
Received July 28, 2020, accepted August 8, 2020, date of publication August 12, 2020, date of current version August 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3015976

Surface Optimal Path Planning Using an Extended
Dijkstra Algorithm
MIN LUO 1,2, XIAORONG HOU 1, AND JING YANG1
1School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
2School of Electrical Engineering and Information, Southwest Petroleum University, Chengdu 610500, China

Corresponding author: Xiaorong Hou (houxr@uestc.edu.cn)

ABSTRACT Extensive studies have been conducted on the Dijkstra algorithm owing to its bright prospect.
However, few of them have studied the surface path planning of mobile robots. Currently, some application
fields (e.g., wild ground, planet ground, and game scene) need to solve the optimal surface path. This
paper proposes an extended Dijkstra algorithm. We utilize the Delaunay triangulation to model the surface
environment. Based on keeping the triangle side length unchanged, the triangle mesh on the surface is
equivalently converted into a triangle on the two-dimensional plane. Through this transformation, we set
up the two-dimensional developable passable channel of the surface and solve the optimal route on this
channel. Traversing all the two-dimensional developable and passable paths of the surface, we can get the
shortest route among all the optimal paths. Then the inverse transformation from the two-dimensional plane
coordinates to the corresponding surface coordinates obtains the surface optimal path. The simulation results
show that, compared with the traditional Dijkstra algorithm, this method improves the accuracy of the surface
optimization path in single-robot single-target and multi-robot multi-target path planning tasks.

INDEX TERMS Dijkstra algorithm, path planning, surface, Delaunay triangulation, mobile robots, opti-
mization methods.

I. INTRODUCTION
Dijkstra algorithm is a classical well-known shortest path
routing algorithm in 2D mobile robots’ path planning
researches. It is a simple algorithm for the single-source
shortest path problem, which can effectively calculate the
shortest path to all destinations [1]–[4].

The Dijkstra algorithm was introduced by Dutch computer
scientist Edsger Wybe Dijkstra in 1959. It has been success-
fully applied in fields like mobile robot 2D path planning,
computer science, geographic information science, and trans-
portation, etc. Some recent research based on the Dijkstra
algorithm is shown below [5]–[18].

Wolfgang Fink et al. adopted a multi-objective variant of
the Dijkstra algorithm based on terrain data to achieve the
overall optimal traversal in the 3D surface (2019) [5]. The
gained results were employed in the Global Rover Hori-
zontal Optimization Planner (GRTOP) automation system to
quickly and accurately set up optimized routes for multiple

The associate editor coordinating the review of this manuscript and

approving it for publication was Christopher Kitts .

constraints at the same time. This research enabled GRTOP
to reprogram traversal/task frequently, and optimized traver-
sal and task security. The authors exploited the diamond
square algorithm to create realistic terrain in the surface
environment. Theweight between two consecutive points was
taken as the Euclidean distance between them. The Dijkstra
algorithm was extended to consider multiple targets, and the
weights between adjacent nodes were set as a linear combina-
tion of multiple weights. Each weight corresponded to a spe-
cific target. Through these methods, the Dijkstra algorithm
was applied to the calculation of a three-dimensional optimal
path and could be extended to multi-objective tasks.

Dong Guo et al. improved the traditional Dijkstra algo-
rithm and combined it with the vehicle fuel consumption
and emission measurement model to reduce vehicle fuel
consumption and emissions effectively during driving (2019)
[6]. This method employed a rectangular area (the smallest
bounding rectangle of the ellipse) to limit the search area,
thereby improving the efficiency of the Dijkstra’s algorithm.
According to the time of one day, the Dijkstra’s algorithm
and an established database were used to identify the traffic

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 147827

https://orcid.org/0000-0002-3154-1657
https://orcid.org/0000-0001-8217-8491
https://orcid.org/0000-0001-8078-9360


M. Luo et al.: Surface Optimal Path Planning Using an Extended Dijkstra Algorithm

situation at the same time. The improved Dijkstra algorithm
could not only reduce vehicle fuel consumption and emis-
sions but also avoid time congestion. This method could
be used for vehicle path planning based on dynamic traffic
networks, reducing fuel consumption and emissions during
driving, and improving urban environmental pollution.

Felipe Ribeiro Souza et al. applied the Dijkstra’s method
to tree diagram analysis, using mining blocks as nodes of the
tree for analysis, and used to calculate the lowest cost route
to transport mining blocks to their destination (2019) [7].
The transportation cost was reflected in the arc of the graph,
and it could use Euclidean distance or transportation time to
calculate theminimum path. The results obtained by the Dijk-
stra algorithm provided a non-operational path, to overcome
this problem, adjustments weremade through non-parametric
equations. In this way, the transportation cost of each block
of the model could be determined. Paths based on Euclidean
distance and transit time tended to increase for deeper mines.
Identifying the areas with the largest growth and quantifying
their value correctly could improve the efficiency of mining
planning.

Afonso Henriques Moreira Santos et al. used graph theory
and the Dijkstra’s shortest path algorithm for vertex location,
completed tower positioning based on dynamic programming
to find the optimal vertex set along the route (2019) [8]. This
solution was used to solve the expansion planning problem
of the new Transmission Line (TL), and its goal was to find a
design solution with minimum cost. This method utilized the
Dijkstra’s shortest path algorithm to optimize the transmis-
sion line vertices and calculate the total cost from the source
node to the sink node. The results showed that this method
has a lower design cost than the original TL.

Jesús Balado et al. applied the Dijkstra pathfinding algo-
rithm to the developed urban scene graph, and realized the
task of directly using point clouds in the urban environ-
ment for pathfinding (2019) [9]. The method proposed in
the paper could automatically set up a graph representing
pedestrian navigable urban space, on which the safe and real
routes of pedestrians under different movement skills could
be calculated. The Dijkstra algorithm was utilized to develop
safe routes in real-time graphics. The generated paths could
be employed to make valid obstacle avoidance routes for
pedestrians and wheelchairs.

Jinchuan Tang et al. studied the optimal path selection
method based on the Dijkstra algorithm and combined with
three probabilistic results for the design of Mission-Critical
Push-To-Talk (MCPTT) system for 5G public safety disaster
relief network (2019) [10]. The Dijkstra algorithm was used
to select the best connection, delay, and trust routing. Aiming
at the MCPTT system, the thesis proposed a routing method
based on connection, delay, and trust to provide the best
connection delay trust performance.

Based on the ArcGIS analysis tool, the Dijkstra algorithm
was employed by Lingli Yu et al. for global path plan-
ning to accomplish the path planning and navigation con-
trol system design of 12 meters long driverless electric bus

(2018) [11]. Based on the path planning and driving strategy,
the optimal trajectory was generated by curve fitting technol-
ogy, which fully considered the safety and dynamics of the
driverless bus. This method could improve control accuracy,
reduce the computational complexity, and promote driving
efficiency.

