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ABSTRACT River flooding is a natural phenomenon that can have a devastating effect on human life
and economic losses. There have been various approaches in studying river flooding; however, insufficient
understanding and limited knowledge about flooding conditions hinder the development of prevention and
control measures for this natural phenomenon. This paper entails a new approach for the prediction of
water level in association with flood severity using the ensemble model. Our approach leverages the latest
developments in the Internet of Things (IoT) and machine learning for the automated analysis of flood data
that might be useful to prevent natural disasters. Research outcomes indicate that ensemble learning provides
a more reliable tool to predict flood severity levels. The experimental results indicate that the ensemble
learning using the Long-Short Term memory model and random forest outperformed individual models
with a sensitivity, specificity and accuracy of 71.4%, 85.9%, 81.13%, respectively.

INDEX TERMS Internet of Things, ensemble machine learning, flood sensor data, long-short term memory.

I. INTRODUCTION
Flooding is a natural disastrous phenomenon, having dev-
astating impacts on goods, services, properties, and ani-
mal/human lives. An early warning about such a disaster
might be helpful to mitigate the consequences and save lives.
Though river flooding cannot be avoided, its impact may be
minimized and controlled through appropriate planning and
adoption of technologies such as IoT and ML.

According to a recent research study by Gartner [1],
6.4 billion connected objects/things were identified in 2016,
representing an increase of over 3% compared to 2015, and
expected to reach 20.8 billion by 2020. Some of these ‘things’
include a variety of sensors that might be useful for improving
the quality of data collected for the purpose of making better
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decisions. IoT is an increasingly growing topic and widely
available for such purposes [2], [3]. It permits things to be
controlled or sensed remotely across several network environ-
ments, providing an interface for direct control over the phys-
ical world [4]. To extract useful and effective data, ML offers
an appealing method for predicting water levels, for example.
The vast majority of environmental monitoring centers have
adopted IoT to assist in environmental protection [5], [6].

Sun and Scanlon [7] indicate that the use of machine
learning has significantly improved the detection of early
flood warning using powerful deep learning algorithms.
Panchal et al. [8] show that gait characteristics can be utilised
to capture flood levels and used machine learning algorithms
including support vector machine and random forest for the
analysis of the data. While Furquim et al. [9] propose a
flood detection system based on IoT, machine learning and
Wireless Sensor Networks (WSNs) in which fault-tolerance
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was embedded in their system to anticipate any risk of com-
munication breakdown. Belal et al. [10] indicate that the
lack of information about the quality of drinking water and
the difficulty of early prediction of the flood has inspired
various researchers to monitor and detect flood. The authors
highlighted the importance of gathering reliable and quality
data for the validity of the analysis.

In this research, we use multi-sensor data that originate
from monitoring flood centres located in different countries
around the world to determine rivers’ water levels. To this
end, a variety of advanced predictive models and learning
algorithms were developed (i.e., Artificial Neural Networks
(ANN), Random Forest (RF), K-Nearest Neighbour classifier
(KNN), Long-Short TermMemory (LSTM) and Support Vec-
tor Machine (SVM)). The aim is to utilize machine learning
algorithms to analyse flood sensors log datasets, character-
ized by nonlinearities and dynamic characteristics.

Despite the abundance of raw data, quality remains a con-
cern to decision makers. For instance, missing values, get
corrupted during transfer, and/or affected by noise are the
most common factors that affect the data quality. To address
this, a data science approach is adopted in this research
for the analysis and feature extraction of sensory datasets,
characterized by class imbalance, noise and missing values.
Various ML techniques are used to analyze the flood sensor
data. In the first round of simulation experiments, the single
ML classification models were used that did not provide
satisfactory performance and accuracy. Then, a new classifier
which is based on the ensemble learning, was developed using
LSTM, ANN and RF. Statistical results indicate the superior-
ity of ensemble learning model over the all single/individual
ML classifiers.

Therefore, the ‘‘main’’ contributions of this paper are as
follow:

• Ensemble various machine learning algorithm to predict
the river levels severity using IoT sensor river data.

• Improving the process of multi-levels classification and
accuracy of our classifiers using deep learning algorithm
such as LSTM.

The remainder of this paper is structured as follows. IoT
and its application in disaster management scenarios is dis-
cussed in Section 2. The classification of flood sensor data
is discussed in Section 3 along with the algorithms used
in this research work. Section 4 discusses the methodology.
The experimental design is described in Section 5, while
Section 6 presents the simulation results. This is followed
by the discussion and analysis in Section 7. Finally, the
conclusions and avenues for further research are presented
in Section 8.

II. DISASTER MANAGEMENTS USING IoT
Since 1980s, the U.S. has sustained with over 200 weather
and climate disasters, with cumulative costs exceeding
$1.1 trillion [11]. Despite restrictions when it comes to
reduced size, restricted connectivity, continuous mobility,

