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ABSTRACT Unmanned aerial vehicle (UAV) is regarded as an effective technology in future wireless
networks. However, due to the non-convexity feature of joint trajectory design and power allocation
(JTDPA) issue, it is challenging to attain the optimal joint policy in multi-UAV networks. In this paper,
a multi-agent deep reinforcement learning-based approach is presented to achieve the maximum long-term
network utility while satisfying the user equipments’ quality of service requirements. Moreover, considering
that the utility of each UAV is determined based on the network environment and other UAVs’ actions, the
JTDPA problem is modeled as a stochastic game. Due to the high computational complexity caused by
the continuous action space and large state space, a multi-agent deep deterministic policy gradient method
is proposed to obtain the optimal policy for the JTDPA issue. Numerical results indicate that our method
can obtain the higher network utility and system capacity than other optimization methods in multi-UAV
networks with lower computational complexity.

INDEX TERMS UAV networks, trajectory design, power allocation, multi-agent deep reinforcement
learning.

I. INTRODUCTION

RECENTLY, unmanned aerial vehicles (UAVs) have
been regarded as an important technology in the future

wireless networks [1]. Since the UAVs can be deployed
and configured flexibly, it can be utilized as relays between
ground user equipments (UEs) for cooperative communica-
tion. Furthermore, considering that UAVs can smartly alter
their spots to offer on-demand wireless services for ground
UEs, UAVs can be used as aerial base stations (ABSs) for
wireless communication [2]. Thus, multi-UAV networks have
been applied to varied applications, such as remote sensing,
traffic monitoring, public safety, and military [3], [4].

In multi-UAV networks, many technical design problems
should be considered, including trajectory design, resource
allocation as well as interference management. Through ap-
propriately designing the trajectories of UAVs, UAVs can
provide UEs communication services, which may ease co-
channel interference and increase system capacity. Further-
more, the transmission powers of UAVs should also be taken
into account to meet the trade-off between spectrum efficien-
cy and interference management. Thus, the problem of trajec-
tory design, power allocation, and interference management

should be studied jointly in multi-UAV networks.

The problem of joint trajectory design and power alloca-
tion (JTDPA) has drawn much attention, which has been in-
vestigated in [5]–[7]. However, due to the non-convex feature
of the JTDPA issue, it may be challenging to obtain a global
optimal solution. Several methods try to solve this issue,
i.e., the alternating optimization approach [9], Lagrange dual
method [10], and iterative algorithm [11], [12]. Nearly ac-
curate information is always needed to deal with the JTDPA
issue. However, it is challenging to attain the optimal policy
without complete knowledge of the network environment.
Thus, in this work, we propose a reinforcement learning (RL)
method to tackle the JTDPA optimization problem in the
multi-UAV networks.

RL approach [13] has been widely adopted in the artificial
intelligence and wireless communication fields [14]. The
authors in [15] utilized an RL method to investigate the
resource management scheme in the Internet of Vehicles
communication networks. In [16], the RL approach was pro-
posed to obtain the joint power control and channel allocation
strategy in dense wireless local area networks. Moreover, by
combining the deep neural networks with RL, deep reinforce-
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ment learning (DRL) [17] method has been recently attracted
increasing interests in wireless communication domains. The
authors in [18] proposed a DRL-based relay selection method
for cooperative communication in wireless sensor networks.
In [19], a DRL-based method was studied to solve the joint
mode selection and resource management issue in fog radio
access networks. Chen et al. proposed a DRL scheme to solve
resource allocation problem in the collaborative mobile edge
computing network [20]. A DRL method was investigated
in [21] to obtain the resource allocation policy for smart
cities. Our previous work proposed a DRL approach for
trajectory design and power allocation in UAV networks [22].
However, most of these centralized methods may achieve an
expensive computational complexity. Thus, multi-agent DRL
(MADRL) may be a possible way to obtain the policy with a
low computational complexity. The authors in [23] proposed
an MADRL approach to deal with the large-scale crowd path
planning issue. In our previous work [24], an multi-agent
dueling-double deep Q-network method was investigated
to tackle the joint user association and resource allocation
problem. In [25], an MADRL strategy was studied for the
large-scale traffic signal control problem. However, to our
best knowledge, little works have been done to solve the
MADRL method for the JTDPA optimization problem.

