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ABSTRACT One of the greatest challenges facing the physical layer design of the internet of things (IoT) 

resides in the imposed constraint of very low power consumption. Recently, new modulation scheme termed 

OFDM with sparse index modulation (OFDM-SIM) has been introduced as an energy efficient multicarrier 

scheme (MCS). Although of its high energy efficiency (EE) and spectral efficiency (SE), OFDM-SIM cannot 

fulfill the IoT energy requirements owing to its high PAPR. In this regard, an enhanced OFDM-SIM is 

proposed in this paper as an energy efficient MCS for IoT communications. In particular, a novel clipping-

compressive sensing (CS) based PAPR reduction technique for OFDM-SIM is proposed. In the transmitter 

(TX) side, considering the complexity constraints for IoT devices, the simple and low complex clipping 

method is exploited to deal with the PAPR issue. On the receiver (RX) side, a robust CS signal recovery 

scheme is proposed to deal with tough resulting clipping noise. Unlike high complex conventional CS-based 

schemes, the proposed scheme exploits the inherent sparsity of the received enhanced OFDM-SIM signal 

rather than clipping noise sparsity to achieve a low complex CS signal detection. Moreover, in this paper, the 

information-theoretic limits on sparsity recovery are exploited to derive an upper bound measure of the bit 

error rate (BER). The simulation results demonstrate the superiority of the proposed scheme, as it 

significantly enhances the overall system performance in terms of EE and PAPR reduction compared to the 

conventional clipped coded-OFDM. 

INDEX TERMS IoT; OFDM-Sparse index modulation (OFDM-SIM); PAPR; Clipping; Compressive 

sensing (CS). 

I. INTRODUCTION 

Internet of things (IoT) assumes very low-power 

consumption through various strategies on different layers [1]. 

However, the power saving in physical layer for radio 

transmission and data acquisition has high impact on the 

overall energy efficiency (EE) of the system [2]. Single carrier 

or constant envelop modulation schemes with ideal high peak-

to-average power ratio (PAPR) seems to as a natural choice 

for IoT. However, the most leading partners in wireless 

communication standardization 3GPP and IEEE have agreed 

on extending the orthogonal frequency division multiplexing 

(OFDM) scheme on the physical layer of IoT [3]. PAPR 

represents the main drawback of OFDM system that leads to 

a large power lose for preserving signal linearity. 

Traditionally, PAPR reducing without bit-error-rate (BER) 

performance degradation usually implies a corresponding 

complexity/overhead increase that may not be recognized in 

low cost and simple realization. In literature, OFDM with 

index modulation (OFDM-IM) has drawn intriguing attention 

owing to its superior performance enhancement in terms of 

energy efficiency (EE) and spectral efficiency (SE) [4-6]. In 

OFDM-IM is subset of space modulation (SM) techniques [7-

9], whereas the information is conveyed through both the 

combinatorial pattern of activated subcarriers and the 

conventional M-ary amplitude-phase modulation. Thus, 

OFDM-IM can provide higher EE, noise immunity and lower 

complexity than the conventional OFDM. Motivated by its 

advantages, a special emphasize on the energy saving 

introduced by OFDM-IM in the context of IoT and wireless 

sensor network (WSN) [10-12]. Although of its appealing 

advantages, there are some challenges such as PAPR problem 

still need to be overcome in OFDM-IM.  

Unfortunately, PAPR problem introduces a non-linear 

distortion that degrades the overall OFDM/OFDM-IM 
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performance and limits its usage for IoT. In fact, even though 

it usually only activates the half number of subcarriers, both 

OFDM-IM and conventional OFDM have nearly the same 

high PAPR levels as reported in [5]. This is due to the fact that,  

PAPR is not significantly affected by the number of activated 

subcarriers [13]. Lately, sparse index modulation with OFDM 

(OFDM-SIM) [14-16] has been introduced as an elegant low 

power subclass of index modulation. In OFDM-SIM, the data 

is only conveyed by the indices of a very few active 

subcarriers without subcarrier grouping nor QAM modulation. 

This sparse activation in frequency domain is intended to 

maximize the EE of the OFDM system with comparable SE. 

Actually, the  sparsity nature OFDM-SIM can be exploited to 

reduce PAPR without any PAPR reduction technique [15]. 

However, PAPR performance of OFDM-SIM is still needed 

to be further improved to meet the low power requirements for 

IoT systems.  

Literately, many approaches have been introduced to reduce 

PAPR, which can be broadly classified into three groups: 

clipping, coding and probabilistic approaches [17]. With 

clipping method, a significant PAPR reduction can be 

obtained by simply cut the peak signal exceeds a specific 

threshold. Coding-based method give a good performance, but 

at the cost of spectral efficiency (SE) degradation. Finally, the 

probabilistic approaches associated with high computational 

complexity. Among these approaches, the low complex 

clipping method has been selected in most of the practical 

OFDM systems for PAPR issue mitigation. 

Generally, the transmitted data of OFDM/OFDM-IM signal 

resides in its frequency domain. Hence, the detection process 

can be regarded as a spectral estimation problem. 

Conventionally, fast Fourier transform (FFT) is used at the 

OFDM/OFDM-IM receiver (RX) side, as a spectral detection 

algorithm. However, FFT belongs to non-parametric spectral 

estimation family, in which there is no prior information about 

the received signal is considered. Therefore, any distortion 

(i.e., clipping noise), will lead to spectral leakage and/or inter-

carrier interference (ICI) and results in a sever bit-error-rate 

(BER) degradation. Many works have been proposed in 

literature to mitigate clipping noise at the RX to improve the 

BER performance. For example, channel coding rate is 

adapted in [18, 19] to cope with the rough clipping noise, but 

this solution associated with low SE and high system hardware 

complexity. 

 Furthermore, compressive sensing (CS)-based solutions 

[20] has been proposed in literature  to mitigate clipping noise 

during signal detection, which will be explained in details in 

the related wok Section. The work in [21], is based on sparsity 

of the clipping distortion to enable the estimation of the 

clipping distortion effect before symbol detection. However, 

according to [21], the clipping level should be relatively high 

to ensure this sparsity, which in turns limits the achievable 

PAPR reduction levels.   

In this paper, an enhanced OFDM-SIM scheme is 

introduced as an energy efficient multicarrier scheme for IoT 

networks. Specifically, the PAPR issue of the OFDM-SIM is 

investigated and a novel clipping-CS based PAPR reduction 

technique is proposed. In line with the requirements of IoT 

systems, the proposed scheme utilizes the simple and low 

complex clipping technique in the transmitter (TX) side to 

reduce the PAPR to the desired levels. On the RX side, CS is 

adapted to alleviate clipping noise and to support the signal 

detection process. Mainly, the proposed scheme is supported 

by high degree of embedded sparsity in frequency domain of 

the OFDM-SIM signal and the prior-knowledge of the 

amplitudes of the activated/inactivated subcarriers. 