limited energy [12], and constrained storage, IoT has a role
to play in avoiding and/or offsetting the consequences of
disaster recovery [13], [14]. However, on the other side, the
reduced size and continuous mobility of IoT devices [15]
(e.g., micro cameras mounted on drones) provides them with
a unique advantage for use in restricted access areas. More-
over, their limited energy and constrained storage features
make disposable IoT devices ideal for one-time situation
assessment. Indeed, some IoT devices, such as sensors, are
major stakeholders in the design and implementation of any
preventive strategy. Such devices can collect and transmit
large amounts of data to modelling and decision support-
based systems, thus supporting the risk mitigation and the
proactive deployment of emergency teams. Many studies
have demonstrated the benefits of developing disaster recov-
ery strategies based on IoT [16]–[19]. In a disaster recov-
ery situation, all ‘things’ including virtual or real entities
such as human beings, inanimate objects, intelligent software
agents and even virtual data could; contribute positively [20].
Maamar et al., in [21] introduce the concept of Process-of-
Things (PoT) to allow the collaboration of living and no-
living things [22]. A PoT is specified as a story that ‘‘tells’’
how to discover and select things based on their capabilities,
how to support things taking over new/adjusting their capa-
bilities, how to facilitate the (dis)connection of things using
pre-defined (social) relations, and how to incentivize/penalize
things because of their constructive/destructive behaviors,
respectively. Maamar et al., exemplified PoT within a
healthcare scenario [23], where things representing medical
equipment (e.g., thermometers), ambient facilities (e.g., air
sensors), patients (e.g., smart wrists), and care providers
(e.g., doctors) work together. Such a scenario can be easily
related to a disaster recovery situation. In another work [24],
Soubhagyalaxmi et al., discuss a disaster management system
using IoT in India. The study indicates that around 57% of
the land is vulnerable to earthquakes. Of these, 12% is vul-
nerable to severe earthquakes, 68% of the land is vulnerable
to drought, 12% of the land is vulnerable to flood, 8% of
the land is vulnerable to cyclones, and many cities in India
are also affected by chemical, industrial and other types of
man-made disasters. Likewise, Lempitsky et al., [25] present
the importance of IoT in natural risk management in terms
of detection, prevention, and management with an economic
evaluation of each stage.

III. CLASSIFICATION OF FLOOD SENSOR DATA
In recent years, a variety of ML techniques have been devel-
oped to handle the high dimensional datasets in diverse
application domains [26]. These techniques can analyse large
numbers of attributes and represent each object of interest
with a distinct label. In short, a ML model learns to per-
form the mapping (or equivalently, approximate a function)
between the input (feature) space and the output (object
class) space. Each input vector corresponds to an object x,
characterized by a set of features, whereas y describes the
class label assigned to x. In this respect, the classification
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TABLE 1. ml classifiers parameters and description.

process employed to label training and testing data sets is also
known as a descriptive classifier, i.e., a method to discover the
class label for various inputs [27], [28].

To apply classification in the target research domain, it is
vital to identify distinctive feature patterns from un-labelled
datasets during the testing process.

Equation (1) represents the class of linear
classifiers [29].

g(x) = wTx + b (1)

where g (x) represents the linear function with input ‘x’,
‘w’ is the weight vector and ‘b’ is the bias term. For
two classes, e.g., c1 and c2, the linear classifier results to
a target class of c1, if g(x)>0, and a class of c2, when
g(x)<0. However, since the real-world data is often non-
linear in nature, a nonlinear classifier is needed to be used
that can capture the nonlinearities in the data and pro-
vide high classification performance, which is vital when it
comes to predicting the onset of natural disaster phenom-
ena. For the classification and analysis of both linear and
nonlinear flood-sensor data, various classification techniques
are used that include RF, SVM, ANN, KNN, and LSTM.
Table 1 shows the configurations of the classifiers used in this
research.

A. RANDOM FOREST CLASSIFIER
Random Forest (RF) is utilised for regression and classifi-
cation tasks. It is a series of decision trees, each of which
acts as a weak classifier, typically characterized by poor
prediction performance, however in aggregate form, it offers
robust prediction. Therefore, this classifier can be thought
of as a meta-learning model. RF was originally proposed by
Ho [30], [31], and subsequently enhanced by Ho [32], with
the latter being widely used in recent studies. RF uses feature
bagging and decision trees structures [33].

RF efficiently and effectively produces partitions of
high-dimensional features based on the divide-and-conquer
strategy, over which a probability distribution is located.
Moreover, it permits density estimation for arbitrary func-
tions, which can be used in clustering, regression, and classi-
fication tasks. Classification results are obtained by averaging
the decisions formed through the layers of the forest, permit-
ting the collective knowledge of the decision-tree learners to
be incorporated. Equations 2 and 3 summarize the RF.

f (x) =
1
m

∑m

i=1
f (x, xip) (2)

where x is the partial dependence variable and xip refers to
the data variable

f (x)= logtj −
1
J

∑J

k=1
(logtk (y) (3)

where ‘J ’ refers to the number of classes (3 in our
case), and ‘j’ refers to the individual class (i.e. normal/
abnormal/dangerous water levels in this study). In addition,
tk belongs to the proportion of total votes for class ‘j’.

B. SUPPORT VECTOR MACHINES
Support Vector Machines (SVMs) is a type of supervised
learning and can be used for classification and regression
problems. SVM is based on soft margin classification [34],
which lends itself on concepts of statistical method the-
ory [35]. Given a training dataset containing instance-label
pairs (x1,y1) , . . . , (xN , yN ) where xi ∈ Rd and yi ∈
{−1,+1}, SVM solves the optimization problem:

min
x,b,ξi

1
2
‖w‖2 + C

N∑
i=1

ξi

subject to yi (〈∅ (xi) ,w〉 + b)

− 1+ ξi ≥ 0

− ξi ≥ 0, i = 1 . . . ,N (4)

where ∅(xi) is a non-linear kernel that maps the training data
onto a high-dimensional space. To separate the two classes,
SVM works by finding the separating hyperplane that maxi-
mizes the margin between observations. The slack variables
ξi allow misclassification of difficult or noisy patterns and
C > 0 is the regularization parameter, which controls the
degree of overfitting. Finding the support vectors ismade pos-
sible using the Lagrange multipliers ai allowing Equation 4 to
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be rewritten into its dual form:

min
α

1
2
αTQα − eTα

subject to yTα = 0

0 ≤ αi ≤ C, i = 1, . . . ,N (5)

where e= [1, . . . 1]T is a vector of ones, Q is a m-by-m
matrix, Qi,j≡yiyjK (xi, xj), and K (xi, xj) ≡∅(x i)

T
∅(x j) is the

kernel function. Using this primal-dual relationship, the opti-
mal w can be found:

w =
N∑
i=1

yiαi∅(xi) (6)

Then the new samples are classified by:

sgn
(
wT∅ (x)+ b

)
= sgn(

N∑
i−1

yiαiK (xi, x)) (7)

