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Abstract—Sensorless control of AC motor drives, which takes 
the advantages of cost saving, higher reliability, and less hardware, 
has been developed for several decades. Among the existing speed 
sensorless control methods, nonlinear Kalman filter-based one 
has attached widespread attention due to its superb estimation 
accuracy and inherent resistibility to noise. However, the 
determination of noise covariance matrix and robustness of model 
uncertainties are still open issues in practice. A great number of 
studies try to solve these problems in resent years. This paper 
reviews the application of extended Kalman filter (EKF), 
unscented Kalman filter (UKF), and cubature Kalman filter 
(CKF) in speed sensorless control for AC motor drives. As an 
iterative algorithm, EKF has advantages in processor 
implementation. However, EKF suffers from the linearization 
error and model uncertainties when applying to sensorless control 
system. This paper presents the predominant improvements of 
EKF which is also applicative in UKF and CKF mostly. 

Index Terms—AC motor drive, nonlinear Kalman filter, 
robustness, sensorless control.  

I. INTRODUCTION

N modern high performance adjustable-speed drives of AC 
motor, the speed measurement is a crucial link to achieve an 

accuracy control of rotor speed. In general, the rotor speed is 
obtained by encoder or other position sensors. However, the 
robustness and reliability of system suffer from the installation 
of mechanical position sensors, which simultaneously cause an 
increased cost of drive system. Moreover, an extra mounting 
space is need in AC motor drive system. Therefore, sensorless 
control is a promising way to solve these problems.  

In the past three decades, a number of researchers have 
sought to find a perfect sensorless control for induction motor 
(IM) and permanent magnet synchronous motor (PMSM). The 
method has an ability to achieve the performance of 
high-precision, wide range of speed and strong robustness.  
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Numerous sensorless control methods have been proposed in 
existing studies, and these methods can be classified as signal 
injection-based method and AC motor model-based method [1]. 
High-frequency signal injection method is generally used to 
sensorless control system for PMSM, at low speed region 
especially [2]. It is also suitable for sensorless starting of 
aircraft starter/generator [3]. The performance of this method is 
outstanding at low speed or even zero speed. However, the 
performance is limited as the speed increase. Moreover, the 
injection of signal inevitably brings about the electromagnetic 
and audible noise problem in spite of a mitigation method has 
been proposed in literature [4].  

The model-based methods are widely used in the AC motor 
drives, which mainly include sliding-mode observer (SMO) [5], 
adaptive full-order observer (AFO) [6], model reference 
adaptive systems (MRAS) [7], artificial neural networks (ANN) 
[8], and extended Kalman filter (EKF) [9-65]. These methods 
are developed on the basis of the mathematical model of AC 
motors, and the back EMF plays an significant role in 
estimation process. Unlike other model-based sensorless 
control methods, nonlinear Kalman filter-based one is the 
optimal estimation algorithm for a stochastic system, which is 
an attractive solution of state estimation for sensorless control 
system when the system and noise model is uncertain. The 
statistical properties of stochastic state variables are updating in 
real time and used to obtain an optimal Kalman gain matrix. 
The estimated value is corrected to the optimal one by Kalman 
gain matrix as the iteration progresses, and the error covariance 
matrix converges to minimum when the system achieves steady 
state. The nonlinear Kalman filter-based sensorless control 
method mainly includes EKF, unscented Kalman filter (UKF) 
and cubature Kalman filter (CKF). These methods are not 
widely used as a result of the limited performance of 
microprocessor in earlier years. However, with the rapid 
development of microprocessor, these methods have been 
attracted much attention of scholars, in speed sensorless control 
of AC motors especially. 

This paper concentrates on reviewing the most up-to-date 
researches of the nonlinear Kalman filtering-based sensorless 
control method for AC motor drive. The paper is organized as 
follows: Section II shows the basic idea of EKF and its 
implementation details in sensorless control system. Moreover, 
various improved EKF methods for sensorless control are 
reviewed. UKF and CKF, the evolutionary algorithms of EEK, 
applying to sensorless control area, are shown in Section III. At 
the end of the paper, the challenge in low speed and 
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development tendency of the three methods are discussed in 
Section IV. The summary and prospect for nonlinear Kalman 
filtering-based sensorless control methods are discussed in 
Section V. 

II. SENSORLESS CONTROL BASED ON EKF 

An optimal recursive algorithm for the stochastic dynamic 
system, named Kalman filter (KF), is proposed by R. Kalman in 
1970s [9]. The well-known EKF is derived from the linear 
Kalman filter, which firstly proposed by Bucy and Sunahara. 
The application in sensorless control based on KF theory was 
firstly found in [10], [11]. In 1991, EKF was applied to 
sensorless control for IM and PMSM, which can be found in 
[12], [13]. The researches drop a hint that EKF takes a great 
advantage on sensorless control of AC motor. Due to the 
insufficient development of the microprocessor, however, the 
sensorless control based on EKF in the true sense was not 
implemented in real-time in these literatures. Owing to the 
rapid development of digital signal processor, the 
implementation of EKF is becoming easier in terms of the 
computational burden. In [14], the speed sensorless vector 
control of IM based on EKF is realized by a TMS320C30 DSP 
chip. In the work, a fifth-order IM mathematical model is built, 
which takes the state variables of stator current, rotor flux and 
rotor speed. Furthermore, with this method, the rotor speed and 
rotor flux are estimated online. The sensorless control for 
PMSM based on EKF is similar to IM, which employs a 
forth-order PMSM mathematical model with the state variables 
of stator current, rotor speed and rotor position. In this way, the 
position sensor is replaced by estimation of the position [15], 
[16].  

