
FFMK: A Fast and Fault-Tolerant
Microkernel-Based System for Exascale
Computing

Carsten Weinhold, Adam Lackorzynski, Jan Bierbaum, Martin Küttler,
Maksym Planeta, Hannes Weisbach, Matthias Hille, Hermann Härtig,
Alexander Margolin, Dror Sharf, Ely Levy, Pavel Gak, Amnon Barak,
Masoud Gholami, Florian Schintke, Thorsten Schütt, Alexander Reinefeld,
Matthias Lieber, and Wolfgang E. Nagel

Abstract The FFMK project designs, builds and evaluates a system-software
architecture to address the challenges expected in Exascale systems. In particular,
these challenges include performance losses caused by the much larger impact of
runtime variability within applications, hardware, and operating system (OS), as
well as increased vulnerability to failures. The FFMK OS platform is built upon a
multi-kernel architecture, which combines the L4Re microkernel and a virtualized
Linux kernel into a noise-free, yet feature-rich execution environment. It further
includes global, distributed platform management and system-level optimization
services that transparently minimize checkpoint/restart overhead for applications.
The project also researched algorithms to make collective operations fault tolerant
in presence of failing nodes. In this paper, we describe the basic components,
algorithms, and services we developed in Phase 2 of the project.

1 Introduction

The operating system (OS) abstracts from low-level aspects of a computer system’s
hardware by providing applications with standardized programming interfaces
and common services such as file systems and network access. By design, it

C. Weinhold (�) · A. Lackorzynski · J. Bierbaum · M. Küttler · M. Planeta · H. Weisbach ·
M. Hille · H. Härtig · M. Lieber · W. E. Nagel
TU Dresden, Dresden, Germany
e-mail: carsten.weinhold@tu-dresden.de

A. Margolin · D. Sharf · E. Levy · P. Gak · A. Barak
The Hebrew University of Jerusalem, Jerusalem, Israel

M. Gholami · F. Schintke · T. Schütt · A. Reinefeld
Zuse Institute Berlin, Berlin, Germany

© The Author(s) 2020
H.-J. Bungartz et al. (eds.), Software for Exascale Computing - SPPEXA
2016–2019, Lecture Notes in Computational Science and Engineering 136,
https://doi.org/10.1007/978-3-030-47956-5_16

483

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47956-5_16&domain=pdf
mailto:carsten.weinhold@tu-dresden.de
https://doi.org/10.1007/978-3-030-47956-5_16

484 C. Weinhold et al.

stands between the hardware and all applications. In the high-performance comput-
ing (HPC) community, the OS is therefore sometimes considered to be “in the way”
as applications try to extract maximum performance from the underlying hardware.
Indeed, the OS can introduce overhead, as we will discuss in the following.
But challenges posed by upcoming Exascale systems such as load imbalances or
failures due to increasing component counts can benefit from system-level support.
Therefore, the central goal of the FFMK project has been to investigate how the OS
can actually help, rather than be a source of overhead.

In the following paragraphs, we summarize the general architecture of the
FFMK OS platform and give an overview of its higher-level services. In part, this
description is an overview of results from Phase 1 of the project; but it shall also
help put the results presented in this paper into context. For a much more detailed
discussion of FFMK and the motivation behind it, we refer to our previous project
report [59].

Multi-Kernel Node OS Figure 1 shows the architecture of the FFMK node OS.
It is built on a multi-kernel foundation comprising an L4 microkernel and a
variant of the Linux kernel that is called L4Linux. We aim to support unmodified
HPC applications and they shall have access to the same runtime libraries and
communication drivers that are used on standard Linux-based HPC OSes. We
target noise-sensitive applications by providing jitter-free execution directly on
top our microkernel [33]. In this context, we also investigated the influence of
hardware performance variation [61]. However, our vision for an HPC OS platform
also includes new platform management services to support more complex and

MPI Library

Decision Making

Checkpointing

Gossip

Compute Cores Service Cores

L4Linux

L4 microkernel

MPI
Daemonsgniroti no

M

Monitor Communication Checkpointing

Application

...

Service OS

Global Platform Management

Runtime ...
...

Fig. 1 FFMK software architecture: compute processes with performance-critical parts of (MPI)
runtime and communication driver execute directly on L4 microkernel; functionality that is not
critical for performance is offloaded to the L4Linux kernel, which also hosts global platform
management and fault-tolerance services

FFMK 485

dynamic applications, as well as algorithms and system-level support to address
fault-tolerance challenges posed by Exascale systems with unprecedented hardware
component counts.

Applications, Runtimes, Communication HPC applications are highly special-
ized, but they achieve a certain level of platform independence by using common
runtime and communication APIs such as the Message Passing Interface (MPI) [18].
However, just proving an MPI library and interconnect drivers (e.g., for InfiniBand)
is not sufficient [60], because the majority of HPC codes use many Linux-specific
APIs, too. The same is true for most HPC infrastructure, including parallel file
systems and cluster management solutions. Compatibility to Linux is therefore
essential and this can only be achieved, if applications are in fact compiled for Linux
and started as Linux processes.

Dynamic Platform Management The FFMK OS platform is more than a multi-
kernel architecture. As motivated in the Phase 1 report [59], we include distributed
global management, because the system software is best suited to monitor health
and load of nodes. This is in contrast to the current way of operating HPC
clusters and supercomputers, where load balancing problems and fault tolerance
are tasks that practically every application deals with on its own. In the presence
of frequent component failures, hardware heterogeneity, and dynamic resource
demands, applications can no longer assume that compute resources are assigned
statically.

Load Balancing We aim to shift more coordination and decision making into the
system layer. In the FFMK OS, the necessary monitoring and decision making is
done at three levels: (1) on each node, (2) per application instance across multiple
nodes, and (3) based on a global view by redundant master management nodes. We
published fault-tolerant gossip algorithms [3] suitable for inter-node information
dissemination and found that they have negligible performance overhead [36]. We
further achieved promising results with regard to oversubscribing of cores, which
can improve throughput for some applications [62]. We have since integrated the
gossip algorithm, a per-node monitoring daemon, and a distributed decision making
algorithm aimed at automatic, process-level load balancing for oversubscribed
nodes. However, one key component of this platform management service is still
missing: the ability to migrate processes from overloaded nodes to ones that have
spare CPU cycles. Transparent migration of MPI processes that directly access
InfiniBand hardware has proven to be extremely difficult. We leave this aspect for a
future publication, but do we do summarize our key results on novel diffusion-based
load balancing algorithms [39] in this report. These algorithms could be integrated
into the FFMK load management service once process-level migration is possible.

Fault Tolerance The ability to migrate processes away from failing nodes can also
be used for proactive fault tolerance. However, the focus of our research on system-
level fault tolerance has been in two other areas. First, we published on efficient
collective operations in the presence of failures [27, 31, 43]. Second, we continued
research on scalable checkpointing, where we concentrated on global coordination

486 C. Weinhold et al.

for user-level checkpointing [22] and how to optimize it based on expected failure
rates [21].

In the following two sections of this paper, we discuss how re-architecting the
OS kernel for HPC systems can improve performance and scalability (Sect. 2); we
also present results on how to increase kernel scalability beyond the dozens of cores
found in contemporary systems, as well as new load balancing algorithms. We then
make the case that system-software support is essential to address fault-tolerance
challenges posed by Exascale systems and how new fault-tolerant algorithms can
help improve robustness and performance of collective operations (Sect. 3). Each
individual subsection on these pages summarizes our peer-reviewed work in the
respective area.

2 Building Blocks for a Scalable HPC Operating System

2.1 The Case for a Multi-Kernel Operating System

Noise-Sensitive Applications A widely reported problem in HPC is “OS noise” [5,
16, 26, 49, 53], where sporadic or periodic housekeeping activities of the OS (or
other background tasks) briefly interrupt application threads. These interruptions
can slow down applications based on the bulk-synchronous programming (BSP)
model. BSP applications are parallel programs that are characterized by alternating
computation and communication phases that all participating threads must perform
in perfect synchronization to maximize throughput. If just a few compute threads
are preempted by background activities, all other threads that depend on their input
will waste CPU cycles as they wait for the stragglers to reach the communication
phase. As shown in Fig. 2, delays can amount to hundreds of thousands of cycles,
resulting in a slowdown of up to 9% for a computation that takes 1.5 ms to complete
when there is no interruption.

Fig. 2 OS noise during a run of the fixed work quantum (FWQ) benchmark on a node of a
production HPC cluster with Linux-based vendor OS

FFMK 487

Re-Architecting the Kernel for HPC One way to address the OS noise problem
is to partition the compute resources of each node into two sets of cores: compute
cores that are allocated exclusively to HPC applications and service cores that
run management and maintenance tasks. Multi-kernel OS architectures implement
this approach by assigning the compute cores to a lightweight kernel (LWK); a
traditional kernel such as Linux runs management and node monitoring daemons on
the service cores. The LWK does not preempt compute threads, thereby minimizing
execution-time jitter for applications. However, a LWK for HPC does not replace a
complex kernel such as Linux. It only implements functionality that is critical for
application performance; system calls that do not impact performance are offloaded
to the Linux kernel running on the service cores. The multi-kernel approach gives
HPC applications the best of both worlds: the LWK ensures low noise and high
performance, whereas Linux offers convenience, familiar APIs, a rich feature set,
and compatibility with huge amounts of legacy infrastructure.

A Microkernel as a Universal LWK Multi-kernel OS architectures have received
a lot of attention in recent years and several new LWKs have been developed,
including IHK/McKernel [55] and mOS [63]. However, the maintenance effort for
keeping an HPC-suitable multi-kernel OS up to date and compatible with Linux
must be smaller than constantly patching mainline Linux to make it less noisy.
Arguably, the best way to meet this requirement is to reuse components that already
exist and that are actively maintained. In the FFMK project, we therefore chose
to use the mature L4Re microkernel and L4Linux as the basis of the FFMK node
OS. In contrast to McKernel and mOS, the L4Re microkernel manages not just
the designated compute cores, but all processor resources. The L4Linux kernel runs
virtualized on top of L4Re as shown in Fig. 1 on page 484.

2.2 L4Re Microkernel and L4Linux

In this Subsection, we quote1 from a previous publication [60] an overview of
the L4Re ecosystem, including the L4Re microkernel and the paravirtualized Linux
kernel L4Linux. These two basic building blocks are combined into a foundation of
a highly flexible and low-noise node OS. In Sect. 2.3, we evaluate the main benefits
of this multi-kernel architecture.