In this paper, an MADRL method is introduced to tackle
the JTDPA optimization problem in multi-UAV networks.
The main contributions are presented as follows. Considering
the demand of UEs’ quality of service (QoS), the JTDPA
joint optimization issue is formulated to obtain the maximum
cumulative discounted reward. Then, due to the non-convex
and combinatorial nature of the JTDPA optimization issue,
such problem is modeled as a stochastic game, which is
solved by the proposed MADRL approach. Specifically, the
state, action and reward function are defined for all UAVs.
Then, the optimal strategy is achieved by jointly design-
ing the UAVs’ trajectory and allocating UAVs’ transmission
power. Moreover, considering the continuous action space
and large state space of the stochastic game, multi-agent
deep deterministic policy gradient (MADDPG) approach is
proposed to learn the optimal policy. A DDPG algorithm is
designed for each UAV to solve the joint optimization issue.
Target network and experience replay strategies are leveraged
to improve the learning stability. Numerical simulations with
different parameters are presented to show the effectiveness
of our proposed method. Simulation results indicate that the
MADDPG scheme can improve the system capacity and
network utility by over 15% with lower computational cost
in multi-UAV networks, compared with the other learning
optimization approaches.

The rest of this paper is organized as follows. System mod-
el and problem formulation are given in Section II. Section III
presents an MADRL method to solve the JTDPA problem.
Simulation results are provided in Section IV. Section V
gives the conclusion of this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. SYSTEM MODEL
In the typical multi-UAV networks, K UAVs are used as
ABSs to offer communication service to M UEs in K non-
overlapping hotspots. The UEs’ set and UAVs’ set are rep-
resented asM and K, respectively. Assume that the number
of UEs in hotspot i is M(i). For the simplicity of discussion,
we assume that each UAV can only assist to no more than
one hotspot. Furthermore, since each UE only belongs to

one hotspot, we have
K∑
i=1

M(i) = M . The UEs in the same

hotspot can be served by the same UAV through using FDMA
[26].

Assume that vm = [xm, ym]T,m ∈ M are the 2D
coordinates of UE m, where xm and ym are the coordinates
of UE m, respectively. Then, the horizontal coordinate of
UAV i is represented as vi(t) = [xi(t), yi(t)]

T, i ∈ K, where
xi(t) and yi(t) are the X and Y coordinates of UAV i at time
t, respectively. The horizontal distance between UE m and
UAV i at time t can be defined as

li,m(t) =

√
[xi(t)− xm]

2
+ [yi(t)− ym]

2
. (1)

Next, the vertical flight position of UAV i is denoted
by zi(t) ∈ [Zmin, Zmax], where Zmin and Zmax are the
minimum height and maximum height of UAVs, respectively.

Then, the distance between UAV i and UE m at time t is
obtained as

di,m(t) =

√
zi2(t) + li,m(t)

2
. (2)

Due to the limited flying speed of UAVs, each UAV may
have a maximum flight distance, which is defined as

‖vi(t+ 1)− vi(t)‖ ≤ VHT, (3)

‖zi(t+ 1)− zi(t)‖ ≤ VAT, (4)

where VH and VA are the horizontal-flight and vertical-flight
speeds of UAVs in each time slot T , respectively.

Furthermore, to avoid collision between UAVs, collision
avoiding constraints of UAVs should be taken into account,
which is given by

‖vi(t)− vj(t)‖2+‖zi(t)− zj(t)‖2 ≥ D2
min,∀i, j ∈ K, i 6= j,

(5)
where Dmin is the minimum distance between arbitrary two
UAVs.

Note that the time slot T should be small enough so as to
treat the channel as approximate constant. Then, in order to
avoid collision between arbitrary two UAVs, the time slot T
should satisfy the following constraint, that is,

T ≤ Tmax =
Dmin

2
√
V 2
L + V 2

A

, (6)

where Tmax is the maximum value of a time slot.
Then, the maximum horizontal distance Lhmax and the

maximum vertical distance Lvmax can be expressed as,

Lhmax = VHTmax, (7)
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Lvmax = VATmax. (8)

Next, considering that the radio signals radiated from the
UAVs are comprised of Line-of-Sight (LoS) or non Line-
of-Sight (NLoS). The probability of the LoS connection
between UE m and UAV i at time t can be defined as [27]

PLoSi,m (t) =
1

1 + a exp(−b( 180
π tan−1(αi,m(t))− a))

, (9)

where a and b are parameters related with the environment,
αi,m(t) is the angle of UAV i. Then, the probability of the
NLoS can be derived as

PNLoSi,m (t) = 1− PLoSi,m (t). (10)

Correspondingly, at time t, the path loss models of the LoS
and the NLoS in dB can be represented as [27],

LLoSi,m (t) = 20 log(
4πfcdi,m(t)

c
) + ηLoS , (11)

LNLoSi,m (t) = 20 log(
4πfcdi,m(t)

c
) + ηNLoS , (12)

where fc represents the carrier frequency, ηLoS and ηNLoS
are the mean extra losses for the LoS and NLoS, respevtively.