Although EKF has been successfully applied in the field of 
speed sensorless control of AC motors, there are still many 
problems to be solved in EKF. Since EKF was proposed, 
related improvements have been studied in an increasing 
number of literature. At present, the research of EKF in speed 
sensorless control of AC motor drives mainly includes: 

(1) Implementation and performance analysis to EKF-based 
sensorless control system. 

(2) Sensorless control based on EKF with motor parameter 
estimation. 

(3) Sensorless control based on reduced-order EKF. 
(4) Determination of noise covariance matrix offline. 
(5) Sensorless control based on noise covariance adaptive 

EKF. 
(6) Sensorless control based on strong tracking EKF. 
(7) Sensorless control based on multiple-model EKF. 

A. Implementation and performance analysis to EKF-based 
sensorless control system 

The basic idea of EKF is essentially different from other 
model-based estimation methods. The most remarkable 
characteristic of EKF is that the selected state variables are 
considered to be random variables. On this basis, the 
transformation of state variables is a nonlinear stochastic 
process in mathematics.  

In general, considering the noise, the mathematical model of 

discrete nonlinear systems can be expressed as follows 
 1 1 1k k - k k k ( )x = f x + B u + v  (1) 

 ˆ ˆ
k k k k y H x w  (2) 

where xk is the state vector, f (·) is the nonlinear function of xk, 
uk is the input vector, Bk and Hk is the input matrix and output 
matrix respectively, the system noise and measurement noise 
can be expressed to vector vk and wk. 

On the basis of the framework of KF, the mathematical 
description of EKF is as follows 
1) Prediction process 
 1 -1 1ˆ( )k k k k  x f x B u  (3) 

 1 -1
ˆ T

k k k k k P G P G Q  (4) 

where kx  and k
P is the predicted state value and covariance 

matrix, Gk is the Jacobian matrix of nonlinear function, and Qk 
is the system noise covariance matrix. This process transmits 
the mean and covariance of state variables from the moment k-1 

to moment k. It is noteworthy that the value of kx  and k
P are 

not the optimal after this process. 
2) Update process 
 1( )T T

k k k k k k k
  K P H H P H R  (5) 

 ˆ ( )k k k k k k   x x K y H x  (6) 

 ˆ ( )k k k k  P I K H P  (7) 

where Kk is the Kalman filter gain, Rk is the measurement noise 
covariance matrix, yk is the measurements corresponding to the 

output equation, ˆkx  and ˆ
kP  are the optimal value of state and 

covariance matrix in EKF calculation cycle. 
EKF has been widely used to sensorless control of AC motor 

drives, e.g., IM, PMSM, and permanent magnet synchronous 
linear motor (PMSLM), etc. However, the implementation of 
EKF in different kinds of motors are quite similar, this paper 
takes the application of IM as an example. 

The block diagram of an IM sensorless control system based 
on EKF is presented in Fig. 1. The sampled stator voltage and 
the three phase current of the induction machine are 
transformed to α-β reference frame, which are the inputs of 
EKF. The estimated rotor speed ωr is feedback to the input of 
speed controller. 
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Fig.1.  Block diagram of IM sensorless control based on EKF. 

EKF is well received in the speed sensorless control system 
due to its following advantages: 
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(1) The EKF is known for its high convergence rate, which 
improves transient performance significantly. 

(2) Considering the system noise and measurement noise 
inherently, EKF has high estimation accuracy and strong 
anti-interference ability. 

(3) Less memory is needed when EKF algorithm is 
implemented in a microprocessor. 

Although the advantages of EKF are obvious, the 
shortcomings exist inevitably. The inherent defects mainly 
include: 
(1) As the implementation of first order approximation of 

Taylor expansion to EKF, linearization error exists in 
estimation process inevitably. The estimation accuracy 
reduced significantly when the sampling time is increased.  

(2) The computation of Jacobi matrix brings great 
computational cost to the implementation of EKF.  

(3) It is difficult to determine the value of noise covariance 
matrices.  

