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ABSTRACT Multiple uncertainties from renewable energy sources, power loads and bidirectional AC/DC
converter have brought great challenges to the energy management of AC/DC hybrid microgrid. In view
of the issues, this paper proposes a temporally coordinated energy management strategy for AC/DC hybrid
microgrid considering dynamic conversion efficiency of bidirectional AC/DC converter. According to the
operation and loss characteristics of bidirectional AC/DC converter, a novel dynamic conversion efficiency
model of bidirectional AC/DC converter is developed. To maintain high robustness at minimum operation
cost, the proposed strategy is divided into two stages. The outputs of renewable energy sources, operation
characteristics of microgrid components and time-of-use electricity price are comprehensively considered
in the day-ahead economic energy management stage to minimize the daily operation cost. In the intraday
rolling energy management stage, day-ahead schedules of controllable units are adjusted based on intraday
ultra-short-term forecast data to suppress the intraday power fluctuations induced by day-ahead forecast
errors. The simulation results demonstrate that the proposed strategy can effectively mitigate the impact of
multiple uncertainties and realize the economic operation of AC/DC hybrid microgrid.

INDEX TERMS AC/DC hybrid microgrid, bidirectional AC/DC converter, dynamic conversion efficiency,
energy management.

I. INTRODUCTION
Microgrid is a small-scale power generation and distribution
system that integrates distribution generators (DGs), energy
storages(ESs) and loads [1], [2]. It’s an effective carrier for
large-scale distributed renewable energy sources(RESs) con-
nected to the existing power grid [3]. Due to natural condi-
tions, the outputs of RESs are intermittent and stochastic [4].
And the load demands are also mainly determined by human
behaviors, which are difficult to forecast accurately. These
factors have imposed great challenges on the energy manage-
ment of microgrid [5]–[7].
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In recent years, a significant amount of research work has
been conducted to investigate the microgrid energy manage-
ment by the researchers [8]. At present, the microgrid energy
management strategy can be mainly categorized into stochas-
tic optimization and robust optimization [9]. According to
the literatures, stochastic optimization describes the uncertain
information by random variables, and establishes stochastic
optimization model by means of probability statistics and
stochastic analysis to acquire the minimum cost schedul-
ing [10]–[14]. However, stochastic programming relies too
much on the accurate probability curves for different sce-
narios. In some cases, the model is not accurate enough
to reflect the actual situation. Moreover, as the number of
scenarios increases, higher computational requirements will
be required [15]. In contrast, robust optimization replaces
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the accurate probability distribution of random variables with
uncertain sets and obtains the optimal scheduling in theworst-
case scenario [16]–[19]. Nevertheless, due to the excessive
pursuit of the stable operation, the robust optimization often
results in over-conservative scheduling [20].

Furthermore, both stochastic optimization and robust opti-
mization are one-time offline optimizations, the intraday fluc-
tuations of RESs and loads are ignored [21]. In view of this
issue, multi-time scale optimization has been put forward.
Bao et al. developed a multi-time scale scheduling for an
integrated microgrid. The schedule achieved an integrated
optimization for multi energy-type supply and made the
microgrid be controllable as seen from the main grid [22].
In [23], an energy management system based on a rolling
horizon strategy for a renewable-based microgrid was pro-
posed. For each decision step, a mixed integer optimization
problem based on two-day-ahead forecast models was solved.
In [24], a temporally-coordinated operation method for a
multi-energy microgrid under diverse is proposed consider-
ing distinct properties of thermal and power energy. The day-
ahead operation makes initial decisions, and online operation
replies on a recourse action to compensate day-ahead deci-
sions. Abovementioned works have demonstrated that since
longer-time-ahead schedule and real-time operation are both
considered in multi-time scale optimization, the source-load
uncertainties can be efficiently combat without increasing
computational burden.

At present, previous researches of microgrid energy man-
agement mainly focused on AC microgrid [25]. In recent
years, as the number of DC sources and loads increases,
power electronics based rectifiers and inverters in AC micro-
grid are growing [26]. This not only affects the power quality
of microgrid, but also reduces the economy of microgrid
operation [27]. AC/DC hybrid microgrid separates AC region
from DC region by bidirectional AC/DC converter (BC) and
eliminates numerous AC/DC conversions, which effectively
solves the above problems [28]. However, in terms of the
energy management, the main challenge of traditional AC
microgrid is combating the source-load uncertainties. But for
the AC/DC hybrid microgrid, the uncertainties both exist in
the AC and DC regions. Some literatures also have inves-
tigated the energy management of AC/DC hybrid micro-
grid. Papari et al. developed a stochastic framework for the
optimal operation of AC/DC hybrid microgrid. A modified
crow search algorithm is devised to improve search abil-
ity in the problem space [29]. In [30], a bi-level two-stage
robust optimal scheduling model for AC/DC hybrid multi-
microgrids is proposed in consideration of uncertainties in
the utility and supply levels. The model ensured the stable
operation of AC/DC hybrid multi-microgrids and achieved
the scheduling plan in the worst-case scenario. However,
since AC-DCmutual conversions in AC/DC hybridmicrogrid
are entirely completed through the BC connectingAC bus and
DC bus. The operation cost and conversion efficiency of BC
have significant impact on the energy management of AC/DC
hybrid microgrid. Moreover, the conversion efficiency of BC