Zheng Zhang et al. adopted an improved Dijkstra algo-
rithm to determine the initial path of each task in the
environment diagram describing the Automatic Guided
Vehicle (AGV) in the grid method (2018) [12]. These authors
proposed a collision-free routing method for AGVs in an
automated warehouse based on collision classification. This
method could deal with possible collisions in automated
warehouses.

Feristah Dalkilic et al. used the Dijkstra’s algorithm to
reduce search space and runtime by applying stage-specific
rules and utilized the algorithm in an intelligent itinerary
planning system to assist passengers in itinerary planning
(2017) [13]. The paper introduced a progressive path search
algorithm to settle this problem, taking into account the num-
ber of transmissions and travel time. This method obtained
a trip planning system by integrating route and timetable
information from different transportation agencies. The sys-
tem was managed to help users make better use of public
transportation to simplify trip planning.

Sai Shao et al. applied a dynamic Dijkstra algorithm to
determine the shortest path between any two adjacent nodes
on the path (2017) [14]. The paper designed an electric vehi-
cle routing scheme with variable charging time and travel
time. Its purpose was to solve the dilemmas of electric vehicle
mileage limitation and charging demand.

Georgios K.D. Saharidis et al. combined the Dijkstra’s
algorithm with a Mixed Integer Linear Programming (MILP)
model to gain the optimal trip (2017) [15]. This multi-mode
path solution could make people prefer to accept the mini-
mum GreenHouse Gas (GHG) emission in various modes of
transportation when traveling. This method could be used in
the construction plan of the public transportation operation
platform to achieve the best travel route for cutting emissions.

Tan Zhi et al. presented an improved ant colony algorithm
to balance the energy consumption of wireless sensor net-
works by studying the theory of Dijkstra’s algorithm (2015)
[16]. The improved ant colony algorithm could increase the
life cycle of wireless sensor networks.

W. C. Lu et al. used the Dijkstra’s algorithm to settle
the feasible air route planning issue, and the shortest path
between the earned airport and the training area could min-
imize the impact on the crowd and the threat to the aircraft
(2013) [17]. This paper aimed to explore the feasible air
routes for light sports aircraft to minimize the impact on
residential areas and the threat of terrain obstacles to the
aircraft.

Deepak Gautam et al. applied the Dijkstra’s algorithm to
bypass obstacles and locate the shortest path from a given
initial position to the final position (2013) [18]. The pur-
pose of the paper to select the Dijkstra’s algorithm was

147828 VOLUME 8, 2020



M. Luo et al.: Surface Optimal Path Planning Using an Extended Dijkstra Algorithm

to study the path planning of quadrotor helicopters in a closed
known environment.

The earlier improved Dijkstra algorithm mainly focused
on the improvement of the time complexity of the traditional
Dijkstra algorithm and the promotion of the Dijkstra algo-
rithm to different fields [19]–[26].

There are three main ways to improve the traditional Dijk-
stra algorithm. One is to analyze and improve the space
complexity of the algorithm to improve storage efficiency and
save space. The second is to analyze and improve the time
complexity of the algorithm. The traditional Dijkstra algo-
rithm has low efficiency and long running time. To improve
operating efficiency and reduce time complexity, many doc-
uments have done a lot of work to improve this. The third
aspect is to apply the algorithm to different fields, open up the
application space of the algorithm and enrich the application
field of the algorithm [5]–[26]. This article is to research
in the third aspect, extending the Dijkstra algorithm to the
optimal path on the curved surface to obtain a more accurate
shortest path.

All the above studies are based on the Euclidean distance
between neighbor nodes in the Dijkstra algorithm path plan-
ning [6]–[26]. The above papers rarely involve the optimal
path of the surface [5]. Wolfgang Fink et al. utilized the
Dijkstra algorithm to solve the 3D surface path planning task,
they still used the Euclidean distance between the two nodes
to calculate the optimal path, and their improvement was to
take the weight as a composite factor, which comprehen-
sively considered the effects of three-dimensional Euclidean
distance, smoothness, roughness, height change, and other
factors.

Many practical problems can be abstracted and trans-
formed into the optimal surface path issue of mobile robots,
such as the field rescue and material transportation route
planning, the planetary ground exploration and development
path planning, 3D game ground travel and war path planning,
etc. The disadvantage of employing the traditional Dijkstra
algorithm directly in surface path planning is that the cal-
culation of each intermediate path weight is based on the
Euclidean distance between adjacent nodes, which will bring
about errors that cannot be ignored in the surface path plan-
ning. Because the optimal path obtained by calculating the
Euclidean distance between nodes may not be on the surface,
it is one of the most fundamental reasons for the optimal
path error of the surface. All of these represent that new tools
and methods are required to improve the surface optimal path
planning process based on the traditional Dijkstra algorithm.
The purpose of this paper is to establish a new general solu-
tion method with a higher precision, which is more suitable
for the solution of the optimal path of the surface than the
traditional Dijkstra model.

The main contributions of this paper are as follows:
1. Propose an approach for calculating the optimal path on a
curved surface; 2. Improve the traditional Dijkstra algorithm
for calculating the optimal path on a curved surface; 3. When
compared with the traditional Dijkstra algorithm, the optimal

path attained by the method proposed in this paper is more
accurate, shorter, and smoother when calculating the optimal
path of the surface. Especially for the case of a large number
of nodes, a large per-unit scale, and a large surface rugged-
ness, the optimal path obtained by the method proposed in
this paper has obvious advantages.

This article first presents the basic principle of the tra-
ditional Dijkstra algorithm (Section 2). Second, it explains
the improved Dijkstra algorithm theory (Section 3). In this
part, we utilize the Delaunay triangulation method to con-
struct the surface map. The key to extending the classical
Dijkstra algorithm is the invariance of the triangle side length
when transforming a triangle on a surface into an equiva-
lent triangle on a 2D plane. We convert the undevelopable
surface channel into an equivalent two-dimensional passable
channel, then solve the best path on the all two-dimensional
passable channels, and finally obtain the best path of the
surface through equivalent inverse transformation. We com-
pare the simulation results of different surface examples to
verify the effectiveness of the extended Dijkstra algorithm
(Section 4). At the end of this paper, a conclusion is given
(Section 5).

II. THE TRADITIONAL DIJKSTRA ALGORITHM
The initial work of the Dijkstra algorithm is only dealing

with the shortest path between two points. Mathematically,
these points must be represented by nodes in the graph net-
work. Bellman Ford implemented the possibility of fixing a
point and determining the shortest path to all other points in
the graph. Paul carried out a common practical application,
using this algorithm to figure out the shortest path between
two cities, considering the street and highway to the destina-
tion. Sniedovich proposed a clear and structured step division
to determine the minimum path between two points in a node
network [1]–[4].