In general, the increment of rotor speed is assumed to be a 
constant, which forms the fifth-order IM model and 
fourth-order PMSM model. The EKF estimator based on the 
assumption can be found in [12]-[16]. As the sampling time 
increases, the estimation accuracy inevitably suffers from a loss 
as a result of the introduction of the assumption. The loss of 
estimation accuracy would be increased when the load changes 
instantaneously [17]. This problem can be alleviated by 
introducing the equation of motion into the modeling process. 
In [18], a sixth-order EKF is built by extending the 
mathematical model of IM, in which the state variables include 
stator current, rotor flux, rotor speed, and load torque. The 
sensorless control system can operate in a wide speed range, 
and the improvement of performance is great at low speed 
especially. However, the comparison between the fifth-order 
and sixth-order EKF is not studied, and the extension to 
mathematical model of IM leads to the additional computation 
burden. A contrastive work between the fifth-order and 
sixth-order EKF is conducted in [19]. As a part of this work, the 
behavior of two methods at low speed is investigated by means 
of changing the stator and rotor resistance under half of the 
rated load torque. Compared to the sixth-order EKF-based 
sensorless control system, less deviation from the given speed 
with smaller estimation error is presented in the fifth-order 
EKF-based one. However, the comparative tests of the two 
methods are conducted under different sampling time, which 
lead to unfairness in terms of the state expansion of EKF.  

As a result of first-order Taylor approximations from KF to 
EKF, the sampling time of EKF plays an important role in 
speed estimation. On the one hand, a large sampling time may 
cause EKF divergence due to the excessive linearization error, 
on the other hand, the reduction of sampling time helps to 
improve the estimation accuracy and expand the convergence 
range of EKF in consideration of the determination to noise 
covariance matrices. In other words, EKF can be convergent 
under a large scope of noise covariance matrices value change. 
In [20], the convergence analysis of EKF based on an 
sixth-order discrete-time model is presented. Besides, the 
influence of Euler discretization is analyzed theoretically.  

B. Sensorless Control Based on EKF with Motor Parameter 
Estimation 

The motor parameters play a significant role in the sensorless 
control system of an AC motor drive. Accuracy parameters of 
motor are needed in high performance and precision control 
system, especially in low speed control area. As a result of the 
rise in temperature and magnetic saturation, the parameters of 
AC motor change correspondingly, and the slip produce an 
effect on rotor resistance of IM [21]. EKF takes an inherent 
advantage to resist against the model uncertainties, which 
including modeling error and parameter mismatch. In [22], an 
analysis of stator and rotor resistance variation on EKF 
performance is conducted by simulation. EKF can works 
normally under two times variation of parameter mismatch by 
adjusting Q and R. However, little working condition is tested 
and no experimental verification is shown in the literature. The 
robustness analysis of an EKF for sensorless control of IM is 
discussed in [23], in which the susceptibility of EKF to motor 
parameters (stator resistance, rotor resistance, mutual 
inductance, and inertia coefficient) is studied, and the system is 
sensitive to the change of stator resistance and mutual 
inductance at low speed. The variation of rotor resistance has a 
moderate effect on estimation performance at low speed, but 
the effect is aggravated as the speed increases. Moreover, the 
estimation performance shows low sensitivity to the change of 
inertia coefficient. The study indicates that there is a 
increasingly requirement of online parameter identification in 
the sensorless control system based on EKF. 

In [24], the rotor resistance estimation of IM is proposed, in 
which the EKF is employed. The combination between the 
method and the sensorless control based on EKF is presented in 
[25]. The intention of estimating rotor resistance is to get an 
accurate rotor time constant, which has significant influence on 
the dynamic and loading performance. The rotor time constant 
estimation based on EKF can be found in literatures [26], [27]. 

In [28], [29], the braided EKF is proposed to estimate the 
stator resistance Rs, rotor resistance Rr, rotor speed ωr, and load 
torque TL simultaneously. The braided EKF consists of two 
EKF models, which are carried out consecutively in a switching 
way. The method also goes by the name of switching EKF [30]. 
In the method, one EKF model is set to estimate Rs, another is 
set to estimate Rr. The ωr and TL are estimated in both EKF 
models. The estimated resistance value is used by each other. 
The block diagram of the braided EKF is shown as Fig. 2. 
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Fig.2.  Block diagram of braided EKF. 

Compared with single resistance-based EKF, the estimation 
accuracy of speed, resistances, and load torque in low or zero 



354 CES TRANSACTIONS ON ELECTRICAL MACHINES AND SYSTEMS, VOL. 3, NO. 4, DECEMBER 2019 

speed are improved by using braided EKF. However, the 
sampling time and required memory area of the 
alternately-executed EKF  increase two times than single EKF, 
and the loading performance of the method in low and zero 
speed is not researched in detail. The [21] has a comment on 
this method that it is impossible to know the existence of the 
persistent excitation condition a priori in practical applications, 
which is a mandatory condition for an exact parameter 
estimation. 

Bi input-extended Kalman filter (BI-EKF), considering one 
EKF model and two inputs calculated from the two extended 
IM models, takes the advantages of helping to implementation 
in real time and estimating the Rs and Rr simultaneously [31], 
[32]. The block diagram of the BI-EKF is shown as Fig. 3. 
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Fig.3. Block diagram of BI- EKF. 

This method is very similar to braided EKF in essence, and 
the contrastive test between braided EKF and BI-EKF is not 
found in the literature. However, it is a heuristic and promising 
way to alleviate the bad effect on sensorless control system 
caused by changing parameters.  