is always changing. The above-mentioned factors together
constitute the multiple uncertainties of AC/DC hybrid micro-
grid. Nevertheless, in previous researches, the multiple uncer-
tainties are partially ignored. For instance, the conversion
efficiency of BC is often treated as a fixed value or even
neglected [29], [31]–[33]. Thus BC schedules will not match
the actual BC operation states. In some researches like the
reference [10], [20], [30], [34], the scheduling scheme of
AC/DC hybrid microgrid is developed by one-time offline
energy management model based on day-ahead forecast. As a
result, the schedules are may quite different from the actual
operation, and even completely deviate in some extreme sce-
narios.

Given no existing works have addressed the abovemen-
tioned problems in one research before, a comprehensive
research on the noted issues is indispensable for the economic
and robust operation of AC/DC hybrid microgrid. To this
end, a temporally coordinated energy management strategy
for AC/DC hybrid microgrid is proposed in this paper. The
major contributions of this work are presented as follows.

1) A novel dynamic conversion efficiency(DCE) model
of BC is developed based on the operation and loss
characteristics of BC. The model can more accurately
reflect the actual BC operation state and effectively
reduce the operation cost of the AC/DC hybrid micro-
grid, especially for the weak light condition day.

2) A temporally coordinated energy management strat-
egy for AC/DC hybrid microgrid integrated with DCE
model is proposed. The RESs outputs, operation char-
acteristics of microgrid components and time-of-use
electricity price are comprehensively considered in the
day-ahead economic energy management stage to min-
imize the daily operation cost. In the intraday rolling
energymanagement stage, day-ahead schedules of con-
trollable units are adjusted based on intraday ultra-
short-term forecast data to suppress the intraday power
fluctuations induced by day-ahead forecast errors.

The remainder of this paper is organized as follows.
Section II describes the structure of AC/DC hybrid microgrid.
Section III introduces the DCEmodel of BC. Section IV illus-
trates the operation cost models of microgrid components.
Section V presents the temporally coordinated energy man-
agement strategy for AC/DC hybrid microgrid. Case studies
are conducted in Section VI. The conclusions are drawn in
Section VII.

II. STRUCTURE OF AC/DC HYBRID MICROGRID
The structure of AC/DC hybrid microgrid studied in this
paper is shown in Fig.1. AC bus carries wind turbine (WT)
and AC loads, and it’s connected to main grid. Fuel cell,
photovoltaic (PV) panels, lithium-ion battery (LB) and DC
loads are connected to DC bus. The LB in the DC region can
achieve the peak clipping/valley filling effect for the entire
microgrid. AC bus and DC bus are interconnected through
a BC for power exchange between two regions. In working

VOLUME 8, 2020 70879



B. Wei et al.: Temporally Coordinated Energy Management for AC/DC Hybrid Microgrid Considering Dynamic Conversion Efficiency

FIGURE 1. Structure of the AC/DC hybrid microgrid.

FIGURE 2. Topology of BC.

condition, the AC loads and the DC loads are first powered
by the DGs in the corresponding region. When the power
imbalance occurs in AC region or DC region, the power can
be complemented through the BC.

Obviously, the AC/DC hybrid microgrid separates AC
region from DC region by BC to replace numerous AC/DC
conversions in traditional AC microgrid. However, since the
BC occupies the main body of energy conversions in the
AC/DC hybrid microgrid, the conversion efficiency and oper-
ation cost of BC have much more significant impact on
the energy management than in traditional AC microgrid.
However, the conversion efficiency of BC is always changing.
In view of that, accurately modeling the conversion efficiency
of BC is indispensable to the energy management of the
AC/DC hybrid microgrid.

III. DYNAMIC CONVERSION EFFICIENCY MODEL OF BC
This section aims to develop accurate conversion efficiency
model of BC. The topology of bidirectional AC/DC power
converter is shown in Fig.2.

In the figure, S1-S6 are IGBT modules. Relevant studies
indicate that converter loss mainly includes IGBT module
loss and inductance loss. The loss of the IGBT module is the
sum of the conduction loss and the switching loss of IGBTs
and diodes [35], [36]. The conduction loss of IGBT is defined
as below.

PT =
1
2π

∫ π

0
uCEiCDdt +

1
2π

∫ π

0
uFiF(1− D)dt (1)

where uCE and iC are terminal voltage and current of IGBT,
uF and iF are terminal voltage and current of diode, D is duty
cycle.

Due to iC is equal to iF, PT can be represented by a linear
function as

PT = (RCE + RF)I2C + (UCEO + UFO)IC (2)

where IC is on-state current, RCE and RF are on-state equiva-
lent resistance of IGBT and diode, UCEO and UFO are thresh-
old voltage of IGBT and diode.

The switching loss of IGBT module is mainly composed
of switching loss of IGBT PSI and reverse recovery loss of
diode PSD. According to the product manual:

PSI = PSon + PSoff = (a1I2C + a2IC + a3)UCE (3)

PSD = (a4I2C + a5IC + a6)UCE (4)

where UCE is the collector-to-emitter voltage of IGBT, it can
be regarded as a constant value in steady state. PSon and PSoff
refer to turn-on loss and turn-off loss of IGBT, ai(i = 1, 2,
. . . . . . ,9) refer to the parameters related to the operation.