The Dijkstra algorithm (Algorithm 1) has a simple proce-
dure. The essence of the traditional Dijkstra algorithm is to
find out the shortest path between two nodes on a digraph
D = (N ,W ), whereN is the set of all nodes andW is the set of
weighted edges of connected nodes. The Dijkstra algorithm
separates N into two sets, Ne and Nu. Ne is a set of all the
end nodes of the determined shortest path to source node ns.
In the first step, Ne contains only ns. Nu is the set of nodes
to ns with the undetermined shortest path. The nodes in Nu
will be moved to Ne in ascending order of the shortest path
length of the source node ns until there are no nodes in the
set Nu. The path that sequentially connects the source node
ns to all edges of any node nti is the shortest path from ns to
nti. The sum of the corresponding weights is the length of the
Dijkstra algorithm’s shortest path. So, the shortest path from
the source node ns to the target node nt can be won.
From Algorithm 1, we can see that the logic of the tra-

ditional Dijkstra algorithm is to find the Euclidean distance
between nodes, so it can be used to obtain the shortest path
from the start point to the endpoint of a two-dimensional
graph. However, when Algorithm 1 is directly applied to

VOLUME 8, 2020 147829



M. Luo et al.: Surface Optimal Path Planning Using an Extended Dijkstra Algorithm

FIGURE 1. Surface Delaunay triangulation model. (a) The original surface. (b) 169 nodes Delaunay triangulation model. (c) 625 nodes
Delaunay triangulation model.

calculate the shortest path between two points on a curved
surface, the greater the curvature of the surface, the greater the
error. The Euclidean distance between nodes and the distance
between two points on the surface are two different issues.

III. THE EXTENDED DIJKSTRA ALGORITHM
In this section, the extended Dijkstra algorithm is intro-
duced to resolve the surface optimal path planning task.
The extended Dijkstra algorithm is an algorithm to transfer
surface terrain map into a 2D map along the passable paths
based on the invariance of the triangle side length for surface
Delaunay Triangulation grid map.

The first step we shall do is to model a surface map by
the Delaunay triangulation method. Delaunay triangulation
is one of the most commonly used triangular mesh modeling
methods. Compared with the square grid map, the Delaunay
triangulation algorithm can provide more accurate surface
information, and generate a smoother path [27], [28]. Com-
pared with the digital point cloud method, it is simpler and
more convenient.

The expression of the Delaunay triangle mesh subdivision
algorithm makes each triangle unit has 12 adjacent units.
Therefore, one non-boundary node can provide 12 feasible
motion directions, thus this method can provide a smooth
motion planning of the path. The Delaunay triangular grid
map method [29], [30] is a map representation method using
the triangular mesh as the cartographic unit, which can well
express the fluctuation characteristics of the surface.

The accuracy and resolution of the surface map depend on
the size of the triangle mesh. The smaller the mesh, the higher
the accuracy. The choice of mesh size depends on the needing
resolution requirement, as shown in Fig. 1.

For a particular deterministic surface map, choosing a
larger mesh size map grid cell means fewer nodes and less
resolution. Fig. 1 (a) shows an original surface map. And
Fig. 1 (b) shows an example of the large mesh size surface
map model of Fig. 1 (a), Fig. 1 (b) has 169 nodes to repre-
sent the surface characteristics information. Similarly, Fig. 1
(c) shows an example of the small mesh size surface map
model of Fig. 1 (a), Fig. 1(c) has 625 nodes. Fig. 1 (c) has
a higher resolution and can better represent the fluctuation
characteristics of the surface of Fig. 1 (a). Fig. 1 (b) has fewer
nodes, less mathematical complexity, and less program cost
time. Therefore, in the actual design, the mesh size can be
reasonably selected according to the required accuracy and
time cost.

In Fig. 2 and Fig. 3, the red polygons are the obstructions
that the robot cannot travel, and the other areas inside the map
boundary are passable. The robot is R and the target is T. The
numbers denoted in the Figs are the node serial numbers.

Fig. 2 (a) shows an original surface map example.
The side length of each square (per-unit scale) is taken
as 0.25 in Fig. 2. Using the traditional Dijkstra algo-
rithm logic (Algorithm 1), we can get the black color
curve optimal path lts(1,6,11,16). Because the traditional
Dijkstra algorithm is based on the Euclidean distance

147830 VOLUME 8, 2020



M. Luo et al.: Surface Optimal Path Planning Using an Extended Dijkstra Algorithm

FIGURE 2. The extended Dijkstra algorithm theory diagram. (a) The original surface. (b) 16 nodes Dijkstra algorithm optimal
path (black color) and the extended Dijkstra algorithm equivalent 2D passable path (green color). (c) 16 nodes the extended
Dijkstra algorithm optimal path (magenta color).

FIGURE 3. Four algorithms optimal path length comparison diagram. (The extended Dijkstra algorithm proposed in this paper is
magenta solid line. The traditional Dijkstra algorithm is black solid line. The extended Dijkstra algorithm proposed in literature [5] is
green dotted line. The A* algorithm is blue dotted line.) (a) 169 nodes example. (b) 196 nodes example. (c) 225 nodes example.

between adjacent nodes, the optimal path obtained is
lts(1,6,11,16) =

√
(x1 − x6)2 + (y1 − y6)2 + (z1 − z6)2 +√

(x6 − x11)2 + (y6 − y11)2 + (z6 − z11)2 +√
(x11 − x16)2 + (y11 − y16)2 + (z11 − z16)2. Obviously, we

can see from Fig. 2 (b), the black color curve optimal path
lts(1,6,11,16) maybe above, below, or on the surface. This
causes errors in the optimal path of the surface.

Next, we showed the extended Dijkstra algorithm logic
theory in Algorithm 2. The core idea of the extended Dijkstra
algorithm is to find out the shortest path on a surface digraph

Dsg = (Nsg,Wsg), where Nsg is the set of all nodes and Wsg
is the set of weighted edges of connected nodes.

Then, we are going to introduce how to apply the invariant
principle of triangular side length to convert a surface triangle
into a triangle on the two-dimensional plane.

Shown in Fig. 2 (b), the surface nodes 1, 2, 5, 6 are
forming two three-dimensional triangulations 1s(1,2,5) and
1s(2,5,6) in white color. Keeping the invariance of the triangle
side length, using Algorithm 2, the equivalent triangulation
1p(1,2,5) and 1p(2,5,6) in green color on the 2D plane can be

VOLUME 8, 2020 147831



M. Luo et al.: Surface Optimal Path Planning Using an Extended Dijkstra Algorithm

Algorithm 1 The Traditional Dijkstra Algorithm Framework
Input:

A bidirected graph with weights D = (N ,W ), the set
of all nodes N , the set of weighted edges of connected
nodes W .
The source node ns.
The target node nt .

Output:
Shortest path and the length from the source node ns to
the target node nt .

1: Initialization.
Visited nodes Ne = ns.
d(ns) = 0,
where d(nti) is the minimum cost of the shortest path
from ns to nti.
Nu = N − Ne,
where Nu is the set of nodes to ns with the undetermined
shortest path.
d(nti) = min(W (ns, nti)), if nti is a successor to ns, or else,
d(nti) = ∞,
where W (i, j) is the cost between node i and node j.