L4 Microkernel The L4Re microkernel is a member of the L4 family of micro-
kernels. The core principle of L4 [40] is that the kernel should provide only the
minimal amount of functionality that is necessary to build a complete OS on
top of it. Thus, an L4 microkernel is not intended to be a minimized Unix, but
instead it provides only a few basic abstractions: address spaces, threads, and inter-

1This description has been shortened and slightly edited for brevity; see [60] for the complete
version.

488 C. Weinhold et al.

process communication (IPC). For performance reasons, a thread scheduler is also
implemented within the kernel. However, other OS functionality such as device
drivers, memory management, or file systems are provided by system services
running as user-level programs on top of the microkernel.

Applications and User-Level Services L4Re applications communicate with each
other and with system services by exchanging IPC messages. These IPC messages
can not only carry ordinary data, but they may also transfer access rights for
resources. Being able to map memory pages via IPC allows any two programs
to establish shared memory between their address spaces. Furthermore, because
it is possible to revoke memory mappings at any time, this features enables user-
level services to implement arbitrary memory-management policies. In much the
same way an L4Re program can pass a capability referencing a resource to another
application or service, thereby granting the receiver the permission to access that
resource. A capability can refer to a kernel object such as a Thread or a Task,
representing an independent flow of execution or an address space, respectively. But
they may also point to an Ipc_gate, which is a communication endpoint through
which any user-space program can offer an arbitrary service to whomever possesses
the corresponding capability.

I/O Device Support An important feature of the L4Re microkernel is that it maps
hardware interrupts to IPC messages. A thread running in user space can receive
interrupts by waiting for messages from an Irq kernel object. In conjunction with
the possibility to map I/O memory regions of hardware devices directly into user
address spaces, it is possible to implement device drivers outside the microkernel.

Virtualized Linux The L4Re microkernel is a fully functional hypervisor capable
of hosting virtual machines running unmodified guest operating systems. It employs
hardware-assisted virtualization on instruction set architectures that support it,
including x86, ARM, and MIPS. Device emulation or passthrough is supported
through virtual machine monitors running in user space. However, faithful virtu-
alization is not the only way to run a legacy OS on top of the L4Re microkernel.
L4Linux is a paravirtualized Linux kernel that has been adapted to run on the
interfaces provided by L4Re. It is binary compatible with standard Linux programs,
however, instead of running in the privileged mode of the CPU, the L4Linux kernel
runs as a multi-threaded user-level program. Linux user processes run in their own
L4 tasks (i.e., other address spaces). Linux programs on L4Linux experience the
same protection as on native Linux; they cannot read or write the Linux kernel’s
memory and they are protected from each other like processes on native Linux.

The vCPU Mechanism For execution, L4Linux employs vCPUs, a mechanism
provided by the microkernel that allows for an asynchronous execution model where
a vCPU migrates between executing code in the L4Linux kernel and user code in
Linux processes. For any event that needs to be handled by the Linux kernel, such
as system calls and page faults by processes, or external interrupts by devices, the
vCPU switches to the L4Linux kernel to handle them.

FFMK 489

L4Linux Process Model L4Linux manages the address spaces of Linux user
processes through Task objects provided by the L4Re microkernel. Thus, every
Linux process and the contents of its address space are known to the microkernel.
Furthermore, L4Linux multiplexes all user-level threads executing in such an address
space onto its vCPUs. Thus, the L4Re microkernel is involved in every context
switch of any Linux user thread. In particular, it is responsible for forwarding any
exceptions raised by a Linux program to the L4Linux kernel. Exceptions occur when
a thread makes a system call, when a page fault occurs during its execution, or
when a hardware device signals an interrupt. L4Linux receives these exceptions at
a previously registered vCPU entry point, to which the microkernel switches the
control flow when it migrates the vCPU from the Task of the faulting Linux user
program to the address space of the virtualized Linux kernel.

2.3 Decoupled Execution on L4Linux

Since virtually all HPC codes are developed for Linux and require so many of its
APIs, the only practical option is to execute them on a Linux-based OS. Just running
them on L4Linux yields no benefit. However, the tight interaction between the L4Re
microkernel and L4Linux allows us to conveniently implement a new mechanism
we call decoupling [33].

Decoupling Thread Execution from L4Linux The purpose of decoupling is to
separate execution of a thread in a Linux process from the vCPU it is normally
running on. To this end, we create a separate, native L4Re host thread that runs in
the same L4 Task (i.e., address space) as the Linux process, but not under control
of L4Linux. The original Linux thread context in the L4Linux kernel is suspended
while execution progresses on the native L4Re host thread. The user code running
there will raise exceptions just as if it were executed by a vCPU, except that the
microkernel forwards each of them to L4Linux as an exception IPC message. A
message of this type carries a thread’s register state and fault information as its
payload, and is delivered by the microkernel to an exception handler. We configure
L4Linux to be the exception handler of the “decoupled” Linux user threads. An
attempt to perform a Linux system call will also result in an exception, which the
L4Linux kernel can then handle by briefly reactivating the previously suspended
thread context and scheduling it onto a vCPU. Afterwards, execution is resumed in
decoupled mode on the L4Re host thread. Figure 3 visualizes decoupled execution;
more details can be found our publications [33, 60].

One Mechanism for the Best of Both Worlds The net gain of the decoupling
mechanism is that we can combine noise-free execution on our LWK (i.e., the
L4Re microkernel) with the rich execution environment of Linux, including all
its APIs and the HPC infrastructure built for it. Decoupled threads use a single
mechanism for forwarding any system call or exception, instead of many specialized

490 C. Weinhold et al.

Compute Cores Service Cores

L4Linux

L4 microkernel

L4 host thread
(running)

Linux thread
(decoupled,

inactive)

Address space

Fig. 3 Schematic view of the decoupling mechanism. The L4Re microkernel runs on every core
of the system, while the virtualized L4Linux runs on a subset of those cores only. All normal Linux
applications are thus restricted to those cores. Decoupling pulls off threads and runs them on cores
not available to L4Linux

proxies that other multi-kernel HPC OSes use and that are difficult to maintain [60].
Applications are built for Linux and start running as Linux processes, but we pull
their threads out of Linux’s scheduling regime so they can run on dedicated cores
without being disturbed by L4Linux. Effectively, decoupled threads run directly on
the microkernel. However, they can use all services provided by L4Linux, which
will continue to handle Linux system calls and resolve page faults. Also, since the
InfiniBand driver in the L4Linux kernel maps the I/O registers of the HCA into
the address space of each MPI rank, the high performance and minimal latency of
the user-space part of the driver is not impaired; a decoupled thread can program
performance-critical operations just like it would on native Linux.

CPU Resource Control The number of vCPUs assigned to L4Linux and their
pinning to physical CPU cores determines how much hardware parallelism an
L4Linux-based virtual machine can use. All other cores are exclusively under control
of the L4Re microkernel and can therefore be allocated exclusively to decoupled
threads of HPC application processes.

Initial Benchmark We used the fixed-work quantum (FWQ) [35] benchmark to
determine how much “OS noise” decoupled threads experience. FWQ executes a
fixed amount of work in a loop, which on a perfectly noise-free system should
require a constant amount of CPU cycles to complete. Figure 4 shows the result
of our first benchmark run, performed on a 2-socket machine from our lab. Using
the rdtsc instruction, we measured delays of up to 55 CPU cycles per iteration
when FWQ is executed by a decoupled thread on a dedicated core. The execution-
time jitter is reduced to 4 cycles per iteration, when FWQ is offloaded to the second
socket, while L4Linux is pinned to a single core of socket 1.

FFMK 491

Fig. 4 Minimal OS noise remaining in decoupled execution; L4Linux running on same socket

Multi-Node Benchmark The execution-time jitter we measured in the lab is four
to fives orders of magnitude smaller than what we saw when FWQ ran on the
vendor-provided Linux OS of Taurus, an HPC cluster installed at TU Dresden (see
Fig. 2 on page 486). For larger-scale benchmarks, we extended FWQ into MPI-
FWQ, a parallel benchmark that executes work-loop iterations in each MPI process
on all participating cores. We performed experiments with our L4Re/L4Linux-based
node OS on 50 Taurus nodes. Each node has two Xeon® E5-2690 processors
with 8 cores per socket. To benchmark “decoupling” in a parallel application,
we allocated one core to L4Linux and the remaining 15 cores to MPI-FWQ. The
baseline we compare against is 15 MPI-FWQ processes per node scheduled by
the same L4Linux on the same hardware, but in a 16-vCPU configuration with no
decoupled threads.

EP and BSP Runs MPI-FWQ can operate in two modes: In StartSync mode, a
single barrier across all ranks is used to synchronize once when the benchmark
starts; this mode simulates an embarrassingly parallel (EP) application. In StepSync
mode, MPI-FWQ waits on a barrier after each iteration of the work loop, thereby
acting like an application based on the bulk-synchronous programming (BSP)
model.

Figure 5 shows the time to completion for any MPI-FWQ process operating in
BSP-style StepSync mode, as we increased the total number of MPI processes (i.e.,
cores) from 30 to 750. The benchmark run time with decoupled MPI-FWQ threads
(L4Linux-DC) is approximately 1% shorter than when the standard scheduler in the
L4Linux kernel controlled application threads (L4Linux-Std); results for EP-style
StartSync runs show a similar performance. This difference is smaller than the up
to 9% jitter we saw with the vendor OS, but our stripped down Linux environment
lacks most of the management services and system daemons that run on the cluster.
These services could never preempt decoupled threads, though.

More information on the decoupling mechanism, additional use-cases, and
evaluations results can be found in separate publications [32–34].

492 C. Weinhold et al.

Fig. 5 BSP-style MPI-FWQ (StepSync mode) on L4Linux (Std) and with decoupled thread
execution (DC) on Taurus. This figure has originally been published in [33]

2.4 Hardware Performance Variation

Software-induced imbalance in large-scale parallel simulations have also been
studied by other groups, who proposed multi-kernel architectures as well [20, 23,
30, 48, 50, 51]. However, one source of variability has not been systematically
investigated so far: the hardware itself. Hardware performance variation is partic-
ularly interesting due to growing diversity of platforms in HPC and the increasing
complexity of computer architectures in general.

Measuring Hardware Performance Variation Characterizing hardware perfor-
mance variability is challenging, because it requires a tightly controlled software
environment. LWKs [51] have the greatest potential to obtain a precise charac-
terization of various aspects of hardware performance variability on real HPC
hardware. Towards this end, we have developed an extensible benchmarking
framework to systematically characterize different aspects of hardware performance
variability [61]. We use this benchmark suite to analyze five platforms described
in Table 1: Intel Xeon [29], Intel Xeon Phi [56], Cavium ThunderX [9], Fujitsu
FX100 [64] and IBM BlueGene/Q [28]. To minimize “OS noise”, we benchmarked
on OSes based on two LWKs: CNK on the IBM BG/Q and IHK/McKernel [20, 55]
on the Intel, Fujitsu, and Cavium machines.