The inductance loss of converter is mainly copper loss.
It is proportional to the square of IC. Considering (2)-(4),
converter loss PL can be described as

PL = PT + PSI + PSD + I2CRL = a7I2C + a8IC + a9 (5)

Since UCE is constant under operating condition, IC is
proportional to the converter transmission power P. Thus (5)
can be changed to (6).

PL = b1P2 + b2P+ b3 (6)

where bi(i = 1, 2, 3) are the parameters related to the
operation. Therefore, the conversion efficiency of BC ηBC can
be drawn as below.

ηBC = (P− PL)/P = −b1P+ 1− b2 − b3/P (7)

Defining the transmission power ratio PR as the ratio of
the transmission power P to the converter rated power PN,
and then combining the coefficients, ηBC can be derived as

ηBC = k1PR + k2 + k3/PR (8)

where ki(i = 1, 2, 3) are the parameters related to the
operation, they can be obtained through experimental test.

In this paper, we focus on an existing AC/DC hybridmicro-
grid in North China. Rated power of BC in this microgrid
is 50kW. Fig. 3 shows the test results of the BC and the
corresponding conversion efficiency curve fitted by (8). It can
be seen that the developed model is accurate.

Since transmission power is positively correlated with
transmission power ratio, the BC conversion efficiency is a
function of its transmission power according to (8). Con-
version efficiency varies in a relatively large range at dif-
ferent transmission power. This means that the conversion
efficiency of BC is not just a constant coefficient as in
the traditional research, but will participate in the microgrid
scheduling. In the optimization problem of microgrid energy
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FIGURE 3. Conversion efficiency curve of BC.

management, the conversion efficiency is actually defined as
a decision variable. It plays the same role as other decision
variables. It is determined by the transmission power, which is
closely related to the dynamic relationship of power balance
between AC region and DC region. Therefore, compared
with the traditional model, the dynamic conversion efficiency
denoted by (8) is particularly significant for the energy man-
agement of AC/DC hybrid microgrid.

The cost of BC is mainly divided into two parts: operation
and maintenance cost and power loss cost. Therefore, the cost
can be expressed as:

CBC,t = CBCOM,t + CBCL,t

CBCOM,t = KBCOM

(
PACBC,t + P

DC
BC,t

)
1t

CBCL,t = CP,t
(
1− ηBC,t

) (
PACBC,t + P

DC
BC,t

)
1t

(9)

where CBCOM,t and CBCL,t are operation and mainte-
nance cost and power loss cost of BC at time interval t,
PACBC,t or P

DC
BC,t is power flow from AC or DC to the BC at

time interval t, KBCOM is the operation and maintenance cost
coefficient of BC, CP,t is electricity price of main grid at time
interval t.

The BC operation should satisfy the following constraints:
0 ≤ PACBC,t ≤ I

AC
BC,tPBCmax

0 ≤ PDCBC,t ≤ I
DC
BC,tPBCmax

IACBC,t + I
DC
BC,t ≤ 1

PBC,t = PDCBC,t − P
AC
BC,t

(10)

where PBCmax is the maximum transmission power of the BC,
PBC,t is the power injected to the converter at time interval t,
assuming a positive value for the DC side injection, a negative
value for the AC side injection. IACBC,t and I

DC
BC,t are the power

flow direction indicator of the BC. They are binary variables,
‘‘IACBC,t = 1’’ represents that the transmission power from the
AC side to the DC side, whereas ‘‘IDCBC,t = 1’’ is the opposite.

IV. COST MODELS OF AC/DC HYBRID MICROGRID
This section presents cost models for fuel cell, LB and power
exchange with main grid.

A. COST MODEL OF FUEL CELL
The cost of fuel cell at time interval t CFC,t can be given as
below. 

CFC,t = CFCO,t + CFCM,t

CFCO,t =
CFPFC,t
QLHVηFC

1t

CFCM,t = KFCMPFC,t1t

(11)

where CFCO,t , CFCM,t and PFC,t represent operation cost,
maintenance cost and power of fuel cell at time interval t,
respectively; CF is gas price, QLHV is lower heating value of
gas,1t is length of time interval; ηFC andKFCM are efficiency
and maintenance cost coefficient of fuel cell.

The output power of the fuel cell is constrained by:

PFCmin ≤ PFC,t ≤ PFCmax (12)

where PFCmin and PFCmax are the minimum and maximum
output power of the fuel cell.

B. COST MODEL OF LB
According to the discharge depth model based on rain-flow
countingmethod [37] and the loss model based on throughput
estimation method [38], operation cost of LB at time interval
t CliO,t can be described as below.

CliO,t =
Cin

(
Pch,t + Pdis,t

)
2Nrl,tErc

1t (13)

Nrl,t = −3278D4
od,t − 5D3

od,t

+ 12823D2
od,t − 14122Dod,t + 5112 (14)

where Pch,t and Pdis,t are charge power and discharge power
of LB, Cin is the initial investment cost, Nrl,t and Erc are cycle
life and rated power of LB, Dod,t is discharge depth of LB.