Parameter estimation in sensorles control of AC motor drives 
is still an open issue, and the research on transient performance 
of parameter estimation is still needed because of the 
contribution to speed estimation. 

C. Reduced-order EKF 

Reduced-order EKF (ROEKF) is developed to alleviate the 
computational burden when implement it in a microprocessor. 
‘Reduced -order’ means to reduce the order of controlled object 
model rather than EKF. Therefore, the advantages of EKF 
remain unchanged. 

Considering the stator currents are sampled in real time in the 
speed sensorless control system of IM, the currents can be 
removed from the state variable. Based on this, a third-order 
EKF is designed in [33]. The state variable consists of rotor 
speed and flux, and the state equation is simplified in the 
third-order EKF. However, the observation equation of the 
third-order EKF is more complex than the full-order EKF, and 
the differential operations for current are brought to 
observation equation. In [34], a robust reduced-order EKF 
(RROEKF) is proposed to estimate the rotor speed of IM. The 
key to improve ROEKF lies in the amendment of the error 
covariance matrix. Compared to ROEKF, RROEKF has a 
better robustness to gross external error and estimated error. 
Another ROEKF is realized by rearranging the state variable as 
rotor flux and rotor resistance or speed. In this way, the rotor 

resistance or speed are identified simultaneously [35]. 
Application of reduced-order EKF in PMSM can be found in 

[36], which is different to that used in IM sensorless system. In 
this study, the parallel reduced-order EKFs are designed for 
speed and position estimation. One ROEKF is developed 
considering the state variable of stator current iα and EMF 
components (eα, eβ), another ROEKF takes the state variable 
with stator current iβ and EMF components. The aim of parallel 
ROEKF is to estimate the EMF components, which contains 
the information of rotor speed and position. The method is 
realized in a FPGA chip and the complexity between full-oder 
EKF and ROEKF is investigated. A better estimation 
performance in position and speed is shown in comparison with 
the full-order EKF and the sliding mode observer. Different 
from [36], another kind of ROEKF, which taks the state 
variables with EMF components and angular speed ωr, is 
developed to identify the rotor speed and position in sensorless 
control system of IPMSM [37]. The method shows an 
equivalent performance to EKF, and an angle compensation 
method is introduced into the system to enhance the robustness 
of parameter change. 

D. Determination of noise covariance matrix offline 

In a sensorless control system of an AC motor based on EKF, 
the system noise covariance Q mainly consists of system 
disturbances, model indeterminacy, motor parameter mismatch, 
as well as rounding and truncation error caused by limited word 
length of DSP. The noise covariance R includes A/D 
quantization and measurement noise brought by the current 
sensors. In most cases, the value of Q and R can be determined 
by trial and error. The method could be easier to achieve if the 
sampling time of EKF is small, and it requires experience to 
adjust repeatedly. The relationship between noise covariance 
matrix and bandwidth of KF is discussed in [38], which 
provides the intuitive understanding of KF and is suitable for 
nonlinear KF. In the study, the KF is considered as a 
deterministic filter with a time-varying bandwidth that 
determined by Kalman filter gain K. Moreover, K is 
proportional to Q/R. That is to say the bandwidth of KF 
depends on the noise covariance matrix. The regulation of Q 
and R can be summarized as follows: 

1) The increase of elements in Q shows intuitively that the 
uncertainty of the system model increases, which directly 
affects the increase of the gain matrix of KF, which is 
equivalent to increase the credibility of measurement 
information. Therefore, the transient response rate is getting 
faster, and bandwidth of KF increases. 

2) The larger the element value in R is, the more uncertainty 
of measurement will be. A large value of R leads to the 
reduction of K directly. Therefore, the transient response rate of 
the algorithm is becoming slower and the bandwidth of KF 
decreases. 

3) In the practical application of KF, the ratio of Q to R is 
often the main factor affecting the performance of the filter. 
When implementing the trial and error method, one noise 
matrix is usually fixed, another is adjusted to get a better 
performance. 
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It is extremely difficult to find the optimal value of Q and R 
by means of the time-consuming trial and error method. Many 
researchers try to find a convenient way to determine the noise 
covariance matrix of EKF. In [39], a normalization technique is 
adopted to PMSM sensorless control system. Both PMSM 
control system and EKF are normalized to develop a self-tuning 
procedure of the noise covariance matrix. This off-line 
procedure is very instrumental in the AC motor drive with 
EKF-based sensorless control. 