As previously mentioned, the separating hyperplane is found
by solving the optimization problem, which allows the selec-
tion of the support vectors that maximize the margin between
the two classes (e.g. normal vs abnormal water level in this
case). The penalty parameter C is a critical tuning parameter
for constructing a good model that generalizes well. In addi-
tion, several kernel functions are available to support the
transformation of the input data into a higher-dimensional
space, where linear separability is possible. An example of
such a function is the polynomial of order d:

K (x, y)= (1+x · y)d (8)

C. ARTIFICIAL NEURAL NETWORKS
Neural Networks is a problem-solving approach based on a
connectionist model. It comprises networks of interconnected
neurons, whose weights are adapted until a solution emerges.
Artificial Neural networks are inspired by biological neu-
ral networks found in the mammalian brain, to design and
mimic the information processing capability of such powerful
biological structures. A Multilayer Perceptron (MLP) is a
‘feedforward’ neural network, where information is trans-
ferred forward. The input information is presented to the
network in the input layer, which transfers the information
into a sequence of one or more hidden layers before it is
represented as a pattern in the output layer. The transfer
functions of the neurons in the hidden layers, and typically
the output layer, are nonlinear. During the training pro-
cess, the backpropagation algorithm is used to compute and
updates weights in response to the error feedback.MLPs have
been successfully used in many applications, including signal
processing [36], facial expression analysis [37] and function
approximation [38].

Several studies have been conducted to speed up and
enhance the accuracy and performance of backpropagation
learning. For instance, the use of a momentum term was
proposed in [39], weight decay was used in [40], and vari-
able learning rate was reported in [41]. Alternative neural

computing approaches attempted to mimic additional bio-
logical neuronal characteristics such as axonal delays for
improving performance [42]. A method that combines the
advantages of gradient descent and second-order information
is the Levenberg-Marquardt algorithm [39], which is used in
the experiments of this research.

D. K-NEAREST NEIGHBOUR CLASSIFIER
K-Nearest Neighbour Classifier (KNN) is a lazy supervised
learning algorithm that has been applied in various fields,
such as statistical analysis, data mining, and pattern recog-
nition [43]. Classifying data is based on the closest train-
ing samples in feature space. The aim is to classify the
new (unseen) input patterns, based on a nominated number
of their nearest neighbours. KNN is appropriate when there
is no prior knowledge about the distribution of the data [44].
It works well in both training and testing [45]. The method
consists of four steps. Firstly, training examples with their
labels are stored in feature space. Next, the number of ‘k’
nearest neighbours and the appropriate distance metric are
selected. Unseen data is fed into KNN and their nearest ‘k’
instances are found. Each of the new data is assigned the label
corresponding to the majority label of its neighbours. The
detailed description and mathematical formulation of KNN
classifier can be found in [46].

E. LONG-SHORT TERM MEMORY (LSTM)
LSTM was introduced by Hochreiter and Schmidhuber
in 1997 [47]. To elucidate the problem of gradient fad-
ing, the authors referred to the concept of memory cells.
LSTM indicates the addition of short-term memory (STM)
between memory cells since traditional neural networks have
long-term memory in the weights of the connections. Other
adaptations including peephole connections [48] have been
suggested. These loop closure connections enhance perfor-
mance as they do not need to go through the activation func-
tion, thus reducing computational complexity. This typol-
ogy has excessive diffusion and utilisation nowadays, where
complex LSTM networks, consisting of multiple layers are
utilised with reasonable computational costs.

IV. METHODOLOGY
Various ML techniques have been used to predict the sever-
ity of flood disasters based on sensor data [49]. In this
work, we compare the performance of popular ML methods
(described in Section 3) on IoT flood sensor data and propose
an ensemble approach for a novel flood severity classification
system. Since a flood can take place in any geographical area,
the system uses local sensor data. The objective is to classify
data collected from the flood sensors into three categories,
namely, normal, abnormal, and high-risk leading to flooding.

The proposed system comprises of sequential components
including; data collection from IoT sensors, pre-processing,
feature-space data representation, classification model con-
figuration and training using the processed data, and finally,
models’ evaluation using the unseen testing data set.
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FIGURE 1. Overview of the data processing pipeline.

Figure 1 presents an overview of the sequential processing
and analysis pipeline for the classification of flood sensor
data. The processed flood sensor dataset is divided into
three partitions for training, validation, and testing of the
ML models. Eleven features (shown in Table 2) are fed into
ML algorithms as inputs to perform classification of three
output classes (see Table 2).

Our system consists from data collection stage in which
flood sensory data information will be collected. The col-
lected data will be forwarded to pre-processing stage, which
will be performed for cleaning and normalization of the
data. In this case, 11 attributes are collected including
monsoonal rain, duration in day, number of dead, number
of displaced, snowmelt and ice jams, magnitude, centroid,
heavy rain, torrential rain, total of affected area and tropical
storm. The cleaned and normalized data using the appro-
priate attributes are forwarded to trained machine learn-
ing algorithms are used to classify the severity of the
flooding.

A. DATA COLLECTION
The sensory data is collected from the Environment
Agency [50], that contains a collection of datasets from
various cities around the world. Each sample of the flood
sensor datasets contains 11 features deemed important for
predicting the severity (as illustrated in Table 2). The flood
sensor data used in this study consists of 4214 flood samples,
with the three target classes defining the severity of the
flood. The outputs were coded as class one with 1181 data
points

(normal water level), class twowith 306 data points (abnor-
mal water level), class three 456 (high-risk water level).
In terms of statistical procedures, the aggregate function
is used to combine data from several measurements. Fur-
thermore, when data is aggregated, groups of observations
are substituted with summary statistics of the techniques,
depending on those observations [51].

TABLE 2. Flood sensor dataset descriptions, selected algorithms and
evaluation metrics.

