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ABSTRACT From a global perspective, an Internet of Vehicles task offloading solution based on mobile
edge computing is proposed, which satisfies the application requirements (high reliability) strictly. The
average time for completing a task can be minimized with the reasonable task offloading solution. Firstly,
we model the wireless network, the transmission time and the movement of vehicles. Besides, heterogeneous
wireless network architecture is adopted, data centers are deployed at Small-cell Base Stations, Macro-cell
Base Stations and Internet. Then considering the limitedness, heterogeneity and task diversity of resources,
we utilize matching model based on combination auction to design the offloading model. Furthermore,
the multi-round sequential combination auction mechanism is proposed, which equals the matching problem
to the multi-dimensional grouping knapsack problem and uses dynamic programming to get the optimal
match. This solution is based on virtual machine technology and voltage scaling technology in the task
execution time model. Moreover, the computing resources can be measured by CPU frequency. We propose
an optimization problem for the shortest average task completion time with limited resources. Finally,
the effects of these parameters (such as the number of tasks per unit time, the amount of data offloaded and the
number of CPU cycles) on the task execution efficiency are analyzed and compared with other algorithms by
simulation experiments. Compared to existing schemes, simulation results show that the proposed algorithm
can reduce system overhead and shorten task execution time effectively.

INDEX TERMS Internet of Vehicles, task offloading, heterogeneous wireless network architecture, mobile
edge computing, combination auction, channel gain.

I. INTRODUCTION
The Internet of Vehicles (IoV) is a typical application of
Internet of Things in the automotive industry. By equipping
vehicles with various sensors and communication modules,
it is regarded as a next-generation intelligent transportation
system with great potential. In recent years, the automotive
industry is undergoing critical and huge changes. Many new
automotive applications, services and ideas have been pro-
posed, such as autonomous driving, safe driving and intel-
ligent transportation, digital services for transportation and
logistics, intelligent navigation and entertainment office ser-
vices [1]–[4]. At the same time, IoV in the construction of
smart cities is increasingly becoming an important part of
the network. Millions of roadside units (RSUs) and vehicles
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equippedwith embedded devices can form IoV that integrates
data communication, transmission and computing. New prob-
lems continue to appear with the expansion of IoV scale and
the continuous upgrading of demand, we need to study and
solve it urgently.Most of newly-developing automotive appli-
cations involve video or image processing technology, which
requires strong data processing capabilities. For example,
intelligent navigation services use Augmented Reality (AR)
and real-time video streaming technologies in the future. And
it considers data from sensors on themselves and surrounding
vehicles to analyze the full range of traffic conditions at
intersections that is shown on the vehicle’s windshield. The
service is very helpful to drivers at complex intersections.
It can help them make choices in advance and reduce the
burden. However, the sensor information of surrounding vehi-
cles needs to be continuously processed in the process of
providing services. The amount of data is very large and the
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task is difficult to be processed separately on the vehicle
system. Thus, the solution is the task is offloaded to cloud
servers for processing.

Although mobile device computing power, running mem-
ory and other configurations are becoming more and more
powerful, they are still insufficient for compute-intensive
tasks. This inspires the development of mobile cloud comput-
ing (MCC) [5], [6]. Mobile devices offload tasks to the Inter-
net cloud through core network of mobile operators in MCC,
use its powerful computing and storage resources to perform
tasks. Mobile edge computing (MEC) evolved from MCC
and was first proposed by the European Telecommunications
Standards Institute in 2014. It greatly reduces data processing
time and energy consumption of mobile devices by deploying
computing resources, network control functions and cached
data near Small-cell Base Station (SBS) and Macro-cell Base
Station (MBS) [7]. Due to the limited computing power of
mobile devices, vehicles or users can offload computation-
intensive tasks to network edge access points, such as base
stations and wireless access points in MEC system. Besides,
the tasks are processed by edge server that can greatly reduce
the data transfer time compared with MCC. Moreover, MEC
has the characteristics of close range, ultra-low latency, ultra-
high energy efficiency and ultra-high reliability. At the same
time, it is also a key technology for 5G [8], [9].

Task offloading means that vehicles offloads tasks that it
cannot handle to the data center for processing. Resource
allocation mainly refers to the allocation of wireless chan-
nels, wired channels, server computing and cache resources.
Offloading tasks are closely related to the problem of resource
allocation. And the issue of reasonable allocation of resources
must be considered after making the task offloading decision.
For example, when tasks are offloaded, how many radio
sub-channels or time slots are allocated in the radio access
network to transmit them, how much bandwidth a wired
channel needs to be allocated in a back-haul network and how
much computing resources the data center finally allocates
to handle this task. These need to be properly planned in
order to make efficient use of resources [10]. The reason-
able allocation of resources determines the efficiency of task
execution and users’ service experience. The transmission
bandwidth depends on the least bandwidth of multiple paths
in the process of data offload. In general, wired transmission
is easy to expand the bandwidth capacity by laying optical
fibers, and it will not become a limiting factor for transmis-
sion rate. However, thewireless resources are relatively small,
which easily becomes a bottleneck that limits transmission
speed. Therefore, in this paper, it is assumed that the wired
transmission rate in backhaul network is equal to the wireless
transmission rate in access network. In the task offloading,
we only consider the impact of wireless resource allocation
on transmission time.