The cost of LB at time interval t Cli,t is expressed as
follows.

Cli,t = CliO,t + CliM,t (15)

CliM,t = KliM
(
Pch,t + Pdis,t

)
1t (16)

where CliM,t represents maintenance cost of LB at time inter-
val t, KliM is the maintenance cost coefficient of LB.
The operation of LB shouldmeet the following constraints:

0 ≤ Pch,t ≤ Ich,tPlimax

0 ≤ Pdis,t ≤ Idis,tPlimax

Ich,t + Idis,t ≤ 1
Pli,t = Pdis,t − Pch,t

(17)


SOCt =

Er,t
Erc

SOCmin ≤ SOCt ≤ SOCmax

Er,t = Er,t−1 + ηliPch,t −
Pdis,t
ηli

(18)

Er,0 = Er,T (19)

where Plimax is the maximum charge/discharge power of the
LB, Pli,t is the power of the LB at time interval t, assuming
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a positive value for the discharge mode, a negative value for
the charge mode. Ich,t / Idis,t represents the charge/ discharge
mode indicator of the LB(‘‘1’’ represents that the LB is
in charge/discharge mode, ‘‘0’’ otherwise). (18) shows the
capacity constraints, where SOCt is the state of charge (SOC)
of the LB at time interval t, SOCmin and SOCmax are the
minimum and maximum SOC of the LB, Er,t is the remaining
capacity of the LB at time interval t, ηli is the efficiency of
the LB. (19) limits the initial and final remaining capacity of
the LB in the energy management cycle, where Er,0 and Er,T
are initial and final remaining capacity of the LB. In order to
ensure the long-term implement of the energy management,
the remaining capacity of the LB should be periodic.

C. COST MODEL OF POWER EXCHANGE WITH MAIN GRID
The cost of power exchange with main grid at time interval t
Cgrid,t is defined as below.

Cgrid,t =
(
CP,tPPgrid,t − CS,tPSgrid,t

)
1t (20)

where CP,t and CS,t are power purchase price from main grid
and sale price to main grid at time interval t, PPgrid,t is power
flow from main grid to microgrid at time interval t, whereas
PSgrid,t is the opposite.

The power exchange should satisfy the following con-
straints: 

0 ≤ PPgrid,t ≤ IPgrid,tPgridmax

0 ≤ PSgrid,t ≤ ISgrid,tPgridmax

IPgrid,t + ISgrid,t ≤ 1
Pgrid,t = PPgrid,t − PSgrid,t

(21)

where Pgridmax is the maximum exchanged power of the tie-
line, Pgrid,t is the exchanged power of the tie-line at time
interval t, assuming a positive value for purchasing electricity
frommain grid, a negative value for selling electricity to main
grid. IPgrid,t and ISgrid,t are binary variables that determine the
states of the microgrid purchasing electricity from or selling
electricity to the main grid, respectively.

V. TEMPORALLY COORDINATED ENERGY
MANAGE-MENT STRATEGY FOR AC/DC HYBRID
MICROGRID
Compared with the traditional AC microgrid, the source-load
uncertainties both exist in the AC and DC regions, which
brings great challenges to the energy management. Many
forecasting methods have been developed in the literature
[39], [40], the results show that the short-term forecast tends
to be more accurate than the long-term one, hence the impact
of uncertainties can be better mitigated in the short-term
operation timescale. To this end, a temporally coordinated
energy management strategy for AC/DC hybrid microgrid
is proposed in this paper. The strategy includes two stages:
day-ahead economic energymanagement and intraday rolling
energy management. The energy management framework is
shown in Fig.4.

In the day-ahead economic energy management stage, a
day-ahead hourly schedule is determined to minimize the

FIGURE 4. Temporally coordinated energy management framework of
AC/DC hybrid microgrid.

daily operation cost based on the forecast data of PV, WT
and loads. The RESs outputs, operation characteristics of
microgrid components and time-of-use electricity price are
comprehensively considered in the model.

In the intraday rolling energy management stage,
the dynamic fluctuations of PV, WT and loads should be
accommodated in the operation of microgrid. Therefore,
a rolling horizon optimization strategy is employed to adjust
the day-ahead scheduling based on the intraday ultra-short-
term forecast data. Moreover, to ensure the effectiveness of
the day-ahead schedules, the strategy also track the day-ahead
schedules of BC and the SOC of LB as close as possible. The
time scale of the stage is 5 min and the control horizon is
1 h (covers 12 intervals). At each time step, schedules for
each interval in the control horizon are developed. But only
the first 5min-interval schedule is executed, while the rest
of schedules are regarded as references. Then, at the next
time step, the control horizon moves forward by 5 min as
illustrated in Fig. 4. The model inputs will be updated and the
above process will be repeated. The control horizon moves
forward 288 times in one day.