2: Repeat the following steps until there are no nodes in the
set Nu.
2.1 Put the node in Nu that have the minimum cost to the
old ns as the new source ns. Move the new source node
ns to Ne;
2.2 Set d(nti) = d(ns)+ min(W (ns, nti)).

3: Find the shortest path from the source node ns to the
target node nt .

4: return d(nt ), Ne.

found. In this way, the two-dimensional equivalent triangle
adjacent to the two-dimensional equivalent triangle obtained
in the previous step continues to travel along the passable
passage from R to T until the last triangle with T node as
the vertex of the triangle is obtained.

According to Algorithm 2, holding the length of each side
of the triangle unchanged, the triangular meshes of the curved
surface can be sequentially transformed into triangles on the
two-dimensional plane one by one, to achieve an equivalent
passable channel on the two-dimensional plane. Solve the
best path of the two-dimensional equivalent passable tri-
angular channel, and then traverse all the two-dimensional
passable channels to attain the optimal path from the starting
point to the endpoint of the equivalent two-dimensional plane.
Finally, a simple inverse conversion of equivalent coordinates
can secure the optimal path of the equivalent surface.
Ndgpi is the set of all 2D nodes and Wdgpi is the set of

weighted edges of connected nodes on the 2D passable pas-
sage. Then, we separate Ndgpi into two sets, Nedgpi and Nudgpi.
Nedgpi is a set of all the end nodes of the determined shortest
path to the equivalent 2D source node ndsg. In the first step,
Nedgpi contains the only ndsg. Nudgpi is the set of nodes to ndsg
with an undetermined shortest path. The nodes in Nudgpi will

Algorithm 2 The Extended Dijkstra Algorithm Framework
Input:

A surface graph Dsg = (Nsg,Wsg), the set of all nodes
Nsg, the set of weighted edges of connected nodesWsg.
The source node nssg, R. The target node nstg, T.

Output:
Shortest surface paths and their lengths from the source
node nssg to the target node nstg.

1: Convert the triangle which has the R robot’s start point
on the surface into an equivalent triangle on a 2D plane
based on keeping the triangle side length unchanged.
Continue this process to find a two-dimensional equiv-
alent triangle adjacent to the two-dimensional equivalent
triangle obtained in the previous step along a passable
path from R to T until the last one tirangle with T node
as the triangle vertex found.

2: Get the 2D equivalent passable passage graph Ddgpi =
(Ndgpi,Wdgpi), where Ndgpi is the set of all nodes and
Wdgpi is the set of weighted edges of connected nodes
on the 2D equivalent passable passage graph.

3: Get the 2D source node ndsg, and the 2D target node ndtg.
4: Compute Wdgpi on the passable path in the two-

dimensional plane.
4.1 Initialization.
Visited nodes Nedgpi = ndsg.
d(ndsg) = 0, where d(ndtgpi) is the minimum cost of the
shortest path from ndsg to ndtgpi.
Nudgpi = Ndgpi − Nedgpi, where Nudgpi is the the set of
nodes to ndsg with the undetermined shortest path.
d(ndtgpi) = min(W (ndgpi, ndtgpi)), if ndtgpi is a successor
to ndsg, or else, d(ndtgpi) = ∞, where Wdgpi(i, j) is the
cost between the node i and j.
4.2 Repeat the following steps until there are no nodes in
the set Nudgpi:
Set the node in Nudgpi that have the minimum cost to
the old ndsg as the new source ndsg. Move the new
source node ndsg to Nedgpi. Set d(ndtgpi) = d(ndsg) +
min(W (ndgpi, ndtgpi)).

5: Find the other passable passage from R to T in a different
order, and repeat Step 1 - Step 4 until find the shortest
paths for all passable passages.

6: Compute d(nstg) and Nesg of the surface by equivalent
inverse coordinate transformation from the shortest 2D
path.

7: return d(nstg), Nesg.

be moved to Nedgpi in ascending order of the shortest path
length of the source node ndsg until there are no nodes in
the set Nudgpi. The path that sequentially connects the source
node ndsg to all edges of any node ndtgpi is the shortest path
from ndsg to ndtgpi. The sum of the corresponding weights
is the length of the 2D passable passage’s shortest path. So,
the shortest path from the source node ndsg to the target node
ndtg can be won.

147832 VOLUME 8, 2020



M. Luo et al.: Surface Optimal Path Planning Using an Extended Dijkstra Algorithm

Employing this method and by extension, we can eas-
ily take the 2D equivalent expansion channel of a surface
passable path from the robot R’s initial position to the tar-
get T’s position. Thus, we can adapt the extended Dijkstra
algorithm (Algorithm 2) to work out the optimal path on
the acquired equivalent green 2D path below in Fig. 2 (b).
A graph may have multiple passable channels. Computing
all passable equivalent path on the 2D plane, we can get the
shortest optimal path, the magenta color curve lp(1,6,11,16)
shown in Fig. 2 (b). Finally, we use the equivalent coordinate
transformation to get the surface optimal path from the robot
R’s initial position (nssg) to the target T’s position (nstg ),
the magenta color curve les(1,6,11,16) shown in Fig. 2(c). And
the magenta color curve is on the surface, not above or below
the surface.

From Algorithm 2, we can see utilizing the extended Dijk-
stra algorithm, the surface smooth optimal path can be gotten.
Therefore, in principle, the surface optimal path solved by this
proposed method is more accurate and shorter than the sur-
face optimal path solved by the traditional Dijkstra algorithm
with the same nodes number.

Furthermore, the traditional Dijkstra algorithm optimal
path is not a true path that falls on a triangulation mesh, and
may often have path segments above or below the triangula-
tion mesh. When the robot tracks along with the traditional
Dijkstra algorithm optimal path, it cannot travel higher or
lower than the curved surface and must travel against the
curved surface (Refer to the detailed diagram in Fig. 2 (b),
lts(6,11) is the Euclidean space distance between node 6 and
node 11, which is higher than the equivalent triangle blocks
1s(6,7,10) and1s(7,10,11), not on these two triangles). Accord-
ingly, the actual path length with the traditional Dijkstra
algorithm optimal path will be much larger than the theory
or simulation path length. The further the path is traveled or
the greater the curvature of the curved surface, the greater
the actual travel path is larger than the theoretical simulation
path. And this path error is caused by a sharp bump or a
large depression on the map, which may cause malfunctions
such as the robot loses the direction of travel or walks on the
wrong route. The improved Dijkstra algorithm optimal path
is a true path that falls on an equivalent angulation mesh, so it
is only slightly little different from the surface path of the real
robot. On the same surface with the same number of nodes,
the extended algorithm proposed in this paper can get a more
accurate and smoother optimal path.