Specifically, the inherent sparsity is exploited to resolve the 

RX signal under severe noise/distortion contamination. On the 

other hand, the activated/inactivated subcarriers prior 

information enable the proposed scheme to perform the 

detection utilizing the sparsity of RX signal rather than the 

estimation clipping noise. Thus, low clipping levels can be 

used in the proposed scheme to achieve significant PAPR 

reduction without any overhead /BER degradation in the 

TX/RX. Although the proposed CS-based clipping technique 

is based on sparsity in the time domain, it can be easily 

extended by embedding essential sparsity in any domain. 

Thus, there are many opportunities for applying the proposed 

PAPR reduction scheme on many OFDM systems as long as 

the sparsity in any domain is guaranteed. 

The paper contribution can be summarized as follow: 

• OFDM-SIM is introduced and investigated as a 

promising candidate solution for IoT systems. 

• Exploring how the PAPR reduction meets sparse data 

detection in the OFDM-SIM. 

• Enhanced OFDM-SIM scheme is proposed as an 

energy efficient / extremely low PAPR multicarrier 

scheme for IoT uplink transmission. 

• Clipping-CS based PAPR reduction technique is 

proposed. The clipped signal is formulated into proper 

CS-based spectral estimation. Unlike conventional CS-

based PAPR reduction approaches, a completely new 

formulation for CS-based PAPR reduction is 

introduced. Whereas the signal intrinsic sparsity is 

exploited instead of relying on the limited/ 

uncontrollable sparsity of the clipping interference. 

Thus, the limitations on clipping ratios are relaxed, 

which improves the proposed system flexibility in 

choosing between a wide range of PAPR reduction 

levels to fulfill the IoT low power requirements. In 

other words, the proposed approach guarantees 

extremely low PAPR (under low clipping level) 

without increasing the detection complexity nor BER 

degradation.  

• BER performance is verified through driving the upper 

bound of average probability of error by the aid of 

information-theoretic limits of CS.   

• Monte Carlo simulations for BER performance over 

additive white Gaussian noise (AWGN) and Rayleigh
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fading channels are performed and compered with the 

theoretical ones.  

The rest of the paper is organized as follows: Section II 

discusses the related work. Section III presents the modeling 

of both the proposed scheme and the clipping distortion. The 

proposed scheme is presented in Section IV along analytical 

analysis of the error probability upper bound of the perfect 

support detection. Section VI presents simulation results and 

discussion. Finally, the paper is concluded in Section VII. 
 
II. RELATED WORK 

As mentioned previously, there are many challenges such 

as PAPR problem still need to be overwhelmed in OFDM-

SIM scheme to be applicable for IoT applications. It is notable 

that PAPR results in nonlinear distortion which 

substantially decrease system performance.  

In literature, many PAPR reduction technique have been 

proposed for OFDM systems [15-18, 22]. Among these 

techniques, clipping is implemented in OFDM practical 

systems to combat high PAPR because it is a very simple and 

effective. However, clipping could cause a significant increase 

in BER of the decoded signal at the RX. To address this 

problem, authors in [18, 19] introduced a channel coding-

based technique to mitigate the rough clipping noise. 

However, this solution reduces the system SE and increases 

the system hardware complexity.  In general, alleviating the 

clipping distortion impact comes at the expense of increased 

complexity, bandwidth expansion or data rate reduction. 

Among the above works, CS-based solutions based on 

exploiting the sparse modeling of the clipping distortion have 

been proposed in literature to alleviate the clipping impact. 

However, most of CS-based schemes are associated with poor 

BER performance due to the vulnerability of CS scheme to the 

channel noise. In [23, 24], exploiting the sparsity of the 

clipping noise, the clipping noise estimation techniques have 

been introduced as a pre-processing step to compensate the 

clipping distortion effect before symbol detection at RX. 

However, according to [21], the clipping level should be 

relatively high to ensure this sparsity, which in turns limits the 

achievable PAPR reduction levels.  

Works in [20, 21], are based the exploiting the amplitude 

feature of the clipped signal. Specifically, the samples with 

high amplitudes have higher probability to be clipped than 

those with smaller amplitudes. Hence, in [20, 21], samples 

with higher amplitudes were classified as unreliable samples 

and excluded while  the detection process, and only the 

reliable ones with smaller amplitudes were considered. 

 Regarding the PAPR reduction for OFDM-IM systems, the 

conventional techniques for the plain OFDM can be reused, 

but with regarding of the special features of OFDM-IM 

signals. In [25], the conventional active constellation 

extension (ACE) technique have been extended to the OFDM-

IM systems. Particularly, an optimized dither signal in idle 

subcarriers through the convex programming solution have 

been introduced to mitigate the PAPR issue [25]. However, 

this solution associated with very high computational cost 

regarding mobile TX. Hence, the multicarrier transmission 

remains a problematic choice for uplink transmission even 

under index modulation OFDM as well as in the plain OFDM.  

 Authors in [26] introduced an iterative search algorithm 

instead of convex optimization while extending ACE to 

OFDM-IM systems, which significantly enhanced the system 

performance. 

In this paper, a novel clipping-CS based PAPR reduction 

technique for OFDM-SIM is proposed. In the proposed 

scheme, clipping technique is applied to combat high PAPR 

because it is a very simple and effective, but with regarding of 

the unique features of the OFDM-SIM signals.  

Particularly, the unique frequency domain embedded 

sparsity feature of OFDM-SIM signals is considered, which in 

turns allow hard and low-level clipping implementation 

without overhead or BER degradation. 

 
FIGURE 1. The Block diagram of the Enhanced OFDM-SIM system. 
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 Accordingly, higher levels of PAPR reduction can be 

reached with the proposed scheme than clipping noise 

estimation-based techniques such as in [26, 27]. Besides 

sparsity feature exploitation, prior-knowledge of the 

amplitudes of the activated/inactivated subcarriers are 

exploited by the proposed scheme to perform a low complex 

CS-based detection at RX. Unlike [18, 19], due to robustness 

and reliability of the proposed scheme, there is no need for 

channel coding for mitigating the clipping distortion and the 

channel noise As will be indicated in the simulation Section, 

EE and humble hardware complexity of the proposed OFDM-

SIM scheme make it a promising candidate for IoT systems.   

III. SIGNAL MODEL 

In this Section, the system model of the OFDM-SIM is 

introduced. In this model, the detection process of is 

interpreted and formulated as a spectral estimation problem 

regarding the information resides in the frequency domain. 

Moreover, the modeling of the clipping process is introduced 

in this Section. 

A.  OFDM-SIM SYSTEM MODEL 

The transceiver structure of the OFDM-SIM system is 

depicted in Fig. 1. Considering 𝑁𝑠 sparse active subcarriers out 

of a total available 𝑁𝑇 orthogonal subcarriers. Therefore, there 

are 𝑁𝐶 = (
𝑁𝑇
𝑁𝑆
) different pattern combinations, where ( .