In recent years, some intelligent methods are employed to 
find the best Q and R of EKF. In [40], genetic algorithm (GA), a 
stochastic global search method, is applied to optimize the 
noise covariance matrix Q and R simultaneously. The similar 
work can be found in [41], in which a different fitness function 
is selected. In these methods, the training sequence, consisting 
of stator current, rotor flux and rotor speed, which contains 
information on the dynamic and steady state, is sampled to 
optimize Q and R. An excellent speed estimation accuracy of 
optimized EKF is acquired. However, the optimal Q and R are 
changed under different working conditions, and there is a 
trade-off between dynamic performance and steady state 
performance inevitably. Furthermore, it is difficult for sampled 
training sequence to cover all working conditions. Another 
commonly used optimization algorithm is differential evolution 
algorithm (DEA) [42], [43]. Similar to GA, an evolutionary 
algorithm is employed to optimize the overall response of the 
drive in literature [42], in which the objective function based on 
speed errors and current errors is constructed. The optimization 
methods in [40], [41] are based on single objective. In [43], [44], 
multi-objective optimization approaches are proposed to 
improve the multi-dimensional performance of sensorless 
control system by means of selecting several fitness functions 
that based on the speed estimation error, current estimation 
error, and torque estimation error. These methods provide 
promising ways to determinate the value of Q and R in 
application. There are other intelligent algorithms, such as 
particle swarm optimization (PSO) [45], simulated annealing 
(SA) [46], for determining Q and R offline.  

On one hand, these offline parameter determination methods 
can only determine a set of parameter values. Q and R are still 
fixed when EKF runs. The performance degradation of the 
EKF-based sensorless control system will happen under 
extreme conditions. On the other hand, the optimization 
procedure costs a long time, which caused the impossible 
implementation online. Therefore, it is necessary to determine 
the noise covariance matrix online, which will be discussed in 
the next part. 

E. Noise covariance adaptive EKF 

To enhance the adaptability and robustness of EKF, the 
desirable ways to adjust noise covariance matrix adaptively are 
explored by many researchers. 

The fuzzy theory can be used to tune the noise covariance 
matrix of EKF online [47]-[49]. An adaptive EKF based on 
fuzzy theory named fuzzy extended Kalman filter (FEKF) is 
proposed in [47], [48], in which the fuzzy factor is introduced to 
adjust the measurement noise covariance matrix R in real time. 
The speed estimation block diagram based on FEKF is shown 

in Fig. 4. 
The fuzzy factor Sk, calculated by an exponential function in 

fuzzy logic reasoning system, tune R directly. If the proper 
fuzzy control rules are designed, the estimation performance of 
EKF can be improved effectively. Other similar applications of 
fuzzy theory in tuning system covariance matrix Q are shown in 
[49]-[51]. The basic idea of fuzzy control is the utilization of 
the field operator's control experience and knowledge of 
relevant experts, so the design process of fuzzy control rules is 
quite complicated. 
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Fig.4.  Speed estimation block diagram based on FEKF. 

In [52], system covariance matrix estimation method based 
on innovation residual is proposed to tune the Q in real time. 
The innovation residual is the difference between measured 
stator current and estimated one. The significant advantages of 
this approach are simplicity and less computation in 
comparison with other improved methods. However, the size of 
estimation window, which is the length of innovation residual 
sequence, plays an important role in the performance of AEKF 
estimator, especially in transient performance. Therefore, how 
to determine the size of estimation window is another issue 
needing to be discussed. In [53], an adaptive EKF is employed 
to provide the position information of IPMSM. With this 
method, the system noise and measurement noise are 
simultaneously estimated and the experimental results show 
that the proposed scheme has a higher estimated accuracy 
compared to EKF. However, the implementation of the 
simultaneously estimated system noise and measurement noise 
is easy to cause the observer divergence in practice when both 
of them are uncertain, which is pointed in [54]. 

On the whole, the improvement of EKF based on adaptive 
noise covariance matrix is a promising way to enhance the 
adaptability and robustness of the sensorless control system. It 
is noteworthy that simultaneous estimation of both Q and R 
should be avoided. 

F. Strong tracking EKF 

In a sensorless control system of AC motor, there are a lot of 
uncertainties of the system model owing to the simplification of 
model, the inaccurate statistical characteristics of noise, the 
deviation of initial state, and parameter change in actual system. 
EKF has poor robustness to model uncertainty. However, the 
strong tracking filter takes the advantages of the robustness to 
model uncertainty and strong tracking ability to state mutation. 
Therefore, the combination of EKF and STF come into a 
natural way, called strong tracking EKF (STEKF). Another 
term is sub-optimal fading extend Kalman filter [55], or 
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adaptive fading extended Kalman filtering (AFEKF) [56]. 
AFEKF and STEKF introduce the fading factor into the 
prediction of error covariance matrix. The construction of 
fading factor in two methods are slightly different. In [57], [58], 
STEKF is employed to estimate the rotor speed in sensorless 
control system of induction motor. The application in PMSM 
can be found in [55], [56]. The basic implementation of STEKF 
is presented in [57], in which the fifth-order model is built. To 
improve the low speed and transient performance, a sixth-order 
model with STEKF is studied in [58]. This method helps to 
reduce the influence of badly-tuned Q and R. In [59], a 
seventh-order model, taking the torque and rotor resistance into 
account, is utilized to cope with the problem caused by the 
change of torque and rotor resistance. The STEKF working 
with seventh-order model can restrain the decreased 
performance from changing torque and rotor resistance to some 
extent. However, the higher-order model increases computation 
time of STEKF inevitably.  

