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ABSTRACT Many countries are challenged by the medical resources required for COVID-19 detection
which necessitates the development of a low-cost, rapid tool to detect and diagnose the virus effectively for
a large numbers of tests. Although a chest X-Ray scan is a useful candidate tool the images generated by
the scans must be analyzed accurately and quickly if large numbers of tests are to be processed. COVID-19
causes bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities, sometimes
with a rounded morphology and a peripheral lung distribution. In this work, we aim to extract rapidly
from chest X-Ray images the similar small regions that may contain the identifying features of COVID-19.
This paper therefore proposes a hybrid COVID-19 detection model based on an improved marine predators
algorithm (IMPA) for X-Ray image segmentation. The ranking-based diversity reduction (RDR) strategy
is used to enhance the performance of the IMPA to reach better solutions in fewer iterations. RDR works
on finding the particles that couldn’t find better solutions within a consecutive number of iterations, and
then moving those particles towards the best solutions so far. The performance of IMPA has been validated
on nine chest X-Ray images with threshold levels between 10 and 100 and compared with five state-of-art
algorithms: equilibrium optimizer (EO), whale optimization algorithm (WOA), sine cosine algorithm (SCA),
Harris-hawks algorithm (HHA), and salp swarm algorithms (SSA). The experimental results demonstrate
that the proposed hybrid model outperforms all other algorithms for a range of metrics. In addition,
the performance of our proposed model was convergent on all numbers of thresholds level in the Structured
Similarity Index Metric (SSIM) and Universal Quality Index (UQI) metrics.

INDEX TERMS COVID-19 detection, marine predators algorithm, ranking-based reduction diversity,

Kapur’s entropy, image segmentation.

I. INTRODUCTION

Due to the limited diagnosis tools available, many coun-
tries are only able to apply the COVID-19 [1], [2] test for
a limited number of citizens. Despite the great efforts to
find an effective way for COVID-19 detection, the required
medical resources in many countries represent a big chal-
lenge. Accordingly, there is an urgent need to identify a
low-cost and rapid tool to detect and diagnose COVID-19
effectively.
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Many attempts have been conducted to find a suitable
and fast way to detect infected patients in an early stage.
After making chest CT scans of 21 patients infected with
COVID-19 in China, Guan et al. [2] found that CT scan
analysis included bilateral pulmonary parenchymal ground-
glass and consolidative pulmonary opacities, sometimes with
a rounded morphology and a peripheral lung distribution.
Consequently, COVID-19 diagnosis can be represented as
an image segmentation problem to extract the main features
of the disease. This segmentation problem can be solved by
developing an algorithm that has the ability to extract the
smaller similar regions that can indicate infection with the
COVID-19 virus.
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Segmentation of an image, separating image regions from
each other, is an essential step in image processing [3] and
computer vision [4] to focus on a specific region thereby
increasing the accuracy of image analysis techniques. The
image segmentation problem (ISP) is present in many fields
such as: medical diagnosis [5], [6], object recognition [7],
satellite image processing [8], remote sensing [9], historical
documents [10], and historical newspapers [11], [12].

Several techniques have been proposed to provide an
effective image segmentation tool, such as region-based seg-
mentation [13], edge-based detection [14], feature selection-
based clustering [15], and threshold-based segmentation [16].
Due to its simplicity, speed, and accuracy, threshold-
based segmentation is widely used for image segmentation
[31, [171, [18] using either a bi-level threshold or a multi-
level threshold. In bi-level thresholding, the image is seg-
mented into two regions: object and background. Although
the bi-level threshold is very useful in subdividing the image
into only two parts, many applications are interested in more
than two regions. In that case, another threshold technique
called multi-level threshold has been used to segment the
image into more than two regions. Although increasing the
number of regions extracted from the image, the time needed
to segment the image increases exponentially with the num-
ber of regions of interest.

Threshold techniques are based on two approaches: para-
metric and non-parametric [19]. In a parametric approach,
some parameters for each class in the image need to be com-
puted using a probability density function. However, in a non-
parametric approach, the technique searches for the optimal
threshold values based on maximizing an appropriate func-
tion (such as Kapur’s entropy [20], fuzzy entropy [21], and
Otsu function [22]) without needing to calculate parameters
at the outset.