Next, the expected mean path loss1 can be obtained as

Li,m(t) = LLoSi,m (t)× PLoSi,m (t) + LNLoSi,m (t)× PNLoSi,m (t).
(13)

Assume that the bandwidth B is allocated to each UE
equally. Then, we can derive the bandwidth of UE m in
hotspots i, which is given by

Bi,m = B/M(i). (14)

Furthermore, each UAV’s transmission power is allocated
equally to all UEs in hotspot i, which can be represented as

pi,m(t) = pi(t)/M(i), (15)

where 0 ≤ pi(t) ≤ Pmax is the transmission power of UAV
i, and Pmax is the maximum transmission power.

Next, based on the transmission power of UAV pi(t), the
received SINR of UE m from UAV i can be given by

ϕi,m(t) =
pi,m(t)gi,m(t)

Bi,mN0 +
∑
j 6=i

pj,m(t)gj,m(t)
,∀i, j ∈ K, (16)

where gi,m(t) represents the channel gain between UAV i
and UE m, N0 is the noise power spectral density.

Then, the rate of UE m served by UAV i can be obtained
as

φi,m(t) = Bi,mlog2(1 + ϕi,m(t)). (17)

The total rate of UAV i can be derived as

φi(t) =

M(i)∑
m=1

φi,m(t) =

M(i)∑
m=1

Bi,mlog2(1 + ϕi,m(t)). (18)

1Other models of UAV communication [28] can also be applied in this
paper. Such path loss model will achieve similar performance by using our
proposed method.

Then, we define the utilitywi(t) of UAV i as the difference
between the profit and the transmission cost, that is,

wi(t) = ρiφi(t)− λppi(t) =

M(i)∑
m=1

[ρiφi,m(t)− λppi,m(t)],

(19)
where ρi represents the profit per rate, λp is the cost of UAV’s
transmit power.

B. PROBLEM FORMULATION
In multi-UAV networks, to ensure that all UEs achieve
the QoS requirements from the connected UAVs, the SINR
ϕi,m(t) of UE m should be not less than the minimum QoS
requirement Ωm, which can be defined as

ϕi,m(t) ≥ Ωm. (20)

Therefore, the JTDPA optimization issue is to maximize
the overall network utility via the optimization of each UAV’s
trajectory (vi(t) and zi(t)) and transmission power (pi(t)),
which can be formulated as

max
pi(t),vi(t),zi(t)

K∑
i=1

wi(t) =
K∑
i=1

M(i)∑
m=1

[ρiφi,m(t)− λppi,m(t)],

s.t. (3), (4), (5), (20),
Zmin ≤ zi(t) ≤ Zmax,
0 ≤ pi(t) ≤ Pmax.

(21)
Considering that the JTDPA problem has the non-convex

and combinatorial characteristics, it will be intractable to
deal with the optimization issue. Exhaustive search algorithm
may find the optimal policy with the high computational
complexity. Moreover, since the network information (i.e.,
UEs’ information and channel condition) is hardly to obtain,
which makes it challenging to obtain the optimal policy
with traditional optimization methods. In the next section, a
reinforcement learning method will be proposed to find the
optimal JTDPA strategy.

III. MULTI-AGENT DRL FOR JTDPA OPTIMIZATION
ISSUE
In order to obtain the maximum network utility, the trajecto-
ry and transmission power of UAVs should be determined
according to the network environment. In this section, the
above issue is modeled as a stochastic game, which is then
tackled with an MADRL approach.

A. GAME FORMULATION
In multi-UAV networks, assume that each UAV decides its
own trajectory and transmission power to acquire its maxi-
mum utilitywi(t). The utility of each UAV can be determined
based on the current state of the network environment and
other UAVs’ actions. Then, the network environment turns
into a new stochastic state [29], which depends on the former
state and actions taken previously. The JTDPA problem (21)
is then modeled as a stochastic game 〈S,A,P,R〉 [30],
• S represents the state space;
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• Ai is the action space of UAV i;
• P represents the state transition probability.Pss′(×iAi)

describes the state transition probability from state s to
state s′ by jointly taking action ×iAi;

• Ri denotes the reward function of UAV i.
In the stochastic game, the state S(t) is defined to reflect

whether the minimum QoS requirement of each UE is satis-
fied or not, that is,

S(t) = {s1(t), s2(t), . . . , sM (t)}, (22)

where sm(t) ∈ {0, 1}. If the UE m achieves the minimum
QoS requirement ϕi,m(t) ≥ Ωm, sm(t) = 1, else sm(t) = 0.
Note that the state space [] is 2M , which can be very huge
with the large M .