.
 ) is 

the binomial operator. Any combination pattern 𝐶𝑗 of 

subcarriers can be written as a set of indices as follows: 

𝐶𝑗 =  {𝑖𝑁𝑠 , 𝑖𝑁𝑠−1, …… , 𝑖k, … . . , 𝑖2, 𝑖1},       𝑖k  ∈ [1, 𝑁𝑇]  (1) 

Accordingly, the combinatorial coded bits which could be 

selected can be expressed as 𝑏𝑆𝐼𝑀 = 2 ⌊𝑙𝑜𝑔2 (
𝑁𝑇
𝑁𝑆
)⌋ bits, 

where ⌊ . ⌋ denotes to the floor to the nearest integer operator. 

  Moreover, the double indexing on real/imaginary spaces is 

employed.  The bit combinations are assumed to be sorted in 

a predefined order such as lexicographic order avoiding the 

exhaustive listing for all combinations such introduced in [27]. 

For each possible combination, the corresponding index can 

be simply expressed  as follows [15, 16]: 

𝐼 =  (
𝑖𝑁𝑠
𝑁𝑠
) + ……+ (

𝑖2
2
) + (

𝑖1
1
).                  (2) 

As shown in Fig. 1, in TX side, the incoming block of 𝑏 bits 

to be transmitted at any specific time is divided into two 

distinct sets for both indexing the real and the imaginary 

spaces independently. Therefore, the generated 𝑁𝑇  × 1 

frequency domain signal is  =   +  𝐽  𝐼 , where    and  𝐼 
represent the real and the imaginary of   and can be 

represented as:  

  /𝐼 = {
±1           ⩝ 𝑖 ∊  𝐶𝑗 

 0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                             (3)
 

 

Both    and  𝐼 consist of (𝑁𝑇 − 𝑁𝑆) null subcarriers and 

𝑁𝑆  << 𝑁𝑇  active subcarriers which are selected based on 

incoming bit stream. Then,   is converted into 𝑁𝑇  × 1 time 

domain signal,  , by applying the IFFT as follows: 

𝑥(𝑛) =
1

𝑁𝑇
∑  (𝑘)𝑒

𝑗
2𝜋
𝑁𝑇
𝑘𝑛

𝑁𝑇−1

𝑘=0

 𝑓𝑜𝑟 0 ≤ 𝑛 ≤ 𝑁𝑇 − 1  (4) 

  Or equivalently in matrix form as: 

𝑥 = 𝐹𝐻   ,                                             (5) 

where, 𝐹𝐻 denotes the  𝑁𝑇  × 𝑁𝑇 Hermitian transpose of the 

discrete Fourier transform (DFT) matrix.  

Each column of the DFT matrix represents a complex 

sinusoidal (subcarrier). Hence, the resulting time domain 

vector   becomes a sparse in frequency domain as a sparse 

linear combination of subcarriers.  

Actually, the main differences between OFDM-IM [28] and 

OFDM-SIM [15, 16] reside in: 1) OFDM-SIM is supported by 

inherit sparsity feature enabling CS-based detection.  2) 

OFDM-SIM characterized by a high noise immunity because 

it does not employ QAM for the activated subcarriers (i.e., it 

hardly depends on the amplitude information). 3)  OFDM-

SIM has a larger combinatorial space than OFDM-IM, this due 

to the fact that in OFDM-SIM combinatorial indexing is 

performed on the overall frequency space by selecting small 

number of active subcarriers from a whole space. On the other 

hand, in OFDM-IM grouping is utilized and half number of 

subcarriers from each group is activated. 4) unlike OFDM-IM, 

channel coding is not no longer needed for OFDM-SIM due 

to it inherits robustness against noise. 5)The same sparse 

detection algorithm can be applied for sparsity detection of 

data in frequency domain and the channel sparsity in 

frequency domain [14].  

B.  PAPR MODEL 

The PAPR of the time domain signal can be given as:  

𝑃𝐴𝑃𝑅 ≜
𝑃  𝑥
𝑃 𝑣 

=
𝑚𝑎𝑥

0≤𝑛≤𝑁𝑇−1
{|𝑥(𝑛)|2}

1
𝑁𝑇
∑ |𝑥(𝑛)|2
𝑁𝑇−1
𝑛=0

 ,           (6) 

where 𝑃  𝑥  and 𝑃 𝑣  are the maximum and average power 

of the transmitted OFDM-SIM symbol, respectively. 

Peak amplitudes of the generated OFDM-SIM symbol can 

be clipped according to the following criterion:  

𝑥𝑐(𝑛) =  {
𝑥(𝑛),                 𝑓𝑜𝑟   |𝑥(𝑛)|  ≤ 𝛾

𝛾𝑒𝑗 arg [𝑥(𝑛)],    𝑓𝑜𝑟   |𝑥(𝑛)|  > 𝛾
 .            (7) 

where 𝛾 is the clipping threshold.   
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It is better to express the degree of clipping in-terms-of the 

well-known clipping ratio (𝐶𝑅), where 𝐶𝑅 =  
𝛾

√𝑃𝑎𝑣𝑔
 . 

C.  CLIPPING DISTORTION MODEL 

Mainly, modeling the clipping distortion depends on the 

clipping threshold 𝛾 , which in turns affect the achievable 

PAPR reduction PAPR level [29]. Consequently, the most 

common clipping distribution schemes have been reported in 

literature can be classified in the two following categories  

1)  ADDITIVE SPARSE (IMPULSIVE) MODEL 

In this model, the clipping range may be limited to high 

clipping ratios (𝐶𝑅 ≥ 1.5). Hence, the clipping event happens 

in few (sparse) times during one symbol interval.  

𝑥𝑐(𝑛) =  𝑥(𝑛) +  𝑐(𝑛),                               (8) 

where 𝑐(𝑛) represents a sparse impulsive noise (distortion). 

 However, for maintaining clipping noise sparsity in time 

domain, high clipping levels are applied. Which in turns limits 

the achievable PAPR reduction levels [20-24, 30].  

2)  AWGN MODEL 

In this model, hard clipping is applied through lower 

clipping ratio (𝐶𝑅 < 1.5), which results in sparsity degree 

reduction for the clipped samples. This modeled can be 

mathematically expressed as  attenuated signal pulse AWGN 

component as follow [31]: 

𝑥𝑐(𝑛) =  𝛼𝑥(𝑛) +  𝑑(𝑛),                                  (9) 

where 𝑑 represents AWGN component. 𝛼 is the attenuation 

factor and can be expressed as follows: 

𝛼 = 1 − 𝑒−𝐶 + 
√𝜋   𝐶𝑅

2
 𝑒𝑟𝑓𝑐 (𝐶𝑅),           (10 ) 

Obviously, according to the AWGN model the overall 

distortion is modeled also as severe Gaussian noise enabling 

to deal with the clipping effect just as signal to noise ratio 

(SNR) loss [31].  