Since processing time increases exponentially with
increasing numbers of thresholds, traditional techniques will
take considerable time to search for the optimal threshold.
Consequently, meta-heuristic algorithms have been used as
excellent stochastic meta-heuristic techniques to overcome
the high processing time and accuracy problems [23]-[25].
Recently, many meta-heuristic algorithms have been pro-
posed for image segmentation, such as genetic algorithm
(GA) [26], particle swarm optimization (PSO) [27]-[29],
ant-colony optimization algorithm [30], whale optimization
algorithm (WOA) [31], honey bee mating (HBM) opti-
mization [32], multi-verse optimizer [33], cuckoo search
(CS) [34], symbiotic organisms search (SOS) [35], Harris
hawks optimization algorithm (HHA) [36], and moth-
flame optimization algorithm (MFA) [31], flower pollina-
tion algorithm (FPA) [37], crow search algorithm [38], grey
wolf optimizer [39], bee colony algorithm (BCA) [40],
locust search algorithm (LSA) [41] and firefly optimization
algorithm (FFA) [42].

Singla and Patra [43] investigated the bounds and the
potential thresholds that contain the optimal threshold values
by using the cluster validity measure, and then used the
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GA algorithm to search for the optimal thresholds from the
discovered bounds. GA has also been proposed [44] for image
segmentation based on a simulated binary crossover to max-
imize Kapur’s entropy for the medical image. Among swarm
algorithms, PSO [45] has been proposed for image segmen-
tation, in addition to improving its performance by cooper-
ative and comprehensive learning to face the dimensionality
curse and to reduce the premature convergence of the swarm,
respectively. A modified PSO [46] has also been developed to
improve its performance for solving ISP using adaptive iner-
tia and the adaptive population. Ghamisi et al. [47] introduced
fractional-order Darwinian PSO to solve the problem of the
n-level threshold based on the Otsu function to maximize the
variance between classes.

In [31], WOA and MFA were proposed for solving the
image segmentation problem by maximizing Otsu’s criterion,
although only for small threshold levels up to 6. FFA [42] has
also been applied to image segmentation but does not per-
form well for multi-level thresholding, so the improved FFA
(IFFA) [48] has been proposed using the Cauchy mutation
and neighborhood strategy to avoid being trapped in local
optima and to enhance the exploration operation.

CS [34] has also been proposed for tackling the ISP by
maximizing the Tsallis entropy. SOS [35] has been proposed
for segmenting the color images, improved by opposite-based
learning in an attempt to enhance its performance (ISOS).
ABC [49] has been used for segmentation of satellite imagery
based on maximizing various fitness functions—the tech-
nique has been modified by initializing the population using
a chaotic search and using differential evolution as a novel
search technique to improve the exploitation phase.

The Bacterial Foraging Algorithm (BFA) [50], relying on
fuzzy entropy to switch the bacterium between exploitation
and exploration operators, has been adapted for gray-scale
image segmentation. Also, BFA [51] has been modified by
moving the best bacteria to the subsequent iterations to accel-
erate the convergence to the optimal solution. Furthermore,
BFA [52] has been integrated with PSO to support the global
search capability and accelerate the convergence rate. In addi-
tion, the weak bacterium in BFA chooses a strong bacterium
from the healthiest bacteria, then it moves near to the location
of this strong selection. WOA [53] has been proposed for
tackling liver image segmentation. WOA divides the liver
image into a predetermined number of clusters based on
the prospect liver position in the abdominal image defined
by a statistical image. The problem of multi-level threshold
segmentation [54] is handled as a multi-objective problem
that maximized both Kapur’s entropy and Otsu’s function.

Although there are many existing methodologies for med-
ical image segmentation, none of the works exposed at the
literature was validated on an image with high threshold
levels to observe its ability to segment an image with many
similar regions. Subsequently, those algorithms may not be
the best choice for searching for smaller homogenous regions
in medical images that may contain the features of a disease
such as COVID-19. This challenge motivates us to observe
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the performance of some state-of-art algorithms proposed in
the literature for tackling ISP. In addition, it leads us to pro-
pose a robust meta-heuristic algorithm, namely the improved
marine predators algorithm (IMPA), that has a good ability to
segment an image into many similar regions.