A. DAY-AHEAD ECONOMIC ENERGY MANAGEMENT
The objective of the day-ahead economic energy manage-
ment is to minimize the operation cost of AC/DC hybrid
microgrid. The objective function can be expressed as fol-
lows:

minCDA =

T∑
t=1

(
CFC,t + Cli,t + CBC,t + Cgrid,t

)
(22)

where CDA is day-ahead total cost of the AC/DC hybrid
microgrid, T is the total number of dispatch time periods. The
formulations of CBC,t , CFC,t , Cli,t and Cgrid,t are given in (9),
(11), (15) and (20), respectively.

Considering the operation mode of AC/DC hybrid micro-
grid and the operation characteristics of DGs, ESs and con-
verters, the constraints that need to be met are as follows.
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(1) Operation balance constraints of AC/DC hybrid micro-
grid:

The operation balance constraints of the AC-DC hybrid
microgrid include the overall operational balance constraints
and the respective balance constraints of the AC and DC
regions.

PPV,t + PWT,t + PFC,t + PPgrid,t − PSgrid,t + Pdis,t − Pch,t

= PLac,t + PLdc,t +
(
1− ηBC,t

) (
PACBC,t + P

DC
BC,t

)
(23)

PWT,t + PPgrid,t − PSgrid,t
= PLac,t + PACBC,t − ηBC,tP

DC
BC,t (24)

PPV,t + PFC,t + Pdis,t − Pch,t
= PLdc,t + PDCBC,t − ηBC,tP

AC
BC,t (25)

where PPV,t and PWT,t are power of PV and WT at time
interval t, PLac,t and PLdc,t are AC loads and DC loads at time
interval t. Particularly, ηBC,t employs the DCE model of BC,
which is defined in (8).

(2) Components constraints:
Constraints of BC, fuel cell, LB and tie-line are presented

in (10),(12),(17-19) and (21), respectively.

B. INTRADAY ROLLING ENERGY MANAGEMENT
As time scale shortens, the forecast accuracy improves.
Therefore, the intraday rolling energymanagement of AC/DC
hybrid microgrid based on intraday ultra-short-term forecast
data can effectively reduce the negative impacts of day-ahead
forecast errors.

The objective of intraday rolling energy management is
to minimize the variation resulted from day-ahead forecast
errors while tracking the day-ahead scheduling of the BC and
the SOC of LB as close as possible. The model consists of
two parts: rolling prediction model and optimization problem
modeling.

1) ROLLING PREDICTION MODEL
The rolling prediction model is developed to predict the
control variables in the control horizon, that is, to realize the
power prediction of DGs, ESs and BC in the AC/DC hybrid
microgrid. The model can be expressed as follows.

PFC( t + k1t| t) = PFC,t +
k∑
i=1

1PFC( t + i1t| t)

Pli( t + k1t| t) = Pli,t +
k∑
i=1

1Pli( t + i1t| t)

k = 1, 2, . . . ,m

(26)

PBC( t + k1t| t)

= PBC,t +
k∑
i=1

1PPV( t + i1t| t)

+

k∑
i=1

1PFC( t + i1t| t)+
k∑
i=1

1Pli( t + i1t| t)

−

k∑
i=1

1PLdc( t + i1t| t) k = 1, 2, . . . ,m (27)

SOC( t + k1t| t)

= SOC[ t + (k − 1)1t| t]−
Pli( t + k1t| t)

λErc
k = 1, 2, . . . ,m (28)

(26) provides the rolling prediction model of the fuel cell
and the LB. Rolling prediction models of output variables are
further derived in (27), (28) based on power balance of the
AC/DC hybrid microgrid and SOC iterative formula of LB,
where m represents the number of dispatch time periods in
the control horizon. xt (t+k1t|t) is the state of xt at the time
t+k1t predicted at time t (xt can be PFC, Pli, PBC or SOC).
ut (t + k1t|t) or rt (t + k1t|t) denotes the power variation
of the time t+ i1t previous period predicted at time t (ut can
be1PFC or1Pli, whereas rt can be1PPV,1PWT,1PLac or
1PLdc). λ refers to the number of dispatch time periods per
hour.

2) OPTIMIZATION PROBLEM MODELING
To minimize the power variations resulted from day-ahead
forecast errors while tracking the day-ahead scheduling of
the BC and the SOC of LB as close as possible, objective
function of the intraday rolling energy management model
are formulated as follows.

min f = ‖Y − Y ref‖
2
G + ‖U‖

2
H (29)

Y = [PBC( t +1t| t), SOC( t +1t| t), . . . ,

PBC( t + m1t| t), SOC( t + m1t| t)] (30)

Yref= [PrefBC,t+1t ,SOC
ref
t+1t , . . . ,P

ref
BC,t+m1t ,SOC

ref
t+m1t ]

(31)

U = [1PFC( t +1t| t),1Pli( t +1t| t), . . . ,

1PFC( t +m1t| t),1Pli( t + m1t| t)] (32)

s.t. PFCmin ≤ PFC( t + k1t| t) ≤ PFCmax (33)

1PFCmin ≤ 1PFC( t + k1t| t) ≤ 1PFCmax (34)

Plimin ≤ Pli( t + k1t| t) ≤ Plimax (35)

1Plimin ≤ 1Pli( t + k1t| t) ≤ 1Plimax (36)

PBCmin ≤ PBC( t + k1t| t) ≤ PBCmax (37)