In the study of task offloading and resource allocation,
many factors need to be considered for modeling task offload-
ing of MEC: (1) To model the task, we need to consider
whether it is a single-user or multi-user scenario, whether

each user has multiple tasks, whether user task can be divided
into multiple subtasks and whether the subtasks are inter-
dependent. (2) The system architecture is also a factor that
must be considered during task offloading. This paper con-
siders heterogeneous wireless networks and the situation
of that data centers are deployed in SBS, MBS and Inter-
net. (3) The choice of wireless transmission mode: FDMA,
TDMA, CDMA. (4) Whether the data center computing
resources can be regarded as infinite. In addition, the follow-
ing key challenges exist when the requirements of IoV and
MEC technology are combined:

1) How to utilize the short-distance characteristics of edge
server to make a reasonable task offloading decision, which
based on the amount of data offloaded and the computing
resources. And how to improve the efficiency of the system’s
task execution;

2) How to ensure service reliability and task execution
efficiency in a heterogeneous wireless network environment;

3) To avoid the shortage of wireless and computing
resources when user requesting peak periods.

Based on these challenges, this paper proposes an IoV task
offloading solution for MEC, which based on combination
auction matching model in heterogeneous wireless network.
The main contributions of this paper are as follows:

(1) Heterogeneous wireless network is combined with
MEC technology, task offloading, wireless and computing
resource allocation issues are considered comprehensively.
It is more comprehensive and closer to the actual situations.

(2) An offloading model is constructed to deploy mul-
tiple requesting vehicles and service nodes. Considering
the limited resources, heterogeneity and task diversity,
the offloading model is designed combination auction-based
matching model. It further equals the matching problem to
Multi-dimensional grouping knapsack problem and the opti-
mal matching is obtained by dynamic programming. Finally,
an optimization problemwith the shortest average completion
time is proposed with limited resources.

II. RELATED RESEARCH
In addition to data processing requirements, vehicle appli-
cations will have strict requirements on network bandwidth
and task latency in the future. For example, driverless appli-
cations in IoV require 5 ∼ 10ms network delay; exist-
ing intelligent navigation using AR technology requires
20Mbit/s ∼ 200Mbit/s network speed. In order to pre-
vent users from feeling disoriented or dizzy, the network
latency must be less than 20ms. The on-vehicle applica-
tion that obtains bird’s-eye view of a crossroads requires
approximately 40Mbit/s network rate and approximately
50ms network latency. The above applications have high
requirements on delay and bandwidth and the existing mobile
networks cannot provide satisfactory services obviously.
Figure 1 shows the requirements for communication rate and
delay of on-vehicle applications. From Figure 1, it can be
seen that IoV is a typical ‘‘low-latency, high-bandwidth, high-
reliability’’ application scenario in the future.
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FIGURE 1. The requirements for IoV application delay.

MEC evolves from MCC, which provides IT service envi-
ronment and cloud computing capabilities on the wireless
access network side near mobile users. In the MEC envi-
ronment, users are closer to edge server, thus transmission
delay caused by task offload is greatly reduced. And service
requests can be responded at the edge, which can alleviate
the burden on core network effectively. In the past two years,
MEC draws lots of attention from researchers due to short
distance, ultra-low latency and high bandwidth characteris-
tics. Aiming at the task offloading and resource allocation,
researchers proposed different solutions considering various
requirements and application scenarios.

Due to too many factors that need to be considered in
task offloading and resource allocation, it is difficult to take
all factors into consideration. Therefore, the existing work
simplified the modeling of task offloading to some extent.
Some work only studied that tasks were offloaded to the edge
server and proposed two task offloading models, namely,
two-state offloading and partial task offloading models.
Literature [11]–[13] discussed whether user tasks should be
performed locally or in the cloud. Specifically, literature [11]
taken into account the allocation of wireless resources for
the purpose of energy saving. It assumed that the computing
capacity of the server was a fixed constant and performed
offloading by classifying different tasks. Besides, priorities
are given to tasks based on the weighted sum of their latency,
radio resource requirements and energy consumption. Litera-
ture [12] and [13] both aimed to minimize the weighted sum
of energy consumption and delay. Literature [12] was con-
sidered more comprehensively since each user had multiple
tasks. Literature [13] adopted the game theory to solve the
optimization problem and proved the existence of Nash equi-
librium. Literature [12] calculated the theoretical upper limit

of server-side task processing and proved that his algorithm
can approach the theoretical value very well. It transforms
non-convex quadratic functions under quadratic constraints
into separable semidefinite programming problems through
relaxation. Literature [14] proposed a compromise solution.
A task can be processed locally and then offloaded to the
cloud to execute the rest. However, the task delay is only used
as a reference condition and the delay of each task cannot
be guaranteed in the above work. Literature [15] considered
the task offload and the allocation of computing resources.
Assuming that the wireless bandwidth is a fixed constant,
the task execution cost is minimized while meeting strict time
constraints of the task. Literature [16] used game theory to
allocate the computing power of MEC servers under the best
decision of each user (the user’s revenue is the largest), which
can maximize the revenue of operators. Literature [17], [18]
proposed the allocation of wireless channels and computing
resources withmeeting the delay, so that the energy consump-
tion of users was minimized. Literature [19] used Markov
decision model to allocate resources, which can ultimately
reduce the delay, cannot guarantee the delay. The energy
consumption was minimized under the constraints of delay
and limited cloud computing resources in literature [20].
However, these works allocated resources based on cost or
energy saving purposes. And there are few solutions based
on efficient use of resources and high reliability. In the IoV
scenario, energy consumption becomes a secondary factor,
improving system reliability and considering execution effi-
ciency are the most important issues.