In the proposed scheme, the AWGN clipping model will be 

exploited where a hard clipping is used to achieve higher 

PAPR reduction levels. 

IV. PROPOSED CLIPPING AND CS-BASED PAPR 
REDUCTION SCHEME 

In this Section, the proposed clipping-CS based PAPR 

reduction technique for OFDM-SIM will be discussed. 

Whereas a simple and low-cost clipping technique with lower 

clipping levels is applied in the proposed scheme TX to reduce 

the PAPR.  In the RX side, exploiting the sparsity feature, a 

CS-based approach is applied for signal detection and clipping 

noise mitigation.    

A.  CLIPPING SCHEME AT TX 

As shown in Fig. 1, the signal is generated though a simple 

IFFT operation. Then, a hard clipping with low threshold 

applied to address the PAPR issue in the TX side. Sensibly, 

the achievable PAPR reduction levels will be depending on 

the clipping degree, i.e., lower clipping threshold results in 

high PAPR reduction value and vice versa. 

 On the other hand, hard clipping at the TX results in more 

distortion at the RX, which in turns complicates the detection 

process at the RX. As, the clipping distortion should be 

evaluated before deciding the optimal parameters that fitting 

the operating spectral estimator at RX. From this perspective, 

the relation between the clipping distortion and the achievable 

PAPR levels should be investigated to bound the performance 

limits of the proposed scheme. 

 By decreasing clipping ratio (through lowering clipping 

threshold), the percentage of clipped samples increases. 

Hence, the spectral estimation process is performed based on 

a lower number of unaffected samples.  In this paper, the 

signal clipping distortion is represented as percentage of 

clipped samples to the total number samples per symbol. 

 Mathematically, the percentage of clipped samples during 

one symbol interval may be approximated according to the 

level-crossing rate approximation as [13]: 

𝑃(𝑟 > 𝛾) ≈
𝛾 𝑒−𝛾

2

𝑟̅ 𝑒−𝑟̅
2                                   ( 11 ) 

where 𝑟 = |𝑥| represents the envelop of a Rayleigh 

distribution with the probability density function (pdf) of: 

𝑓(𝑟) = 2 𝑟 𝑒−𝑟
2
                                       (12) 

Also, 𝑟̅ represents certain threshold less than clipping 

threshold 𝛾.  

B.  PROPOSED CS-BASED SCHEME AT RX  

In this paper, to overcome the degradation of FFT 

performance under clipping distortion, CS-based super-

resolution spectral estimation is utilized to perform the signal 

detection task at RX.  

Specifically, the high sparsity feature of OFDM-SIM is 

exploited to perform a robust CS-based sparsity detection to 

handle the tough clipping distortion at RX.  

In this Section the problem formulation for the proposed 

CS-based detection scheme is introduced along with the 

supported theoretical bases from CS theory.  

Aiming to formulate the proposed CS problem, we propose 

two directions for considering the intercepted clipping signal 

distortion at the RX side. Specifically, the received clipped 

signal is interpreted as highly noisy signal or as a signal with 

missing samples.  

According to the first direction, the clipping noise is 

regarded as an additional source of additive white Gaussian 

noise which results in the overall system SNR degradation. 

Accordingly, the CS problem is reformulated as a compressive 

spectral estimation under sever noise conditions. Particularly, 

the sparsity constraint on OFDM-SIM signal introduces a 

higher order of noise immunity for sparse vector estimation 

under heavy noise contaminated measurements [32, 33].  
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On the other hand, the second direction is based on dropping 

out the severely clipped samples from the detection process. 

Hence, the problem is modeled as compressive sampling 

problem where the high dimensional sparse signal can be 

extracted from the lower dimensional measurements (under 

sampled). According to the second direction, the received 

signal is considered as irregularly sampled signal or a signal 

with randomly missing samples. The missing/unequally 

sampled signal corresponds to an underdetermined linear 

system that has not a unique solution, however, the sparsity 

constraint enables finding unique solution according to CS 

theory [30, 33].  The CS problem formulation according to the 

previously mentioned directions can be mathematically 

formulated as following: 

1) HIGHLY NOISY RECEIVED SIGNAL 

In general, Eq. (7) can be rewritten in the summation form 

as follows where the transmitting channel is assumed as 

AWGN for simplicity: 

𝑦𝑟 𝑐  (𝑛) =   𝛼 𝑥(𝑛) + 𝑑(𝑛) + 𝜈(𝑛)⏟        
 𝑇

,          (13) 

where 𝑑(𝑛) is the clipping distortion and it can be formed as, 

𝑑(𝑛) = {
   0,                                         |𝑥(𝑛)|  ≤ 𝛾          

(𝛾 − |𝑥(𝑛)|)𝑒𝑗arg [𝑥(𝑛)], |𝑥(𝑛)|  > 𝛾
 

Under low clipping ratio, the effect of the clipping 

distortion can be modeled as AWGN noise, 𝑑~(𝜇𝑐  𝑝 , 𝜎𝑐  𝑝). 

The transmitted signal incurs the clipping distortion besides to 

the channel additive noise 𝜈(𝑛) ~(𝜇𝑛 , 𝜎𝑛), so, the received 

signal 𝑦𝑟(𝑛) can be rewritten as: 

𝑦𝑟 𝑐(𝑛) ≈  𝛼 𝑥(𝑛) + 𝑒𝑇                                    (14) 

where 𝑒𝑇 =  𝜈(𝑛) + 𝑑(𝑛), combines all sources of errors 

(even equalization error that may be neglected under full 

channel knowledge).  

By regarding the fact that, the total distortion 𝑒𝑇 is as a 

summation of two independent random variables with normal 

distributions, the total distortion follows the same normal 

distribution with 𝑒𝑇~(𝜇𝑐  𝑝 + 𝜇𝑛 ,  𝜎𝑐  𝑝 + 𝜎𝑛). At this end, 

the receiver detection problem can be reformulated as the 

sparsity-based spectral estimation problem as follows: 

𝑦𝑟 𝑐 = 𝐷 + 𝑒𝑇 .                                    (15) 

2)  CLIPPED SAMPLES DROPPING OUT 

Here the clipping problem is formulated as a CS problem 

with underdetermined linear system. Whereas, during the 

signal estimation process, the system is classified the samples 

of the received signal. In which, the samples with the highly 

likelihood that they were clipped in the TX side, are dropped 

from the received signal. Thus, a short length version of the 

received signal is generated based on the process.  Hence, the 

generated signal 𝑦𝑀 has  𝑀 < 𝑁 samples, where 𝑁 is the 

number of samples of the original received signal. Hence, the 

samples of the new signal 𝑦𝑀 are seemed to be   randomly 

selected from the original received signal. Consequently,  the 

problem can be mathematically formulated as the well-known 

compressive sensing model [10]: 

𝑦  =  𝛷𝛹  X + 𝑒,       𝑦𝑀 ≝ ∀ 𝑦 ≠ 0                        (16) 

where 𝑦𝑀  has 𝑀 < 𝑁 random samples of the original 

measurement signal 𝑦𝑟 𝑐   that has  𝑁𝑆 sparse representation in 

a given orthogonal dictionary 𝛹 , and 𝛷 represents the 

measurement matrix that randomly selects the samples.  