Benchmark Suite In addition to the previously described FWQ benchmark, our
benchmark suite consists of seven other benchmark kernels. They were selected
from well-known algorithms, micro benchmarks, or proxy applications and have
the following characteristics:

• The DGEMM benchmark performs matrix multiplication. We confine ourselves
to naïve matrix multiplication algorithms to allow compilers to emit SIMD
instructions, if possible. This benchmark kernel is intended to measure hardware
performance variation for double-precision floating point and vector operations.
The SHA algorithm utilizes integer execution units instead.

FFMK 493

T
ab

le
1

Su
m

m
ar

y
of

ar
ch

it
ec

tu
re

s

Pl
at

fo
rm

/p
ro

pe
rt

y
In

te
lI

vy
B

ri
dg

e
In

te
lK

N
L

Fu
ji

ts
u

FX
10

0
C

av
iu

m
T

hu
nd

er
X

IB
M

B
G

/Q

IS
A

×8
6

×8
6

SP
A

R
C

A
R

M
Po

w
er

IS
A

N
um

be
r

of
co

re
s

8
64

+
4

32
+

2
48

16
+

2

N
um

be
r

of
SM

T
th

re
ad

s
2

4
N

/A
N

/A
4

C
lo

ck
fr

eq
ue

nc
y

2.
6

G
H

z
1.

4
G

H
z

2.
2

G
H

z
2.

0
G

H
z

1.
6

G
H

z

L
1d

si
ze

32
kB

32
kB

64
kB

32
kB

16
kB

L
1i

si
ze

32
kB

32
kB

64
kB

78
kB

16
kB

L
2

si
ze

25
6

kB
1

M
B

×
34

24
M

B
16

M
B

32
M

B

L
3

si
ze

20
48

0
kB

N
/A

N
/A

N
/A

N
/A

O
n-

ch
ip

ne
tw

or
k

R
in

g
2D

m
es

h
un

ko
w

n
R

in
g

C
ro

ss
-b

ar

Pr
oc

es
s

te
ch

no
lo

gy
22

nm
14

nm
20

nm
28

nm
45

nm

494 C. Weinhold et al.

• Using John McCalpin’s STREAM benchmark, we assess variability in the cache
and memory subsystems. The Capacity benchmark is intended to measure
performance variation of cache misses themselves.

• HACCmk from the CORAL benchmark suite is a compute-intensive N-body
simulation kernel with regular memory accesses. HPCCG from Mantevo’s
benchmark suite is a Mini-App aimed at exhibiting the performance properties
of real-world physics codes working on unstructured grid problems. MiniFE
is another proxy application for unstructured implicit finite-element codes from
Mantevo’s package.

More detailed descriptions of these benchmark kernels, modifications we made, and
all measurement results can be found in our paper [61]. In this report, we highlight
only a few key results from FWQ, HPCCG, and DGEMM experiments.

Workload Matters Like previous studies on software-induced performance vari-
ation, we relied on the FWQ benchmark to evaluate execution-time jitter for
decoupled threads. However, this simple benchmark kernel, may be suitable to
quantify interruptions caused by system software, but they are insufficient to
capture hardware-induced noise. We hypothesize that the full extent of hardware
performance variation can only be observed when the resources which cause these
variations are actually used. And indeed, as shown in Fig. 6, the HPCCG proxy
code running on IHK/McKernel on an Intel Ivy Bridge system shows about 1% of
performance variation among all cores of a node.

We measured variation on 30 SMT cores of this 2-socket Intel Ivy Bridge E5-
2650 v2 system for both FWQ and HPCCG. We set the working set size of HPCCG
to 70% of the L1 data cache size (32 KiB), disabled TurboBoost, set the scaling
governor to performance, and fixed the clock speed to the nominal frequency of
2.6 GHz. We additionally sampled the performance counters for L1 data cache
and L1 instruction cache misses and confirmed that both benchmarks experience
little to no misses, in particular cores one to seven and 16 to 29 experience neither
instruction cache nor data cache misses under HPCCG. Nevertheless all cores show
significantly more variation under HPCCG than under FWQ. We conclude that
FWQ is indeed ill-suited to measure hardware-induced performance variation.

−0.5

0.0

0.5

1.0

0 10 20 30
Core #Va

ria
tio

n
fro

m
 M

ed
ia

n

FWQ

HPCCG

Fig. 6 Performance variation of FWQ and HPCCG on a dual-socket Intel E5-2650 v2

FFMK 495

1e+01
1e+00
1e-01
1e-02
1e-03
1e-04
1e-05
1e-06
1e-07

FX100 ThunderX Ivy Bridge KNL BG/Q

Platform

Va
ria

tio
n
[%

]

Fig. 7 Hardware performance variation under the DGEMM benchmark

Microarchitectures Differ Figure 7 visualizes our measurements for the DGEMM
benchmark, which is dominated by floating point operations. We observe that the
FX and ThunderX platforms exhibit very low variation, and note the rather high
variation of the Ivy Bridge, KNL and BlueGene/Q platforms. We saw high numbers
of cache misses on the Ivy Bridge platforms and therefore reduced the cache
pressure to 70% fill level. After this modification to the benchmark setup, we saw
stable or even zero cache miss numbers for all cores of the Ivy Bridge platform, but
variation did not improve. We conclude that the measured variation is not caused by
the memory subsystem.

Overall we found that just focusing on CPU core-local resources, like we did
in this study, already shows up to six orders of magnitude difference in relative
variation among different CPU architectures.

2.5 Scalable Diffusion-Based Load Balancing

A low-noise execution environment is essential for certain types of applications,
as we explained in the preceding subsections. However, there are other HPC codes
where noise is less of a concern, because they suffer from load imbalances that are
inherent to the problem domain. For example, they might use multiple simulation
kernels with different computational complexity. Furthermore, some computations
are difficult to parallelize efficiently, because partitioning of the problem space
is non-trivial; it might even change dynamically as the simulation progresses. As
mentioned as part of the architecture overview in Sect. 1, we believe that support for
load balancing should be provided at the system level, thereby freeing application
developers from the burden of managing a dynamic system.

Taskifying MPI Applications may need to be (re-)balanced due to inherent load
imbalances or to support shrinking and expanding the set of nodes assigned to

496 C. Weinhold et al.

the application. In the Phase 1 report [59] of this project, we proposed to taskify
MPI processes using oversubscription, which results in multiple Tasks (i.e., MPI
processes) per core that can be migrated transparently without application code
modifications. MosiX-like algorithms [2] can be used for this kind of system-level
load balancing in case communication between application tasks is insignificant. In
other cases, repartitioning methods that consider the task communication graph are
required [57].

Requirements for Efficient Load Balancing In the context of our system architec-
ture, the requirements for a load-balancing method are: (1) effective load balancing
with low inter-node communication (edge-cut), (2) low amount of migration to
reduce MPI process migration costs, and (3) low overhead of the method itself. The
method’s input should be the local node’s view of the weighted task communication
graph, which can be obtained by monitoring the application at the OS/MPI level.
Since graph partitioners, like ParMetis [52], are known to be computationally
expensive, we developed a nearest-neighbor diffusion-based repartitioning method.

Method Description The method consists of four main phases that require point-
to-point communication between neighbor nodes only and, with the exception of
the flow calculation, have O(number of tasks per node) computational complexity.

1. Each node determines its neighbor nodes from the task communication graph.
2. Flow calculation: Computation of minimal load flows between neighbor nodes

that lead to global balance using 2nd-order diffusion [13, 45]. The diffusion is
stopped between each node pair individually if the load flow of an iteration falls
below a specified threshold. The required number of iterations grows with the
number of nodes. However, with low-latency networks the observed run time is
within the low millisecond range even with thousands of nodes [39].

3. Task selection: Tasks at the partition border are selected for migration to realize
workload flows using different weighted criteria to achieve low edge-cut [14].

4. Partition refinement: Edge-cut is improved with a parallel KL/FM-based
refinement algorithm [58] that smoothes partition borders by swapping weighted
tasks between neighbor node pairs independently within a certain imbalance tol-
erance. If the task selection result was not within the tolerance, the optimization
goal is “balance” instead of “edge-cut”.

Evaluation Workloads We implemented the diffusion method within the Zoltan
load balancing library [12] and evaluate the performance on Taurus in a normal,
non-oversubscribed setup. MPI processes own multiple migratable user-level tasks.
Two scenarios with 3D task meshes are used for performance evaluation: the Cloud
scenario consists of computation time measurements from 36 × 36 × 48 grid cells
over 100 time steps of COSMO-SPECS+FD4 [38] and the synthetic Shock scenario
simulates the evolution of a spherical shock wave over a 160 × 80 × 80 grid with a
four times increased workload at the wave front over 169 time steps. Figure 8 shows
the workload distribution for a 2D version of the shock scenario with two examples
of resulting partitionings.

FFMK 497

Fig. 8 Left: workload distribution for a selected time step of the 2D shock scenario, red indicates
4 times increased workload; Center: Resulting partitioning for 96 processes with ParMetis, colors
represent individual partitions; Right: Resulting partitioning with Diffusion

Diffusion Results We compare our method with four other (re)partitioning meth-
ods: a hierarchical space-filling-curve method (FD4/SFC) [37], recursive coordinate
bisection and space-filling curve from Zoltan (Zoltan/RCB and SFC), as well as
AdaptiveRepart from ParMetis [52] with 0.5% imbalance tolerance. Note, that
SFC and RCB are coordinate-based and not graph-based; they require application
knowledge about spatial coordinates of tasks. Since diffusive load balancing
requires a partitioning to exist, we use Zoltan/RCB to initialize the partitioning.
Figure 9 shows the results for different metrics (lower is better), each averaged over
the time steps (except median for run time):

• Load Imbalance (max. load among processes/average load—1): Diffusion per-
forms better than ParMetis, but worse than the three geometric methods.

• Migration (max. no. of tasks a process imports and exports/avg. no. of tasks per
process): Diffusion outperforms the other methods, especially with the Shock
scenario (factor 3–10 less migration).