The contribution of this paper is two-fold. First, we pro-
pose a hybrid model for COVID-19 detection using an
improved marine predators algorithm (IMPA) for overcoming
the multi-threshold image segmentation problems of chest
X-Ray images. Second, a new method, namely ranking-based
diversity reduction (RDR), has been proposed to improve the
MPA by moving the positions of the worst solutions to be
near to the best solution. The proposed RDR is compared
with other well-known algorithms using a set of chest X-Ray
images. The experimental results show that MPA and IMPA
are better able to solve the image segmentation problem com-
pared with state-of-art algorithms in terms of fitness value
and standard metrics. Additionally, it is competitive with EO
in low numbers of threshold levels in terms of peak signal-to-
noise-ratio (PSNR), and signal-to-noise-ratio (SNR), but has
significantly better performance for high numbers of thresh-
old levels. Along with EO, the performance of our proposed
algorithm is convergent using the structured similarity index
metric (SSIM) and the Universal Quality Index (UQI).

The remainder of the paper is organized as follows.
In section 2, we explain the Kapur’s entropy formulation.
Then, section 3 provides a description of the marine predators
algorithm. Section 4 describes the steps of adapting MPA for
application to image segmentation. Section 5 provides the
results and discussions and section 6 concludes the paper.

Il. MULTILEVEL THRESHOLDING

As discussed earlier, image threshold techniques are cate-
gorized as bi-level or multilevel thresholding. In this work,
optimal threshold values are obtained using a popular mul-
tilevel method, namely Kapur’s entropy, which determines
the optimal threshold values based on the entropy of the seg-
mented regions [20]. Assuming that [tg, t;, t2, ......... , tal
represents the threshold values that segment the image into
multiple regions, then Kapur’s entropy method can be for-
mulated in Eq. 1, Eq. 2, Eq. 3, Eq. 4, and Eq. 5.

T(to, t1,t2, ceeenn... Jty) =To+T1+To4..... ... +Ty,
(H
where:
to—1 Xj X N; t—1
TO__leo W() IHW(), Xl_va _Zizo i
(2
X; N
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i T L-1 X
= _W , In= i=t, i
(%)

To, T1,To, oovvnnn. , and T, are the entropies of the dis-
tinct regions, and N;j indicates the number of pixels with a
value of i, the grey level. Wy, W1, Wo, ..., and W, are the
probabilities of the regions relative to the number of pixels W
found in the whole image.

To obtain the optimal threshold values, the function at Eq. 6
must be maximized.

L-1 Xj
Ta=-Y" =@ 4
1=ty Wn

X N
— X
Wi

F(ty, t1,t, oot , tn) = max{T(ty, t1,t2, ......... ,t)}
(6)

Here, Eq.6 is used as a fitness function to obtain the optimal
threshold values using the MPA illustrated in the next section.

Ill. MARINE PREDATORS ALGORITHM (MPA)

MPA has been proposed to simulate the optimal foraging
mechanism for marine predators in finding their prey: preda-
tors use Lévy strategy when there is a low concentration
of prey and Brownian movements when there is abundant
prey [55]. The velocity ratio v from the prey to the preda-
tors represents the tradeoff between the Lévy and Brownian
strategies:

1. At low-velocity, v < 0.1, the best strategy for the
predators is to move in Lévy steps regardless of whether
the prey is moving in Brownian or Lévy.

2. At unit velocity, v = 1, the predators should move in
Brownian if the prey is moving in Lévy steps.

3. Finally, at high-velocity > 10, the best strategy for the
predators is to remain motionless, regardless of whether
the prey is moving in Brownian or Lévy.

The mathematical model of the MPA is as follows:.

In the first stage, a group of the prey will be initialized

within the search space using the following equation:

- - — —
X = X pin + rand (0, D) # (X jax — X min) @)

where rand (0, 1) is a random number in the range of [0, 1],
and Ymm and X .,y are the vectors including the upper and
lower bounds for the search space of each dimension in the
optimization problem.