The orthogonal matrix 𝛹 is 𝑁 × 𝑁 full rank Fourier 

dictionary, whose columns are complex sinusoids of 

orthogonal frequencies. While the measurement matrix 𝛷 in 

our case is look like 𝑁 × 𝑁  semi-identity matrix 𝕀 with rank 

equal to 𝑀 < 𝑁. We mean by semi-identity matrix that, 𝛷  

with zero off diagonal elements and its diagonal is given by 

𝑑𝑖𝑎𝑔(𝛷(𝑙, 𝑙))  ∈ [0,1] where 𝑑𝑖𝑎𝑔(. ) gives the matrix 

diagonal and  𝑑𝑖𝑎𝑔(𝛷) has 𝑀 ones elements and 𝑁 −𝑀 

random zero elements. Thus, the measurement matrix 𝛷 is 

working as spike (randomly) basis selection over orthogonal 

dictionary 𝛹.  Fortunately, the spike matrix 𝛷 and the 

Fourier Dictionary are maximally incoherent (minimum 

coherence, 𝜇 = 1), as it was reported in [10], which 

improves the performances of proposed system.  

Here, 𝛷 is constructed randomly and independently in 

each OFDM symbol detection process. Specifically, the 

received time domain samples with the highest absolute 

value are most likely clipped samples, thus they are dropped 

i.e., their corresponding elements/locations in 𝑑𝑖𝑎𝑔(𝛷) are 

set to zero. Therefore, 𝛷 will contains 𝑀 < 𝑁 rows, and each 

row contains one nonzero element in different locations 

while the other 𝑁 −𝑀 rows contain only zeros in their 

elements.  Thus, when the zero rows in 𝛷 are eliminated its 

size will be reduced to  𝑀 × 𝑁, The result of 𝛷𝛹 is then will 

be 𝛷𝛹 ≡ 𝐷 and 𝐷 𝑖𝑠 𝑀 × 𝑁.  

 One example of a sampling pattern that used for 

constructing the measurement matrix is provided in Fig. 6. 

Moreover, in the proposed scheme, the DFT matrix is 

exploited as orthogonal dictionary.   

  By take a deep look in the proposed system Eq. (15) and 

Eq. (16), we will find that the two system are nearly apply the 

same concept. We can say that  𝛷𝛹 ≡ 𝐷, where 𝛷 in Eq. (15) 

is 𝑁 × 𝑁  identity matrix 𝐼, thus 𝐷 becomes over-complete 

dictionary.  While in Eq. (16) , 𝛷 𝑖𝑠 𝑁 × 𝑁  semi-identity 

matrix 𝕀 with rank equal to 𝑀 or the sparse signal is sampled 

in lower rate than traditional Nyquist rate where, the  

measurement matrix excludes samples with the highly 

likelihood that they were clipped. And since the samples are 

naturally clipped random, thus we can confirm that 𝛷 in Eq. 

(16) is a random measurement matrix.  

In terms-of the sparsity detection, the sparseness of the 

solution for the problems in Eq. (15) and Eq. (16) can be 

imposed explicitly (with ℓ0-norm) while minimizing the error 

as follow:   

min‖ ‖0  𝑆. 𝑡  ‖𝑦 −  D X ‖2
2   < 𝜀.          (17) 
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Algorithm 1: Pseudo Code for the Proposed Algorithm 

1- Inputs: 𝑦
𝑝
, No. of iterations: 𝒾, sparsity order: 𝑁𝑠/𝑁𝑇.  

2- Initialize estimator: covariance matrix 𝑅 ← 𝐼. 
3- Processing the equalized received signal 𝑦 𝑞  as follow: - 

4-  For 𝒿 = 1:  𝒾 
• For 𝑘=0: 𝑁𝑇-1 

                        

  (𝑘) =  
𝑎𝐻(𝑤𝑘)𝑅

−1 𝑦𝑝
𝑎𝐻(𝑤𝑘)𝑅

−1 𝑎(𝑤𝑘)
 . 

• End for 

       

𝑅 =  ∑ | (𝑘)|2  𝑎(𝑤𝑘) 

𝑁𝑇−1

𝑘=0

𝑎𝐻(𝑤𝑘)  

5- End for 

6- Return estimated spectra vector  . 

7- Applying energy detection on   in the real/imaginary 

spaces to detect the high energy 𝑁𝑠 indices. 

𝐼𝑛𝑑   = 𝑚𝑎𝑥
𝑁𝑆
(|𝑟𝑒𝑎𝑙 ( (𝑘))|)    

              𝐼𝑛𝑑𝐼  =  𝑚𝑎𝑥
𝑁𝑆
(|𝑖𝑚𝑔 ( (𝑘))|)  

8- Output:  𝐼𝑛𝑑𝑒𝑥 → 𝐵𝑖𝑡𝑠  // combinatorial conversion. 
 

where  ‖   ‖0 denotes ℓ0-norm, that always be replaced by 

another measures of sparsity for its computational 

unfeasibility.  

Many sparsity-based estimators can be addressed for 

solving the problem in Eq. (17).  For instance, the standardized 

Least Absolute Shrinkage and Selection Operator (LASSO) 

optimization problem [34] can be applied, through implicitly 

enforcing the sparsity constraint on the parameter vector by 

including ℓ1-norm in a convex optimization problem while 

minimizing the noise through including ℓ2-norm on the noisy 

term:  

 ̂ = arg min
X
(
1

2
‖y −  D X‖2    +   𝜇‖X‖1)     (18) 

The main solving approaches [12] for the formulated 

problem in Eq. (18) go around either convex optimization [34, 

35] or iterative greedy algorithms [36, 37]. However, iterative 

greedy algorithms have lower computational complexities, 

thus it will be recommended.   

Several iterative approaches [34] can be addressed for 

solving the sparse linear regression formulated in LASSO 

problem Eq. (18). Without loss of generality, in this paper the 

iterative adaptive approach (IAA) and missing data IAA 

(MIAA) [38] will be exploited here to validating the two CS-

based proposed systems in Eq.(15) and Eq.(16), respectively.  

However, the IAA/MIAA is adapted to cope with the tough 

clipping distortion problem in the proposed scheme. 