To further illustrate the characteristics of the extended
algorithm in this paper, here is a comparative analysis of
four algorithms, as shown in Fig. 3 and Table 1. The
four algorithms for comparative analysis are the extended
Dijkstra algorithm presented in this paper (magenta solid
curve), the traditional Dijkstra algorithm (black solid curve),
the extended algorithm introduced in literature [5] (green
dotted curve), and the A* algorithm (blue dotted curve). For
the extended algorithm proposed in [5], we comprehensively
compared the simulation results of various factor parameter
schemes proposed in the article [5], and finally selected the

factor parameters α = 1/3, β = 1/3, γ = 1/3 that can
obtain a shorter path. For the A* algorithm, we compared the
simulation results of a variety of heuristic functionsH (n) and
selected the H (n) that can obtain a shorter path, taking the
Euclidean distance and the Manhattan distance into account.

TABLE 1. Four algorithms optimal path length comparison.

It can be seen from Fig. 3 that only the optimal path
obtained by the extended algorithm proposed in this paper
is smooth and the optimal paths obtained by the other three
algorithms are all non-smooth paths composed of polyline
segments. The optimal path obtained by the algorithm pro-
posed in this paper is based on a triangular mesh surface,
while the optimal path obtained by the other three algo-
rithms is the space Euclidean distance or Manhattan distance
between the nodes. Therefore, the paths obtained by the other
three algorithms all have line segments higher or lower than
the triangle surface. On the one hand, it causes errors in path
calculation, and on the other hand, it will cause problems
such as malfunction or loss of direction when the robot is
walking. More accurate paths have practical significance and
value for occasions with higher precision requirements, such
as surgical operations on fine surfaces or finishing on surfaces
and other occasions with high error requirements.

From Fig. 3 and Table 1, the optimal paths acquired by the
extended Dijkstra algorithm introduced in this paper are the
shortest. As the number of nodes and the distance per-unit
length increase, the path difference between the traditional
Dijkstra algorithm and the algorithm proposed in this paper
also increases, and the maximum error is about 4.91%. The
maximum error of the path difference between the algorithm
proposed in [5] and the algorithm in this paper is about
7.77%, and the maximum error of the path obtained by the A*
algorithm and the algorithm in this paper is about 4.92%. The
side length of each square (per-unit scale) is taken as 0.25 in
Fig. 3 (a). In Fig. 3 (b), the side length of each square is 0.5,
and in Fig.3 (c), it is 1.5.

When comparing these four algorithms in this paper,
we can see that the purpose of the traditional Dijkstra algo-
rithm is mainly to find the shortest path between nodes based
on the Euclidean space distance. Literature [5] introduces
the extended Dijkstra algorithm to select a flatter optimal
path based on factors such as the shortest path, elevation
difference, and ground smoothness. The A* algorithm is
based on a reasonable selection of heuristic functions, and the
search time for the shortest path is shorter than the traditional
Dijkstra algorithm. And the extended algorithm proposed in
this paper can get a smoother and shorter optimal path of

VOLUME 8, 2020 147833



M. Luo et al.: Surface Optimal Path Planning Using an Extended Dijkstra Algorithm

FIGURE 4. 1089 nodes example. (a) The extended Dijkstra algorithm
method. (b) The traditional Dijkstra algorithm method.

the surface than the shortest path obtained by the traditional
Dijkstra algorithm. Both the curves in Figure 3 and the data
in Table 1 confirm the effectiveness of the algorithm in this
paper.

IV. MATLAB SIMULATION VERIFICATION
In this section, the MATLAB examples will further verify
the effectiveness of this extended Dijkstra algorithm. First, 1-
robot 1-target surface path planning simulation experiments
with large numbers of nodes by the extended Dijkstra algo-
rithm are conducted and compared the simulation results with
the traditional Dijkstra algorithm simulation optimal path
solutions. Furthermore, the simulation experiments of multi-
robot and multi-target path planning are carried out. After
many experiments, the results show that the improved Dijk-
stra algorithm introduced in this paper can provide smoother
and shorter paths in 1-robot 1-target and multi-robot multi-
target path planning tasks compared with the traditional Dijk-
stra algorithm.

In the Figs in this section, the red polygons are obstructions
where the mobile robot cannot travel, and the other areas
inside the map boundary are passable. The robot is R and
the target is T in the Figs. The extended Dijkstra algorithm
surface optimal path curve is in magenta, the black curve
indicates the traditional Dijkstra algorithm surface optimal
path.

A. 1-ROBOT 1-TARGET SURFACE PATH PLANNING
Firstly, we perform 1-robot 1-target surface path planning
Matlab simulation experiments with large numbers of nodes.
We use the Delaunay Triangulation Algorithm to build the
surface environment with the required resolution in this
section. And Algorithm 2’s logic theory is employed to solve
the surface optimal path.

In Fig. 4, we do a 1089 nodes surface simulation example
experiment. The robot initial position is [0, 1, 0.120], and the
target coordinate position is [8, 9, 1.190], as shown in Table 2.

TABLE 2. 1-robot 1-target surface optimal path comparison.

FIGURE 5. 2401 nodes example. (a) The extended Dijkstra algorithm
method. (b) The traditional Dijkstra algorithm method.

The magenta color curve in Fig. 4 (a) shows the optimal path
calculated by the extended Dijkstra algorithm. It is smoother
than the black curve shown in Fig. 4 (b) obtained by the
traditional Dijkstra algorithm. And the optimal path length
in magenta color is about 11.812, it is shorter than the black
color optimal curve length 12.582.

We do a 2401 nodes surface simulation example exper-
iment in Fig. 5. The robot’s initial coordinate position
in Fig. 5 is [0, 1, 1.133], the target position is [6, 7, 1.142],
shown in Table 2. The magenta color optimal path length
by the extended Dijkstra algorithm is about 8.798, and it is
shorter than the black color optimal curve length 10.818 by
the traditional Dijkstra algorithm, too.

A 4225 nodes surface path planning example is in Fig. 6.
Table 2 exhibits the data of the simulation experiment. A con-
clusion drawn from the comparison of experimental data
in Table 2 is that the extended Dijkstra algorithm is superior
to the traditional Dijkstra algorithm in solving the 1-robot
1-target shortest path of the surface with large numbers
of nodes, the extended Dijkstra algorithm optimal path is
smoother and shorter. From Table 2, the maximum differ-
ence rate between the traditional Dijkstra algorithm and the
extended Dijkstra algorithm is about 22.96%. The side length
of each square (per-unit scale) is 0.25 in Fig. 4 and Fig. 6, and
the per-unit scale is 0.125 in Fig. 5.

B. MULTI-ROBOT MULTI-TARGET SURFACE PATH
PLANNING
Next, we perform multi-robot multi-target surface path
planning Matlab simulation experiments. We extend

147834 VOLUME 8, 2020



M. Luo et al.: Surface Optimal Path Planning Using an Extended Dijkstra Algorithm

FIGURE 6. 4225 nodes example. (a) The extended Dijkstra algorithm
method. (b) The traditional Dijkstra algorithm method.