In order to integrate with actual LTE network, there are also
a few researches on the MEC system of heterogeneous wire-
less networks. Literature [21] proposed a wireless resource
allocation scheme in the context of heterogeneous infinite
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FIGURE 2. Overall framework and problem modeling of the proposed solution.

networks. It increased the probability of successful execution
with strict delay requirements by 40%. In [22], the interfer-
ence between the MBS and the SBS is reduced by periodi-
cally pausing the MBS to transmit signals. And the wireless
rate of multiple users is maximized. Literature [23] proposed
a random self-organizing algorithm based on Markov chain
and game theory to solve the problem of wireless resource
allocation. The purpose of which is to minimize the operation
cost. Literature [24] used time division multiple access and
orthogonal frequency division multiple access technology to
allocate time slots or sub-channels of wireless channels. It sat-
isfied the task delay, which minimizes energy consumption of
mobile users.

However, most of the existing work consider the finiteness
and ignore the heterogeneity of resources. Resource hetero-
geneity is defined as the difference in demands between users.
For example, vehicles have strict information reliability and
timeliness requirements for services such as car navigation.
However, they have higher throughput and fairness require-
ments for interactive services such as online games.

III. OVERALL FRAMEWORK AND PROBLEM MODELING
OF THE PROPOSED SOLUTION
A. OVERALL FRAMEWORK
In order to provide vehicles with better quality of experience
(QoE), we should consider how to get the best match between
the service nodes and the requesting vehicles. Therefore,
it is ensured that the economic benefit of requesting vehicles
is increased and the economic benefit of service nodes are
maximized on the basis that they all meet the budget equi-
librium. The research work of this paper is: from a global
perspective, we propose an IoV task offloading solution under
the premise of strictly meeting the application requirements
(high reliability). And the average time for completing a task
can be minimized by a reasonable task offloading scheme.
The overall framework is shown in Figure 2.

The average time for completing a task can be minimized
by a reasonable task offloading scheme. Firstly, the wireless
network, transmission time and vehicle movement are mod-
eled. In the network model, each user has a task that needs
to be unloaded. The task consists of three parameters: the
amount of offloaded data, the number of CPU cycles required

for calculation task and the maximum allowable completion
time. In the transmission time model, it is assumed that
vehicles and base stations communicate through TDMA.
For vehicle movement modeling, we built an unloading
model that deployed multiple requesting vehicles and mul-
tiple service nodes. Then considering the limited resources,
heterogeneity and task diversity, the framework is modeled
as combined auction model. According to the environment in
which vehicles are located and the type of request task, this
paper chooses the price, bit error rate and average retransmis-
sion times as the determining factors. The hierarchy can deter-
mine the priority order value (‘‘satisfaction’’) of requesting
nodes for service nodes according to theweighting coefficient
of each factor. In this way, the best choice can be achieved.

Although a few works studied the MEC system of het-
erogeneous wireless networks, the research purpose is dif-
ferent from this paper. The research purpose of this paper is
different from other literatures: In the IoV scenario, energy
consumption is not a determinant factor for determining
resource allocation. This paper aims to improve the efficiency
of system task execution. However, task offloading schemes
of many existing works considered energy consumption as a
key factor.

B. NETWORK MODEL
In the system shown in Figure 3, the MBS is connected to
Internet through core network in the cellular communication
system. MEC servers are deployed at the MBS and the SBS.
In this paper, it is assumed that the SBS is connected to the
MBS in a wired manner. Because the interference between
MBSs is small, we assume that a MBS and a MBS have
n SBSs in the network coverage area. The SBS set is rep-
resented by N = {1, 2.3, . . . ,N }. There are Kn vehicles
under the SBS n, and the vehicle set is represented by Kn =
{1, 2.3, . . . ,Kn}. In this paper, we consider single-antenna
vehicles and SBSs.

We assume that each vehicle has a computationally inten-
sive and latency-intensive task to complete in a unit of time.
Each vehicle can offload calculations to MEC servers via the
connected SBS or MBS. Each vehicle offloads a task and the
task offloaded by vehicle Kn is:

Tkn =
{
Dkn ,CknT

max
kn

}
(1)
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FIGURE 3. The diagram of resource usage in MEC system.

Specifically, Dkn represents the amount of data offloaded by
the task,Ckn represents the number of CPU cycles required by
server to process the task and Tmax

kn
represents the maximum

completion time allowed for the task. During the task unload-
ing process, vehicles are constantly moving and the problem
of handover to the base station may occur. In this paper,
the calculation-intensive, ultra-low-latency task unloading is
considered and Tmax

kn
is less than tens of milliseconds. There-

fore, it is assumed that no base station handover during task
unloading process.

C. VEHICLE MOVEMENT MODEL
For vehicle movement, γ (k) is the set of vehicle movement
directions with time-tolerant data. In this paper, only the
movement of roads and vehicles (or the data contained in
it) along the south-north, east-west directions is considered.
Therefore, γ (k) includes 5 possible cases: north (N ), south
(S), east (E), west (W ) and Stationary RSU direction (F),
so γ (k) ∈ {N , S,E,W ,F}.
In this paper, Manhattan mobility model is selected as

mobility model of vehicles in the proposed network architec-
ture. Suppose the density of vehicles and road intersections
are ρveh and ρint . Respectively, the speed of vehicles’ move-
ment is v, the time of vehicles’ randommovement is tmove and
the uniform distribution U

(
0, 1

ρintv

)
is satisfied. Therefore,

the probability density function of vehicles’ random move-
ment time can be written as

fTmove (tmove) =

ρintv, tmove ∈
[
0,

1
ρintv

]
0, others

(2)

For a vehicle arriving at a road intersection, let Pwait denote
the probability that the vehicle needs to wait and random
waiting time of the vehicle at intersection is denoted by
twait . If the random waiting time satisfies a uniform distri-
bution U (0,Twait), the probability density function can be
expressed as

fTwait (twait) =


1

Twait
, tmove ∈ [0,Twait ]