Moreover, the adopted IAA and MIAA are applied on two 

different version of preprocess input single 𝑦𝑝. Whereas the  

𝑦𝑝 for IAA is just the channel equalized received signal. With 

the assumption that the channel state information (CSI) is 

known at the RX, it is easily to equalize the received signal. 

The pseudo-code of the adapted IAA for estimating the 

sparse vector support is summarized in Algorithm 1.   

As shown in Algorithm 1, the spectral estimation at any 

frequency 𝜔𝑘 from the orthogonal frequency grid (𝑘 =
0,1, …… ,𝑁𝑇 − 1), is found iteratively by estimating  (𝑘) and 

the covariance matrix 𝑅  (initialized by identity matrix I) until 

convergence.   

  (𝑘)  and 𝑅 can be expressed as follows:   

 (𝑘) =  
𝑎𝐻(𝜔𝑘)𝑅

−1 y

𝑎𝐻(𝑘𝜔𝑘)𝑅
−1 𝑎(𝜔𝑘)

                          (19 ) 

𝑅 =  ∑ | (k)|2  𝑎(𝜔𝑘) 

𝑁𝑇−1

𝑘=0

𝑎𝐻(𝜔𝑘)           ( 20 ) 

where 𝑎(𝜔𝑘) denotes the complex exponential subcarrier in 

time domain which represents the 𝑘-th column vector in the 

dictionary matrix 𝐷.   
Under IAA approach, the introduced CS-based solution just 

tries to enhance the noise immunity of the sparse estimation 

process. The receiver is interested in estimating the sparse 

frequency activation represented in   over Fourier dictionary 

𝐷 ≡ 𝐹𝐻 in the presence of the combined channel and clipping 

noise 𝑒𝑇. In other words, the clipping noise is simply regarded 

as a naturally added noise as in Eq. (13). Thus, the sparsity 

estimation problem Eq. (15) can be thought as an estimation 

of the subspace (subcarriers) in the 𝐷 domain where, the 

received signal 𝑦𝑟𝑐  is approximately defined in that domain 

under sparse mapping constraint.    

While, to solve Eq. (16) the MIAA approach is exploited. 

However, Algorithm 1 is also used to implement the MIAA, 

but with a different 𝑦𝑝.  To find 𝑦𝑝 for the MIAA approach 

more preprocessing steps are applied received signal 𝑦𝑟 𝑐  
before apply Algorithm 1. After applying the channel 

equalization process on the received signal and with 

knowledge of the clipping ratio (𝑖. 𝑒. , 𝐶𝑅), the  indices of the 

samples that they most likely were clipped are estimated then 

excluded from the received equalized vector as well as its 

corresponding rows in the dictionary, 𝐷.       

   𝑦𝑀  =  𝛷𝑀 N   𝑦𝑟 𝑐  ≡ 𝛷𝛹  X + 𝑒   ≡  𝛳  + 𝑒 ,   (21) 

and              𝑎𝑀(𝜔)  =  𝛷𝑀,𝑁𝑇   𝑎(𝜔) ,                     

where, 𝛷 denotes a 𝑀 × 𝑁𝑇 measurements matrix, that 

excludes 𝑁  𝑠𝑠  time samples corresponding to the estimated 

clipped samples and 𝛳 ≡ 𝛷𝛹 is called the sensing matrix.  

After obtaining 𝑦𝑀 and  𝑎𝑀(𝜔), Algorithm 1 is used with  

𝑦𝑝 = 𝑦𝑀 and 𝑎(𝜔) =  𝑎𝑀(𝜔) to solve Eq.(16). 

However, by excluding excessively clipped samples from 

the spectral estimation operation, the impact of clipping noise 

is relaxed to some extent. Moreover, this approach has lower 

computational complexity arising from involving lower 

number of samples in the estimation process. The overall 

performance of the system will be discussed in the simulation 

analysis Section. 
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Figure 3: Sufficient number of samples for exact support recovery 

corresponding to different SNRs levels, with  = 𝟐𝟓𝟔 samples 
 

From another side, the selection of measurement/sensing 

matrix has high impact on the performance of the CS 

estimation. The CS imposes two essential conditions (i.e., 

restricted isometry property  and basis incoherence) on the 

employed sensing matrix to ensure a comprisable 

representation of a higher dimension signal in-terms-of lower 

dimensional measurements [12].  

𝜇(𝛷,𝛹) =  √𝑁  max
1≤𝑘,𝑗≤𝑁

|〈𝜑𝑘 , ᴪ𝑗  〉|               ( 22) 

The basis coherence (correlation) 𝜇(𝛷,𝛹) between 

measurement matrix and the representing dictionary should be 

kept as minimum as possible where 𝜇(𝛷,𝛹) ∈ [1, √ 𝑁]. 

Minimizing coherence factor leads to minimum number of 

needed measurements [12]. Roughly, the number of 

measurements 𝑀 should obey the following rule for extracting 

the correct sparse support with overwhelming probability.  

𝑀 ≥  𝐶𝜇2(Φ;  Ψ) 𝑁𝑆 log𝑁𝑇 ,                       (23) 

where 𝐶 is a small constant, it may be assumed 𝐶 = 2  [12].  

Since the 𝛷 is a spik matrix, and 𝛹 is an orthogonal Fourier 

matrix, hence the minimal coherence or maximal incoherence 

will be attained i.e., 𝜇(𝛷,𝛹) = 1 as it was reported in [10], 

and 𝑀 ≥  2 𝑁𝑆 log𝑁𝑇. 

V. THEORITICAL ANALYSIS OF ERROR 

     From the communication point-of-view, it is common to 

drive the analytic expressions of the BER performance (in a 

closed-form) that often agrees with the exact performance 

arising from Monte Carlo simulation. However, under 

compressive sensing solutions, it is convenient to have only an 

upper-bound error probability where the derivation of the 

exact error expression is too exhaustive [39]. 

The sparsity recovery of X means the recapture of the non-

zero values 𝑁𝑆  . The estimated vector  ̂ appears as 

approximate sparse vector where the supposed null elements 

may have finite non-zero values due to additive noise. Hence, 

after applying the CS-based estimating algorithm, the energy 

detection is applied for largest 𝑁𝑆  supporting bases. So, the 

estimated support regards only the 𝑁𝑠-largest elements of the 

estimated vector  ̂ as 𝑆̂ =  { 𝑖:  ̂ 1  ≥  ̂ 2 ≥ ⋯ .≥  ̂ 𝑁𝑠  } 

indices of the activated (the most salient in energy) 

subcarriers, i.e., identifying the exact set of indices among 

(𝑁𝑇
𝑁𝑆
)  possible different sets.  However, this problem is defined 

as the exact (perfect) support recovery of sparsity pattern. 

Whereas element (index) missing/mismatch leads to 

erroneous sparsity recovery because each combination maps 

to a different bit stream.  