B. PRE-PROCESSING
To obtain accurate results with the use of ML techniques, it is
important to appropriately prepare the aforementioned flood
sensor data through pre-processing techniques, i.e., cleansing
and normalization. Noise reduction and dealing with miss-
ing values are essential in ML and subsequently, for higher
prediction accuracy and overall performance, which are per-
formed following the data standardization tools explained
in [52].

C. EXPLORATORY ANALYSIS
Exploratory analysis was utilised to identify possible outliers
in the pre-processed data. This is an important step, as it
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FIGURE 2. A projection of the three classes in the space of the first two
Principal Components.

FIGURE 3. T-distributed Stochastic Neighbourhood Embedding Plot.

provides further insight and increase the efficiency in terms
of learnability of the data set by training models. To illus-
trate this, a visualisation of the flood sensor dataset using
PCA is depicted in Figure 2. PCA is commonly used for
dimensionality reduction and finds a great deal of use in a
variety of applications [53]. It performs a linear mapping so
that potential correlations in feature space are minimized and
could be used for projection into a lower dimensional space.

In Figure 4, a visualization of the three classes is shown
in the space of the two principal components, i.e., the com-
ponents which contain the highest amount of information,
in terms of variability (variance) in the data. By evaluating
the PCA plot, it is evident that the flood sensor data is not
linearly separable.

Another type of visualisation we implemented is
the T-distributed Stochastic Neighbourhood Embedding
(tSNE) [54], as shown in Figure 3. This is in fact a machine
learning algorithm, which, unlike PCA, results to a non-linear
projection of high-dimensional data into a lower dimension-
ality, typically two or three dimensions, subspace. In t-SNE,
patterns which share similarities in the original feature space
are projected in close proximity, while dissimilar patterns are

projected at distant points with high probability. By exam-
ining Figure 5, there are considerable similarities between
patterns belonging to different classes, as the corresponding
clusters in the projection space are overlapping.

D. FEATURE SELECTION
Feature selection is an important step for the analysis of stan-
dardized data, to enable our ML algorithms to train faster and
overcome the problem of overfitting. There have been vari-
ous approaches for the feature selection used in ML related
problems including principal component analysis [42], infor-
mation gain [55], chi-square test [56], [57] and many more.
One of the key motivations of utilizing chi-square test in
our approach is the way it ranks features based on statistical
significance indicating the dependency between the current
feature and the target class [57].

Let us consider the dimensionality of the original space to
be ‘d’, while the dimensionality of the reduced feature space
to be ‘r’, where r < d. In this case, ‘r’ is determined using
the chi-square filtering approach to evaluate high-ranking
features. If the chi-square test value is lower than a critical
value (in our case we selected a value of 0.05) then the
null hypothesis is selected and the feature is regarded as
important; else, the null hypothesis is disregarded, and the
feature is rejected. Algorithm 1 shows the proposed feature
selection algorithm. Our algorithm selected 6 features which
are considered important includingmagnitude, torrential rain,
heavy rain, snowmelt and ice jams, monsoonal rain and trop-
ical storm.

Algorithm 1 Feature Selection Sets
Let X be a set of data in form of signals such that X = {x| x
∈ S where S belongs to flood sensor data} & Xd where d is
the dimensionality of the original feature space.
Let Xc ∈ X where Xc = {x| x= Filtered(x)} & Xr

c where r is
the dimensionality of the selected feature space: r<d. Perform
the following steps to identify the important feature set Xc:

Foreach feature x in X Do:
Perform Chi-square test for current x
IF Chi-square(x) < critical value (0.05 in this case)

Accept null hypothesis
Add x to Xc i.e. x ∈ Xc

ELSE
Accept alternative hypothesis (i.e., x /∈ Xc)

End IF
End Loop

V. EXPERIMENTAL DESIGN
The evaluation metrics used in the experiments measure the
results of the ML techniques in flood prediction (refer to
Table 3). The holdout approach is used to assess the general-
ization performance on an independent flood sensor dataset.

The main objective of this work is to predict floor severity
levels using multi-sensor flood data and advanced machine
learning algorithms. This can provide improved prediction
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FIGURE 4. Ensemble Classifier (Training Process).

accuracy using the composition of data analysis and ML
techniques to investigate the effect of integrating strong and
weak classifiers and compare their performance with those of
the individual classifiers.

Experiments (A, B) are designed using cross-validation
(with 70% of the data used for the training, 10% for the
validity and 20% for testing) to evaluate the performance of
the proposed approach:
A) Multiple ML models (ANN, RF, KNN and LSTM)

were trained and tested individually over the flood
dataset.

B) Ensemble model is trained and tested over the flood
dataset (LSTM+SVM, LSTM+RF, ANN +RF) while
using voting and stacking to measure the performance.

Various statistical performance measures are utilised to
benchmark our results including sensitivity, specificity and
accuracy.

Algorithm 2 shows the proposed system.

A. ENSEMBLE CLASSIFIERS
Research studies indicated better classification performance
obtained using a composition of multiple classifiers [58].
Figure 2 illustrates the block diagram for the proposed sys-
tem. There are N input and output sets, 1, ..,Xand1, . . . ,Y ,
respectively. The bootstrapping begins with a few training
samples of 1, . . . ,x and 1, . . . ,y using the primitive model
pool 1, . . .B. Base models are represented through 1, . . . ,M .
To estimate the accuracy and performance of the final output,
we averaged the outputs of the base classifiers using predicted
class probabilities. As in the case of single classifiers, clas-
sification performance is measured in terms of Sensitivity,
Specificity, Precision, Accuracy, and F1 Score.

Algorithm 2 Proposed Algorithm for Sensor Data Classifi-
cation and ML Selection
Let W, M, D, Dd, DI, TO, H, TS, SM, MS be various sets of
values ⊂ Xc determined as Algorithm 1
Let t, a and c are data values determined as Algorithm 1.
n = 0
Training = {t ∈ Xc}
Test = {ts ∈ Xc & t /∈ Training}
1: For every selected ML algorithm determined
2: E[Sensitivity] = {S: S⇒ML (Training, Test)}
3: Calculate the average output and classifier aggregation
4: n = n +1 if n < Threshold, go to 1 else classify
5: ∀ ml ∈ ML, if E[Sensitivity]ml < Th, ∃ e ∈
Ensemble| Ensemble ={x| x ensemble of various ML} &
E[Sensitivity]e > Th where Th is a threshold value repre-
senting the required classification accuracy.