In [60], an improved version of STEKF is used to estimate 
the rotor speed of induction motor, named symmetric strong 
tracking extended Kalman filter (SSTEKF). Fig.5 presents the 
speed estimation block diagram based on SSTEKF. 
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Fig.5. Speed estimation block diagram based on SSTEKF. 

The innovation of this method lies in the introduction of 
Cholesky triangular decomposition which modify the action 
mode of the multiple fading factor matrix in the error 
covariance matrix. The residual information keeps symmetry in 
the process of estimation. In this way, the stability and tracking 
ability of SSTEKF is improved effectively.  

Another improvement approach to STEKF is proposed in 
[61]. In this method, least-square algorithm is introduced to the 
fading factor. The improvement is on the basis of the 
aforementioned innovation sequence. The role of least-square 
algorithm is to extract the information in innovation sequence 
effectively. The tracking ability and robustness of two kinds of 
improved STEKF are well enhanced. However, the stability 
analysis are absent in the literatures. 

G. Multiple-model EKF 

The implementation of conventional EKF takes a set of fixed 
noise covariance matrices into account, which leads to 
mismatches between the optimal noise covariance matrix and 
the changed working conditions. A single noise covariance 
matrix-based EKF model cannot meet the requirement of 
frequently changed operating conditions in EKF-based 
sensorless control system. Therefore, an idea of multiple-model 
is introduced into EKF for improvement of model adaptive 

ability [62]. An improved version of multiple-model EKF, 
named interfacing multiple-model EKF (IMM-EKF), is often 
used for speed sensorless control [63], [64]. Fig. 6 is the block 
diagram of IMM-EKF, the specific working principle of the 
method can be found in [65].  
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Fig.6. Block diagram of IMM-EKF. 

IMM-EKF is a favorable improvement to conventional EKF 
due to the consideration of different noise model and optimal 
model. It is essentially a process of finding the optimal working 
point of EKF between noise model and optimal model 
dynamically. Compared with the intelligent algorithm 
mentioned above, searching for the optimal Q and R offline, 
this method can realize the on-line regulation to Q and R. 
Therefore, the disturbance in IMM-EKF-based sensorless 
control system can be reduced effectively in comparison with 
EKF. A significant factor influencing the estimation accuracy 
in IMM-EKF is the input interaction, which is determined by 
the switching probability of different models. However, the 
interaction parameters determined by the prior information 
suffers from a tradeoff between mode switching and 
non-switching. In addition, the switching speed and the 
estimation accuracy of the EKF models are influenced by 
hysteretic probability and noise. In [65], Markov chain is 
employed to improve the interaction process. Fig. 7 is the block 
diagram of multiple-model EKF based on the Markov chain 
(MC-MM-EKF). In block diagram, πij represents the transition 
probability from the model i to the model j, which is updated 
according to Markov chain algorithm. 

With this method, EKF is more efficient to find the best 
working condition, and the adaptability of EKF to the actual 
system and the working conditions variations are enhanced. 
However, a number of different EKF models are required to 
cover all possible working conditions, which lead to a huge 
amount of computation of multiple-model EKF. It is 
unfavorable to implement in a sensorless control system. 
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Fig.7.  Block diagram of MC-MM-EKF. 
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III. SENSORLESS CONTROL BASED ON UKF AND CKF

Although EKF has many attractive advantages, the 
linearization error exists inevitably when it is applied to speed 
estimation. UKF appeare to alleviate the linearization error of 
EKF, which is proposed by Julier and Uhlman [66]. The 
estimation accuracy is higher than EKF. The computational 
cost of UKF is the same order of magnitude as the EKF, and it 
can be applied in many highly nonlinear filtering and control 
applications. The strict theoretical derivation of UKF is 
unexplored, which is one of the advantages of CKF. Besides, it 
has the better numerical stability and filtering accuracy than 
UKF in high order system (usually higher than 3). The tuning 
method of CKF can be easier due to the absence of scaling 
parameter, and the CKF requires lower computational effort 
than the general UKF, because the CKF does not apply the 
center sampling point [89]. 

A. UKF

The filtering framework of KF is still adopted in UKF. The
key step of UKF is unscented transformation (UT), which is 
used to transform the state (mean and covariance) from moment 
k to moment k+1 by selecting the fixed number of sigma points. 
The structural schematic diagram of UT algorithm is presented 
in Fig.8. It is essentially a nonlinear approximation process. 
Compared to EKF, UKF takes the following advantages: 
(1) Computation of complex Jacobian matrix is avoided in

UKF as a result of the employment of UT.
(2) EKF takes only the first-order approximation of a

nonlinear function. Due to the consideration of effect
caused by higher order terms of Taylor expansion, the
estimation accuracy of UKF is higher than EKF.

(3) The computational complexity of UKF is the same order
as that of EKF. The calculation of UKF is acceptable
when the order of the system is not too high.
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Fig.8.  Structural schematic diagram of UT algorithm. 