Generally, the error probability of exact support recovery 

can be analyzed in-terms-of a maximum likelihood (ML) 

decoder by assuming  that all (𝑁𝑇
𝑁𝑆
)  possible subsets within 𝑁𝑆 

elements are equiprobable [11, 40]. However, the error event 

happens when the estimated support does not coincide with 

the true support, 𝑃 = Pr(𝑆 ≠ 𝑆̂). Hence, the average error 

probability of exact support recovery is defined as: 

𝑃(𝐸) =  
1

(𝑁𝑇
𝑁𝑆
)
 ∑Pr(𝑆 ̂ ≠ 𝑆 ⎹ 𝑆 )                (24)

 

 

Then the average error probability can be stated as [40]: 

𝑃(𝐸) ≤   ∑ 2−𝑀 𝑓(𝜌)
𝐾≡𝑁𝑆

 =1
,                              (25) 

and 

𝑓(𝜌) =  
1

2
log ( 1 + (1 − 𝜌) 

2𝑖 𝜎2 𝑆𝑁𝑅

𝑀
 ) 

− 
1

4𝑀
 log 4 − 

log ((N−𝑁𝑆
i
)(𝑁𝑆

i
))  

𝑀
        (26) 

where 𝑀 represents number of measurements, 𝑁 total 

number of samples, 𝜌 ∈  [ 
1

√N
 , 1] denotes the correlation 

coefficient (related to coherence) between columns of the 

sensing matrix and the coefficient of the support and it may be 

assumed fixed and equal (for the non-zero elements only)  𝜎 =

 |  |, hence, 𝜎2 =
𝑆𝑁 

𝑁𝑆
. It is worth to that, 𝜌 = √𝑀, where the 

sensing matric is resulting from the multiplication of spike 

matrix and Fourier matrix. 
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Figure 2: Upper Bound of the Error Prob. for exact Support Recovery- 

based on 𝟔𝟎% of signal samples (𝑪𝑹 =  𝟏). 
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TABLE I. SIMULATION SETUP PARAMETERS 

Parameters  
Coded- clipped 

OFDM, [19] 

Proposed 

clipped 

OFDM-SIM 

Total No. of 

subcarriers (𝑁) 
256 256 

Subcarrier spacing 15 kHz 15 kHz 

Total No. of active 

subcarriers (𝑁 𝑐𝑡 𝑣 ) 
256 

(100%) 

𝑁𝑠
∈  (5, 12) 

Modulation scheme BPSK/QPSK On/OFF  

Channel Model AWGN & Slowly fading  

Channel length 10 10 

CP length (𝐿) 16 16 

Channel coding 1/4 CC 
Not 

employed 

Clipping ratio 1 (0𝑑𝐵) 

 

The upper bound of error probability can be demonstrates 

as shown in Fig. 2, where the clipping ratio is fixed at CR=1 

that corresponds to clipping/missing about 40 % of the signal 

samples, for the two sparsity levels, 𝑁𝑠 ∈ [5,12]. Whereas the 

sparsity level corresponds to the amount of data conveyed by 

the signal. Thus, this figure reflects the impact of the signal 

sparsity on the probability of error. Signal with high sparsity 

(less activation) enjoys more noise immunity than less sparse 

signals.  It is worth to note the abrupt dropping of probability 

of error at certain critical SNRs points may be defined as 

critical points. For SNRs lower than critical points, almost 

there is low probability for detecting the correct signal support. 

It may be called as SNR cutoff. 

From design point of view, the conditions of guaranteed 

exact support recovery may appear more helpful through 

introducing bounds for minimum SNR and the minimum 

number of measurements (𝑀) at certain sparsity level (𝑆 =
𝑁𝑆

𝑁𝑇
) as follows. 

𝑆𝑁𝑅  𝑛 =  Ω (log2(𝑁𝑇))                          (27 ) 

𝑀 =  Ω (
𝑁𝑆log2  (

𝑁
𝑁𝑆
)

log2  (1 + (1 −
1

√𝑁
)
𝑆𝑁𝑅
𝑁𝑆

)
 )       (28) 

By preserving the minimum required SNR, the number of 

measurements (𝑀) remains a function of sparsity level and the 

operating SNR. Clear representation of that relation can be 

found in [39] as  

𝑀 > (
4 log(exp(1) √𝛼 − 1)

log (
𝑆𝑁𝑅2

2𝑁𝑠 exp(1)
)

+ 1)𝑁𝑆                  (29) 

where 𝛼 ≡
𝑁𝑇

𝑁𝑆
.   

Fig. 3 demonstrates the dependence of the required lower 

bound of the number of samples on the operating SNR for 

guaranteed support recovery. For too little measurements 

(samples), the correct support recovery fails with high 

probability. Similar to SNR cutoff, there is a measurement 

cutoff for number of measurements lower than critical 

measurements, 𝑀. 

VI. SIMULATION RESULTS 

In this section, the superiority of the proposed clipped 

sparse index modulation (OFDM-SIM) is examined in terms 

of BER enhancement against the conventional coded and 

clipped OFDM scheme (with BPSK/QPSK) under the same 

effective SE and clipping ratio (similar PAPR levels) for fair 

comparison.  

A.  SIMULATION SETUP 

Our simulation parameters are similar to that used in [19]. 

The simulation is running on 𝑁𝑇 = 256 under AWGN and 

slow Rayleigh fading channels. To reduce the clipping effect, 

the coded OFDM in [19] relies on two stages of convolutional 

channel coding with rate 1/2, that correspond to a net channel 

coding rate of 1/4. Both BPSK and QPSK are applied on 

subcarrier modulation. On the other hand, the proposed 

scheme relies on a sparse subcarrier activation with orders of 

𝑁𝑠/𝑁𝑇 = 5/256 and 12/256 subcarriers per real/imaginary 

 
(a) 

 
(b) 

 

Figure 4: Sparsity detection (  / 𝒕 = 𝟓/𝟐𝟓𝟔) through IAA/MIAA under 

𝑺 𝑹 = 𝟒 𝒅𝑩 𝒂𝒏𝒅 𝑪𝑹 = 𝟏 (a) Estimated subcarriers for real indexing  

space (b)  Estimated subcarriers for Imaginary indexing space. 
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spaces for providing almost the same effective SE of the 

conventional OFDM [19]. Proposed scheme does not employ 

QAM modulation nor channel coding. The sparsity 

adaptation, 𝑁𝑠 ∈ [5,12], corresponds to the conventional 

concept of adaptive modulation. Moreover, the key simulation 

parameters are shown in Table I. 

The modified IAA/MIAA (Algorithm 1) is applied for a 

detection algorithm with 50 iterations as upper bound 

condition for convergence.  