For the ensemble classifier, we used the stacked and the
voting methods. The stacked method concerned with com-
bining several classifiers with various learning algorithms.
In our experiment, each selected model is trained using the
same training sets as is illustrated in Figure 4.

VI. CLASSIFICATION RESULTS
In this section, we present the results of validation and testing
for the single and ensemble classifiers. In summary, it is
shown in Table 4 that ensemble classifiers outperform single
classifiers. The top-performing single classifier in terms of
the sensitivity for the classification of high-risk flooding
class was LSTM, which produced a value of 0.925 in train-
ing/validation, however, its generalization was not as good,
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TABLE 3. Performance evaluation per Model (Validation/Training).

resulting to a sensitivity of 0.7 during testing. The worst
performing classifier in terms of sensitivity was the SVM
with the poor performance of 0.057 and 0.042 for the training
and the testing, respectively. This indicated that selecting
appropriate kernels for our three classes flood data may not
be possible.

In our experiments, single classifiers produced ACC values
of 0.557, 0.807, 0.867 and 0.935 for ANN, RF, KNN, LSTM
respectively, during the validation/training. During testing,
the performances of the classifiers are 0.582, 0.65, 0.538 and
0.81 for ANN, RF, KNN, and LSTM respectively. Ensem-
ble classifiers demonstrate better validation performance,
as shown in Table 4 and Figures 6-8 which relate to the ROC
and AUC graphs, respectively. The combination of ANN
and RF classifiers shows an accuracy of 0.956 in validation,
however, this reduces to 0.737 in testing in terms of the
average for the three classes (stated in Table 2) for ensemble
classifiers. Improved results are obtained with the combi-
nation of LSTM and RF, which demonstrates a validation
accuracy of 0.997 during training (Table 3), while in testing,
this reduces to 0.811 (Table 4). Still, the strong generalization
of the ensemble classifier confirms that there is valuable

TABLE 4. Performance evaluation per Model (testing).

information within the flood sensor data that can be captured
with such types of ML structures. Furthermore, the ensemble
classifier for LSTM and RF showed an average sensitivity
of 0.714, followed by the ensemble of the LSTM and SVM
with an average sensitivity of 0.69, then the ensemble of ANN
and RF with an average sensitivity of 0.664 for the testing
data.

As single SVM classifier did not perform well during the
training and the testing, the results for the ensemble classifier
with SVM and LSTM indicate that the performance is based
on the classification power of the LSTM rather than the SVM.

Tables 3, 4 and Figures 5, 6 demonstrate the results for
each classifier for estimating the performance evaluation
techniques of the models. We used the holdout methods
dividing the flood data into the training phase, validation
phase and testing phase. The training data represents 70%,
while the validation data sets represent 10%, and testing
sets represents 20%. To train the sensor data, it is crucial
to perform two procedures: initially, we construct the first
structure for each model based on the training set, to assess
the error rates as shown in Figure 5, then based on the perfor-
mance and accuracy that models received during the training
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FIGURE 5. ROC Curve Per Classifier for Flood Sensor Data
(Validation/Training Phase).

sets, we estimate the error rate for each model as shown
in Figure 6.

Figures 7 and 8 show the results for each class over the
single classifiers and ensemble classifier. AUC shows out-
comes for each model with three output targets. In AUC
plots, the Y-axis demonstrates the corresponds to each model
entries, whereas the X-axis shows the classes and classifier.
When AUC yields one that refers to an ideal approach, while
an AUC with 0.5 illustrates random generalization. Each bar
in AUC plot is associated with a corresponding curve. The
main advantage of using AUC figure is to offer a standard
graphical form.

Compared to individual ML techniques, ensemble classi-
fier indicated to acquire a great comparable performance and
accuracy, besides being faster. In this aspect, the classification
results in association with evaluation metrics based on con-
fusion the table for three classes [class one, class two, and

FIGURE 6. ROC Curve Per Classifier for Flood Sensor Data (Testing Phase).

class three] are demonstrated in Tables 4 and 5. To elabo-
rate that more, Ensemble classifier illustrated vital overlaps
between inputs features and output classes. The ensemble
classifier outperformed individual classifiers and yield such
an acceptable performance and accuracy for three target out-
put (classes) as shown in the ROC and AUC graphics. Fur-
thermore, this also indicated that the ensemble classifier can
handle multi-class problem compared to individual models
that can handle only two classes problem.

The reason ensemble classifier outperforms individual
models is due to the data variables’ distributions. We found
that flood sensor data has strong non-linearities within the
variables. To build such as accurate classifier, it is signifi-
cant to alter the parameters in each classifier. Accordingly,
to handle large instances in our flood sensor data, neural
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FIGURE 7. AUC per Classifier for Flood sensor data (Training Process).

FIGURE 8. AUC per Classifier for Flood sensor data (Testing Process).

FIGURE 9. ROC for the training data for flood sensor using ensemble
(LSTM + RF).

network and random forest combined some kinds of soft
nonlinear boundaries. In the evaluation performance testing
sets, we applied 200 trees for our random forest model that

FIGURE 10. ROC for testing data flood sensor using ensemble (LSTM+RF).

FIGURE 11. Processing time for individual and ensemble machine
learning classifiers for testing.

were enough to receive smooth of separation. Eventually, the
ensemble classifier generated an optimal and robust results
and this was because individual classifiers suffer from over-
fitting because of dealing with the non-linearities in the data.