0 4% 8%

FD4/SFC
Zoltan/SFC
Zoltan/RCB
ParMetis
Diff tol=1%
Diff tol=10%

Cloud Scenario

Number of procs:
96
192
384
768

Load imbalance

0 40% 80%

Migration

0 50% 100%

Edge−cut

0.1 1 10 100

Run time (ms)

0 3% 6%

FD4/SFC

Zoltan/SFC

Zoltan/RCB

ParMetis

Diff tol=1%

Diff tol=10%

Shock Scenario

Number of procs:
384
768
1536
3072
6144

Load imbalance

0 100% 200%

Migration

0 40% 80%

Edge−cut

0.1 1 10 100 1000

Run time (ms)

Fig. 9 Evaluation of diffusion-based load balancing with Cloud (62208 tasks) and Shock (ca. 1M
tasks) scenarios. Bar shades show results for 96–768 and 384–6144 MPI processes, respectively

498 C. Weinhold et al.

• Edge-cut (max. edge-cut among all processes/avg. number of edges per process):
All methods achieve very similar results, except diffusion with low imbalance
tolerance at high process counts (coarse granularity).

• Run time of the method (max. among all processes): Due to its scalability,
diffusion is clearly faster than the Zoltan methods at higher parallelism and 1–
2 orders of magnitude faster than ParMetis. At 6144 processes, it requires 2.5 ms
only.

As can be seen, the imbalance tolerance of the diffusion method allows to
trade-off load balance vs. edge-cut and migration. We can conclude that our load
balancing method enables fast, scalable, and low-migration graph-based repartition-
ing.

2.6 Beyond L4: Improving Scalability with M3

and SEMPEROS

We conclude the performance and scalability section of this paper with an out-
look on a new kernel architecture suitable for heterogeneous many-core systems:
SEMPEROS [25].

M3 SEMPEROS is based on M3 [1], a hardware/software co-designed system archi-
tecture. Like L4Re, which we described in Sect. 2.2, these systems are microkernel
OSes that manage access rights to all system resources based on capabilities. A
process can only use a resource, if it owns a capability to it. Such resources include
threads, memory allocations, and files, but they are also used to grant and revoke
access to CPU cores and the ability to send messages between the threads running
on these cores. A key aspect of the M3 design is that the OS kernel runs on just one
core, which remotely manages all other cores2 in the system.

Heterogeneous Architectures Since it is not necessary that all cores of a system
can run an OS kernel, M3 is suitable for heterogeneous system architectures with
different kinds of CPU cores. The current No. 1 system in the TOP500 list of
supercomputers, China’s Sunway TaihuLight system [19], is based on such an
architecture. Each node has “big” cores capable of running an OS kernel, as well
as many small compute cores that are optimized for computation, but lack the
architectural support for an OS kernel.

SEMPEROS To put hundreds of cores under the control of a microkernel OS, the
kernel and its capability system need to scale. SEMPEROS extends M3 to manage the

2M3 provides a hardware abstraction to integrate accelerators in the same way as general-purpose
cores. Therefore, we usually use the term processing element in an M3 context. HPC workloads can
benefit from generalized accelerator support, but it does not influence how the capability system
works. In this paper, we therefore use the common term cores to simplify the explanation.

FFMK 499

system using multiple kernels. The compute cores of the system are organized into
as many partitions as there are kernel instances, thereby increasing the total number
of cores (and compute threads) the system can handle. Each of the SEMPEROS
kernel instances executes on its own privileged core, but they coordinate with each
other via a distributed capability protocol [25]. The collaboration between cores
managed by different kernels is transparent to the applications.

Capability Model SEMPEROS implements partitioned capabilities. The capabili-
ties are stored within a protected address space and the kernel supervises capability
operations. Application processes can delegate and revoke capabilities via the
respective system calls. The kernel records the delegations in a capability tree that
stores the relations between capabilities. Using this capability tree, SEMPEROS
implements recursive revocation, by which all access rights that originated from the
specific capability can be revoked by deleting this capability and all its descendants.

Distributed Capability Protocol In a distributed capability system, the data
structure storing the capability tree is split between multiple kernels. Because the
same capabilities can be manipulated simultaneously by different kernels in the
system, SEMPEROS kernel instances need to coordinate certain capability opera-
tions. We analyzed all possible interleavings of capability operations (e.g., during
delegation or revocation) and developed a protocol that prevents inconsistencies in
the capability tree. This protocol integrates a confirmation for capability delegation
(similar to a two-way handshake) and a distributed mark-and-sweep algorithm to
revoke capabilities [25].

Evaluation Setup We evaluated SEMPEROS using the cycle-accurate gem5 sim-
ulator [6]. The experiments were run with up to 640 out-of-order cores integrated
into a single network-on-chip. The applications used in our evaluation stress the
capability system, as they extensively use OS services. In particular, they make
heavy use of the M3/SEMPEROS in-memory file system, which grants access to
memory ranges within files by delegating memory capabilities to applications and
revoking those capabilities when files are closed again. We assume that similar usage
patterns would also occur during checkpointing operations on a future HPC system
with storage-class memory in each node.

Scalability Results To quantify the scalability of SEMPEROS, we computed the
parallel efficiency, exposing the runtime overhead a single benchmark instance (i.e.
process) experiences when it is executed in parallel with a number of identical
benchmark instances. Figure 10a depicts an overview of the parallel efficiency of
all application benchmarks we evaluated. The scalability of the applications improve
when increasing the number of kernels managing the system as depicted in Fig. 10b.

The capability protocol in general is applicable to any distributed capability
system implementing global IDs and stores all capability relations in a capability
tree.

500 C. Weinhold et al.

 65

 70

 75

 80

 85

 90

 95

 100

 128 256 384 512

P
ar

al
le

l E
ffi

ci
en

cy
 (

%
)

of Benchmark Instances

(a)

tar
untar

find
SQLite

LevelDB
PostMark

 70

 80

 90

 100

 128 256 384 512

of Benchmark Instances

(b)

4 Kernels
8 Kernels

16 Kernels

32 Kernels
48 Kernels
64 Kernels

Fig. 10 Scalability evaluation of SEMPEROS. (a) Parallel efficiency of application benchmarks.
(b) Level DB key-value store

3 Algorithms and System Support for Fault Tolerance

In this section we discuss FFMK research results on fault tolerance. Our activities
concentrated on two areas: First, we introduce new methods for resilience of MPI
applications at scale. To this end, we developed probabilistic and deterministic
algorithms for resilience of collective operations (Sects. 3.1 through 3.3). Second,
we present new approaches to coordinate and optimize concurrent checkpointing
of multiple jobs (Sect. 3.4) and to improve multi-level checkpointing for a single
parallel job (Sect. 3.5).

3.1 Resilience in MPI Collective Operations

MPI libraries are usually not fault tolerant and therefore not able to complete a
collective operation correctly in case of a fault. Instead, the whole application will
either hang or crash. Unfortunately, the overall system reliability decreases as the
number of processes involved in the computation grows.

Existing Recovery Approaches The MPI standard does not address resilience
of parallel applications, with the exception of return codes for detected errors.
Currently, there are multiple outstanding proposals how to address faults during MPI
run-time. Most work on this subject is characterized as either backward recovery or
forward recovery. The former tries to restore a correct past state, whereas the latter
attempts to establish a new correct state. For example, ULFM [8] applies forward
recovery, entailing a set of tools that allow applications to deal with detected faults.

Fault-Tolerant Algorithms Fault-Tolerant Collective Operations (FTCO) [43] is
a new forward recovery approach. FTCO relies on parallel algorithms that apply to
tree-based collective operations in MPI. It includes resilient versions of collective
operations such as Bcast, Reduce and Allreduce, for any tree topology. This

FFMK 501

Fig. 11 Message flow after
DATA timeout: Node #3
overcomes fault detected on
node #1 by bypassing it and
sending the data to the next
node #0 along the tree

0

1�

3 4

2

5 6

#1-DATA

#2-DATA

algorithm detects faults by a per-node calculated timeout and overcomes faults by
excluding failed processes. It is intended for use-cases that can tolerate process
faults, such as Monte–Carlo method or PDE solvers. FTCO delivers a result to every
live process, so that the application may keep running without handling those faults.
The FTCO algorithm minimizes the fault-free performance penalty and shows a
small increase in latency and messages per fault, regardless of job size. This offers a
transparent and scalable forward recovery alternative to the costly legacy backward
recovery mechanisms. For example, Fig. 11 demonstrates a simple case, where node
#3 overcomes the fault detected on node #1 by bypassing it and sending the data to
the next node (#0) along the tree.

FTCO Results FTCO differs from other approaches, such as ULFM, by localizing
the detection and recovery of faults, while other approaches involve the entire group
of processes in the MPI job. Our experimental results with the FTCO approach
support this claim, showing that the latency with FTCO is proportional to the
number of serial faults, regardless of the number of MPI proceeses: Table 2 shows
the FTCO latency of the Allreduce operation for different combinations of offline
faults and increasing number of processes. We chose a timeout of 2 s, which is the
default for ULFM [43]. In the table, each figure represents the average longest time
(in seconds) for a process to complete the same Allreduce call. In a tree topology,
multiple faults could be either serial or parallel: parallel faults occur in different sub-
trees, thus their recovery time may overlap, while serial faults are handled one after
the other. We found that two parallel faults take approximately the same amount
of time as a single fault; adding a third parallel fault to two serial faults does not
change the latency.

Table 2 FTCO: average longest time in seconds for a process to complete Allreduce call

No. of process No faults 1 fault 2 parallel faults 2 serial faults 3 mixed faults

64 0.0005 2.0095 2.0094 4.0194 4.0194

128 0.0006 2.0123 2.0123 4.0221 4.0222

256 0.0007 2.0121 2.0123 4.0220 4.0219

384 0.0017 2.0114 2.0323 4.0404 4.0217

512 0.0024 2.0343 2.0110 4.0421 4.0422

502 C. Weinhold et al.

Fig. 12 The latency cost of one fault (in seconds) with FTCO and ULFM: FTCO outperforms
ULFM; both approaches use the same fault-detection timeouts and tree topology

FTCO vs ULFM Figure 12 shows a comparison between the latency of FTCO and
ULFM for the Allreduce operation with a single fault and an increasing number of
processes. In both cases we used the same parameters, like fault detection timeouts
and tree topology. Each test started by injecting a fault into one process and then
attempted an Allreduce on multiple communicators with that process.

Integration of FTCO into UCX We developed a prototype library to further
measure the performance of FTCO based on UCX. UCX [54] is an open-source
point-to-point communication library, optimized for performance on low-latency
interconnects. UCX is designed to provide a high-level of abstraction for com-
munication, and to consider the specifics of the local NIC, to find the optimal
send and receive methods. UCX queries the capabilities of each NIC to establish
which hardware accelerations are present, and chooses the optimal parameters
for sending messages, including the NIC, port and protocol (e.g. rendezvous). In
order to apply fault-tolerance algorithms to MPI applications, we extended UCX
with an implementation of MPI’s collective operations. Our library is suitable
for applications that can withstand partial failures, where the overall result is not
effected by some faults, or where the application can overcome them.