0, others
(3)

Thus, the probability of the vehicle moving and stopping can
be expressed as

Pmove =
1
ρintv

1
ρintv
+

TwaitPwait
2

=
2

2+ TwaitPwaitρintv
(4)

pshop = 1− Pmove =
TwaitPwaitρintv

2+ TwaitPwaitρintv
(5)

where: 1/ρintv is the time for the vehicle to move from one
intersection to the next; Twait/2 is the average waiting time
at intersection; 1/ρintv+TwaitPwait/2 is the total time for the
vehicle to move and wait.
In addition, it can be divided into two types as its neighbors

for the vehicle A driving on the road: If vehicle B and vehicle
A travel in the same direction and stay within communication
range, vehicle B can be used as the vehicle A’s Neighbors
and establish a direct communication link. If vehicle A is
stationary at the intersection and other vehicles waiting at
the intersection or roadside RSU are within communication
range, these vehicles and RSU can be neighbors of vehicle A.
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And they can communicate with vehicle A Establish a wire-
less communication link. Except for these two cases, vehicle
A will not be able to choose a neighbor to establish a wire-
less communication link with its neighbor in the connected
vehicle.

D. TRANSMISSION TIME
In this paper, we consider that the MBS and SBS spectrum
overlap, which means that there is interference between the
two base stations. Compared with the interference between
them, the interference between the SBSs is negligible.
Because the SBS is deployed, the operators adjust transmit
power of base station so that the coverage areas are less
overlapping [25], [26]. This paper assumes that vehicles and
base stations communicate through Time DivisionMultiplex-
ing (TDM) technology and each vehicle offloads data using
time slots allocated by the base station. In the future vehicle
networking scenario, the task offload data is much larger than
the download data. So only the channel allocation problem
offloaded from vehicles to base stations is considered. Vehicle
A is connected to its corresponding SBS and neighboring
vehicle B is connected to its corresponding MBS. Then the
wireless communication between vehicle A and B interferes
with each other, so that the transmission rate decreases.

MEC servers are deployed at each SBS or MBS in the
network. Vehicles can access the two base stations. Thus,
the computing tasks are offloaded to MEC servers for exe-
cution [27]. Each vehicle can choose to access either the
corresponding SBSs or MBSs. We use akn to represent the
time slot size used by vehicle kn as a percentage of unit
time, so there is 0 ≤ akn ≤ 1. Let bkn ∈ {0, 1} denote the
access choice of vehicles, bkn = 0 denote the SBS where
vehicles accesses its range and bkn = 1 denote the MBS
where vehicles accesses its range.

1) TRANSMISSION TIME WHEN ACCESSING SBSs
Assume that the bandwidth of SBSs is Bs. According to
Shannon’s theorem, the total transmission rate of SBSs is

Rs = Bs log2

(
1+

GSknp
S

1+ σ 2

)
(6)

Specifically, GSkn is the channel gain between SBS n and
vehicle kn, pS is the transmission power when SBS n com-
municates with vehicle kn, σ 2 is the wireless channel noise
power, and I is the interference power between MBSs and
SBSs. When vehicle kn accesses SBS n, i.e., bkn = 0,
the transmission rate between vehicles and base stations is

RSkn = aknR
s
= aknBs log2

(
1+

GSknp
S

1+ σ 2

)
(7)

The corresponding transmission delay is

tSTkn =
Dkn
RSkn
=

Dkn
aknRs

(8)

2) TRANSMISSION TIME WHEN ACCESSING MBSs
Similarly, assume that the MBS bandwidth is BM . According
to Shannon’s theorem, the total transmission rate of MBSs is

RM = BM log2

(
1+

GMknp
M

1+ σ 2

)
(9)

Specifically, GMkn represents the channel gain between MBSs
and vehicle kn and pM represents the transmission power
when MBS communicates with vehicle kn. σ 2 is the wireless
channel noise power. When vehicle kn enters MBSs, that is
bkn = 1, the transmission rate is

RMkn = aknR
M
= aknBM log2

(
1+

GMknp
M

1+ σ 2

)
(10)

The corresponding transmission delay is

tMTkn =
Dkn
RMkn
=

Dkn
aknRM

(11)

IV. COMBINATION AUCTION MODEL BASED ON
ANALYTIC HIERARACY PROCESS (AHP)
A. ANALYTIC HIERARACY PROCESS
According to the environment in which vehicles are located
and the type of request tasks, this paper selects price, bit error
rate and average retransmission times as the judging factors.
The hierarchy can determine the priority (‘‘satisfaction’’) of
requesting nodes for serving nodes based on the weight of
request tasks for each factor. So that the model reaches the
optimal selection. The following describes the process of
satisfaction analysis based on AHP in detail.

(1) Establishing hierarchical structure model: By
decomposing the problem into target layer, criterion layer
and solution layer, a complex decision problem with mul-
tiple indicators is solved. The hierarchical structure model
established is shown in Figure 4.

(2) Construct judgment matrix: Compare the indicators
with each other firstly. Judge its importance to the target layer,
that is, the weight of each standard. Then a pairwise compar-
ison is performed between the scheme layers to obtain the
local weight of the indicator for each indicator. The criterion
layer judgment matrixM =

{
mij
}
, and elementmij represents

the importance of the i-th index compared to the j-th index.
Regarding mij, the best results are usually obtained on a scale
of 1 to 9, see Table 1.