VII. CRITICAL DISCUSSION
In this paper, an efficient data science approach is devel-
oped and used to analyze 11 attributes related to flood
sensor data from a total of 4214 records for detection of
water level severity. The accuracy of ensemble LSTM+ RF
classifier is 0.997 in training/validation phase, while an
accuracy of 0.811 was shown in testing using unseen data.
Figures 9 and 10 show the ROC of this classifier for training
and testing, respectively. Furthermore, Figure 11 indicates
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that the ensemble classifiers have readable processing time
in comparison to single classifiers during testing.

LSTM and random forest are two powerful classifiers for
the analysis of data, which offer strong performance when
compared to other models. These types of models applied the
out-of-bag method based on the decision tree model rather
than cross-validation to improve training and testing results.

In general, ensemble classifier preserves the appealing
features of decision trees, such as dealing with irrele-
vant/redundant descriptors. In terms of the training proce-
dure, this model was much faster compared to the ensemble
classifier. A key reason that the ensemble classifier yielded
higher accuracy is that it was able to generalize better by
using combined evidence of its member classifiers. In spite
of a number of samples in the data sets are mislabeled,
the ensemble classifier can easily estimate themissing values,
and work effectively with imbalanced data, which poses a
challenge for other models, for instance, SVM.

As shown in Table 4, the ensemble classifiers generated
high sensitivity and specificity for all the severity level classes
while individual classifiers performed well using the sensi-
tivity and specificity for the normal severity level class and
failed to generate high performance to the other two classes
(medium and dangerous level classes). This is due to the
imbalanced representation of three classes in the dataset.
However, the ensemble model performed comparatively bet-
ter than individual models while simultaneously indicating
superiority in the compromise between sensitivity and speci-
ficity for c2 and c3.

VIII. CONCLUSIONS AND FUTURE WORK
The collection of data through IoT platform and sensors
mounted on the rivers can be used as inputs for the ML tech-
niques to perform data science approaches for the detection
of river flood severities. The proposed ensemble model in this
research showed promising results for the detection of flood
and can provide tools for warning for future flooding. Three
flood data classes are considered in this research including
normal, abnormal and dangerous water level classes. Perfor-
mance evaluation metrics such as sensitivity and specificity
and visualization techniques are used to evaluate the proposed
ensemble machine learning approach. The results indicate
that early warning of flood severity can be obtained using
appropriate ensemble machine learning based data science
techniques. Future work involves the use of particle swarm
optimization and a genetic algorithm for optimization and
selection of our machine learning approaches as well as
the utilization of other deep learning algorithms for future
regression of flood data.

REFERENCES

[1] Gartner. Gartner Says 6.4 Billion Connected ‘Things’ Will Be in Use
in 2017, Up 31 Percent From 2016. Accessed: Feb. 27, 2020. [Online].
Available: https://www.gartner.com/en/newsroom/press-releases/2017-
02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-
up-31-percent-from-2016,

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,
‘‘Internet of Things: A survey on enabling technologies, protocols, and
applications,’’ IEEECommun. Surveys Tuts., vol. 17, no. 4, pp. 2347–2376,
4th Quart., 2015.

[3] M.Mohammadi, A. Al-Fuqaha, S. Sorour, andM.Guizani, ‘‘Deep learning
for IoT big data and streaming analytics: A survey,’’ IEEE Commun.
Surveys Tuts., vol. 20, no. 4, pp. 2923–2960, 4th Quart., 2018.

[4] J. Men, G. Xu, Z. Han, Z. Sun, X. Zhou, W. Lian, and X. Cheng, ‘‘Find-
ing sands in the eyes: Vulnerabilities discovery in IoT with EUFuzzer
on human machine interface,’’ IEEE Access, vol. 7, pp. 103751–103759,
2019.

[5] A. Moraru, M. Pesko, M. Porcius, C. Fortuna, and D. Mladenic, ‘‘Using
machine learning on sensor data,’’ J. Comput. Inf. Technol., vol. 18, no. 4,
pp. 341–347, 2010.

[6] E. Borgia, ‘‘The Internet of Things vision: Key features, applications and
open issues,’’ Comput. Commun., vol. 54, pp. 1–31, Dec. 2014.

[7] A. Y. Sun and B. R. Scanlon, ‘‘How can big data and machine learning
benefit environment and water management: A survey of methods, appli-
cations, and future directions,’’ Environ. Res. Lett., vol. 14, no. 7, p. 28,
2019.

[8] U. K. Panchal, H. Ajmani, and S. Y. Sait, ‘‘Flooding level classifica-
tion by gait analysis of smartphone sensor data,’’ IEEE Access, vol. 7,
pp. 181678–181687, 2019.

[9] G. Furquim, G. Filho, R. Jalali, G. Pessin, R. Pazzi, and J. Ueyama, ‘‘How
to improve fault tolerance in disaster predictions: A case study about flash
floods using IoT, ML and real data,’’ Sensors, vol. 18, no. 3, p. 907, 2018.

[10] M. Bilal, A. Gani, M. Marjani, and N. Malik, ‘‘A study on detection and
monitoring of water quality and flow,’’ in Proc. 12th Int. Conf. Math.,
Actuarial Sci., Comput. Sci. Statist. (MACS), Nov. 2018, pp. 1–6.

[11] K. Tuberson and K. Tremaine, ‘‘How the Internet of Things can prepare
cities for natural disasters,’’ Harvard Bussniss Review, 2017.

[12] I. Al Ridhawi, Y. Kotb, M. Aloqaily, Y. Jararweh, and T. Baker, ‘‘A prof-
itable and energy-efficient cooperative fog solution for IoT services,’’ IEEE
Trans. Ind. Informat., vol. 16, no. 5, pp. 3578–3586, May 2020.

[13] S. Zafar, S. Jangsher, O. Bouachir, M. Aloqaily, and J. B. Othman, ‘‘QoS
enhancement with deep learning-based interference prediction in mobile
IoT,’’ Comput. Commun., vol. 148, pp. 86–97, Dec. 2019.