After initializing the prey, the fitness of each predator is
calculated, and the one that has the best fitness value is
determined to be the top predator. Based on the survival of
the fittest, the top predator is the best one in foraging, so it is
used to construct a matrix known as Elite. This elite matrix
can be formulated as follows:

I I I
Xl/’l X11’2 led
X5, X5, e Xy
Elite =
I I ) I
X1 X0 e Xoa

%
where X! represents the top predator vector and is replicated n
times to build up an n x d Elite matrix, where n is the number
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of the individuals in the population, and d is the number of
dimensions.

Another matrix, namely Prey, has the same dimensions as
Elite and is used by the predators to update their positions.

X1 Xi12 o X14

X1 X2 oo X4
Prey = . .

Xn.1 Xn2 .. Xn.d

In the main loops of the MPA, the optimization process is
divided into three stages based on the velocity ratio, and is
modeled as follows:

A. HIGH VELOCITY RATIO
This is the exploration phase, and is formulated at Eq. 8 and
Eq. 9:

1
while it < 3 * max_iter
— — — - —
S,=Rz® (Elitel- _ R B®Preyi) (8)
N — -
prey; =preyi+ Px R ® §; 9

where 76)3 is a vector of random numbers created based on
the normal distribution and represents the Brownian motion,
® represent the entry-wise multiplication, P = 0.5, 0.5 con-
stant is recommended from the original paper, is a constant
number, R is a random numbers vector created uniformly,
t is the current iteration, and #,,,, is the maximum number
of iterations.

B. UNIT VELOCITY RATIO

This phase occurs in the intermediate phase of optimization
process, where exploration is gradually changed to exploita-
tion. The mathematical model of this phase is represented in
Eq. 10, Eq. 11, Eq. 12, and Eq. 13.

1
whlleg * MAXjrer < it < 3 * max_iter

- For the first half of the population

— — — - —
Si=R.L® (Elite,- - RL®Prey,-) (10)
- =
préi = préyi +Px R ® S ; (11
- For the second half of the population
— — - —_—> -
Si: RB®(RB®Elltei—Preyi> (12)
préy; = Elite; + P+ CF ® S i (13)

where 75 L is the vector created using the Lé vy flight strategy.
In this phase, the first half of prey would move with L¢ vy
steps, while the other half uses Brownian steps.
where CF is an adaptive parameter to control the step size
and is generated using Eq. 14.
it (2iw)

CF=(—-———) (14)

max_iter
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C. LOW VELOCITY RATIO
This is the exploitation phase and is formulated using
Eq. 15 and Eq. 16:

2
while it > 3 * max_iter

— — — _—  —
S,=R.® (RL ®Elitei—Preyi) (15)
préy: = Elite; + PxCF ® S ; (16)

Some studies confirmed that the surrounding environ-
ment such as the eddy formulation, and fish aggregating
devices (FADs) affects the behavior of the prey. As a result,
the predators spend 80% of their time searching for their prey
in the vicinity, while the remaining time, they search for the
prey in another environment. This process is known as FADs
and is calculated using Eq. 17.

N — - = - —
preyi + CF[X min + R % (X pax — Xmin)] ® U

pr_e})/- _ if r < FADs
" | presi + [FADs (1 — 1) + 1] (preSis — presien)
if r > FADs

a7

where r is a random number in the range of [0, 1]. TJ) is the
vector C(Etaining the arrays with O and 1 values. For each
array in U, a random number between 0 and 1 is generated
and if the generated number is greater than 0.2, then this array
is set to 1; otherwise it is set to 0. FADs = 0.2 indicates the
influence of the FADs on the searching process.

MPA accomplishes memory saving by saving the old posi-
tion of the prey. And, after updating the current solutions,
the fitness values of each current solution and each old solu-
tion are compared, and if the fitness of the old one is better
than the current one, they are swapped. The steps of MPA are
listed in Algorithm 1.

IV. THE HYBRID PROPOSED MODEL

In this section, standard MPA and improved MPA (IMPA)
have been developed for overcoming the multi-thresholding
image segmentation problems. The steps of adaptation are
shown in the next sections.

A. INITIALIZATION
In this phase, the number of prey N and the number threshold
are predefined. Then each threshold is initialized randomly
within 0 and 255 (the gray levels of the 8-bit image) using
Eq. 18.