(3) Calculating weights: This paper uses the eigenvec-
tor method to calculate weights. Calculate the maximum
eigenvalue λmax of the judgment matrix and the eigenvector
corresponding to the maximum eigenvalue. Normalize the
eigenvectors to get weights. By multiplying local weights
of each element with weights of the corresponding index,
the final weight is obtained. That is, satisfaction.

(4) Consistency test: Due to the subjectivity of judgment
matrix, the consistency is usually not fully satisfied. There-
fore, the consistency ratio CR is used to detect judgment
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FIGURE 4. Structural model diagram of AHP.

TABLE 1. Bid winning degree and meaning of judgment matrix.

TABLE 2. Average random consistency index RI.

errors. CR is the ratio of consistency index CI to the average
random consistency index RI.

CI = (λmax − n)
/
(n− 1) (12)

CR = CI
/
RI (13)

Here, n is the number of indicators. The values of RI are
shown in Table 2.

B. PROBLEM STATEMENT
The service vehicle broadcasts its status periodically and the
requesting vehicle to grasp service node information through
wireless broadcast. The requesting vehicle issues request
information to a service node that can increase its benefits.
Define the benefit when the requesting vehicle to offload
tasks to service nodes, as shown in equation (14):

ui = wik
{
µ ln

(
τDij + θ

)
+ (1− µ) e0Dij − pij

}
(14)

where, wik indicates that requesting vehicle benefits is related
to satisfaction. The first item in brackets indicates the compu-
tational resource efficiency saved by offloading tasks, and the
second item represents the computational resource efficiency
gain saved by executing computing tasks at remote end. pij =
pcij+p

b
ij represents the cost paid by p

c
ij to p

c
ij.µ is the unloading

factor, and 0 < µ < 1, τ and θ are the coefficients. e0 is
the unit resource price defined by requesting vehicles, which
indicates how much requesting vehicles prefers requesting
resources. Dij = ci + bi represents the sum of resources

obtained by vehicle νi at service node gj. Here, because the
number of CPU cycles and bandwidth belong to different
orders of magnitude, we use the form of data homogenization
to express its size as a percentage of its respective total
resources and then sum them.

The optimization goal is to maximize the benefits of ser-
vice nodes while improving the efficiency of requesting vehi-
cles under the constraints of system requirements and delays.
The programming problem is as follows equation (15):

maxUj =
∑

vj∈V ,gj∈G,ρk∈N

L∑
i=1
ρk
(
pij − ϕDij

)
s.t. C1 :

L∑
i=1

xijci ≤ Cj, vj ∈ V , gj ∈ G

C2 :
L∑
i=1

xijbi ≤ Bj, vj ∈ V , gj ∈ G

C3 : rij ≥ ζ
C4 : t ≤ tcmax

C5 :
L∑
I=1

xij ≤ 1, vj ∈ V , gj ∈

C6 : µ
ci
c0

ln
(
τDij + θ

)
+ (1− µ) e0Di,j

≥ pij, vi ∈ V , gj ∈ G



(15)

where, ϕ represents the unit resource price defined by ser-
vice nodes, ρk represents the probability of accessing the k
type request task. Constraints C1 and C2 indicate that the
computing and wireless resources available to serving node
gj are limited; C3 is the transmission rate requirement, ζ is
the minimum transmission rate threshold; C4 is the delay
requirement and the total delay of entire offloading process
must not be greater than tcmax; Indicates that a requesting
vehicle is served by at most one service node, and one service
node can serve multiple vehicles; C6 guarantees that the
benefits will not be reduced when vehicle unloads tasks to
service nodes.

C. VALUATION AND BID PRICES
Each requesting vehicle has an estimate of its requested
resources that reflects the vehicle’s preference for resources.
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The evaluation functions of computing resources andwireless
resources are defined as linear functions of the number of
CPU cycles and bandwidth.

zci (x)

x
=
zci (y)

y
, ∀vi ∈ V

∀x, y ∈ {1, 2, · · ·,Ci}

 (16)

where, zci (x) and zci (y) represent requesting vehicle vi’s
estimates of x and y CPU cycles respectively. In order to
express the valuation function more rationally, we add sat-
isfaction. Therefore, request vehicle vi to estimate the com-
puting resources of kth type task request as

zci (x) = wike
c
maxx (17)

where, ecmax calculates the resource price for the largest unit
that requesting vehicle vi is willing to pay. Similarly, request-
ing vehicle vi estimates the wireless resource of kth type task
request as

zbi (x) = wike
b
maxx (18)

where, zbi (x) indicates that requesting vehicle vi estimates the
bandwidth of x, which is the maximum unit radio resource
price that vi is willing to pay. In summary, when vi to issue
the kth type task request, the estimated value of requesting
resource {x, y} is

zi (x, y) = wik
(
ecmaxx + e

b
maxy

)
(19)

This article uses a price increase auction, and the initial
bidding price is half of the resource valuation.

V. MULTI-ROUND SEQUENTIAL COMBINATION AUCTION
MECHANISM
Weuse combination auctionmodel to build the systemmodel,
which is mainly composed of 4 factors: seller, commodity,
buyer and decision maker. Here, the seller is service nodes
with certain resources. The buyer intends to purchase prod-
ucts in order to request vehicles—combine resources and
perform tasks. The decision maker is service nodes and deter-
mines the winning vehicle and the amount of money that it
needs to pay to service nodes. The combination auctionmodel
is shown in Figure 5.

The auction model can find valid matching problems
between requesting vehicles and service nodes. Service nodes
that owns computing and wireless resources wants to lease
these resources to requesting vehicles. And requesting vehi-
cles intend to purchase resources from service nodes and
complete the task’s calculation. When a service node estab-
lishes a match with a requesting vehicle, the requesting
vehicle should pay the service node. Moreover, payment is
determined by the service node, so the offloading model is
modeled as combination auction.