Then, considering that each UAV needs to decide its own
trajectory and transmission power at time t, we define the
action space Ai(t) of UAV i as

Ai(t) = {pi(t), li(t), ϑi(t),∆hi(t)}, (23)

where pi(t) ∈ {0, Pmax}, li(t), ϑi(t) ∈ {0, 2π}, and ∆hi(t)
are the transmission power, the horizontal distance, the direc-
tion angle, and the vertical travel distance of UAV i, respec-
tively. From the horizontal trajectory constraint (3), we have
li(t) ∈ {0, Lhmax}. Considering the vertical trajectory con-
straint (4), ∆hi(t) = [hi(t)−hi(t− 1)] ∈ {−Lvmax, Lvmax}.

Moreover, as for the reward function, in order to ensure
that all UEs are served by UAVs, the coverage of UAVs
should be taken into account. If a UE is not in the coverage
of any UAV, a punishment will be imposed on the reward
function. In addition, to ensure that all UEs’ minimum QoS
requirements are satisfied, the state sm(t) of each UE should
be considered in the reward function. Then, based on (5) and
(20), the reward function of UAV i can be defined as

Ri(t) =
M ′(i)∑
m=1

sm(t) [ρiφi,m(t)− λppi,m(t)]

−η1
[
M −

K∑
i=1

M ′(i)

]
− ηi2,

(24)

where M ′(i) is the number of UEs covering by UAV i, η1
represents the punishment factor relating to UAVs’ coverage,
ηi2 represents the punishment of UAVs’ collision. The first
part of (24) is the overall network utility. If UE m achieves
the minimum QoS demand, sm(t) = 1, else sm(t) = 0. The
second part of (24) is the punishment of UAVs’ coverage. If
all UEs covered by all UAVs, this section is equal to zero.
The final part of (24) represents the punishment of UAVs’
overlapping. When the horizontal distance between arbitrary
two UAVs is less than the sum of their coverage radius, each
UAV would be obtained a punishment ηi2. Otherwise, the final
part of (24) is equal to zero.

Note that, when UAV i takes an action Ai(t) and other
UAVs take actions A−i(t), UAV i may obtain the reward
Ri(t) = Ri(t,S(t),A∗i (t),A

∗
−i(t)). Here, the action vector

(Ai(t),A−i(t)) is defined as the feasible solution to our
game. When the following inequality is satisfied for each

UAV in any S(t), the Nash equilibrium (NE) state can be
achieved in this game [31]:

Ri(t,S(t),A∗i (t),A
∗
−i(t)) ≥ Ri(t,S(t),Ai(t),A∗−i(t)).

(25)
In the NE state, the action of each UAV can be regarded as

the optimal reaction to the actions of other UAVs. All UAVs
achieve no benefit from unilateral deviation [31]. Moreover,
considering that this stochastic game is periodic, the state
of the network environment will be reset after each episode
ends. In each episode, the policies of all UAVs are carried out
to obtain the accumulative rewards from the environment. If
all UAVs can obtain information about the reward function
and the state transition, the NE strategy can be found with
integer programming methods. However, in this stochastic
game, such information is not available for UAVs. Therefore,
in order to deal with this issue, the MADRL approach is pro-
posed to achieve an NE policy at any state through interacting
with the network environment.

B. MULTI-AGENT DRL METHOD
Considering the continuous action space of the JTDPA issue
in multi-UAV networks, a MADDPG approach is proposed
to obtain the optimal joint trajectory design and power allo-
cation policy. The framework of the MADDPG approach for
the JTDPA issue is shown in Figure 1. In our stochastic game,
each UAV is modeled as an DDPG agent, which consists of
actor and critic [32]. The MADDPG approach is utilized to
learn the optimal policy for each UAV to obtain the maximum
expected discounted reward, which is defined as

Φ(t) =

t+Tp−1∑
t′=t

γt
′−t

K∑
i=1

Ri(t′), (26)

where γ is the discount factor and 0 ≤ γ < 1, Tp is the total
number of epochs.

Moreover, in order to increase the learning stability, both
actor and critic consist of online network and target network.
Specially, the online critic network of each UAV evaluates
the performance of the actorAi(t) with the state-action value
function Q(S(t),Ai(t)|θiQ), which is defined as

Q(S(t),Ai(t)|θiQ) = E [Φ(t)|S(t),Ai(t)] , (27)

where E[·] represents the expectation operator, θiQ is the
weight of the online critic network.

In each UAV, the target networks of actor and critic are
the replica of the corresponding online networks. With the
weights of the most recent corresponding online networks,
the weights of target actor network and target critic network
can be updated through

θiµ′ = τθiµ + (1− τ)θiµ′ ,

θiQ′ = τθiQ + (1− τ)θiQ′ ,
(28)

where τ is the soft updating rate of target networks, θiµ and
θiQ denote the weights of online actor network and online
critic network, respectively. θiµ′ and θiQ′ are the weights of
target actor network and target critic network, respectively.
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FIGURE 1: Multi-agent DDPG approach for JTDPA issue.