Our extension contains a basic, deterministic implementation for fault-free
collective operations. It demonstrated the benefit of a persistent collective operation:
applications often repeat the same collective operation call, and so the library can
reuse past structures instead of creating it from scratch for each call. Our UCX-
based library can be used with any MPI implementation, and provides a foundation
for further experimental results and optimizations.

FFMK 503

3.2 Corrected Gossip Algorithms

An alternative to the deterministic approach taken with FTCO is to use randomized
gossip-based algorithms, which have been shown to yield better recovery latency
for some applications. Gossip algorithms have been widely successful in various
contexts that did not require strong consistency. Yet, they become rapidly inefficient
once about 50% of the nodes were reached, because messages are more likely to be
sent to nodes that have already received a message before.

Gossip-Based Broadcast Let us consider how broadcast among processes can be
implemented using gossip. The root sends the broadcast payload to a random subset
of other processes. When a new process receives the payload and gets colored, it
starts sending messages to randomly selected processes as well. This dissemination
runs for a fixed period of time, after which all colored processes have received the
broadcast payload.

Closing the Gaps The gossip phase attempts to color as many processes as
possible, but due to potential failures and the random nature of gossip, the protocol
cannot guarantee that all live processes are actually colored. Our new algorithm
therefore enters a deterministic correction phase, in which it tries to color these
remaining processes. For correction, all processes are reorganized into a virtual ring
(e.g., according to their MPI rank numbers from 0 to P −1 for P processes). On this
ring, uncolored processes create gaps, where the maximum gap size is the length
of the longest sequence of uncolored processes. All colored processes now send
messages to their neighbors on the ring, thereby closing the gaps with few messages
per node.

Corrected Gossip Algorithms We designed three different protocols based on
this idea of combining randomized and deterministic algorithms for improving the
broadcast latency [27]. These three algorithms allow us to choose various tradeoffs
between consistency, simplicity, and performance. The three algorithms are: (1)
opportunistic, which applies the correction without checking for completion; (2)
checked, which runs the correction until all nodes received the message, provided
that no nodes fail during the correction; and (3) fail-proof, which applies the
correction and guarantees that all active nodes receive the message, provided
that no more than f nodes fail during the operation. Our algorithms do not
require multicast, failure detectors, timeouts, acknowledgments, or reconfiguration
procedures. The result of this work is the “corrected-gossip” paradigm [27].

Framework for Collective Algorithms Based on the corrected-gossip paradigm,
we also developed a framework for failure-proof collective operations that generates
online an independent spanning tree. Generation can be completed successfully
even with an arbitrary number of active nodes and up to f online failures. Based
on the system’s mean time between failures (MTBF), an appropriate value f

could be chosen as the maximal number of faults supported by the algorithm.
Compared to alternative methods for fault recovery, this approach allows a trivial

504 C. Weinhold et al.

recovery procedure, provided that sufficient spanning trees are maintained during
the application run.

3.3 Corrected Tree Algorithms

The reliability properties of all correction schemes of “corrected gossip” have been
proven [27]. However, due to being probabilistic, the gossip algorithm used in
the dissemination phase needs to send more messages than an optimal tree-based
broadcast algorithm in order to color nodes. Tree-based dissemination will, however,
miss a large number of processes, if any process close to the tree’s root fails. In
general, failure of any non-leaf process in the tree results in all its descendants
remaining uncolored.

Can We Save the Trees? We developed a corrected tree algorithm which splits
communication among processes into two phases, exactly like we did with corrected
gossip: dissemination and correction. The idea is to correct the result of a failed tree-
based broadcast during the dissemination phase. With failure-proof correction, full
coloring can be guaranteed even if processes fail during the broadcast [27].

Requirements for Corrected Trees The goal of the broadcast is to guarantee
information propagation from the root process to every live process, even if some
processes fail. In a broadcast operation among P processes, the root process
propagates a message reliably to all other processes. Without loss of generality we
assume the root process to have rank 0, other processes have ranks 1, . . . , P − 1.
To ensure that correction can color uncolored processes quickly, the maximum gap
size ought to be small. A tree maintaining such a property should have its subtrees
spread across the correction ring to avoid the danger of having uncolored processes
cluster together on the ring. For lowering correction latency, multiple small gaps are
better than few large ones.

Interleaved Trees The key idea behind corrected tree algorithms is that nodes of
the tree can be renumbered in such a way that parent and child nodes do not become
neighbors on the ring. Instead, nodes from a subtree below a failed node shall always
have a close neighbor from outside their own subtree, so the they can be colored in
the correction phase. In this paper, we only describe how to interleave k-ary trees.
However, the scheme is also available for Lamé trees, which include Binomial trees.
A more detailed description is given in the original publication [31].

Interleaving k-ary Trees Given the root process at level 0, a full k-ary tree has
k� processes at level �, and k� subtrees that have their root process at that level. The
processes in these subtrees can have a distance of k� in the ring. Process r has the
child processes r ′:

{r ′ | r ′ = r + i · k�, 0 < i ≤ k, r ′ < P }

FFMK 505

This interleaving ensures that a failing process on level � leads to every k�-th process
being uncolored. Thus, f = k� −1 failures on level � or below can be tolerated, and
still every k�-th process will be colored after the dissemination.

Correction Phase The correction phase follows the dissemination phase and
is independent of the tree type. It ensures coloring of the processes that the
dissemination phase left uncolored due to failures. All three correction algorithms
developed for corrected gossip [27] are directly applicable.

Simulation Results In our simulation-based evaluation, we used the same fail-stop
fault model as in the corrected-gossip publication [27]. During broadcast, every
process is either dead or alive. A process either sends all messages required by
the protocol or none at all, but failures can occur anywhere outside of the broadcast
operation. The simulation is based on the LogP-model [10]. The graph in Fig. 13
shows the number of messages sent for different numbers of faults. All tree-based
broadcasts send fewer messages than corrected gossip and are thus more efficient
with regard to this metric.

Latency Measurements To measure the average latency of a broadcast, we
implemented all algorithms using MPI and ran them on the Piz Daint supercomputer
installed at ETH Zurich. The results shown in Fig. 14 therefore include overhead
due to the physical properties of the interconnect. Note that there are no faults
in this experiment, so we can compare our implementations with the broadcast
implementation from Cray. Since our MPI-based implementation cannot use the
shared-memory optimization the Cray algorithm uses, we include performance

0

2

4

6

8

0.01 0.1 1 2 4

Faults (%)

M
es
sa
ge
sp

er
pr
oc
es
s

Binomial 4-ary Lamé Optimal Gossip

Fig. 13 Average number of messages sent per process in presence of failures; four different
corrected tree algorithms and corrected gossip were simulated with varying percentage of failed
processes

506 C. Weinhold et al.

Gossip

Binomial (Cray)

Binomial (ours)

Binomial (Cray, no SM)

0

50

100

1152 2304 4608 9216 18432 36864

Processes

La
te
nc
y,
µs

Fig. 14 Broadcast median latency of corrected tree, corrected gossip, and vendor-provided
implementations of broadcast without any failures

of the Cray algorithm with shared memory disabled for reference (green line in
diagram).

We find Corrected Trees to be a simple, yet efficient protocol for fault-tolerant
collective group communication. A more detailed evaluation can be found in the
publication [31].

3.4 Checkpointing Scheduling

Only some applications can benefit from forward recovery by tolerating process
or node failures. All other HPC codes rely on system-level or application-assisted
fault-tolerance services. Periodic checkpoint/restart (C/R) [11, 65] is an effective
mechanism to alleviate failures during execution of HPC applications, which often
require a vast number of nodes for a relatively long time [15]. The overhead of
checkpointing should be kept as small as possible, as typically the computation has
to be paused during a checkpoint write to store a consistent state of the application.
Furthermore, on a large supercomputer, which is shared by several parallel jobs,
checkpointing should be coordinated between applications to avoid performance
bottlenecks. Otherwise, as the storage is typically shared between all applications,
concurrent checkpoint writes would unnecessarily delay the computation tasks.

Uncoordinated Checkpointing Hurts As part of the FFMK project, we designed
a mechanism to coordinate concurrent checkpoints of large applications running on
a supercomputer and sharing a dedicated burst-buffer [42] or parallel file system
(PFS) [41] for checkpointing [22]. We assume that the system executes multiple

FFMK 507

parallel applications at the same time and that it provides a single shared PFS
(e.g., Lustre, GPFS, . . .) for all applications. Typically, each application uses fixed
checkpoint intervals calculated independently of the other applications based on
Daly’s method [11]. However, Daly assumes a constant checkpoint write duration
during the application’s lifetime, whereas in case of concurrent checkpointing of
different applications checkpoint costs vary and depend on other applications’
activities due to limited write bandwidth and other interferences.

Checkpoint Scheduling Approach In our work, we take this variation into
account and rearrange the checkpoints of jobs, by predicting conflicts, in order
to minimize the overall system resource usage. This is achieved by scheduling
checkpoints earlier or later than originally planned. The decision whether to
postpone a checkpoint to another timeslot is based on a constructed optimization
problem for the predicted conflicts. By minimizing the constructed problem, non-
overlapping timeslots to write checkpoints are found and applied.

Checkpoint Scheduling Architecture While system-level checkpointing takes
advantage of system-wide information not visible to jobs such as mean-time to
failure (MTTF), bandwidth, or other jobs’ activities, it suffers from unnecessarily
large checkpoints (higher checkpoint costs). On the other hand, user-defined
checkpointing is done within the application which uses a runtime library for
checkpointing. The library remembers the important data to be saved and also knows
at which time checkpoints should be written (application-level information). This
way the approach reduces the checkpoint size while lacking the system-wide infor-
mation. In our work, we combined system-level with user-defined checkpointing
in order to leverage the advantages of both methods [22]. The coordination among
different jobs is performed by a coordinator service running on the system side. The
service has access to system-wide information like MTTF, the bandwidth of shared
storage systems, and the activities of other jobs (system-level checkpointing).

User-Level Library Support To achieve this, we modified the SCR library [44]
to provide it with the ability to interact with our coordinator service, which
instructs SCR when to perform checkpoint requests. The application uses the library
to write checkpoints (user-level checkpointing). This library cooperates with the
coordinator-service, whereby whenever a checkpoint call is made by the application
(which is done frequently and periodically), a request is sent to the coordinator and
if accepted, the write will be performed by the library. Otherwise, the checkpoint
call will be ignored and the application continues with the computation.