FIGURE 7. 625 nodes 2-robot 1-target example. (a) The extended dijkstra
algorithm method. (b) The traditional Dijkstra algorithm method.

Algorithm 2 to multi-robot multi-target surface path planning
tasks and carry out MATLAB simulation experiments in this
section, keeping the simulation experiment settings consis-
tent with the previous subsection.

In Fig. 7, we do a 625 nodes 2-robot 1-target surface
path planning example experiment. The R1 robot’s ini-
tial position is [0, 1, 0.569], the R2 robot’s initial posi-
tion is [2, 5.25, 0.789], and the target coordinate position is
[6, 7, 0.742], as shown in Table 3. The magenta color curve
length in Fig. 7 (a) from R1 to T is about 8.956, the magenta
color curve length in Fig. 7 (a) from R2 to T is about 4.398.
And, the black color curve length in Fig. 7 (b) from R1 to T is
about 11.853, the black color curve length in Fig. 7 (b) from
R2 to T is 4.732. So, according to the experimental curves and
data in Figure 7 and Table 3, the optimal paths obtained by
the extended Dijkstra algorithm are shorter than the optimal
paths calculated by the traditional Dijkstra algorithm.

FIGURE 8. 289 nodes 1-robot 3-target example. (a) The extended Dijkstra
algorithm method. (b) The traditional Dijkstra algorithm method.

FIGURE 9. 625 nodes 1-robot 2-target example. (a) The extended Dijkstra
algorithm method. (b) The traditional Dijkstra algorithm method.

Fig. 8 shows a 289 nodes 1-robot 3-target surface path plan-
ning example. The R robot’s initial position is [0, 1, 0.12],
the T1 position is [8, 9, 1.190], the T2 coordinate position is
[5, 4.5, 0.897], and the T3 position is [1.5, 3.5, 0.589], shown
in Table 3. The magenta color curve length in Fig. 8 (a) from
R to T1 is about 11.858, the magenta color curve length from
T1 to T2 is about 5.615, and the magenta color curve length
from T2 to T3 is about 4.224. The black color curve length
in Fig. 8 (b) from R to T1 is about 14.626, the black color
curve length from T1 to T2 is about 6.398, and the black
color curve length from T2 to T3 is about 4.572. According
to the experimental curves and data in Figure 8 and Table 3,
the optimal paths obtained by the extended Dijkstra algorithm
are always shorter and smoother than the optimal paths cal-
culated by the traditional Dijkstra algorithm, too.

Fig. 9 shows a 625 nodes 1-robot 2-target surface path
planning example. Fig. 10 is a 289 nodes 3-robot 2-target
surface example. Fig. 11 is a 441 nodes 3-robot 2-target sur-
face example. The experimental data are all filled in Table 3.

VOLUME 8, 2020 147835



M. Luo et al.: Surface Optimal Path Planning Using an Extended Dijkstra Algorithm

TABLE 3. Multi-robot multi-target surface optimal path comparison.

FIGURE 10. 289 nodes 3-robot 2-target example. (a) The extended
Dijkstra algorithm method. (b) The traditional Dijkstra algorithm method.

According to the experimental curves in these three fig-
ures and the simulation data in Table 3, it is easy to prove
that the extended Dijkstra algorithm proposed by this subsec-
tion can obtain a more accurate and shorter surface optimal
path than the traditional Dijkstra method. From Table 3,
the maximum difference rate between the traditional Dijkstra
algorithm and the extended Dijkstra algorithm is 32.35%.
The per-unit scale is 0.25 in Fig. 7, Fig. 9, and Fig. 11, and
in Fig. 8 and Fig. 10, the per-unit scale is 0.5.

The above simulation results show that the improved
Dijkstra algorithm can still effectively calculate the optimal
path of the surface in multi-robot and multi-target scenarios.
Moreover, compared with the traditional algorithm, the curve
is smoother and the path is always shorter.

The simulation research in this section finds that whether
it is a single-robot single-object path planning task or a

FIGURE 11. Comparion graph of 4225 nodes example. (a) The extended
Dijkstra algorithm method. (b) The traditional Dijkstra algorithm method.

multi-robot multi-object path planning task, the extended
algorithm can obtain a more accurate and smoother optimal
path than the traditional algorithm, and usually, the path
obtained by the extended algorithm is shorter.

V. CONCLUSION
To improve the error of the traditional Dijkstra algorithm
when studying the surface optimal path task, we introduce
the extended Dijkstra algorithm. The reason for the error of
the traditional Dijkstra algorithm in researching the optimal
path task of the surface is that it uses the Euclidean dis-
tance algorithm to calculate the path length between adjacent
nodes. This is not a problem for the optimal path of a two-
dimensional plane, but it will produce errors for the optimal
path of a surface. Nowadays, more and more application

147836 VOLUME 8, 2020



M. Luo et al.: Surface Optimal Path Planning Using an Extended Dijkstra Algorithm

scenarios want to find the optimal path of the surface. There-
fore, it is necessary to expand the research on the traditional
optimal path algorithm to meet the needs of the new era.

In this paper, we first introduce an improved Dijkstra
algorithm approach to solve the optimal path of the surface.
We utilize the Delaunay triangulation method to model the
surface environment. On the Delaunay triangulation map,
we keep the triangular side length unchanged when trans-
forming the triangular mesh on the surface into the corre-
sponding triangle in the two-dimensional plane. Through the
previous transformation, we attain the robot’s accessible pas-
sages of the two-dimensional plane. Solve the shortest path in
the two-dimensional plane, and then find the corresponding
shortest path on the surface through equivalent coordinate
inverse transformation.

Compared with the traditional Dijkstra algorithm, this
approach extended the Dijkstra algorithm’s research scope
to the surface path planning field. The improved algorithm
is suitable for the single-robot single-target project and the
multi-robot multi-target project. And, compared with the tra-
ditional Dijkstra algorithm, the extended Dijkstra algorithm
can acquire more accurate and shorter surface optimal path,
which is demonstrated by the different MATLAB simulation
examples in complex surface environments.

The smoother and shorter path obtained in this paper comes
at the expense of increased time cost. In the future, we will
combine the work of reducing time cost in the literature [31]
to further study the method of reducing the time cost of
this algorithm, so that the algorithm can be used in practical
research more conveniently and quickly.

REFERENCES
[1] K.Wei, Y. Gao,W. Zhang, and S. Lin, ‘‘AmodifiedDijkstra’s algorithm for

solving the problem of finding themaximum load path,’’ inProc. IEEE 2nd
Int. Conf. Inf. Comput. Technol. (ICICT), Kahului, HI, USA, Mar. 2019,
pp. 10–13, doi: 10.1109/INFOCT.2019.8711024.