B.  RESULTS AND DISCUSSION  

Figure. 4 shows an example for indexing recovery from 

real/ imaginary subcarrier spaces under 𝑆𝑁𝑅 = 4 𝑑𝐵 and 

𝐶𝑅 = 1. The activated subcarriers estimated amplitudes may 

vary slightly from actual amplitudes due to the channel noise 

and clipping distortion. However, the activated subcarriers 

still can be distinguished from null subcarriers clearly.  

The relationship between the percentage of clipped samples 

and the average PAPR at different CR values via Monte Carlo 

simulation is indicated in Fig.5. For example, under 𝐶𝑅 = 1, 

𝑃𝐴𝑃𝑅 = 2𝑑𝐵, 𝛾 ≈ 4.89, and  𝑟̅ = 4.8, the resulting clipping 

percentage is nearly 40% of total samples.  

As indicated in Fig. 5 that; due to the inverse proportion 

relation it is a matter of trading off between the mount of 

clipping distortion and the achievable PAPR level ratio. 

In the proposed CS-based scheme, regarding to our strategy 

of dropping out the clipped samples, the measurement matrix 

excludes clipped samples that are random in nature.  For 

instance, Fig. 6, demonstrates an example of the random 

sensing patterns where the estimated missed samples instances 

correspond to clipping events. 

Fig. 7, shows the PAPR performance for clipped and 

unclipped OFDM and OFDM-SIM schemes according to 

different 𝑁𝑠 and CR values. As shown, all unclipped schemes 

exhibit nearly the same PAPR levels around 11 dB.  On the  

other hand, an extremely low PAPR about 2 dB is achieved 

through applying the clipping technique with 𝐶𝑅 = 1 (0 dB) 

on the conventional OFDM and the proposed OFDM-SIM 

schemes. Moreover, less than 2 dB PAPR is attained at 𝐶𝑅 =
0.8. For, example, as shown in Fig. 7, the proposed OFDM-

SIM without clipping with 𝑁𝑠=5  archives about 9.8 dB PAPR 

value, while this value is reduced to be about 1.9 dB using the 

proposed OFDM-SIM with 𝑁𝑠=5 and 𝐶𝑅 = 0.8. Which 

clearly highlight the superiority of the proposed scheme with 

the clipping technique in alleviating the PAPR issue.   

The BER performance comparisons of the proposed 

scheme, the unclipped SIM scheme, the coded-OFDM [19] 

under both AWGN and a slowly fading channel is shown in 

Fig. 8, and Fig. 9, respectively. The simulations in Fig. 8, and 

Fig. 9 are performed with  CR = 1, and PAPR = 2 dB for the 

clipped schemes. As shown in these figures, the proposed 

scheme outperforms corresponding coded-OFDM scheme 

under the same effective SE and PAPR level. Thanks to the 

enhanced sparsity structure of the proposed scheme, the 

sparsity based-spectral estimation exhibits higher noise 

immunity than conventional coding protection. 

Anyway, in terms of BER, the proposed scheme 

outperforms the clipped and coded-OFDM scheme. 

Moreover, Fig.8 shows comparisons among the different 

simulation results for the different schemes and the theoretical 

analysis results of the theoretical upper bound of error. These 

comparisons indicate the accuracy of the upper bound 

theoretical analysis of error, where all the compared 

simulations respect this theoretical upper bound.  Also, the 

simulating error probability respects theoretical upper bound 

of error as shown in Fig.8. More specifically, by regarding 

IAA performance, the proposed clipped SIM-OFDM (𝑁𝑠 =
5) outperforms corresponding coded and clipped OFDM 

(BPSK) by about 6 dB. Also, the clipped SIM-OFDM (𝑁𝑠 =
12) outperforms the corresponding the coded and clipped 

OFDM (QPSK) with about 8 dB gain. The introduced BER 

performance gain may be exploited for further reducing PAPR 

levels lower than 2 dB through applying lower clipping ratios 

as (CR=0.8).    

However, by observing the performance difference between 

the two followed estimators IAA and MIAA, it seems that 

MIAA trades the gain of IAA by the computational 

complexity. It reduces the number of samples involved in the 

processing on the cost of gain reduction. IAA approach 

exhibits better performance than MIAA by about 4 dB.  

 
Figure 5: Impact of clipping ratio on the Percentage of affected 

samples & average PAPR. 

 
 

Figure 6: Example of sensing pattern in time domain, where the missed 

samples corresponds to clipping instances. 
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Figure 7: PAPR comparisons 

This can be justified due to some errors in detecting the truly 

clipped samples at receiver side in the presence of additive 

noise as demonstrated in Fig.10. As shown in the figure, there 

are 105 clipped samples from 256 sample in this symbol. By 

regarding the samples of largest amplitude as a clipped or 

missed, we have 28 of un-correctly estimated clipped samples 

from the estimated 105 samples. However, that performance 

may be enhanced through following more sophisticated 

algorithms in detecting clipped samples indices. Also, the 

noise sensitivity increases under reduced number of 

measurements where the lower bound of the number of 

measurements (samples) is in reverse proportional to the 

operating SNR.  

The BER performance under Rayleigh fading channel is 

demonstrated in Fig.9. With the IAA approach, the proposed 

clipped SIM-OFDM (𝑁𝑠 = 5) outperforms the corresponding 

coded and clipped OFDM (BPSK) by about 8 dB. However, 

the performance of both IAA and MIAA estimators seems 

almost the same. This can be justified by regarding that the 

deep fading effect dominates over the noise and clipping 

distortions even for wide range of SNRs values. 

 
Figure 8: BER under AWGN channel 

 
Figure 9: BER under slowly fading Rayleigh 

 
Figure 10: Errors in estimating the clipped samples indices, (𝑪𝑹 = 𝟏, 

clipping 105 samples from 256, with 28 sample index error) 

VII. CONCLUSIONS  

In this paper, an improved OFDM-SIM is introduced as an 

energy efficient multicarrier scheme for IoT communications. 

Mainly, the explicit sparsity in frequency domain of OFDM-

SIM which provides a higher degree of freedom is exploited 

in the proposed scheme to enhance the performance in terms 

of EE. In particular, a novel clipping-CS based PAPR 
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reduction technique for OFDM-SIM is proposed in this paper. 

Considering the complexity constraints for IoT devices, the 

simple and low complex clipping method is used to alleviate 

the PAPR issue. Moreover, supported with the inherent 

sparsity of the received OFDM-SIM signal, CS is introduced 

to deal with clipping noise and to help in the signal recovery 

process. Furthermore, in this paper the information-theoretic 

limits on sparsity recovery are exploited to derive an upper 

bound measure of BER. The simulation results demonstrate 

that the proposed scheme significantly enhance the system 

performance in terms EE, PAPR reduction and BER compared 

to the conventional clipped coded-OFDM. As a future work, 

the possibility of utilizing the proposed scheme for other 

OFDM system through guaranteeing the sparsity in other 

domains in addition to time domain can be investigated. 
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