Furthermore, in order to guarantee the non-correlation in
the training data, a experience replay strategy is applied to
store the transition samples (state S(t), next state S ′(t),
action Ai(t), and reward Ri(t)) in the experience replay
buffer B. By randomly sampling mini-batches (state sj , next
state s′j , action aji , and reward rji ) from the experience replay
buffer B, the online actor network can be updated with the
policy gradient scheme [33], which is given by

∇θiµJ(θiµ) =
1

Mb

Mb∑
j=1

∇θiµµ(sj |θiµ)∇ajiQ(sj , a
j
i |θ

i
Q), (29)

where j is the index of the mini-batches, Mb is the size of
mini-batches, µ(sj |θiµ) is the policy of online actor network
θiµ to map the state sj to action aji .

Moreover, the online critic network of each UAV is up-
dated through minimizing the loss function L(θiQ), which is
defined as

L(θiQ) =
1

Mb

Mb∑
j=1

[yj −Q(sj , a
j
i |θ

i
Q)]

2
, (30)

where yj = rji + γQ′(s′j , a
′
i|θiQ′)|a′i=µ′(s′j |θiµ′ )

is the target
value generated by target critic network with weight θiQ′ .

Then, based on (29) and (30), the weights of online actor
network and online critic network can be updated by

θiµ ← θiµ − δ∇θiµJ(θiµ),

θiQ ← θiQ − δ∇θiQL(θiQ),
(31)

where δ is the learning rate of the two online networks.
The MADDPG approach for the JTDPA issue is summa-

rized in Algorithm 1. At the beginning of the MADDPG

algorithm, the replay buffer B, the weights of actor and
critic in each UAV are initialized. Notice that the training
procedure comprises of D episodes, each of which consists
of Tp epochs. Generally, at the beginning of each episode,
we first initialize the state S(t). Then, in each epoch t, the
action of each UAV at state S(t) is generated by its online
actor network µ(S(t)|θiµ) with a random noise ες , where
ς ∼ N (0, 1) is a random noise and ε is a decay factor
decreasing over time. Based on the action taken above, each
UAV set its three-dimensional trajectory and transmission
power. If certain UAV flies beyond the network area, the UAV
will choose a random direction angle φi(t). Furthermore,
once the height of a UAV zi(t) is lower than Zmin or higher
than Zmax, it will keep the height at Zmin or Zmax. After
certain UAV covers a hotspot, it will stay without making
movement and just adjust the transmission power.

Then, considering the minimum QoS requirement, each
UE reports its state to its associated UAV. Through message
passing, each UAV can obtain the global next state S ′(t) and
reward Ri(t). Then, the tuple (S(t),Ai(t),Ri(t),S ′(t)) is
stored in the replay buffer B. After randomly sampling from
the replay buffer B, the online networks of actor and critic
can be updated. The target networks of actor and critic are
updated in (28). When the total number of UEs covering by
all UAV is equal to M , all UAVs cover all UEs. Then, if
the horizontal distance between arbitrary two UAVs is not
less than the sum of their coverage radius, all UAVs cover
all hotspots without overlapping. In this case, if the distance
between any two UAVs is not less than Dmin, the algorithm
will go to the next episode until episode > D.

Note that, according to the theorem of Selten, a subgame
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Algorithm 1 MADDPG Approach for JTDPA Issue

• Initialize the replay buffer B.
• Initialize online critic network and online actor network

with weights θiQ and θiµ, respectively.
• Initialize target critic network and target actor network

with weights θiQ′ and θiµ′ , respectively.
• episode = 1.
• while episode ≤ D do
• Initialize the environment state S(t) = {0, . . . , 0}.
• for epoch t = 1, . . . , Tp
• At the state S(t), each UAV selects the action
Ai(t) = µ(S(t)|θiµ) + ες .

• Each UAV sets their own trajectories and transmis-
sion power based on the given action Ai(t).

• Each UAV achieves the immediate reward Ri(t)
and obtains the global next state S ′(t) through message
passing.

• The transition (S(t),Ai(t),Ri(t),S ′(t)) is stored
in B.