A. MULTI-ROUND SEQUENTIAL COMBINATION AUCTION
OFFLOADING MECHANISM
When the service node determines that it has sufficient het-
erogeneous resources, provides services and calculations for

FIGURE 5. The combination auction model.

requesting vehicles, the auction transaction is established
after determining own benefits. The requesting vehicle pays
corresponding fee to service nodes when it gets service.

The highest round of auction is defined as M , that is,
the number of service nodes. Requesting vehicles first use
AHP to calculate satisfaction and determine the priority of
release tasks. Then, they sequentially submit the resource
requirements and bid price to the service nodes within com-
munication range. After receiving the vector information
from requesting vehicles, service nodes perform the win-
ner decision step: Check its local wireless and computing
resources, calculate its own benefits. In this step, a multi-
dimensional packet backpack algorithm is used to determine
requesting vehicle vi served by service nodes. In each round
of auctions, some requesting vehicles with lower bids will be
added to unbid matrix F (the matching request vehicle set is
not obtained). In order to be competitive, requesting vehicles
in the unbid matrix increase bids in the next round price. The
whole mechanism process satisfies three auction properties:
personal rationality, balanced budget and user honesty.

The multi-round sequential combination auction offload-
ing mechanism is detailed as follows:

(1) Hierarchical analysis method ranking: establish hierar-
chical model as shown in Figure 3 by quantifying each ele-
ment. requesting vehicle vi prioritizes service nodes asW i

={
wi1,w

i
2, · · ·w

i
M

}
by using hierarchical ranking method.

In order to maximize the benefit of service nodes, these
nodes need to be sorted. In this paper, the distance aver-
age method is used to determine: service nodes calculate
the distance between requesting vehicles. Then we average
the distances and finally they are serviced according to the
average.

(2) Task bidding: Requesting vehicles sequentially provide
requesting tasks to service nodes. After receiving requesting
information, service nodes use the multi-dimensional packet
backpack algorithm to decide which vehicles to serve. Vehi-
cles that are currently not served by service nodes will be
merged into the unbid matrix. These vehicles continue to be
sorted in the next round and then bidding tasks. In order to
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increase competitiveness, they will increase prices according
to a certain gradient.

(3) Winner decision: Service node gj receives requesting
information from multiple vehicles. They need to choose a
vehicle for service with limited resources and maximize their
benefits. Requesting vehicles needs to pay service nodes at
the same time. After requesting vehicles receive the informa-
tion that service nodes can serve for it, it needs to judge their
benefits. If the benefits are reduced, then this round of task
offloading is abandoned.

In the unbid matrix, requesting vehicle F =
{
v1, v2, · · ·vf

}
provides a task offloading request

{
Cj,Bj

}
to service node

gj with the resource status
{
cij, bij, pcij, p

b
ij

}
. First, determine

whether the first requesting vehicle is unloaded. If yes, that
is, x1j = 1, the problem turns into maximum service node
capacity

{
Cj − c1j,Bj − b1j

}
problem. If not, the problem

is a multi-dimensional grouped knapsack problem with a
capacity of

{
Cj,Bj

}
to get the optimal decision. Thematching

problem is defined as knapsack problem. Here, a dynamic
programming method is used to determine whether the i-th
vehicle is unloaded. The idea is as follows:

Phase i: In the first i requesting vehicles, select several
vehicles for unloading;

Status: Among the first i requesting vehicles, several vehi-
cles are selected for offloading tasks to service nodes with
remaining capacity of

{
Cj,Bj

}
andmake themmaximize their

benefit;
Decision: Whether or not the i-th requesting vehicle is

unloaded, dynamic transfer equation is:

Uj (i, j, c, b)

= max
{
Uj (i, j−1, c, b) ,Uj

(
i, j−1, c−cij, b−bij

)
+pij

}
(20)

B. TASK EXECUTION TIME
In previous cloud computing models, server calculation
delays can be negligible compared with communication
transmission and local calculation delays [28], [29]. However,
because its server resources are relatively small and offload-
ing requests of vehicles are mostly computation-intensive
tasks, the calculation time of edge servers cannot be ignored
in MEC. The allocation of server computing resources is
generally measured by CPU frequency. This can be achieved
through virtual machine technology or Dynamic Frequency
and Voltage Scaling (DFVS) technology [30]. Specifically,
servers allocate different virtual machines to different vehi-
cles, allowing independent computing. There areM servers in
the data center and multiple virtual machines are virtualized
on each server:

The computing resources in the system are represented by
C = {CS ,CM ,CC }, where CS indicates the data center com-
puting resources at SBSs, CM indicates the data center com-
puting resources at MBSs, and CC indicates the data center
computing resources at SBSs. We use εkn =

{
eSkn , e

M
kn , e

C
kn

}
to indicate the calculation task offloading selection of vehicle

kn, where eSkn , e
M
kn , e

C
kn are all taken from 0 and 1. eSkn , e

M
kn , e

C
kn

respectively indicate whether the task is offloaded to SBSs,
MBSs, or data center at Internet. The value is 1 that indicates
unloading to the data center here, otherwise the value is 0.
Because tasks can only be offloaded to one data center for
execution, the constraints satisfy:

eSkn + e
M
kn + e

C
kn = 1 (21)

When the sum of these three values is 0, it indicates that the
task offloading failed. No one server can provide comput-
ing resources required for the task. After vehicle kn task is
unloaded to servers, the server performs calculation delay tEkn
as

tEkn =
ckn
fkn

(22)

where fkn represents the CPU frequency allocated by the
server to vehicle kn.