System-Level Coordinator The decisions on the coordinator side are based on
solved optimization problems constructed for the predicted conflicts. Then the
incoming checkpoint requests are either accepted or rejected based on the computed
decisions to get optimal checkpoint times.

Figure 15 shows that we are able to reduce the C/R overhead by up to 20% by
coordinating checkpoints compared to state-of-the-art approaches.

508 C. Weinhold et al.

Fig. 15 Improvement rate of C/R overhead

3.5 Multi-Level Checkpoint/Restart

To further strengthen the C/R mechanism of the FFMK OS platform, multi-level
checkpoint/restart is used as a solution to address a wide range of failures of
different severity occurring in large supercomputers [21]. Severe failures require
application state to be recovered from the most stable storage devices. However,
this comes at high cost, as stable storage devices are slower to write to than transient
storage. This is the key motivation of using multi-level checkpoint/restart.

Component Failure Rates To fully grasp the multi-level hierarchy of failures and
storage devices, we constructed a comprehensive model of a typical large cluster
containing nodes, local storages (ramdisk, SSD), network switches, power supplies,
different shared storage systems (burst-buffer, PFS), etc. Additionally, we modeled
5 different levels of checkpoints, all of which are supported by the SCR [44] library
and most of them are also available on other checkpointing libraries as well (FTI [4],
VeloC [46]):

• Local Level: The first checkpoint level is the node’s local storage (ramdisk, SSD).
While this level benefits from the lowest checkpointing cost among all levels, it
cannot survive fatal faults where the node becomes unavailable.

FFMK 509

• XOR Level: The next level is the XOR level, at which for each node a
parity segment is computed and distributed among a set of nodes (XOR group)
according to [24, 47]. Each node stores its local checkpoint along with the
XOR parity data. This level survives a single node of an XOR group becoming
unavailable.

• Partner Level: A more stable level is the partner scheme, where the checkpoint
is stored in the node’s local storage along with the partner node’s storage (two
copies). This level fails to restart the job, if a node and its partner fail together.

• Shared Levels: The most stable levels use shared storage (among all compute
nodes), namely the burst buffer and the parallel file system. However, they provide
lower checkpointing bandwidth per node, because many (or all) nodes may access
them concurrently.

Modeling Failures Per Component To have a proper estimation of the stability
of different checkpoint levels (i.e., how often they fail), we studied a wide range
of possible failures occurring on supercomputers and investigated their effect on
each checkpoint level. Using the estimations, we defined the optimum checkpoint
intervals for each level minimizing the application’s lifetime. To study different
types of failures, we differentiated light faults and fatal failures, where after a light
fault the node stays alive and the job can be restarted from the local storage device.
A fatal failure makes a node or a set of nodes unavailable (node down). In this case,
the job must be restarted from more stable levels (XOR, partner, etc.). Additionally,
we took correlations into account by arranging the nodes of a cluster in different
correlated groups (network, power supply, etc.), whereby the nodes belonging to the
same correlated group are vulnerable to failures of the same origin making all nodes
in the group unavailable at the same time (e.g., a network switch outage). Figure 16
visualizes, how this correlation of nodes translates into a correlation graph.

In addition to the compute nodes, we considered I/O nodes (burst-buffer) which
are also vulnerable to failures making the burst-buffer unavailable for a restart.
Although such faults do not interrupt the job’s computation, losing checkpoints
on the burst-buffer may impact the job’s lifetime. Another case of a checkpoint’s

node 1 node 2

node 3 node 4

Switch 1

node 5 node 6

node 7 node 8

Switch 2S2

S1

P1

node 9 node 10

node 11 node 12

Switch 3

node 13 node 14

node 15 node 16

Switch 4 S4

S3

P2

Power Supply 1 Power Supply 2

node 1 node 2

node 3 node 4

node 5 node 6

node 7 node 8

node 9 node 10

node 11 node 12

node 13 node 14

node 15 node 16

Switch + Power Correlation: Power Correlation:

PP+S

Fig. 16 Correlation of nodes in a cluster

510 C. Weinhold et al.

unavailability occurs, if due to a node down, the job is restarted from the XOR level
and the new node allocated to the job lacks the partner level checkpoint. Hence, in
case of another failure, an attempt to restore from partner-level will fail to recover
the just restarted job a second time until the next partner checkpoint is written.

Model-Based Adaptation of Checkpoint Behavior Finally, we introduced a
mechanism to model the expected lifetime of applications writing multi-level
checkpoints on a given set of checkpoint levels considering all investigated types
of failures. Using this model, we properly choose the optimal set of checkpoint
levels for each job minimizing the expected lifetime.

Multi-Level Checkpoint Architecture Our implementation of multi-level check-
point/restart consists of a system-level daemon and a library that is linked into
the application. The daemon communicates with the library in the application
using TCP sockets and directs the local checkpoints (written by the application) to
different checkpoint levels transparent to the application. It computes the optimum
checkpoint intervals of each level using system-wide information and application-
specific parameters. For each checkpoint call made through the library, the daemon
determines the optimal level of the checkpoint (or simply rejects it). We employ
the following optimizations and automations in our design to further improve
performance and reliability:

• Asynchronous Checkpointing: To further reduce the checkpointing costs of the
lower levels, checkpoint writes are performed asynchronously. The application
writes its state to the node’s local storage, providing fast write performance.
Thereafter, the operation of checkpointing at the lower levels (e.g., partner, burst
buffer, PFS) is performed by the daemon in the background while the application
returns to the computation. During the background operation of the daemon,
every incoming request for checkpointing to the same level from the job is ignored
until the persisting is finished.

• Fast Recovery: To ensure the fast recovery in case of light failures (node alive),
ULFM [7] is used to provide the capability of automatically recovering the failed
ranks with the most recent checkpoint and reordering the ranks to the original
arrangement, transparent to the developer, application, and the resource manager.

• Job Life Cycle and Recovery When a new job is started, a short-lived controller
service is executed by the first rank on each node (i.e., the node’s local rank 0).
This service forks a daemon process for each rank on the node, connects them
to the corresponding ranks, and then terminates. The per-rank daemons are
responsible for sending status information and receiving instructions. The per-
rank daemons stay alive until the application is finished with the computation. If
a rank fails, its daemon terminates and the rank is later restarted using ULFM.
When a rank is restarted, or when it notices that its daemon died, it will execute
the previously mentioned controller service again, which will then reconnect a
new daemon process with the rank. This is done transparently to the application
and the existence of both daemons and controller services remains transparent to
the user and the developer.

FFMK 511

• Rotating Partner Nodes: To further enhance the stability of the partner level, a
novel approach will be engaged in which there are no fixed partners for the nodes,
instead, the partner node of a specific node is changed on each turn and chosen by
the daemon. This allows reducing the probability of unavailability of checkpoints
at this level. In addition, partner checkpoints and data transfers will be performed
by service daemons of both nodes using Remote Direct Memory Access (RDMA)
in order to have fast partner checkpoints in the background.

Our evaluations of the introduced multi-level checkpoint/restart model (the failure
rates and optimal intervals) show that we managed to reduce the C/R overhead of
jobs by up to 10% in the investigated cases (50,000 nodes, 3–5 levels, 6–240 GB
checkpoints) compared to the state-of-the-art approach. Our observations indicate
that the overhead is reduced further as the number of levels or the checkpoint size
increases.

4 Conclusions

The FFMK project had the very ambitious goal of creating a new operating-
system (OS) platform for Exascale computing. Unfortunately, we did not reach the
milestone of a fully integrated prototype at the end of phase 2. However, several
essential building blocks have been adapted for HPC and new algorithms and
services have been developed to meet the challenges we expect from these upcoming
extreme-scale systems.

Multi-Kernel Node OS At the node level, the mature L4Re microkernel together
with L4Linux enable the decoupled-thread model, which combines noise-free exe-
cution and full Linux compatibility for applications. We studied and quantified the
influence of hardware performance variation, a source of noise that still remained.
Furthermore, we gave an outlook on how to manage OS-level resources at extreme
scales of parallelism with a kernel architecture for scalable capability management.

Dynamic Platform Management Although mostly an activity from the first three-
year phase of the project, we continued research on dynamic platform management
at the system level. We researched fault-tolerant gossip-based algorithms for
obtaining load and health information from nodes. We integrated these information
dissemination algorithms with a per-node management daemon and a distributed
decision making module. However, one component of the FFMK architecture’s
load balancing service remained elusive: migration of processes has been shown
to work at small scale for simple InfiniBand-based programs, but robust C/R-based
migration is not available yet. In Phase 2, we developed highly efficient diffusion-
based load balancing algorithms; they complement the architecture and can already
be used for application-level load balancing, as they have been integrated into a
widely-used framework.

512 C. Weinhold et al.

Fault Tolerance The main activities of the second phase of this project concen-
trated on efficient and fault-tolerant communication, as well as system-level support
for reducing checkpoint overhead. Fault-tolerant collective operations (FTCO) have
been developed as a drop-in replacement for MPI libraries and were prototyped
in the UCX communication library. As a potentially more efficient alternative, we
introduced a new class of two-step algorithms based on either gossip or trees:
Corrected Gossip and Corrected Trees enable inherently fault-tolerant collective
operations for applications that can continue even after some processes failed.
Globally optimized checkpoint scheduling and multi-level checkpointing minimize
checkpoint/restart overhead for all other applications. The latter optimizes the
cost of checkpointing based on a model that includes expected failure rates of
components, a failure-correlation graph, and available write bandwidth across the
storage hierarchy.

Together, all newly developed algorithms, system services, and low-level OS
components form the basis of a fast, scalable, and fault-tolerant HPC operating
system for Exascale computing.

Acknowledgments This research and the work presented in this paper is supported by the German
priority program 1648 “Software for Exascale Computing” via the research project FFMK [17].
We also thank the cluster of excellence “Center for Advancing Electronics Dresden” (cfaed). The
authors acknowledge the Jülich Supercomputing Centre, the Gauss Centre for Supercomputing,
the John von Neumann Institute for Computing, and the Swiss National Supercomputing Centre
(CSCS) for providing compute time on their supercomputer systems.