• Let S(t)← S ′(t).
• for UAV i = 1, . . . ,K
• Mini-batch of transitions (sj , a

j
i , r

j
i , s
′
j) is sam-

pled stochastically from B.
• Update the weight θiµ of online actor network

with (29).
• Update the weight θiQ of online critic network by

minimizing loss function L(θiQ) in (30).
• end for
• Update the weights of the target critic network and

target actor network in (28).
• If all hotspots covered by all UAVs without over-

lapping and the state S(t) = {1, . . . , 1}, then
• If the distance between any two UAVs is greater

than Dmin, then
• episode← episode+ 1.
• break.
• end If
• end If
• end for
• end while

perfect NE can exist in all the limited game with perfect
memory [31]. In this stochastic game, the reward of each
UAV is finite. The number of UAVs and the state-action
space are also limited. Thus, this game is a finite game.
Furthermore, due to the experience replay strategy adopted in
the MADDPG method, essential historical information can
be stored. Thus, in order to obtain the essential historical
information, each UAV needs to communicate with UEs to
acquire the global state by message passing. Since the state
sm(t) is the only information passing between each UAV
and each UE, the communication overhead is only one bit
(0 or 1), which is relatively low and acceptable. Then, our
proposed MADDPG approach can guarantee to converge to

the subgame perfect NE in this stochastic game.
Considering that the hyperparameter plays a significant

role in deep learning approaches, it is difficult to achieve
the convergence of our MADDPG algorithm with analytical
schemes. Furthermore, since it may be intractable to design
the optimal hyperparameters of our MADDPG algorithm in
advance, a trial-and-error strategy can be adopted. Thus, this
issue is commonly in the literature to prove the optimality
and convergence qualitatively. Here, this paper limits the
convergence analysis with quantitative experiment results in
Section IV-A, which is also adopted in the similar literatures
[34], [35]. The performances with various learning rates
and mini-batch sizes are given to ensure the convergence of
our method. With the hyperparameters chosen properly, the
convergence of our MADDPG method can be guaranteed.

IV. PERFORMANCE EVALUATION
In this section, the performance of the presented MADRL
approach is numerically evaluated. In a 500m × 500m net-
work environment, the UEs and the UAVs are distributed ar-
bitrarily. The main simulation parameters are shown in Table
1. Moreover, In the MADDPG method, both the actor and
critic networks are designed with the two hidden layer (64
and 32 neurons). ε is set to decay from 2 with a decay rate of
0.9995. More detailed parameters of the MADDPG approach
are presented in Table 2. This simulation is executed on a
server with Intel Core i7 CPU and Tesla P100 GPU. The
memory size is 128GB. The software platform of the server
is Ubuntu 16.04 with Tensorflow 0.12.1.

TABLE 1: Network Environment Parameters

Parameters Value
Channel bandwidth B 1 MHz
Downlink carrier frequency fc 1950 MHz
Maximum transmit power of UAVs Pmax 30 dBm
Maximum height of UAVs Hmax 300 m
Minimum height of UAVs Hmin 100 m
Noise power density N0 -174 dBm/Hz
Minimum QoS requirement Ωm 2 dB
Unit price per transmit power λp 2
Punishment cofficient of UEs’ coverage η1 120
Punishment of UAVs’ collision ηi2 20
Mean excessive pathloss for LoS ηLos 1 dB
Mean excessive pathloss for NLoS ηNLos 20 dB
Elevation angle αi,m 42.44◦

Level-flight speed VL 20 m/s
Vertical-flight speed VA 5 m/s
Minimum distance of UAVs Dmin 50 m

A. TRAINING EFFICIENCY OF DDPG OPTIMIZATION
METHOD
We first evaluate the training performance with different
common learning hyperparameters, such as learning rate and
batch size. In every episode, 50 UEs are arbitrarily distributed
over the square place of [50, 150], [350, 450], and one UAV
starts at an arbitrary position.
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TABLE 2: Main Hyperparameters of MADDPG

Parameter Value
Episodes D 1000
Epochs Tp 200
Rate of soft weight updating τ 0.01
Random noise ς ς ∼ N (0, 1)
Mini-batch size Mb 32
Discount rate γ 0.9
Learning rate δ 0.0001
Replay buffer B 1000
Optimizer of MADDPG framework RMSPropOptimizer
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FIGURE 2: Smoothing training reward with different learn-
ing rates δ.

Figure 2 demonstrates the training performance with var-
ied learning rates δ. In all three cases, the low smoothing
training rewards are obtained at the beginning of training
process. With the training episodes increasing, the training
rewards have an obviously tendency to increase and converge
in the cases of δ = 10−4 and δ = 10−5. Moreover, when the
learning rate δ increases, fewer training episodes are needed
to achieve the minimum QoS requirement of each UE. The
converging speed of δ = 10−4 is faster than that of δ = 10−5.
Nevertheless, if the learning rate is too large, the algorithm
may converge to a local optimum, which can be seen in the
case of δ = 10−3. Thus, considering the training reward and
training speed, the learning rate δ = 10−4 is a proper choice
in the next several experiments.