Pi,j = Lin + 1 * (Linax — Limin) (18)
where Ly,, and L,,,, indicate the upper and lower bounds
of the gray level values in the image histogram, and r

is a random number generated randomly in the range
of [0, 1].
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Algorithm 1 The Marine Predators Algorithm (MPA)

Algorithm 2 RDR

1. Initialize the population of prey p;(i = 1,2,3,....,n)

2. Set parameter’s value
3. P = 0.5; Top_Predetor_fit = = MAX_VALUEX
4. Top_Predetor_Position = NULL
5. while (it < tyaxiter)
6. for each iprey
7. Calculate the fitness value of prey if (7 ;)
8. if (f (71) < Top_Predetor_Best) )
9. Top_Predetor_Best = f (71)
10. Top_Predetor_Position =?i
11. End if
12.  End for

13.  Construct The Elitematrix

14.  Accomplish the memory saving

15. Assign CF using Eq. (14)

16. for each i prey

17 if (it < 1% tay)

18. Update the current 7' using Eq. (9)
19.  Elseif (3 % tyax < it < % %ty

20. If(i < § *n)

21. Update the current 7 ; using Eq. (11)
22. Else

23. Update the current 71 using Eq. (13)
24, End if

25.  Else

26. Update the current 7 ; using Eq. (16)
217. End if

28. end for

29. for each i prey
30. Calculate the fitness value of prey if (7 ;)
31. if (f (?i) < Top_Predetor_Best) )

32. Top_Predetor_Best = (7 ;)
33. Top_Predetor_Position =?i
34, End if
35. end for

36. Accomplish the memory saving

37.  Accomplish the FADs for each predator 77; using
Eq. (17)

38. it++

39. end while

B. RANKING-BASED DIVERSITY REDUCTION TECHNIQUE
(RDR)

Some particles may be far away from an optimal solution
which will require a long time to find and the number of
iterations may terminate before a better solution is reached.
Therefore, we propose an algorithm to calculate the consec-
utive number of iterations in which each particle was not
able to identify a better solution. After identifying the worst
particles that fail to find a better solution within a consecutive
number of iterations, in Algorithm 2 those particles will be
updated towards the best solution found so far to reduce the

VOLUME 8, 2020

1. P : the number of prey

2. CR : avector of size N and contain 0’s value in the start
3.i=0
4. perlter =3
5. while (i < N)
6. if (fit (P;) > fitLocal (P;))
7. CR++
8. else
0. CR; =0
10. end if
11. i++

12. end while
13. for each i particle
14. if (CR; > perlter)

15. Update P; toward the best one using Eq.19
16.  endif
17. end for

distance from the optimal solution using the Eq.19.
- = - =
Py=Py+rx(P,~F) (19)

where ﬁ: refers to a worst particle that fails in finding a
better solution within a consecutive number of iteration, P},
refers to a vector of the best solution, and r is a number
generated randomly in the range of [0, 1]. This technique
that reduces the distance between the optimal solution and
the particles that couldn’t find a better solution within a
consecutive number of iterations is called RDR. Algorithm 2
illustrates the steps of the RDR technique.

In Algorithm 2, a vector of size equal to the number of
prey is created and initialized in 0’s value. Then the old fitness
is compared with the current fitness, and if the old fitness is
still better, the rank CR; of the ith particle is increased by 1.
Otherwise, it is reset to 0 again. This will help to identify the
number of particles that couldn’t reach better solutions within
a consecutive number of iterations. After that, each particle
couldn’t find a better solution within the consecutive number
of iterations CN, predefined, will be updated towards the best
solution using Eq.19.