References

1. Asmussen, N., Völp, M., Nöthen, B., Härtig, H., Fettweis, G.: M3: A hardware/operating-
system co-design to tame heterogeneous manycores. In: Proceedings of the Twenty-First
International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS) (2016)

2. Barak, A., Guday, S., Wheeler, R.: The MOSIX Distributed Operating System: Load Balancing
for UNIX. Lecture Notes in Computer Science, vol. 672. Springer, Berlin (1993)

3. Barak, A., Drezner, Z., Levy, E., Lieber, M., Shiloh, A.: Resilient gossip algorithms for
collecting online management information in exascale clusters. Concurr. Comput. Pract. Exp.
27(17), 4797–4818 (2015)

4. Bautista-Gomez, L.A., et al.: FTI: high performance fault tolerance interface for hybrid
systems. In: SC’11 Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 32:1–32:32 (2011). http://doi.acm.org/10.
1145/2063384.2063427

5. Beckman, P., Iskra, K., Yoshii, K., Coghlan, S.: The influence of operating systems on the
performance of collective operations at extreme scale. In: 2006 IEEE International Conference
on Cluster Computing, pp. 1–12 (2006). https://doi.org/10.1109/CLUSTR.2006.311846

6. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hestness, J., Hower,
D.R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish, N., Hill, M.D., Wood,
D.A.: The Gem5 simulator. SIGARCH Computer Architecture News (2011)

7. Bland, W.: User level failure mitigation in MPI. In: Euro-Par 2012: Parallel Processing
Workshops - BDMC, CGWS, HeteroPar, HiBB, OMHI, Paraphrase, PROPER, Resilience,

http://doi.acm.org/10.1145/2063384.2063427
http://doi.acm.org/10.1145/2063384.2063427
https://doi.org/10.1109/CLUSTR.2006.311846

FFMK 513

UCHPC, VHPC, Rhodes Islands, August 27–31, 2012. Revised Selected Papers, pp. 499–504.
Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-36949-0_57

8. Bland, W., Bouteiller, A., Herault, T., Hursey, J., Bosilca, G., Dongarra, J.J.: An evaluation of
user-level failure mitigation support in MPI. In: Träff, J.L., Benkner, S., Dongarra, J.J. (eds.)
Recent Advances in the Message Passing Interface, pp. 193–203. Springer, Berlin (2012)

9. Cavium: ThunderX_CP Family of Workload Optimized Compute Processors (2014). https://
www.marvell.com/content/dam/marvell/en/public-collateral/server-processors/marvell-
server-processors-thunderx-cp-product-brief.pdf

10. Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K.E., Santos, E., Subramonian, R.,
Von Eicken, T.: LogP: towards a realistic model of parallel computation. In: Symposium on
Principles and Practice of Parallel Programming, PPoPP, pp. 1–12. ACM, New York (1993).
https://doi.org/10.1145/155332.155333

11. Daly, J.T.: A higher order estimate of the optimum checkpoint interval for restart dumps. Future
Gener. Comput. Syst. 22(3), 303–312 (2006). https://doi.org/10.1016/j.future.2004.11.016

12. Devine, K., Boman, E., Heaphy, R., Hendrickson, B., Vaughan, C.: Zoltan data management
services for parallel dynamic applications. Comput. Sci. Eng. 4(2), 90–97 (2002)

13. Diekmann, R., Frommer, A., Monien, B.: Efficient schemes for nearest neighbor load
balancing. Parallel Comput. 25(7), 789–812 (1999)

14. Diekmann, R., Preis, R., Schlimbach, F., Walshaw, C.: Shape-optimized mesh partitioning and
load balancing for parallel adaptive FEM. Parallel Comput. 26(12), 1555–1581 (2000)

15. Feinberg, A.: An 83,000-processor supercomputer can only match 1% of your
brain (2013). http://gizmodo.com/an-83-000-processor-supercomputer-only-matched-one-
perc-1045026757

16. Ferreira, K.B., Bridges, P., Brightwell, R.: Characterizing application sensitivity to OS inter-
ference using Kernel-level noise injection. In: Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing, SC’08, pp. 19:1–19:12. IEEE Press, Piscataway (2008). http://dl.acm.org/
citation.cfm?id=1413370.1413390

17. FFMK Website. http://ffmk.tudos.org. Accessed 5 Aug 2019
18. Forum, M.P.I.: MPI: a message-passing interface standard. Standard 3.1, University of

Tennessee, Knoxville (2015)
19. Fu, H., Liao, J., Yang, J., Wang, L., Song, Z., Huang, X., Yang, C., Xue, W., Liu, F., Qiao,

F., Zhao, W., Yin, X., Hou, C., Zhang, C., Ge, W., Zhang, J., Wang, Y., Zhou, C., Yang, G.:
The Sunway TaihuLight supercomputer: system and applications. Sci. China Inf. Sci. 59(7),
072001 (2016). https://doi.org/10.1007/s11432-016-5588-7

20. Gerofi, B., Takagi, M., Hori, A., Nakamura, G., Shirasawa, T., Ishikawa, Y.: On the scalability,
performance isolation and device driver transparency of the IHK/McKernel hybrid lightweight
kernel. In: 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pp. 1041–1050 (2016). https://doi.org/10.1109/IPDPS.2016.80

21. Gholami, M., Schintke, F.: Multilevel checkpoint/restart for large computational jobs on dis-
tributed computing resources. In: 38th Symposium on Reliable Distributed Systems (SRDS’19)
(2019)

22. Gholami, M., Schintke, F., Schütt, T.: Checkpoint scheduling for shared usage of burst-
buffers in supercomputers. In: The 47th International Conference on Parallel Processing, ICPP
2018, Workshop Proceedings, Eugene, August 13–16, 2018, pp. 44:1–44:10. ACM, New York
(2018). https://doi.org/10.1145/3229710.3229755

23. Giampapa, M., Gooding, T., Inglett, T., Wisniewski, R.W.: Experiences with a lightweight
supercomputer Kernel: lessons learned from Blue Gene’s CNK. In: Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Networking, Storage
and Analysis, SC (2010). https://doi.org/10.1109/SC.2010.22

24. Gropp, W.D., et al.: Providing efficient I/O redundancy in MPI environments. In: Recent
Advances in Parallel Virtual Machine and Message Passing Interface, 11th European
PVM/MPI Users’ Group Meeting. Lecture Notes in Computer Science, vol. 3241, pp. 77–86
(2004). https://doi.org/10.1007/978-3-540-30218-6_17

https://doi.org/10.1007/978-3-642-36949-0_57
https://www.marvell.com/content/dam/marvell/en/public-collateral/server-processors/marvell-server-processors-thunderx-cp-product-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/server-processors/marvell-server-processors-thunderx-cp-product-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/server-processors/marvell-server-processors-thunderx-cp-product-brief.pdf
https://doi.org/10.1145/155332.155333
https://doi.org/10.1016/j.future.2004.11.016
http://gizmodo.com/an-83-000-processor-supercomputer-only-matched-one-perc-1045026757
http://gizmodo.com/an-83-000-processor-supercomputer-only-matched-one-perc-1045026757
http://dl.acm.org/citation.cfm?id=1413370.1413390
http://dl.acm.org/citation.cfm?id=1413370.1413390
http://ffmk.tudos.org
https://doi.org/10.1007/s11432-016-5588-7
https://doi.org/10.1109/IPDPS.2016.80
https://doi.org/10.1145/3229710.3229755
https://doi.org/10.1109/SC.2010.22
https://doi.org/10.1007/978-3-540-30218-6_17

514 C. Weinhold et al.

25. Hille, M., Asmussen, N., Bhatotia, P., Härtig, H.: SemperOS: A distributed capability system.
In: 2019 USENIX Annual Technical Conference (ATC) (2019)

26. Hoefler, T., Schneider, T., Lumsdaine, A.: Characterizing the influence of system noise on
large-scale applications by simulation. In: Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis, SC’10.
IEEE Computer Society, Washington (2010). https://doi.org/10.1109/SC.2010.12

27. Hoefler, T., Barak, A., Shiloh, A., Drezner, Z.: Corrected gossip algorithms for fast reliable
broadcast on unreliable systems. In: International Parallel and Distributed Processing Sympo-
sium, IPDPS, pp. 357–366. IEEE Computer Society, Washington (2017). https://doi.org/10.
1109/IPDPS.2017.36

28. IBM: Design of the IBM Blue Gene/Q Compute chip. IBM J. Res. Develop. 57(1/2), 1:1–1:13
(2013). https://doi.org/10.1147/JRD.2012.2222991

29. Intel: Intel xeon processor E5-1600/E5-2600/E5-4600 v2 product families (2014). https://www.
intel.com/content/www/us/en/processors/xeon/xeon-e5-1600-2600-vol-2-datasheet.html

30. Kelly, S.M., Brightwell, R.: Software architecture of the light weight kernel, Catamount. In:
Cray User Group, pp. 16–19 (2005)

31. Küttler, M., Planeta, M., Bierbaum, J., Weinhold, C., Hä rtig, H., Barak, A., Hoefler, T.:
Corrected trees for reliable group communication. In: Proceedings of the 24th Symposium
on Principles and Practice of Parallel Programming, PPoPP’19, pp. 287–299. ACM, New York
(2019). http://doi.acm.org/10.1145/3293883.3295721

32. Lackorzynski, A., Weinhold, C., Härtig, H.: Combining predictable execution with full-
featured commodity systems. In: Proceedings of OSPERT2016, the 12th Annual Workshop
on Operating Systems Platforms for Embedded Real-Time Applications, OSPERT 2016, pp.
31–36 (2016)

33. Lackorzynski, A., Weinhold, C., Härtig, H.: Decoupled: Low-effort noise-free execution
on commodity system. In: Proceedings of the 6th International Workshop on Runtime and
Operating Systems for Supercomputers, ROSS’16. ACM, New York (2016)

34. Lackorzynski, A., Weinhold, C., Härtig, H.: Predictable low-latency interrupt response with
general-purpose systems. In: Proceedings of OSPERT2017, the 13th Annual Workshop on
Operating Systems Platforms for Embedded Real-Time Applications, OSPERT 2017, pp. 19–
24 (2017)

35. Lawrence Livermore National Laboratory: The FTQ/FWQ benchmark. https://asc.llnl.gov/
sequoia/benchmarks/FTQ_summary_v1.1.pdf

36. Levy, E., Barak, A., Shiloh, A., Lieber, M., Weinhold, C., Härtig, H.: Overhead of a
decentralized gossip algorithm on the performance of HPC applications. In: Proceedings of
ROSS’14, pp. 10:1–10:7. ACM, New York (2014)

37. Lieber, M., Nagel, W.E.: Highly scalable sfc-based dynamic load balancing and its application
to atmospheric modeling. Future Gener. Comput. Syst. 82, 575–590 (2018)

38. Lieber, M., Grützun, V., Wolke, R., Müller, M.S., Nagel, W.E.: Highly scalable dynamic
load balancing in the atmospheric modeling system COSMO-SPECS+FD4. In: International
Workshop on Applied Parallel Computing PARA 2010: Applied Parallel and Scientific
Computing 2010. Lecture Notes in Computer Science, vol. 7133, pp. 131–141. Springer, Berlin
(2012)