Pgridmin ≤ Pgrid( t + k1t| t) ≤ Pgridmax (38)

SOCmin ≤ SOC( t + k1t| t) ≤ SOCmax (39)

where Y, Yref and U are output vector, objective vector
and control vector, respectively. In the objective vector Yref,
the day-ahead schedules of transmission power of BC and the
SOC of LB are selected as reference objectives. G and H are
the difference weight vector and the control weight vector,
they are both diagonal matrixes, 1PFCmin and 1PFCmax are
the minimum and maximum output power variations of the
fuel cell, whereas 1Plimin and 1Plimax are the minimum
and maximum output power variations of the LB. In above
constraints, k = 1, 2, . . . , m. Additionally, the model is also
constrained by operation balance denoted by (23).
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TABLE 1. Operation parameters of AC/DC hybrid microgrid.

The optimal sequence can be acquired by solving the above
problem, and the first element of the sequence is applied.
By repeating the process at the following time steps, the intra-
day rolling energy management will be completed.

Additionally, the paper focuses on the economy problem of
AC/DC hybrid microgrid under multiple uncertainties. The
normal operation of microgrid is the precondition of this
paper. Generally speaking, under the grid connected opera-
tionmode, the shutdown of a certain equipment will not affect
the normal operation of the microgrid. If the main grid is cut
off, the microgrid will automatically switch to island oper-
ation mode. Many literatures such as microgrid reliability,
control and reconstruction have investigated corresponding
approaches to deal with the above-mentioned situations. But
these situations will not be further discussed since these are
out of the scope of this paper.

VI. CASE STUDIES
Based on an existing AC/DC hybrid microgrid in North
China, this section studies the effectiveness of the temporally
coordinated energy management strategy for AC/DC hybrid
microgrid. The structure of the microgrid is shown in Fig.1.
The operation parameters of AC/DC hybrid microgrid are
listed in Table 1.

Real data sets from the AC/DC hybrid microgrid in North
China on a typical sunny day (July 25, 2018) are employed
for the case studies. Day-ahead and intraday ultra-short-term
forecast data for PV, WT and AC/DC loads are shown in
Figs. 5-7, respectively. Their errors between the day-ahead
forecast and the intraday ultra-short-term forecast are 13.6%,
16.5%, 11.3% and 10.2%, respectively. The reason why the
data sets are chosen is that they can statistically best represent

FIGURE 5. Forecast power of PV.

FIGURE 6. Forecast power of WT.

FIGURE 7. Forecast power of AC/DC loads.

the general level of our microgrid energymanagement system
forecast module.

The time-of-use electricity price of main grid is shown
in Fig.8. All the simulations are implemented using particle
swarm optimization (PSO) algorithm inMATLABon a 64-bit
PC with Intel(R) Core(TM) i7-8700 CPU @3.2 GHz and
16 GB memory.

A. DAY-AHEAD ECONOMIC ENERGY MANAGEMENT
RESULTS ANALYSIS
According to the day-ahead economic energy management
model developed in this paper, the energymanagement results
of the AC/DC hybrid microgrid are presented in Fig.9.

The analyses of the day-ahead economic energy manage-
ment results are as follows:
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FIGURE 8. Time-of-use electricity prices of main grid.

FIGURE 9. Day-ahead energy management results of the AC/DC hybrid
microgrid.

1) During the valley periods (23:00-6:00), both AC and
DC loads are low, and the PV power in DC region is close
to 0. Whereas the WT power in AC region is large, and the
microgrid purchases electricity from the main grid. Apart
from meeting the AC loads, power flows into the DC side
throughBC, and the transmission power of the BC is negative.
During the off-valley periods, since the PV power in DC
region is large and the LB is largely discharged, the DC side
power flows to the AC side, and the transmission power of
the BC is mainly positive. During the period 16:00-19:00,
the transmission power of the BC is 0. That’s because the
comprehensive cost for power exchanging between the AC
and DC regions is higher than purchasing electricity from the
main grid in the period.

2) At night, the WT power is sufficient and the purchase
price is in the valley price. The LB SOC reaches a high value
after charging at night. In the morning, the WT power is
reduced and the PV power is still insufficient. As the load
demand increases, the LB switches to the discharge mode and
the SOC gradually reaches a low value. Thus the microgrid
can sell electricity to the main grid while meeting the load
demand. At noon, the PV power reaches the peak value of the
day, the LB switches to the charge mode again. Then the SOC
returns to a high value. During the peak period (19:00-23:00),
PV power stops and LB discharges. The LB SOC eventually
returns to the initial value of the energy management start to
ensure the periodicity of energy management. In summary,

FIGURE 10. The BC transmission power and the LB SOC based on
different conversion efficiency models.

TABLE 2. Comparison of different conversion efficiency models.

the LB not only effectively plays the role of ‘‘peak clip-
ping/valley filling’’, but also can benefit for microgrid from
the peak-to-valley electricity price difference.

B. COMPARISON OF DIFFERENT BC CONVERSION
EFFICIENCY MODELS
In this paper, the DCE model of BC is presented based on the
operation and loss characteristics of BC. To evaluate ratio-
nality and effectiveness of the model, the traditional model
is adopted for comparison in this section. In the traditional
model, the BC conversion efficiency is a constant and its
value is set to 0.95 in this simulation. In the day-ahead
economic energy management, the above two models are
adopted respectively.