Owing to the limitation of microprocessor performance, 
UKF has not been widely used to the sensorless control system 
in early time. In recent years, The application of UKF to 
sensorless control has attracted many attention. 

In [67], UKF is firstly used to sensorless control system for 
IM. A fifth-order IM model is developed for the 
implementation of UKF, and the estimation performance 
between EKF and UKF is compared in the study. The 
simulation results show that the estimation accuracy of EKF 
performs is at least as good as UKF, but the experiments are not 
carried out in the study. A comprehensive work of UKF is 
reported in [68], in which the load torque is considered as a 

state variable, and a sixth-order UKF is formed to estimate 
speed and torque of IM simultaneously. A better robustness of 
UKF at low speed is shown in comparison with EKF. However, 
the computational cost of UKF increased significantly as the 
order increases.  

To reduce the numerical errors in application, square root 
unscented Kalman filter (SRUKF) is proposed in [69]. The 
triangularization technique is employed to get the square root 
matrix S of error covariance matrix P, and the propagation of P 
is replaced by S. In this process, the Cholesky factorization is 
avoided. In this study, three methods of EKF, UKF, and 
SRUKF are compared in the respects of estimation accuracy 
and computational cost. SRUKF has the highest estimation 
accuracy, but the amount of calculation and code size is the 
largest. The simultaneous estimation of rotor speed and rotor 
resistance for IM sensorless control system can be found in 
literatures [70], [71]. 

Application of UKF in PMSM sensorless control is reported 
in [72]-[77]. The speed and position estimation based on 
fourth-order UKF is studied in [72]-[74], and fifth-order UKF 
considering disturbance variable is developed in [75]. 
Furthermore, the improvements of UKF such as adaptive UKF 
[76], improved UKF [77], and neural network aided UKF [78] 
are reported in recent years. In [79], application of UKF in 
switched reluctance motor (SRM) is presented. 

Although UKF has a higher estimation than EKF, it does not 
show a dominant advantage to replace EKF in sensorless 
control system of AC motor. Moreover, the improvement of 
low speed performance is still an open issue.  

B. CKF

To overcome the numerical instability and reduced accuracy
of UKF using in higher dimensional system, cubature Kalman 
filter (CKF) is proposed by Ienkaran Arasaratnam and Simon 
Haykin [80]. This is an optimal estimation algorithm which is 
developed by strict mathematical reasoning. The difference 
between CKF and UKF is that the cubature point set replaces 
the sigma point set. In recent years, CKF has entered the eyes of 
scholars who study the sensorless control of AC motor.  

Application of CKF in speed sensorless control of PMSM 
can be found in [81]-[86], and its application of IM is reported 
in [87] and [88]. References [81]-[83] employ the CKF to 
estimate the speed and position of PMSM. The performance of 
EKF and CKF is explored in simulation, and almost the same is 
shown in simulation results [81]. The implementation of CKF 
with experiments are carried out in [82]. In [87], CKF is utilized 
to estimate the speed of IM. A seventh-order IM equation of 
state is developed to get the essential variables for sensorless 
control system, which is an unfavorable factor in 
implementation of CKF.  

The commonly used improvement of CKF is Square root 
Cubature Kalman filter (SCKF), which intents to enhance the 
numerical stability for convergence. The implementation to 
SCKF in PMSM sensorless control system is studied in [84], in 
which the performance is compared to EKF and a slightly better 
transient response is obtained during reversal. The 
improvement to CKF is quite similar with EKF. Other 
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improvements, such as SCKF with joint parameter estimation 
[85], and adaptively tuned SCKF [86], are reported in existing 
literature. In [88], especially, a novel improvement to CKF, 
considering the non-Gaussian environments, is proposed. The 
robust M-estimation theory is used to obtain the unknown 
measurement noise statistics. The validity of this method is 
proved by adding different types of noises. 

A comparative work of EKF, UKF, and CKF applying to the 
sensorless control of IM is conducted in [89]. The estimation 
performance of three methods in low speed region are explored 
in terms of root-mean-square error (RMSE) values of the 
estimated speeds, and average execution time. In contrast, the 
UKF and the CKF show higher accuracy in the low speed 
region, and UKF-based method provides the highest estimation 
accuracy in the low speed region. Furthermore, the estimation 
accuracy of CKF is the best of three methods when stator 
resistance mismatches with the actual value. As for average 
execution time, UKF and CKF show the same level of time cost 
and the EKF is the shortest one. However, the three methods are 
investigated only in open-loop and without external load 
disturbance. 