Next, the training performance with different batch sizes
Mb is presented in Figure 3. The smoothing training rewards
are very low at the first 100 training episodes in all cases.
With the training episodes increasing, the rewards of all
cases tend to converge within about 500 training episodes.
However, as the training episodes continue to increase, when
the batch size Mb is too small (i.e, Mb = 16), the training
reward has a tendency to decrease. Furthermore, if the batch

Episodes
0 100 200 300 400 500 600 700 800 900 1000

S
m

oo
th

in
g 

T
ra

in
in

g 
R

ew
ar

d

#104

-8

-6

-4

-2

0

2

4

M
b
=16

M
b
=32

M
b
=64

FIGURE 3: Smoothing training reward with different memo-
ry size Mb.
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FIGURE 4: Average system capacity with different numbers
of UEs M and minimum QoS requirements Ωm.

size Mb is relatively large (i.e, Mb = 64), the curve of the
smoothing training reward may be less stable. The training
reward of Mb = 32 has an obviously tendency to increase
and converge. Therefore, the batch size Mb = 32 is a good
choice by considering the training reward.

Then, the training performance with different numbers of
UEs is evaluated in one UAV scenario. Figure 4 shows the
average system capacity with various UEs’ numbers M and
minimum QoS requirements Ωm. When the minimum QoS
requirement of each UE is achieved, the more the number of
UEs is served, the higher system capacity can be achieved.
When the UEs’ number is small, only a few epoches need-
ed to achieve the minimum QoS requirement of each UE,
which causes the low capacity. Moreover, the average system
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capacity increases with the minimum QoS requirements Ωm
increasing. The capacity in the case of Ωm = 2 is always
higher than that of Ωm = 0 and Ωm = −2.

B. OPTIMIZATION PERFORMANCE WITH DIFFERENT
METHODS
Finally, the performance with different optimization ap-
proaches is evaluated. We compare our proposed MADDPG
method with the following four other optimization baselines.
A degraded version of our MADDPG method with the fixed
power allocation strategy (pi(t) = Pmax) is considered,
which is denoted as MADDPG-FP. Multi-agent actor-critic
(MAAC) approach is considered without the target network
and experience replay strategies. In the random scheme, at
every time slot, each UAV randomly select a moving angle, a
vertical moving distance, a horizontal moving distance, and
a transmission power within the constraints. With the greedy
strategy, each UAV takes a discretized action to obtain the
maximum immediate reward in a distributed manner at every
time slot.

Figure 5 shows the joint strategy of the three-dimensional
trajectory and power allocation. The performances of the
DDPG (red star) and DDPG-FP (blue star) methods are
considered. Figure 5(a) and Figure 5(b) present one possible
joint strategy in the single-UAV scenario and the two-UAV
scenario, respectively. In each episode, each UAV starts from
the same position to provide UEs with the wireless service.
In the two scenarios, both the two approaches demonstrate
the same flying direction of UAV to cover all UEs. More-
over, in the two-UAV scenario, the two UAVs can cover all
UEs in each hotpot without overlapping by using the two
optimization algorithms. Furthermore, unlike the DDPG-FP
strategy with fixed power allocation, the DDPG approach
jointly considers the tradeoff between spectrum efficiency
and interference. Thus, the DDPG method always results
in the higher network utility (913.53 for the single-UAV
scenario and 1933.2 for two-UAV scenario) than that of
DDPG-FP (752.37 for the single-UAV scenario and 1432.9
for two-UAV scenario).

Figure 6 plots the average system capacity (ASC) with
different minimum QoS requirements Ωm and optimization
methods. In order to meet with the minimum QoS require-
ments Ωm of all UEs, the five optimization approaches
(DDPG, DDPG-FP, AC, random, and greedy) are consid-
ered. In the greedy strategy, since the UAV takes actions
to maximize the immediate reward at each time slot, the
highest system capacity can be achieved by comparing with
the other four approaches at all minimum QoS requirements.
With Ωm increasing, the system capacity achieved by the
greedy method keeps almost unchanged. As for the other
four approaches (DDPG, DDPG-FP, AC, and random), the
UAV takes actions to make sure that all UEs are covered by
the UAV with the minimum QoS requirements satisfied. As
Ωm increases, the average system capacity rises in all the
four methods (DDPG, DDPG-FP, AC, and random). In the
case of certain high minimum QoS requirement Ωm, these
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FIGURE 5: Positions of the UEs and UAVs with the trajecto-
ry design and power allocation strategies (Ωm = 2).

four methods may achieve the similar system capacity with
the greedy approach. Furthermore, the DDPG method always
obtains a slightly higher capacity than that of the other three
approaches (DDPG-FP, AC, and random).

