness are 39.80, —35.08, 31.76, —62.72,
and —50, respectively. These physical values are obtained
from the beginning-of-life and end-of-life data provided by
SAMSUNG SDI Co., Ltd. Different values of N, D;, and
ASOH are applied to generate data for training, validating,
and testing. As aforementioned, N represents the number of
the aging phenomena affecting the corresponding parameter;
N is assumed to be 2 for each solid particle surface area,
1 for each solid particle conductivity, and 3 for SEI layer
thickness, respectively, as shown in Table 3. In order to obtain
the diverse data (ensuring that the parameters are spread out
evenly in the data generation process), D; is determined as
follows:

D; = Dyax X (di/Dimax)"® )

where the constants D,,,, and « are chosen to be 1.7 and
5.5 for the realistic and uniform parameter variations, respec-
tively. It is noted that Dy, and o are identically applied
to generate the training, validating, and testing data. For
training data generation, 20 different values of d; are evenly
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TABLE 3. Parameters affected by the occurring aging phenomena.

Aging phenomena
Anode electrolyte decomposition | Cathode electrode decomposition Battery volume change
Solid particle surface area (a;,) v v
Anode SEI layer thickness (SEI) v v v
Solid particle conductivity (c;,) v
Solid particle surface area (a;) v v
Cathode
Solid particle conductivity (o) v
41 100 s P2D model dynamics training N
Generate Train
0 —-
— —_ . Training data
= 4 < Parameter aging Electrochemical (P2D) model -
[ = " . Synthetic time
S <. scenarios Simulation nttetie Recurrent
g @ -100 20 = K[A'[B]™ series data
% E = gl V,1,T,50C) | neural network
> 39 o | Fixed —— (LSTM network)
-200 T Aging-relevant *,‘ Parameter labels
38 -300 \ bY J
0 50 100 0 50 100 ~ Parameter estimation scheme C ~N
Time[s] Time[s] Generate Input l
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2995 Different parameter | | gjectrochemical (P2D) model Tosting ot Recurrent
< 95 aging scenarios Simulation Different ™ neural network
° 26" = k[A]™ [B]™ | synthetic time (LSTM network)
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g 3% b Agingrel V', 1',T',50C") Estimated
E 298.5 85 L )
298 80 FIGURE 7. Overall schemes for the P2D model dynamics training of an
0 . 50[ : 100 0 . 50[ : 100 LSTM network, and parameter estimation with the trained LSTM network.
imels, ime(s

FIGURE 6. Synthetic data sample of training data comprising voltage,
current, temperature, and SOC profiles generated at an SOH of 85%.

chosen between 0 and Dy, and for validating and test-
ing data generation, 6 and 7 different values are chosen
similarly. Eventually, for the training data generation, a total
of 8,000 scenarios of parameter changes were generated since
each of the three aging phenomena considered in this study
had 20 D; values. Similarly, a total of 216 (=63) and 343
(=73) scenarios were generated for the validating and testing
data generation, respectively. These scenarios were simulated
over ASOH ranging from O to 1. As the end-of-life of the
lithium-ion battery is typically defined as 80 % of the nominal
SOH, in the training data generation, ASOH took values from
0.00 to 0.20 with an increment of 0.01, and in the validation
and testing data generation, it took values from 0.005 to
0.195 with the same increment. Consequently, the number of
datasets amounted to 168,000, 4,320, and 6,860 for training,
validating, and testing, respectively. Each data item included
the parameter values and corresponding voltage, current, tem-
perature, and SOC time series data over 100 s. As an exam-
ple of synthetic data, the training data generated from the
1000-th scenario at an SOH of 85% is shown in Fig. 6,
which is targeted to a 37 Ah nickel-manganese-cobalt (NMC)
lithium-ion battery produced by Samsung SDI CO., Ltd.