[2] A. Alyasin, E. I. Abbas, and S. D. Hasan, ‘‘An efficient optimal path
finding for mobile robot based on dijkstra method,’’ in Proc. 4th Sci-
entific Int. Conf. Najaf (SICN), Al-Najef, Iraq, Apr. 2019, pp. 11–14,
doi: 10.1109/SICN47020.2019.9019345.

[3] Yujin and G. Xiaoxue, ‘‘Optimal route planning of parking lot
based on dijkstra algorithm,’’ in Proc. Int. Conf. Robots Intell. Syst.
(ICRIS), Huai’an, China, Oct. 2017, pp. 221–224, doi: 10.1109/ICRIS.
2017.62.

[4] M. A. Djojo and K. Karyono, ‘‘Computational load analysis of dijk-
stra, A, and floyd-warshall algorithms in mesh network,’’ in Proc.
Int. Conf. Robot., Biomimetics, Intell. Comput. Syst., Jogjakarta, IN,
USA, Nov. 2013, pp. 104–108, doi: 10.1109/ROBIONETICS.2013.
6743587.

[5] W. Fink, V. R. Baker, A. J.-W. Brooks, M. Flammia, J. M. Dohm, and
M. A. Tarbell, ‘‘Globally optimal rover traverse planning in 3D using
Dijkstra’s algorithm for multi-objective deployment scenarios,’’ Planet.
Space Sci., vol. 179, pp. 1–9, Dec. 2019, doi: 10.1016/j.pss.2019.
104707.

[6] D. Guo, J.Wang, J. B. Zhao, F. Sun, S. Gao, C. D. Li,M. H. Li, and C. C. Li,
‘‘A vehicle path planning method based on a dynamic traffic network that
considers fuel consumption and emissions,’’ Sci. Total Environ., vol. 663,
pp. 935–943, May 2019, doi: 10.1016/j.scitotenv.2019.01.222.

[7] F. R. Souza, T. R. Cámara, V. F. N. Torres, B. Nader, and
R. Galery, ‘‘Mine fleet cost evaluation–Dijkstra’s optimized path,’’
REM—Int. Eng. J., vol. 72, no. 2, pp. 321–328, Jun. 2019, doi: 10.1590/
0370-44672018720124.

[8] A. H. M. Santos, R. M. D. Lima, C. R. S. Pereira, R. Osis,
G. O. S. Medeiros, A. R. D. Queiroz, B. K. Flauzino, A. R. P. C. Cardoso,
L. C. Junior, R. A. D. Santos, and E. L. C. Junior, ‘‘Optimizing routing and
tower spotting of electricity transmission lines: An integration of geograph-
ical data and engineering aspects into decision-making,’’ Electr. Power
Syst. Res., vol. 176, pp. 1–12, Jul. 2019, doi: 10.1016/j.epsr.2019.105953.

[9] J. Balado, L. Díaz-Vilariño, P. Arias, and H. Lorenzo, ‘‘Point clouds
for direct pedestrian pathfinding in urban environments,’’ ISPRS
J. Photogramm. Remote Sens., vol. 148, pp. 184–196, Feb. 2019,
doi: 10.1016/j.isprsjprs.2019.01.004.

[10] J. Tang, G. Chen, X. Li, and J. P. Coon, ‘‘Route selection based on
connectivity-delay-trust in public safety networks,’’ IEEE Syst. J., vol. 13,
no. 2, pp. 1567–1576, Jun. 2019, doi: 10.1109/JSYST.2018.2813929.

[11] L. Yu, D. Kong, X. Shao, and X. Yan, ‘‘A path planning and navigation
control system design for driverless electric bus,’’ IEEE Access, vol. 6,
pp. 53960–53975, 2018, doi: 10.1109/ACCESS.2018.2868339.

[12] Z. Zhang, Q. Guo, J. Chen, and P. Yuan, ‘‘Collision-free route plan-
ning for multiple AGVs in an automated warehouse based on col-
lision classification,’’ IEEE Access, vol. 6, pp. 26022–26035, 2018,
doi: 10.1109/ACCESS.2018.2819199.

[13] F. Dalkäç, Y. Doäan, D. Birant, R. A. Kut, and R. Yälmaz, ‘‘A grad-
ual approach for multimodel journey planning: A case study in izmir,
turkey,’’ J. Adv. Transp., vol. 2017, pp. 1–14, 2017, doi: 10.1155/32017/
5656323.

[14] S. Shao, W. Guan, B. Ran, Z. He, and J. Bi, ‘‘Electric vehicle rout-
ing problem with charging time and variable travel time,’’ Math. Prob-
lems Eng., vol. 2017, Jan. 2017, Art. no. 5098183, doi: 10.1155/2017/
5098183.

[15] G. K. D. Saharidis, D. Rizopoulos, A. Fragkogios, and C. Chatzigeorgiou,
‘‘A hybrid approach to the problem of journey planning with the use of
mathematical programming and modern techniques,’’ Transp. Res. Proce-
dia, vol. 24, pp. 401–409, Oct. 2017, doi: 10.1016/j.trpro.2017.05.094.

[16] T. Zhi and Z. Hui, ‘‘An improved ant colony routing algorithm for WSNs,’’
J. Sensors, vol. 2015, pp. 1–4, Dec. 2015, doi: 10.1155/2015/438290.

[17] W. C. Lu, M. T. Lee, and M. W. Wang, ‘‘Route planning for light-sport
aircraft in constrained airspace,’’ Procedia Eng., vol. 67, pp. 140–146,
2013, doi: 10.1016/j.proeng.2013.12.013.

[18] D. Gautam and C. Ha, ‘‘Control of a quadrotor using a smart self-
tuning fuzzy PID controller,’’ Int. J. Adv. Robotic Syst., vol. 10, pp. 1–9,
Aug. 2013, doi: 10.5772/56911.

[19] T.-H. Kim and I.-C. Park, ‘‘High-throughput and area-efficient MIMO
symbol detection based on modified Dijkstra’s search,’’ IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 57, no. 7, pp. 1756–1766, Jul. 2010,
doi: 10.1109/TCSI.2009.2034235.

[20] Z. Pan, L. Yan, A. C. Winstanley, A. S. Fotheringham, and J. Zheng,
‘‘A 2-D ESPO algorithm and its application in pedestrian path planning
considering human behavior,’’ in Proc. 3rd Int. Conf. Multimedia Ubiqui-
tous Eng., Qingdao, China, Jun. 2009, pp. 485–491, doi: 10.1109/MUE.
2009.86.

[21] A. Chen, A. K.-S.Wong, and C.-T. Lea, ‘‘Routing and time-slot assignment
in optical TDM networks,’’ IEEE J. Sel. Areas Commun., vol. 22, no. 9,
pp. 1648–1657, Nov. 2004, doi: 10.1109/JSAC.2004.833832.

[22] Bast, Mehlhorn, Schäfer, and Tamaki, ‘‘A heuristic for Dijkstra’s algorithm
with many targets and its use in weighted matching algorithms,’’ Algorith-
mica, vol. 36, no. 1, pp. 75–88, May 2003, doi: 10.1007/s00453-002-1008-
z.