Fig.10 shows the BC transmission power and the LB SOC
based on different conversion efficiency models. In the fig-
ure, the histogram is the BC transmission power and the
line chart is the LB SOC. Table 2 lists the operation costs
of day-ahead schedules and the corresponding computation
time based on different conversion efficiency models. The
operation cost here refers to the actual day-ahead operation
cost. To fairly assess the performance of the two models,
the conversion efficiency of the traditional model also adopts
the actual conversion efficiency. The day-ahead schedules
of the controllable units are unchanged, and the tie-line
power is obtained according to the power balance. Then,
the actual day-ahead operation cost is calculated accordingly.
In this way, the operation cost is accurate. It makes the day-
ahead operation costs based on the two conversion efficiency
models follow the unified standard. Additionally, the actual
conversion efficiencies of traditional model are calculated
based on the day-ahead BC schedules using the conversion
efficiency curve shown in Fig. 3.

Obviously, DCE model has longer computation time, but
the lower operation cost. Although the traditional model
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FIGURE 11. The BC transmission power under different light conditions.

has a shorter computation time, it cannot accurately reflect
the actual operation state, which leads to higher operation
cost. For instance, during the period 16:00-19:00 in Fig.10,
the required exchanged power between the AC and DC
regions decreases significantly. Thus the conversion effi-
ciency greatly declines according to the BC transmission
characteristics. As a result, the power exchange cost between
the AC and DC regions will be higher than purchasing elec-
tricity from the main grid. Therefore, the BC transmission
power based on the DCE model drops to 0. However, since
the BC conversion efficiency is a constant in the traditional
model, the power exchange cost consistently keeps lower than
purchasing electricity from the main grid. Therefore, there
is always power exchange between the AC and DC regions.
But this is obviously inconsistent with the actual operation
state, which will eventually lead to higher operation cost.
Moreover, as shown in Fig.10, when DCE model is adopted,
the range of LB SOC is smaller than that of traditional model.
This is beneficial to prolong the cycle life of LB.

The above simulation implements on a typical sunny day.
Fig.11 respectively shows the BC transmission power under
light condition of cloudy day and rainy day based on differ-
ent conversion efficiency models. For comparison, the WT
output power, load profiles and electricity price are the same
as the above simulation which are shown in Figs.6-7, respec-
tively. Table 3 shows the operation cost deviations between
the two conversion efficiency models under different light
conditions, as well as the sum of their transmission power
absolute deviations.

As shown in Fig.11 and Table 3, under light condition
of cloudy day and rainy day, transmission power absolute

TABLE 3. Comparison under different light conditions.

FIGURE 12. Intraday energy management results of AC/DC hybrid
microgrid.

deviations between the two conversion efficiency models are
higher than that of sunny day. Accordingly, they have more
operation cost deviations. In other words, under light condi-
tion of cloudy day and rainy day, more operation costs are
saved than sunny day based on DCE model. This is because
PV output power under light condition of cloudy day and
rainy day are much less than sunny day, which results in less
required exchanged power between the AC and DC regions.
Due to the wide range of transmission efficiency correspond-
ing to the relatively lower transmission power in the DCE
model, the economic performances of the model are better
than sunny day. For instance, in Fig.11(b), because of the
less required exchanged power there is no transmission power
during the period 12:00-19:00 based on the DCEmodel. That
is a sufficient reflection for the above statement.

In summary, the proposed DCE model of BC can more
accurately reflect the BC operation state and effectively
reduce the operation cost of the AC/DC hybrid micro-
grid, especially for the weak light condition day. Moreover,
the model is beneficial to prolong the cycle life of LB. Fur-
thermore, with the increase of microgrid capacity and user
loads, the economic benefits of the DCE model will be fur-
ther amplified. In addition, although the model needs longer
computation time, it won’t be the computational burden for
online application because of the high-performance computer
and more advanced algorithms.

C. INTRADAY ROLLING ENERGY MANAGEMENT RESULTS
ANALYSIS
According to the intraday rolling energy management model
presented in this paper, the energy management results of the
AC/DC hybrid microgrid are shown in Fig.12.
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FIGURE 13. Tracking effects of the BC transmission power and LB SOC.

Certain adjustments are implemented to the day-ahead
schedules based on intraday ultra-short-term forecast data.
The intraday additional cost is 20.19U, and the total opera-
tion cost is 105.42U. However, without the intraday rolling
energy management, the intraday power fluctuations will be
merely suppressed by main grid through the tie-line. In that
case, the intraday additional cost will reach 28.56U, 34.1%
higher than the proposed strategy. Therefore, the intraday
rolling energy management of AC/DC hybrid microgrid can
effectively reduce the negative impacts of day-ahead forecast
errors to achieve the excellent overall economic performance.