C. COMPLETION TIME OF TASK OFFLOADING
When vehicle kn is connected to SBS n and its tasks are
offloaded to the server at SBSs for execution, that is, when
bkn = 1 and eSkn = 0. The total delay of task is

t1kn = tSTkn + t
SE
kn =

(
1− bkn

)
eSkn

[
Dkn
aknRS

+
ckn
fkn

]
(23)

where tSTkn represents the transmission delay when vehicles
accesses SBSs, tSTkn task performs the calculation of delay in
the data center at SBS.

When vehicle kn is connected to SBS n, and its task is
offloaded to the server at MBSs for execution, that is, when
bkn = 1 and eCkn = 0. The total delay of task is

t2kn = tSTkn + t
ME
kn + TS,M

=
(
1− bkn

)
eCkn

[
Dkn
aknRS

+
ckn
fkn
+ TS,M

]
(24)

where TS,M represents the transmission delay of backhaul
network from SBSs to MBSs. Because the two base stations
are connected through a wire, the bandwidth can be consid-
ered very rich. We assume it to be a constant related to the
transmission distance. tMEkn indicates that the task performs
computational delay in the data center at MBS.

When vehicle kn is connected to SBS n and its tasks are
offloaded to the server at Internet for execution, that is, when
bkn = 1 and eCkn = 1, the total delay of task is

t3kn = tMTkn + t
ME
kn + TS,C = bkne

C
kn

[
Dkn
aknRS

+
ckn
fkn
+ TS,C

]
(25)

where TS,C represents the transmission delay from SBSs
to Internet servers. It can also be considered as a constant
related to the transmission distance. tCEkn indicates that the
task performs computational delay in central data center at
Internet.
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When vehicle kn is connected to MBSs and its task is
offloaded to the server at MBSs for execution, that is, bkn = 1
and the total delay of task is the transmission delay when the
vehicle accesses MBSs.

t4kn = tMTkn + t
ME
kn = bkne

M
kn

[
Dkn
aknRS

+
ckn
fkn

]
(26)

When vehicle kn is connected to MBSs and its task is
offloaded to the server at Internet for execution, that is, when
bkn = 1 and eCkn = 1, the total delay of task is

t5kn= t
MT
kn + t

ME
kn + TM ,C = bkne

C
kn

[
Dkn
aknRS

+
ckn
fkn
+TM ,C

]
(27)

where TS,C represents the transmission delay between MBSs
and Internet servers. It can also be considered as a constant
related to the transmission distance. Task completion time tkn
is

tkn =
(
1− bkn

)
eSkn t

1
kn +

(
1− bkn

)
eMkn t

2
kn +

(
1− bkn

)
eCkn t

3
kn

+bkne
M
kn t

4
kn + bkne

C
kn t

5
kn (28)

because eSkn + e
M
kn + e

C
kn = 1, bkn = 1 and eSkn = 0, the above

formula can be further simplified as:

tkn =
(
1− bkn

) Dkn
aknRS

+ bkn
Dkn
aknRM

+
ckn
fkn
+
(
1− bkn

)
TS,M

+bkne
M
knTS,C + bkne

C
knTM ,C (29)

VI. SIMULATION
The simulation of this paper is completed onMATLAB2016a
platform. The simulation results mainly include the influence
of these parameters (such as the number of users per unit
time, the amount of user task offload data, the number of CPU
cycles required by user task) on the average completion time
of task, and these results are compared with other algorithms.

A. SIMULATION SETTINGS
The density of vehicles in cities is 1000-3000 vehicle/km2;
the density of vehicles in suburbs is 500-1000 vehicle/km2;
the density of vehicles on highways is
100-500 vehicle/km2. The coverage area of base stations is
different in different scenarios. This paper takes the urban
environment as an example and selects a square area of
1000m×1000m. The number of vehicles in this area is about
1000-3000. In the IoV scenario, dense base stations need
to be deployed due to the huge amount of offloaded and
downloaded data. This paper assumes that the base station
deployment scenario is shown in Figure 6. A MBS and
24 SBSs are deployed in a square area of 1000m×1000m.
The MBS is located at the center of the area and its coverage
area covers entire area. The entire square area is divided into
four small areas; 24 SBSs are located in the center of 4 small
areas. Its coverage area is its small area. Ideally, the coverage
area of SBSs is a circle, not a square. So there are overlapping
areas in the coverage of 24 SBSs. We assume that vehicles in

TABLE 3. Wireless channel simulation parameters.

overlapping areas can only choose SBSs that are closer to
themselves. So the coverage area of SBSs can be regarded as
a square.

Vehicles in each small area are uniformly distributed. For
the task Tkn that vehicles needs to unload, the values of task
parameters Dkn , Ckn and Tmax

kn all follow normal distribu-
tion. The total computing resource of data center at SBSs is
1000GHz/s, atMBSs is 4000GHz/s. And the total computing
resource of data center on Internet is 16000GHz/s.

After referring to future 5G communication standards and
literatures, the wireless channel simulation parameters in this
paper are shown in Table 3. According to literature [23],
the channel gain can be calculated from path fading =
1010 and the total base station rate can be calculated to be
about 20 Gbit/s. This satisfies the requirements of 5G for
base station speed. In addition, we assume that the cable
transmission delay from SBS to MBS data center is 0.002s.
The propagation delay from MBS to Internet data center is
0.1s. Hence the propagation delay from SBS to Internet data
center is 0.102s.