39. Lieber, M., Gößner, K., Nagel, W.E.: The potential of diffusive load balancing at large scale. In:
Proceedings of the 23rd European MPI Users’ Group Meeting (EuroMPI 2016), pp. 154–157
(2016)

40. Liedtke, J.: On micro-kernel construction. In: SOSP’95: Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles, pp. 237–250. ACM Press, New York (1995).
http://doi.acm.org/10.1145/224056.224075

41. Ligon, W.B., Ross, R.B.: Implementation and performance of a parallel file system for high
performance distributed applications. In: Proceedings of 5th IEEE International Symposium
on High Performance Distributed Computing (HPDC), pp. 471–480 (1996). https://doi.org/10.
1109/HPDC.1996.546218

https://doi.org/10.1109/SC.2010.12
https://doi.org/10.1109/IPDPS.2017.36
https://doi.org/10.1109/IPDPS.2017.36
https://doi.org/10.1147/JRD.2012.2222991
https://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-1600-2600-vol-2-datasheet.html
https://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-1600-2600-vol-2-datasheet.html
http://doi.acm.org/10.1145/3293883.3295721
https://asc.llnl.gov/sequoia/benchmarks/FTQ_summary_v1.1.pdf
https://asc.llnl.gov/sequoia/benchmarks/FTQ_summary_v1.1.pdf
http://doi.acm.org/10.1145/224056.224075
https://doi.org/10.1109/HPDC.1996.546218
https://doi.org/10.1109/HPDC.1996.546218

FFMK 515

42. Liu, N., et al.: On the role of burst buffers in leadership-class storage systems. In: Proceedings
of the 2012 IEEE Conference on Massive Data Storage (MSST), pp. 1–11 (2012). https://doi.
org/10.1109/MSST.2012.6232369

43. Margolin, A., Barak, A.: Tree-based fault-tolerant collective operations for MPI. In: Workshop
on Exascale MPI (ExaMPI) (2018)

44. Moody, A., Bronevetsky, G., Mohror, K., de Supinski, B.R.: Design, modeling, and evaluation
of a scalable multi-level checkpointing system. In: 2010 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC) pp. 1–11 (2010). https://doi.
org/10.1109/SC.2010.18

45. Muthukrishnan, S., Ghosh, B., Schultz, M.H.: First and second order diffusive methods for
rapid, coarse, distributed load balancing. Theory Comput. Syst. 31, 331–354 (1998)

46. Nicolae, B., et al.: Veloc: Very low overhead checkpointing system. https://veloc.readthedocs.
io/en/latest/

47. Patterson, D.A., et al.: A case for redundant arrays of inexpensive disks (RAID). In: ACM
SIGMOD Record, pp. 109–116 (1988). http://doi.acm.org/10.1145/50202.50214

48. Pedretti, K.T., Levenhagen, M., Ferreira, K., Brightwell, R., Kelly, S., Bridges, P., Hudson, T.:
LDRD final report: a lightweight operating system for multi-core capability class supercom-
puters. Technical report SAND2010-6232, Sandia National Laboratories (2010)

49. Petrini, F., Kerbyson, D., Pakin, S.: The case of the missing supercomputer performance:
achieving optimal performance on the 8,192 processors of ASCI Q. In: Proceedings of the 15th
Annual IEEE/ACM International Conference for High Performance Computing, Networking,
Storage and Anaylsis (SC’03) (2003)

50. Riesen, R., Brightwell, R., Bridges, P.G., Hudson, T., Maccabe, A.B., Widener, P.M., Ferreira,
K.: Designing and implementing lightweight kernels for capability computing. Concurrency
and Computation: Practice and Experience 21(6), 793–817 (2009). http://dx.doi.org/10.1002/
cpe.v21:6

51. Riesen, R., Maccabe, A.B., Gerofi, B., Lombard, D.N., Lange, J.J., Pedretti, K., Ferreira, K.,
Lang, M., Keppel, P., Wisniewski, R.W., Brightwell, R., Inglett, T., Park, Y., Ishikawa, Y.:
What is a lightweight kernel? In: Proceedings of the 5th International Workshop on Runtime
and Operating Systems for Supercomputers, ROSS. ACM, New York (2015). https://doi.org/
10.1145/2768405.2768414

52. Schloegel, K., Karypis, G., Kumar, V.: A unified algorithm for load-balancing adaptive
scientific simulations. In: Proceedings of the IEEE/ACM SC2000 Conference, pp. 59–59
(2000)

53. Seelam, S., Fong, L., Tantawi, A., Lewars, J., Divirgilio, J., Gildea, K.: Extreme scale
computing: modeling the impact of system noise in multicore clustered systems. In: 2010 IEEE
International Symposium on Parallel Distributed Processing (IPDPS) (2010). https://doi.org/
10.1109/IPDPS.2010.5470398

54. Shamis, P., Venkata, M.G., Lopez, M.G., Baker, M.B., Hernandez, O., Itigin, Y., Dubman,
M., Shainer, G., Graham, R.L., Liss, L., Shahar, Y., Potluri, S., Rossetti, D., Becker, D.,
Poole, D., Lamb, C., Kumar, S., Stunkel, C., Bosilca, G., Bouteiller, A.: UCX: an open source
framework for HPC network APIs and beyond. In: 2015 IEEE 23rd Annual Symposium on
High-Performance Interconnects, pp. 40–43 (2015)

55. Shimosawa, T., Gerofi, B., Takagi, M., Nakamura, G., Shirasawa, T., Saeki, Y., Shimizu,
M., Hori, A., Ishikawa, Y.: Interface for Heterogeneous Kernels: a framework to enable
hybrid OS designs targeting high performance computing on manycore architectures. In: 21th
International Conference on High Performance Computing, HiPC (2014)

56. Sodani, A.: Knights landing (KNL): 2nd generation intel xeon phi processor. In: 2015 IEEE
Hot Chips 27 Symposium (HCS), pp. 1–24 (2015). https://doi.org/10.1109/HOTCHIPS.2015.
7477467

57. Teresco, J.D., Devine, K.D., Flaherty, J.E.: Partitioning and dynamic load balancing for
the numerical solution of partial differential equations. In: Numerical Solution of Partial
Differential Equations on Parallel Computers. Lecture Notes in Computational Science and
Engineering, vol. 51, pp. 55–88. Springer, Berlin (2006)

https://doi.org/10.1109/MSST.2012.6232369
https://doi.org/10.1109/MSST.2012.6232369
https://doi.org/10.1109/SC.2010.18
https://doi.org/10.1109/SC.2010.18
https://veloc.readthedocs.io/en/latest/
https://veloc.readthedocs.io/en/latest/
http://doi.acm.org/10.1145/50202.50214
http://dx.doi.org/10.1002/cpe.v21:6
http://dx.doi.org/10.1002/cpe.v21:6
https://doi.org/10.1145/2768405.2768414
https://doi.org/10.1145/2768405.2768414
https://doi.org/10.1109/IPDPS.2010.5470398
https://doi.org/10.1109/IPDPS.2010.5470398
https://doi.org/10.1109/HOTCHIPS.2015.7477467
https://doi.org/10.1109/HOTCHIPS.2015.7477467

516 C. Weinhold et al.

58. Walshaw, C., Cross, M.: Jostle – multilevel graph partitioning software: an overview. In: Mesh
Partitioning Techniques and Domain Decomposition Methods, chap. 2, pp. 27–58 (2007)

59. Weinhold, C., Lackorzynski, A., Bierbaum, J., Küttler, M., Planeta, M., Härtig, H., Shiloh,
A., Levy, E., Ben-Nun, T., Barak, A., Steinke, T., Schütt, T., Fajerski, J., Reinefeld, A.,
Lieber, M., Nagel, W.E.: FFMK: a fast and fault-tolerant microkernel-based system for
exascale computing. In: Bungartz, H.J., Neumann, P., Nagel, W.E. (eds.) Software for Exascale
Computing - SPPEXA 2013–2015, pp. 405–426. Springer, Cham (2016)

60. Weinhold, C., Lackorzynski, A., Härtig, H.: FFMK: an HPC OS based on the L4Re Micro-
kernel. In: R.W. Wisniewski, B. Gerofi, R. Riesen, Y. Ishikawa (eds.) Operating Systems for
Supercomputers and High Performance Computing. Springer Singapore (2019)

61. Weisbach, H., Gerofi, B., Kocoloski, B., Härtig, H., Ishikawa, Y.: Hardware performance
variation: a comparative study using lightweight kernels. In: Yokota, R., Weiland, M., Keyes,
D., Trinitis, C. (eds.) High Performance Computing, pp. 246–265. Springer, Cham (2018)

62. Wende, F., Steinke, T., Reinefeld, A.: The impact of process placement and oversubscription
on application performance: a case study for exascale computing. In: Gray, A., Smith, L.,
Weiland, M. (eds.) Proceedings of the 3rd International Conference on Exascale Applications
and Software, EASC 2015, pp. 13–18 (2015)

63. Wisniewski, R.W., Inglett, T., Keppel, P., Murty, R., Riesen, R.: mOS: an architecture for
extreme-scale operating systems. In: Proceedings of the 4th International Workshop on
Runtime and Operating Systems for Supercomputers (ROSS’14), pp. 2:1–2:8. ACM, New York
(2014)

64. Yoshida, T., Hondou, M., Tabata, T., Kan, R., Kiyota, N., Kojima, H., Hosoe, K., Okano,
H.: Sparc64 XIfx: Fujitsu’s next-generation processor for high-performance computing. IEEE
Micro 35(2), 6–14 (2015). https://doi.org/10.1109/MM.2015.11

65. Young, J.W.: A first order approximation to the optimal checkpoint interval. Commun. ACM
17(9), 530–531 (1974). http://doi.acm.org/10.1145/361147.361115

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1109/MM.2015.11
http://doi.acm.org/10.1145/361147.361115
http://creativecommons.org/licenses/by/4.0/

	FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing
	1 Introduction
	2 Building Blocks for a Scalable HPC Operating System
	2.1 The Case for a Multi-Kernel Operating System
	2.2 L4Re Microkernel and L4Linux
	2.3 Decoupled Execution on L4Linux
	2.4 Hardware Performance Variation
	2.5 Scalable Diffusion-Based Load Balancing
	2.6 Beyond L4: Improving Scalability with M3 and SemperOS

	3 Algorithms and System Support for Fault Tolerance
	3.1 Resilience in MPI Collective Operations
	3.2 Corrected Gossip Algorithms
	3.3 Corrected Tree Algorithms
	3.4 Checkpointing Scheduling
	3.5 Multi-Level Checkpoint/Restart

	4 Conclusions
	References