[14] F. Kreische and K. Zieman, ‘‘Foreword: The Internet of Things and its
potential in international cooperation,’’ Deutsche Gesellschaft für Interna-
tionale Zusammenarbeit, Bonn, Germany, Tech. Rep. 1, 2015.

[15] D. Dinculeană and X. Cheng, ‘‘Vulnerabilities and limitations of MQTT
protocol used between IoT devices,’’ Appl. Sci., vol. 9, no. 5, p. 848, 2019.

[16] T. Khan, S. Ghosh, M. Iqbal, G. Ubakanma, and T. Dagiuklas, ‘‘RESCUE:
A resilient cloud based IoT system for emergency and disaster recov-
ery,’’ in Proc. IEEE 20th Int. Conf. High Perform. Comput. Commun.,
IEEE 16th Int. Conf. Smart City, IEEE 4th Int. Conf. Data Sci. Syst.
(HPCC/SmartCity/DSS), Jun. 2018, pp. 1043–1047.

[17] N. Suri, Z. Zielinski, M. Tortonesi, C. Fuchs, M. Pradhan, K. Wrona,
J. Furtak, D. B. Vasilache, M. Street, V. Pellegrini, G. Benincasa,
A. Morelli, C. Stefanelli, E. Casini, and M. Dyk, ‘‘Exploiting smart city
IoT for disaster recovery operations,’’ in Proc. IEEE 4th World Forum
Internet Things (WF-IoT), Feb. 2018, pp. 458–463.

[18] Y. Kotb, I. Al Ridhawi, M. Aloqaily, T. Baker, Y. Jararweh, and H. Tawfik,
‘‘Cloud-based multi-agent cooperation for IoT devices using workflow-
nets,’’ J. Grid Comput., vol. 17, no. 4, pp. 625–650, Dec. 2019.

[19] A. Sinha, P. Kumar, N. P. Rana, R. Islam, and Y. K. Dwivedi, ‘‘Impact
of Internet of Things (IoT) in disaster management: A task-technology fit
perspective,’’ Ann. Oper. Res., vol. 283, nos. 1–2, pp. 759–794, Dec. 2019.

[20] Z. Maamar, M. Sellami, N. Faci, E. Ugljanin, and Q. Z. Sheng, ‘‘Story-
telling integration of the Internet of Things into business processes,’’ in
Business ProcessManagement Forum. Cham, Switzerland: Springer, 2018,
pp. 127–142.

[21] M. Al-Khafajiy, T. Baker, H. Al-Libawy, Z. Maamar, M. Aloqaily, and
Y. Jararweh, ‘‘Improving fog computing performance via fog-2-fog collab-
oration,’’ Future Gener. Comput. Syst., vol. 100, pp. 266–280, Nov. 2019.

[22] S. Oueida, Y. Kotb, M. Aloqaily, Y. Jararweh, and T. Baker, ‘‘An edge
computing based smart healthcare framework for resource management,’’
Sensors, vol. 18, no. 12, p. 4307, 2018.

[23] D. B. Soubhagyalaxmi, L. S. Bhosle, T. Swetha, P. D. Veena, and
B. V. Chetan, ‘‘Disaster management system using IoT,’’ Int. J. Res. Trends
Innov., vol. 3, no. 6, pp. 148–154, 2018.

[24] R. Beltramo, P. Cantore, E. Vesce, S. Margarita, and P. De Bernardi,
‘‘The Internet of Things for natural risk management,’’ in Perspectives
on Risk, Assessment and Management Paradigms, A. Hessami, Ed. 2018,
pp. 116–139.

VOLUME 8, 2020 70385



M. Khalaf et al.: IoT-Enabled Flood Severity Prediction via Ensemble Machine Learning Models

[25] V. Lempitsky, M. Verhoek, J. A. Noble, and A. Blake, ‘‘Random forest
classification for automatic delineation of myocardium in real-time 3D
echocardiography,’’ in Proc. Int. Conf. Funct. Imag. Modeling Heart.
Berlin, Germany: Springer, 2009, pp. 447–456.

[26] L. Ohno-Machado, ‘‘Medical applications of artificial neural networks:
Connectionist models of survival,’’ Ph.D. dissertation, Stanford Univ.,
Stanford, CA, USA, 1996.

[27] M. Khalaf, A. J. Hussain, R. Keight, D. Al-Jumeily, R. Keenan,
C. Chalmers, P. Fergus, W. Salih, D. H. Abd, and I. O. Idowu, ‘‘Recurrent
neural network architectures for analysing biomedical data sets,’’ in Proc.
10th Int. Conf. Develop. eSyst. Eng. (DeSE), Jun. 2017, pp. 232–237.

[28] X. Chen, X. Zhu, and D. Zhang, ‘‘A discriminant bispectrum feature for
surface electromyogram signal classification,’’ Med. Eng. Phys., vol. 32,
no. 2, pp. 126–135, Mar. 2010.

[29] T. K. Ho, ‘‘The random subspace method for constructing decision
forests,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8,
pp. 832–844, Aug. 1998.

[30] T. K. Ho, ‘‘Random decision forests,’’ in Proc. 3rd Int. Conf. Document
Anal. Recognit., vol. 1, Aug. 1995, pp. 278–282.

[31] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[32] T. K. Ho, ‘‘A data complexity analysis of comparative advantages of deci-
sion forest constructors,’’ Pattern Anal. Appl., vol. 5, no. 2, pp. 102–112,
Jun. 2002.

[33] C. Cortes and V. Vapnik, ‘‘Support-vector networks,’’ Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1995.

[34] V. Vapnik, The Nature of Statistical Learning Theory. Cham, Switzerland:
Springer, 2013.

[35] P. R. Tools. (2013). PRTools5 Introduction Version 5. Accessed:
Feb. 27, 2020. [Online]. Available: http://www.37steps.com/prtools/
prtools5-intro/

[36] B. Fasel, ‘‘Robust face analysis using convolutional neural networks,’’ in
Proc. Object Recognit. Supported User Interact. Service Robots, 2002,
pp. 40–43.