Finally, the performance of different optimization ap-
proaches with various numbers of UAVs K is evaluated.
Here, the average network utility (ANU), ASC, and com-
putational time (CT) are considered in both the uniform
scenario (Table 3) and non-uniform scenario (Table 4). In the
uniform scenario, 80 UEs are distributed over K hotspots
uniformly. As for the non-uniform scenario, the UEs are
scattered based on the non-uniform distribution. Notice that
when the number of UAV K is equal to one, the single-agent
DRL approaches (DDPG, DDPG-FP and AC) are utilized
to address the JTDPA issue, instead of the multi-agent DRL
methods (MADDPG, MADDPG-FP, and MAAC).

Since all UEs are covered with the minimum QoS re-
quirements satisfied, all methods can obtain the high ASC
and ANU in both the uniform scenario and non-uniform
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TABLE 3: Performance with the uniform distribution of UEs
(Ωm = 0, D = 200 and M = 80)

K Method ASC(Mbps) ANU CT(sec.)

K=1

DDPG 2.11 0.88e3 34.23
DDPG-FP 2.01 0.83e3 18.76

AC 2.01 0.84e3 29.79
Random 1.96 0.81e3 62.55
Greedy 3.59 1.81e3 247.45

K=2

MADDPG 3.65 1.63e3 63.56
MADDPG-FP 3.48 1.55e3 33.18

MAAC 3.53 1.59e3 41.83
Random 3.35 1.49e3 113.54
Greedy 5.42 2.74e3 381.49

K=3

MADDPG 4.95 2.28e3 90.48
MADDPG-FP 4.95 2.27e3 44.63

MAAC 4.69 2.17e3 50.65
Random 4.67 2.15e3 149.53
Greedy 6.89 3.48e3 403.09

scenario. With the UAVs’ number K increasing, the ASC,
ANU, and CT of all methods increase. The ASC and ANU
in the uniform scenario are always smaller than that in the
non-uniform scenario, which is closer to the real multi-UAV
networks. Moreover, among the five approaches, since the
greedy method obtains the actions to maximize the imme-
diate reward at each time slot, the largest ASC and ANU
can always be achieved with huge computational time. As
for the random approach, the smallest ASC and ANU are
obtained by randomly selecting the actions. In the three learn-
ing methods, our MADDPG approach can obtain a higher
ASC and ANU than that of the other two learning methods
(MADDPG-FP, MAAC) with less computational complexity
in most cases, especially in the non-uniform scenario. In the
non-uniform scenario, the ASC and ANU of our MADDPG
method are about more than 15% of that of the other two
learning approaches with K = 3, respectively.

Furthermore, notice that only when all UAVs cover all
hotspots without overlapping and all UEs’ minimum QoS

TABLE 4: Performance with the non-uniform distribution of
UEs (Ωm = 0, D = 200 and M = 80)

K Method ASC(Mbps) ANU CT(sec.)

K = 1

DDPG 2.66 1.16e3 50.18
DDPG-FP 2.34 0.99e3 63.19

AC 1.95 0.81e3 32.56
Random 2.03 0.85e3 66.55
Greedy 3.79 1.93e3 240.32

K = 2

MADDPG 3.85 1.73e3 77.22
MADDPG-FP 3.42 1.53e3 105.18

MAAC 3.43 1.53e3 50.08
Random 3.43 1.55e3 117.62
Greedy 5.74 2.95e3 392.09

K = 3

MADDPG 5.53 2.57e3 139.98
MADDPG-FP 5.30 2.45e3 315.95

MAAC 4.70 2.17e3 63.24
Random 4.58 2.11e3 171.01
Greedy 7.03 3.56e3 504.44

requirements are satisfied, Algorithm 1 can go to the next
episode. Considering that the maximum epoch is 200 in
each episode. That is to say, even if very few epochs are
needed in the MADDPG approach, the maximum difference
between the epochs in all methods is no more than 200
in each episode, which will be a quite small difference in
computational time.

V. CONCLUSION
In this paper, an MADRL approach is proposed to obtain the
optimal JTDPA policy in multi-UAVs networks. The JTDPA
optimization problem is modeled to achieve the maximum
long-term reward while satisfying the minimum QoS require-
ments of all UEs. Furthermore, considering the non-convex
and combinatorial characteristics of the JTDPA optimization
issue, an MADRL method is investigated to design the three-
dimensional trajectory and transmission power of UAVs. By
combining the experience replay with target networks, the
MADDPG algorithm can effectively obtain the optimal poli-
cy with the fast converging speed. Simulation results indicate
that our method can provide better performance compared
with other approaches.
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