IV. CHALLENGE AND DEVELOPMENT TENDENCY 

A. Challenge in low speed operation 

In general, estimating the flux (which is the main component 
of speed estimation algorithm) in medium-and high-speed 
regions is not a major problem. The problem is more 
pronounced in low-speed regions, near zero stator frequency, 
whereby the magnitude of the induced rotor voltages and 
currents become very small [19]. The estimation performance 
in low speed is vulnerable to the change of motor parameters. 
Moreover, the low speed performance of nonlinear KF suffers 
from the sampling time and measurement noise significantly. 
Unlike other model-based sensorless control methods, which 
considered to be deterministic and can be easily polluted by 
noise and require parameter adaptation algorithms, especially at 
very low speed. Nonlinear KF is highly suitable under 
conditions where parameter uncertainties and presence of noise 
are unavoidable. The EKF-based estimator has good 
disturbance rejection which can take into account model 
uncertainties and the effect of unmeasured disturbances. 
Although this property makes it show a better performance in 
low-speed regions, the challenge remains to exist. 

The sensorless control system based on EKF can operate at 
3rad/s (0.5Hz) with 50% of rated load torque in [19]. It is very 
sensitive and more challenging region as authors supposed to 
be. Reference [18] shows the experimental results for very low 
(10rpm/0.33Hz) and zero velocity operation of an IM 
sensorless control system based on EKF. The experiments are 
carried out under a very small load torque (5% of rated load 
torque). The performance of sensorless control system in 
low-speed regions can be enhanced by simultaneous estimation 
of motor parameters and speed. In [32], the stator resistance, 
rotor resistance and speed are estimated simultaneously by 
using an BI-EKF, and the system works well at 9 rpm (∼1% of 
the rated speed) under 1.5 N·m. Moreover, the experimental 

results for stator resistance change (50% of rated value) are 
presented and the speed estimation performance is good under 
such a situation. The author claimed that the IM cannot be 
applied to high load torque at very low speed operation. Based 
on a symmetric strong tracking EKF, operation of an IM 
sensorless control system at 30 rpm (2% of the rated speed) 
with 100% of rated load torque is presented in [60]. For an 
UKF-based IM sensorless control system, the operation at 18 
rpm (0.6Hz) can be found in existing literatures. The very low 
or zero speed operation of UKF-based sensorless control 
system is rarely reported in existing literatures. In a word, to 
improve the performance of nonlinear KF-based sensorless 
control system under very low or zero speed with high load 
torque is still an open issue.  

B. Development tendency 

The general application of nonlinear KF in industry has not 
been realized owing to its computational burden. However, this 
is a disappearing problem with the rapid development in high 
performance processing technology. The increase of compute  
speed necessitate a cooperation of the wide-bandgap power 
semiconductor switches[90]. In the future, the following 
development tendency of nonlinear KF, from the author’s point 
of view, will be research increasingly. 

(1) As mentioned above, to improve the performance under 
very low or zero speed is a key point to sensorless 
control system based on nonlinear KF.  

(2) Precise parameters of motor  play a significant role in 
the improvement of nonlinear KF, in low or zero speed 
especially. Therefore, simultaneous estimation of speed 
and parameters is a promising way to enhance the 
sensorless control system based on nonlinear KF. 

(3) As pointed out in [3], data fusion of estimates from 
model-based methods and high frequency signal 
methods could be an alternative way to make up for the 
deficiency of nonlinear KF in low speed regions. 
Moreover, the combination of optimal controller and 
observer is still an open issue. 

(4) The regnerative operation mode of sensorless control 
system based on nonlinear KF arises in various 
applications. However, the observability and stability in 
such a working condition is rarely studied in existing 
literatures. In the future, this issue takes the increasing 
importance in nonlinear KF-based sensorless control 
system of AC motor drives. 

(5) Owing to the high estimation precision, UKF and CKF 
will be studied increasingly as the rapid development of 
high performance processing technology. However, 
EKF is hard to replace by UKF or CKF in practical 
applications because of its simplicity and comparable 
estimation performance. 

V. CONCLUSION 

This paper reviews the application of nonlinear Kalman filter 
theory in speed sensorless system of AC motor drives. Three 
methods, including EKF, UKF, and CKF, are mainly 
introduced in this paper. Among them, EKF is the most widely 
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used method in the field of speed sensorless control of AC 
motors. EKF algorithm is simpler than UKF and CKF, but it 
has linearization error. Therefore, it is crucial to select a small 
sampling time when implement EKF. Another important issue 
is to determine the noise covariance matrix of three methods. 
Due to the employment of KF filtering framework in the three 
methods, they have common characteristics in determining 
noise matrix. Several online and offline determination methods 
are introduced in this paper. Online determination methods are 
considered as the promising way to improve the performance of 
three nonlinear Kalman filter. However, accurate motor 
parameters are required in low speed or dynamic conditions of 
the system, thus the simultaneous estimation of motor 
parameters and speed/position is a trend in sensorless control 
system. Moreover, the observability and stability at low speed 
or in regnerative operation mode are still open issues. 

UKF and CKF have higher estimation accuracy than EKF in 
theory, but their increase in computational complexity cannot 
be neglected. Almost the same performance between EKF and 
UKF, CKF is shown in existing studies when applying three 
methods to sensorless control system of AC motor. For the 
moment, EKF is the most practical algorithm among the three 
methods. The performance of microprocessor acts as a direct 
stimulus to the development of the application of three methods 
in sensorless control system of AC motor drives. 
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