[23] M. Noto and H. Sato, ‘‘A method for the shortest path search by
extended Dijkstra algorithm,’’ in Proc. IEEE Int. Conf. Syst., Man
Cybern., Nashville, TN, USA, Oct. 2000, pp. 2316–2320, doi: 10.1109/
ICSMC.2000.886462.

[24] D. Cavendish and M. Gerla, ‘‘On routing with QOS constraints in ATM
networks,’’ in The International Federation for Information Processing,
A. Tantawy, Ed. Boston, MA, USA: Springer, 1994.

[25] R. V. Helgason, J. L. Kennington, and B. D. Stewart, ‘‘The one-to-one
shortest-path problem: An empirical analysis with the two-tree dijkstra
algorithm,’’ Comput. Optim. Appl., vol. 2, no. 1, pp. 47–75, Jun. 1993,
doi: 10.1007/BF01299142.

[26] R. B. K. Dewar, S. M. Merritt, and M. Sharir, ‘‘Some modified algorithms
for Dijkstra’s longest upsequence problem,’’ Acta Inf., vol. 18, no. 1,
pp. 1–15, Feb. 1982, doi: 10.1007/BF00625277.

[27] M. Liu, ‘‘Robotic online path planning on point cloud,’’ IEEE Trans.
Cybern., vol. 46, no. 5, pp. 1217–1228, May 2016, doi: 10.1109/TCYB.
2015.2430526.

VOLUME 8, 2020 147837

http://dx.doi.org/10.1109/INFOCT.2019.8711024
http://dx.doi.org/10.1109/SICN47020.2019.9019345
http://dx.doi.org/10.1109/ICRIS.2017.62
http://dx.doi.org/10.1109/ICRIS.2017.62
http://dx.doi.org/10.1109/ROBIONETICS.2013.6743587
http://dx.doi.org/10.1109/ROBIONETICS.2013.6743587
http://dx.doi.org/10.1016/j.pss.2019.104707
http://dx.doi.org/10.1016/j.pss.2019.104707
http://dx.doi.org/10.1016/j.scitotenv.2019.01.222
http://dx.doi.org/10.1590/0370-44672018720124
http://dx.doi.org/10.1590/0370-44672018720124
http://dx.doi.org/10.1016/j.epsr.2019.105953
http://dx.doi.org/10.1016/j.isprsjprs.2019.01.004
http://dx.doi.org/10.1109/JSYST.2018.2813929
http://dx.doi.org/10.1109/ACCESS.2018.2868339
http://dx.doi.org/10.1109/ACCESS.2018.2819199
http://dx.doi.org/10.1155/2017/5656323
http://dx.doi.org/10.1155/2017/5656323
http://dx.doi.org/10.1155/2017/5098183
http://dx.doi.org/10.1155/2017/5098183
http://dx.doi.org/10.1016/j.trpro.2017.05.094
http://dx.doi.org/10.1155/2015/438290
http://dx.doi.org/10.1016/j.proeng.2013.12.013
http://dx.doi.org/10.5772/56911
http://dx.doi.org/10.1109/TCSI.2009.2034235
http://dx.doi.org/10.1109/MUE.2009.86
http://dx.doi.org/10.1109/MUE.2009.86
http://dx.doi.org/10.1109/JSAC.2004.833832
http://dx.doi.org/10.1007/s00453-002-1008-z
http://dx.doi.org/10.1007/s00453-002-1008-z
http://dx.doi.org/10.1109/ICSMC.2000.886462
http://dx.doi.org/10.1109/ICSMC.2000.886462
http://dx.doi.org/10.1007/BF01299142
http://dx.doi.org/10.1007/BF00625277
http://dx.doi.org/10.1109/TCYB.2015.2430526
http://dx.doi.org/10.1109/TCYB.2015.2430526


M. Luo et al.: Surface Optimal Path Planning Using an Extended Dijkstra Algorithm

[28] A. Stumpf, S. Kohlbrecher, D. C. Conner, and O. von Stryk, ‘‘Super-
vised footstep planning for humanoid robots in rough terrain tasks
using a black box walking controller,’’ in Proc. IEEE-RAS Int. Conf.
Humanoid Robots, Madrid, India, Nov. 2014, pp. 287–294, doi: 10.1109/
HUMANOIDS.2014.7041374.

[29] C.-C. Sun, G. E. Jan, S.-W. Leu, K.-C. Yang, and Y.-C. Chen, ‘‘Near-
Shortest path planning on a quadratic surface with O(n log n) time,’’ IEEE
Sensors J., vol. 15, no. 11, pp. 6079–6080, Nov. 2015, doi: 10.1109/JSEN.
2015.2464271.

[30] Z. Shiller and J. C. Chen, ‘‘Optimal motion planning of autonomous
vehicles in three dimensional Terrains,’’ in Proc. Int. Conf. Robot.
Autom., Cincinnati, OH, USA, 1990, pp. 198–203, doi: 10.1109/
ROBOT.1990.125972.

[31] M. Luo, X. Hou, and S. X. Yang, ‘‘A multi-scale map method
based on bioinspired neural network algorithm for robot path plan-
ning,’’ IEEE Access, vol. 7, pp. 142682–142691, 2019, doi: 10.1109/
ACCESS.2019.2943009.

MIN LUO was born in Sichuan, China, in 1978.
She received the B.S. degree in automation from
Chongqing University, in 2001, and the M.S.
degree in electrical engineering and information
from Southwest Petroleum University, in 2009.
She is currently pursuing the Ph.D. degree in
automation engineering with the University of
Electronic Science and Technology of China,
Sichuan.

Since 2001, she has been a Lecturer with the
School of Electrical Engineering and Information, Southwest Petroleum
University. Her research interests include robot path planning and control
theory and application.

XIAORONG HOU was born in Shanxi, China,
in 1966.

He is currently a Professor with the School of
Automation Engineering, University of Electronic
Science and Technology of China. He has pub-
lished over 90 research articles and two mono-
graphs. His research interests include control
theory, intelligent systems, symbolic computation,
and real algebraic geometry.

JING YANG was born in Sichuan, China, in 1989.
She is currently a Postdoctoral Researcher with

the School of Automation Engineering, University
of Electronic Science and Technology of China.
Her research interests include nonlinear control
theory and fractional-order systems.

147838 VOLUME 8, 2020

http://dx.doi.org/10.1109/HUMANOIDS.2014.7041374
http://dx.doi.org/10.1109/HUMANOIDS.2014.7041374
http://dx.doi.org/10.1109/JSEN.2015.2464271
http://dx.doi.org/10.1109/JSEN.2015.2464271
http://dx.doi.org/10.1109/ROBOT.1990.125972
http://dx.doi.org/10.1109/ROBOT.1990.125972
http://dx.doi.org/10.1109/ACCESS.2019.2943009
http://dx.doi.org/10.1109/ACCESS.2019.2943009