Fig.13 illustrates the tracking effects of the BC transmis-
sion power and LB SOC. It can be seen that the intraday BC
transmission power and LB SOC follow the day-ahead sched-
ules well. Therefore, intraday rolling energy management
of AC/DC hybrid microgrid not only reduces the negative
impacts of day-ahead forecast errors, but also ensures the
effectiveness of the day-ahead schedules.Moreover, the accu-
rate tracking of BC transmission power also effectively guar-
antees the stable and robust operation of the AC/DC hybrid
microgrid in real time.

D. COMPARISON ANALYSIS OF DIFFERENT
OPTIMIZATION STRATEGIES
To evaluate the performance of the proposed strategy, the test
data with different levels of forecast uncertainty are generated
according to the following equations.

PIDj,t = PDAj,t
[
1+ ξj% ·

(
Rj,t − 0.5

)]
(40)

f
(
Rj,t

)
= Rα−1j,t · (1− Rj,t )

β−1
· N (41)

f
(
Rj,t

)
=

1

σ
√
2π

exp

(
−

(
Rj,t − µ

)2
2σ 2

)
(42)

where PIDj,t and PDAj,t are intraday ultra-short-term forecast
value and day-ahead forecast value, j can be PVs, WTs, AC
and DC loads, ξj% is the uncertainty threshold percentage
of day-ahead forecast, Rj,t is a random number following a
certain distribution.

For RES units like WTs and PVs, their day-ahead forecast
errors usually follow the beta distribution which is denoted by
(41)[24]. It is defined by two shape parameters: α and β. N

TABLE 4. Uncertainty threshold percentage of day-ahead forecast under
different uncertainty levels.

represents the normalization factor. Nevertheless, AC and DC
loads are mainly determined by human behaviors, the normal
distribution denoted by (42) is employed to describe their
forecast errors [41]. µ and σ refers to the mean and standard
deviation of normal distribution. In this paper, α and β are set
to 2.5, µ and σ are set to 0.5 and 0.33, respectively.

According to the uncertainty threshold percentage of day-
ahead forecast ξj%, the test data is divided into three levels of
uncertainty: low, medium and high. Each level has 100 ran-
dom sets of numbers. Table 4 shows the uncertainty threshold
percentage ξj% of PVs, WTs, AC loads and DC loads.
To fully verify the advantage of the proposed strategy, three

classical strategies in the literature are compared based on the
above generated data.
1) Case 1: Day-ahead deterministic energy management.

The optimal schedules of the controllable units in microgrid
are determined at the day-ahead stage and no uncertainties
are considered.
2) Case 2: Stochastic energy management. The uncertain

information of RESs and loads are described by random
variables. The stochastic optimization model is developed by
stochastic analysis to acquire the minimum cost scheduling.
3) Case 3: Robust energy management. The uncertain

information is also described by random variable. But the
random variables are confined in a predefined uncertainty
set and the optimal scheduling in the worst-case scenario are
finally obtained.
4) Case 4: The proposed temporally coordinated energy

management.
For the 3 groups of test data with different forecast uncer-

tainty levels, the average total operation costs and the growth
rates of the operation costs are listed in Table 5.

In Table 5, the average costs of case 1 are the highest under
different uncertainty levels. This is because the uncertainties
are completely not considered in case 1. Although the uncer-
tainties are both adequately modeled in case 2 and case 3,
the average costs of case 3 are higher than case 2 since the
robust energy management is more conservative. Due to the
two-stage coordinated optimal framework, case 4 has the best
economic performance under different uncertainty levels.
In terms of the growth rate, case 4 increases the slowest with
the increase of uncertainty level. This clearly implies that case
4 shows better robustness under forecast uncertainties. Since
the paper’s research object is a grid-connectedmicrogrid. The
presented strategy is more inclined to economy performance.
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TABLE 5. Results of comparative cases.

Nevertheless, the robustness of the strategy is well guaranteed
on the premise of ensuring the economy.

In summary, the above results demonstrate the general
superiority of the proposed temporally coordinated energy
management strategy in terms of economic performance
under forecast uncertainties. Moreover, since the outstanding
capability in tracking day-ahead schedules, the stable and
robust operation of the AC/DC hybrid microgrid in real time
is effectively guaranteed, which is a unique advantage of the
proposed strategy.

VII. CONCLUSION
To address multiple uncertainties concerns of AC/DC hybrid
microgrid, this paper presents a temporally coordinated
energy management strategy integrated with DCE model.
The novel DCE model which is developed based on the
operation and loss characteristics of BC can accurately reflect
the actual BC operation state and reduce the operation cost.
The temporally coordinated energy management strategy can
effectively deal with the source-load uncertainties.

The simulation results demonstrate that: 1) The proposed
DCE model of BC can accurately reflect the BC operation
state and effectively reduce the operation cost of the AC/DC
hybrid microgrid, especially for the weak light condition day.
Meanwhile, the model is also beneficial to prolong the cycle
life of LB. 2) The test groups with different uncertainty levels
are employed to evaluate the proposed energy management
strategy and the classical strategies in the literature. The
results manifest the general superiority of the proposed tem-
porally coordinated energy management strategy in terms of
economic performance under forecast uncertainties. 3) Since
the outstanding capability in tracking day-ahead schedules,
the intraday stable and robust operation of the AC/DC hybrid
microgrid is well guaranteed on the premise of ensuring the
economy.
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