There are much work of task offloading and resource allo-
cation. This paper chooses two of them as references: Ref [12]
algorithm, Ref [21] algorithm and Ref [23] algorithm.

B. ANALYSIS OF SIMULATION RESULTS
1) IMPACT OF TASK NUMBER PER UNIT TIME ON TASK
OFFLOADING
Let u be the number of tasks per unit time in entire area.
For user task Tkn , the offloaded data Dkn follows normal
distribution with mean value 10MB and the number of CPU
cycles required for calculation task follows normal distribu-
tion with average value 0.5 Gigacycles. The results are shown
in Figure 7:

It can be seen from Figure 7 that when the number of
users is small, the four algorithms can obtain a very low
average task completion time. But when the number of tasks
per unit time exceeds a critical value, the average task com-
pletion time will increase sharply. Figure 7 shows that the
proposed algorithm grows slower than other three algorithms.
This indicates that when user requests more, the proposed
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FIGURE 6. The scenario of base station deployment.

FIGURE 7. Impact of the number of users per unit time on average task
completion time.

algorithm has higher task offloading and resource allocation
efficiency and can complete tasks faster.When there aremany
users, the fastest growth is Ref [12] algorithm. The possible
reason is that task offloading decision of Ref [12] algorithm
is chosen randomly. Although the optimal resource allocation
scheme is subsequently obtained, it can make up for the lack
of random selection. However, it still reduces the system
task execution efficiency compared with other algorithms.
When the number of tasks per unit time is large enough,
that is, vehicles are particularly congested the average com-
pletion time of the proposed algorithm is 33.7% less than
Ref [12], 29.4% less than Ref [21] algorithm and 8.3% less
than Ref [23] algorithm. It can be seen that the proposed
algorithm is significantly better than other three algorithms.

2) IMPACT OF THE AMOUNT OF USER TASK OFFLOAD DATA
ON AVERAGE TASK COMPLETION TIME
Assume that the number of users is 500. For user tasks, the
offloaded data Dkn follows normal distribution with mean

FIGURE 8. Impact of the amount of user task offload data on average
task completion time.

value d and the number of CPU cycles required for cal-
culation task follows normal distribution with mean value
0.5 Gigacycles. We analyze the impact of task offload data on
average task completion time through simulation. The results
are shown in Figure 8.

Observing the theoretical lower bound curve first, we find
that the proposed algorithm is almost a straight line after d=
10MB and the slope is larger than before. Because users are
evenly distributed, the number of users in each SBS may be
between 10 and 30. The total transmission rate of each base
station is about 20Gbit/s. Through calculation, we find that
when d = 10MB, the base station transmission can basically
complete the user’s data during average task completion time.
Sowe infer that when d> 10MB, the average task completion
time is mainly determined by wireless transmission. Compu-
tational resources are sufficient, not a factor affecting average
task completion time. It can be seen from Figure 8 that the
proposed algorithm is very close to the theoretical value and
is better than other three algorithms. When the amount of
offloaded data is large, the average completion time of the
proposed algorithm task is 19.6% less than Ref [12] algo-
rithm, 24.8% less than Ref [21] algorithm and 4.3% less than
Ref [23] algorithm. The proposed algorithm is significantly
better than other three algorithms.

6.2.3 Impact of the number of CPU cycles required for user
task execution on average task completion time

Assume that the number of users is 500. For user tasks, the
offloaded data follows normal distribution with mean value
10MB. The number of CPU cycles required for calculation
task Ckn follows normal distribution with mean value c.
Through simulation, we analyze the impact of CPU cycle
number on average completion time of the task. The results
are shown in Figure 9.

It can be seen from Figure 9 that when c< 0.4 Gigacycles,
the average completion time obtained by the four algorithms
is almost the same. This is because the data center com-
puting resource parameters are set relatively large and the
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FIGURE 9. Impact of the number of CPU cycles required for user task
execution on average task completion time.

computing resources are relatively abundant. Similar results
can be obtained in the end where the task is executed. When
it continues to increase and user tasks need to consume more
computing resources. The advantages and disadvantages of
the four algorithms begin to show. When c= 1.0 Gigacycles,
the average completion time of the proposed algorithm and
Ref [21] algorithm is 4.9ms apart. The average task comple-
tion time of the proposed algorithm is 20.0% less than that of
Ref [21] algorithm.

VII. CONCLUSON
In the network model, each user has a task that needs to be
offloaded. Besides, the task consists of three parameters: the
amount of offloaded data, the number of CPU cycles required
for calculation task and the maximum allowable completion
time. This paper builds a network scenario with multiple
MECs and multiple requesting vehicles. The service nodes
are equipped with limited wireless and computing resources.
It is assumed that vehicles and base station communicate
by TDMA in proposed transmission time model. In the task
execution time model, computing resources can be measured
by CPU frequency based on virtual machine technology
and DFVS technology. Finally, this paper considers different
offloading decisions comprehensively and gives the com-
pletion time of tasks. In addition, an optimization problem
with the minimum average completion time is also proposed.
Therefore, we focus on ultra-low-latency task offloading, it is
assumed that the handover of vehicles access base station
does not occur during offloading process. In the follow-up
work, the task model is expanded to general task offloading.
In the future work, we will consider the impact of delay
caused by the handover of base stations and the efficiency
of system resource use comprehensively.

Moreover, the algorithm performance analysis of this paper
is based on MATLAB simulation, and there is a certain
distance from engineering implementation. In the future
work, we hope to build the MEC system architecture on

NS3 platform based on SDN and NFV technologies. And
we use the proposed algorithm in this paper to implement
software control over task offloading and resource allocation.
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