V. VALIDATION

A. PARAMETER ESTIMATION WITH SYNTHETIC DATA

As in the previous section, the LSTM network is first
trained to learn the electrochemical model dynamics by
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sweeping through a variety of profiles and parameters and
then capturing its dynamics. In this section, the trained
LSTM network is validated by illustrating how accurately
it estimates the parameters within a short interval of time.
The overall schemes for the dynamics training and parameter
estimation are shown in Fig. 7. The tuned hyperparameters
of the LSTM network are as follows: The number of nodes
in the two layers in the front FCL are 32 and 16, respectively,
and the number of hidden states in the LSTM is 96. The rear
FCL consists of two layers with 128 nodes each. The mini-
batch size is 3,000 and the last epoch is set as 8,000. The
dropout probability applied to the hidden state of the LSTM
is 0.1, and the maximum and minimum learning rates used
in the SGDR are le-4 and le-5 until 6,000 epochs, and then
le-5 and le-6 until the last epoch. For fast and accurate
learning of the LSTM, the sequence length of the LSTM
should not be too long. Thus, the time series data for 100 s
is split into 10 s segments, and then learning for each 10 s
sequence is performed, which can be done by setting the
sequence length of the input to 10 (L = 10). In other words,
every input to the front FCL is of the 40-length vector form
composed of each 10 s data segment for voltage, current,
temperature, and SOC.

Among the six parameters to be estimated, the estimates of
the SEI layer thickness are shown in Fig. 8, where the orange
and blue lines represent the estimation results of the SEI
layer thickness and the true values, respectively. The enlarged
figures show that the parameter is accurately estimated in
both the small and large perturbations. As with the SEI layer
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The estimated SEI layer thickness computed from testing data
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FIGURE 8. True and estimated values of SEI layer thickness, indicated by
blue and orange lines, respectively, with enlarged figures for detailed
comparisons.

Distributions of the parameter estimation errors
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FIGURE 9. Fitted Gaussian distributions and histograms of the mean
parameter estimation errors for training and testing data, indicated by the
dashed, solid lines, and two area charts, respectively.

thickness, the estimates of the other parameters are also very
close to the true values.

The overall estimation results for the training and testing
data are shown in Fig. 9, where the solid and dashed lines
represent the fitted Gaussian distributions for the parameter
estimation errors of the training and testing data, respectively,
and two area charts show their original histograms. As shown
in Fig. 9, the mean values of the error distributions are almost
zero with low variances, which means that the neural network
learns the data properly and estimates the parameter accu-
rately even when using the testing data. For the detailed anal-
ysis, the mean absolute error (MAE) and root mean squared
error (RMSE) of the parameter estimations for training and
testing dataset are computed and shown in Table 4 and 5,
respectively. In summary, it could be concluded that the
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FIGURE 10. Experimental setup of the 37 Ah NMC lithium-ion battery
testing system.

proposed estimation scheme finds all the parameter values
very accurately.

For performance comparison in terms of network archi-
tecture, other networks are also applied to the proposed
approach. In the case of multi-layer perceptron (MLP),
it is composed of eight layers with 256 nodes each [32].
In the cases of VGG11, VGG16 and ResNetl8, the kernel
sizes are slightly adjusted in consideration of the given data
size [33], [34]. In addition, the RNN with a gated recurrent
unit (GRU) network is compared [35]. The mini-batch size,
the learning rate schedule, and the last epoch are all set to
be the same as those of the earlier LSTM network. Table 6
shows the sizes of the networks, and the parameter estimation
performance of each network. As shown in Table 6, it can
be said that the LSTM network estimates the electrochemical
parameters with the best accuracy compared with other neural
networks even though it has a relatively small network size.
In addition to its outstanding accuracy, the LSTM network
has a little computational burden, which enables the real time
estimation.

Also, several neural networks with different memory sizes
are validated in order to identify the trade-off between the
computation burden and real-time performance. Generally,
when the memory size increases, the computation time tends
to increase. In addition, a lot of computations with large
memory sizes do not always provide excellent performance.
Therefore, it is important to select the appropriate mem-
ory size of the neural network to obtain the best real-time
performance in consideration of both computation time and
accuracy.