[37] A. Krogh and J. A. Hertz, ‘‘A simple weight decay can improve generaliza-
tion,’’ in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 1992, pp. 950–957.

[38] R. A. Jacobs, ‘‘Increased rates of convergence through learning rate adap-
tation,’’ Neural Netw., vol. 1, no. 4, pp. 295–307, Jan. 1988.

[39] J. S. Bridle, ‘‘Probabilistic interpretation of feedforward classification net-
work outputs, with relationships to statistical pattern recognition,’’ in Neu-
rocomputing (NATO ASI Series), vol. 68, F. F. Soulié and J. Hérault, Eds.
Berlin, Germany: Springer, 1990, pp. 227–236.

[40] K. Richmond, ‘‘Estimating articulatory parameters from the acoustic
speech signal,’’ Ph.D. dissertation, Univ. Edinburgh, Edinburgh, U.K.,
2002.

[41] K. R. Kavitha, A. V. Ram, S. Anandu, S. Karthik, S. Kailas, and
N. M. Arjun, ‘‘PCA-based gene selection for cancer classification,’’ in
Proc. IEEE Int. Conf. Comput. Intell. Comput. Res. (ICCIC), Madurai,
India, Dec. 2018, pp. 1–4.

[42] S. Lawrence and C. L. Giles, ‘‘Overfitting and neural networks: Conjugate
gradient and backpropagation,’’ in Proc. Int. Joint Conf. Neural Netw.,
vol. 1, 2000, pp. 114–119.

[43] O. Fistikoglu and U. Okkan, ‘‘Statistical downscaling of monthly precipi-
tation using NCEP/NCAR reanalysis data for tahtali river basin in turkey,’’
J. Hydrol. Eng., vol. 16, no. 2, pp. 157–164, Feb. 2011.

[44] Ö. Kişi, ‘‘Streamflow forecasting using different artificial neural net-
work algorithms,’’ J. Hydrol. Eng., vol. 12, no. 5, pp. 532–539,
Sep. 2007.

[45] N. S. Altman, ‘‘An introduction to kernel and nearest-neighbor non-
parametric regression,’’ Amer. Statist., vol. 46, no. 3, pp. 175–185,
Aug. 1992.

[46] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[47] F. A. Gers and J. Schmidhuber, ‘‘Recurrent nets that time and count,’’ in
Proc. Int. Joint Conf. Neural Netw., 2000, pp. 189–194.

[48] J. OrShea, K. Crockett, W. Khan, P. Kindynis, A. Antoniades, and
G. Boultadakis, ‘‘Intelligent deception detection through machine based
interviewing,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2018,
pp. 1–8.

[49] M. T. Hagan and M. B. Menhaj, ‘‘Training feedforward networks with
the marquardt algorithm,’’ IEEE Trans. Neural Netw., vol. 5, no. 6,
pp. 989–993, Nov. 1994.

[50] W. Khan and K. Kuru, ‘‘An intelligent system for spoken term detection
that uses belief combination,’’ IEEE Intell. Syst., vol. 32, no. 1, pp. 70–79,
Jan. 2017.

[51] S. N. Alexandropoulos, S. B. Kotsiantis, and M. N. Vrahatis, ‘‘Data
preprocessing in predictive data mining,’’ Knowl. Eng. Rev., vol. 34, p. e1,
Jan. 2019.

[52] K. Kuru and W. Khan, ‘‘Novel hybrid object-based non-parametric clus-
tering approach for grouping similar objects in specific visual domains,’’
Appl. Soft Comput., vol. 62, pp. 667–701, Jan. 2018, doi: 10.1016/j.
asoc.2017.11.007.

[53] L. van derMaaten andG.Hinton, ‘‘Visualizing data using t-SNE,’’ J.Mach.
Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.

[54] S. Jadhav, H. He, and K. Jenkins, ‘‘Information gain directed genetic
algorithm wrapper feature selection for credit rating,’’ Appl. Soft Comput.,
vol. 69, pp. 541–553, Aug. 2018, doi: 10.1016/j.asoc.2018.04.033.

[55] R. A. Sheikh andA. Bhardwaj, ‘‘A review on integrating intrusion detection
model using classifiers and chi-square feature selection,’’ Int. J. Advance
Res., Ideas Innov. Technol., vol. 5, no. 5, pp. 230–233, 2019.

[56] I. S. Thaseen, C. A. Kumar, and A. Ahmad, ‘‘Integrated intrusion detection
model using chi-square feature selection and ensemble of classifiers,’’
Arabian J. Sci. Eng., vol. 44, no. 4, pp. 3357–3368, Apr. 2019, doi:
10.1007/s13369-018-3507-5.

[57] A. B. A. Christopher and S. A. A. Balamurugan, ‘‘Prediction of warning
level in aircraft accidents using data mining techniques,’’ Aeronaut. J.,
vol. 118, no. 1206, pp. 935–952, Aug. 2014.

70386 VOLUME 8, 2020

http://dx.doi.org/10.1016/j.asoc.2017.11.007
http://dx.doi.org/10.1016/j.asoc.2017.11.007
http://dx.doi.org/10.1016/j.asoc.2018.04.033
http://dx.doi.org/10.1007/s13369-018-3507-5

	INTRODUCTION
	DISASTER MANAGEMENTS USING IoT
	CLASSIFICATION OF FLOOD SENSOR DATA
	RANDOM FOREST CLASSIFIER
	SUPPORT VECTOR MACHINES
	ARTIFICIAL NEURAL NETWORKS
	K-NEAREST NEIGHBOUR CLASSIFIER
	LONG-SHORT TERM MEMORY (LSTM)

	METHODOLOGY
	DATA COLLECTION
	PRE-PROCESSING
	EXPLORATORY ANALYSIS
	FEATURE SELECTION

	EXPERIMENTAL DESIGN
	ENSEMBLE CLASSIFIERS

	CLASSIFICATION RESULTS
	CRITICAL DISCUSSION
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