B. PARAMETER ESTIMATION WITH EXPERIMENTAL DATA

The neural network pre-trained with the synthetic data, is vali-
dated with the experimental data measured from real batteries
in order to illustrate the feasibility of the proposed neural
network-based estimation method. The experimental data are
obtained from 37 Ah NMC batteries produced by Samsung
SDI Co., Ltd. The data comprise voltage, current, and tem-
perature profiles. Throughout the experiment, the batteries
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TABLE 4. Parameter estimation errors on the training dataset.

Criteria a, a’ o ol SEI Capnorm Total mean
error
MAE (%) 0.117 0.140 0.320 0.337 0.160 0.104 0.196
RMSE (%) 0.171 0.190 0.477 0.471 0.223 0.137 0.278
TABLE 5. Parameter estimation errors on the testing dataset.
Criteria a, a’ o ol SEI Capnorm Total mean
error
MAE (%) 0.183 0.222 0.420 0.433 0.239 0.179 0.279
RMSE (%) 0.279 0.316 0.691 0.679 0.346 0.270 0.430

TABLE 6. Parameter estimation results of different networks.

Estimation # of network Parameter

results parameters RMSE(%)
MLP 565k 1.13
VGGI1 157k 1.54
VGG16 244k 1.68
ResNet18 593k 1.63
GRU 174k 0.56
LSTM 185k 0.43

TABLE 7. Parameter estimations with experimental data under two
different conditions.

Estimation results for experiment data

Estimated The first The second
parameters battery battery
a3 [m?/m?] 7.17 % 10° 6.79 * 10°
as [m?/m?] 5.53 % 10% 2.44 % 10*
o5 [S/m] 7.65 + 10° 7.50 % 10°
as [S/m] 2.51 % 10! 2.68 % 10*
SEI [m] 5.30 % 1078 6.25 % 1078
Capnorm 90.4 81.2
Tetapsed | 0444[s] | 0438[s] |

were locked up by a jig for safe charging and discharging,
as shown in Fig. 10. The SOC profile is computed from
available data using the coulomb counting technique [3]. The
target parameters of two real batteries are estimated on a real-
time basis with the LSTM network that learns the P2D model
dynamics, similar to the technique conducted earlier with the
synthetic data. As seen in Table 7, the resulting estimates are
within a reasonable range. From these estimated parameters,
the simulated profiles are compared to the measured ones as
shown in Fig. 11 and 12, respectively, and their differences
are within the tolerable range of 18 mV for the first battery
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The measured and synthetic voltage profiles of the first battery160
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FIGURE 11. Measured and simulated voltage profiles of the first battery.

The measured and synthetic voltage profiles of the second batten -
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FIGURE 12. Measured and simulated voltage profiles of the second
battery.

and 26 mV for the second battery. It is believed that the
estimates in Table 7 become more accurate if the LSTM
network is trained with more diverse and a larger synthetic
dataset.
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VI. CONCLUSION
This study proposed a real-time neural network-based scheme
to estimate the parameters of a complicated electrochemi-
cal lithium-ion battery model. The long short-term memory
network is first trained to learn the pseudo two-dimensional
model dynamics with synthetic data, and then, the trained net-
work directly provides the estimated parameters by inputting
voltage, current, temperature, and state of charge data.
Results using the synthetic data show that the parameters of
the pseudo two-dimensional model are estimated within the
root mean square error of 0.43% on a real-time basis. The
estimates from the real experimental data could also have
such an accuracy level. In addition to the application on the
pseudo two-dimensional model, the proposed scheme could
be generally employed on the other battery models such as
single particle models or fractional order models [27], [36].
It is believed that a variety of applications involving
lithium-ion batteries such as state estimation or diagnosis of
batteries can be possible with the proposed neural network-
based parameter estimation scheme. In the future, attempts
will be made to employ the state-of-the-art network architec-
ture for performance improvement.
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