C. THE PROPOSED IMPA

The steps of adapting the IMPA using the RDR for over-
coming multi-thresholding problems are illustrated in Fig 1.
The initialization step is considered the first step for all
meta-heuristic algorithms, so it is firstly used for initial-
izing the prey randomly, as shown in Fig 1. Within the
initialization step, the fitness of each prey would be cal-
culated, and the one with the highest fitness value is
defined as the Top_Predator_Best, and its position as the
Top_Predator_Position. After that, the first stage of the pri-
mary optimization process will start to update the current
positions using one of the updating equations illustrated in
Section 2 at the expense of the current iteration and prey.
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&

Initialization

=<t
M

Update MPA parameters
No yes
Update P(t + 1) using Eq. (9)
No Yes
Update B(t + 1) using Eq. (16) Yes 1 No
i<=-x*N
2
\
/ -
= Update S(t + 1) using Eq. (13
Update S(t + 1) using Eq. (11) P g Ea. (13)

\2

Update the best solution and memory saving if the current is better

\4

Accomplish the FADs , then calculate fitness values for each one and
update the best solution and memory saving if there is better

N4/
' 4

Reduce the diversity using Algorithm 2

\Z

t++

\I Return the best Z*

FIGURE 1. Flowchart of IMPA for overcoming image segmentation problem.

After finishing the first stage of the optimization process,
the fitness value of each prey is calculated, and memory
saving is accomplished. Last but not least, the second stage
of the optimization process implements the FADs methodol-
ogy. FADs helps MPA dispose of local optima, subsequently
finding better solutions. Finally, after the selected number
of iterations, the RDR strategy is called to reduce diversity
through the population, as elaborated in Section 4.2. The first
and second stages of the optimization process, in addition
to the RDR strategy, will be repeated until the termination
criterion is satisfied.
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Note that i in Fig. 1 indicates the current particle number,
and N refers to the maximum number of particles.

Memory saving in MPA replaces the old solution with
the current one if the current is better; otherwise the old
one is used in the population to be updated toward another
direction for finding better solutions. But what happen if
the old one is always better? This means that the predator
would stay in its position, motionless, and the distance with
the best solution would not change. As long as the particles
are far away of the best solution, the probability of finding a
better solution reduces. Subsequently, a significant number of
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FIGURE 2. lllustration the original images and their histograms used in our experiment.
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TABLE 1. PSNR values obtained by each algorithm.

HHA WOA SCA SSA
Im T IMPA MPA  EOI57] 136] [31] 56] 58]

Im HHA WOA SCA SSA
T IMPA MPA  EOI57] 136] 31] [56] 58]

Ct1 10 25.6438 25.6114 25.6593 25.6228 25.6636 25.0539 25.3485
20 29.6535 29.5767 29.8714 29.2280 29.4436 28.4885 29.0232
30 31.5667 31.4428 31.6654 31.0503 31.3505 30.3652 30.8446
40 32.5000 32.6214 32.6610 32.0961 323612 31.3514 31.9752
50 33.1628 33.1895 33.1239 32.7074 32,9174 32.1816 32.7346
60 33.5250 33.5690 33.4733 33.0939 33.2423 32.7975 32.9721
80 33.8581 33.7931 33.7883 33.5721 33.6808 33.2338 33.5221
100 33.9716 33.9371 33.9151 33.8406 33.8524 33.6804 33.8266
ct2 10 26.3581 26.1257 26.2771 26.2469 26.0932 25.3036 25.3677
20 29.9333 29.8607 30.2452 29.4571 29.9520 28.9911 29.3778
30 323178 32.4930 33.0093 31.8064 32.3767 31.4079 31.7477
40 34.0805 33.8359 34.0564 33.2113 33.5550 32.5865 33.0408
50 34.9983 34.6699 34.8803 34.0286 34.3049 33.6192 34.2083
60 35.5023 35.3832 35.2021 34.6440 34.8051 342315 34.9505
80 35.9231 35.7243 35.6008 35.3656 35.5102 35.0862 35.2402
100 35.9859 36.0128 35.9388 35.7682 35.8485 35.4451 35.6093
Ct3 10 25.3088 25.4251 25.4945 25.0604 25.2573 24.5937 25.3582
20 29.2327 29.3267 29.7444 28.7699 29.0285 28.0222 29.0224
30 31.1300 31.1550 31.3199 30.5842 30.7580 29.9384 30.5462
40 32.0583 31.9607 32.0765 31.5027 31.7284 31.0153 31.7085
50 32.5801 32.4934 324213 31.9803 32.1967 31.6655 32.0975
60 32.8778 32.7538 32.7354 32.4353 32.4822 32.1358 32.4285
80 33.0505 33.0253 33.0000 32.7370 32.9206 32,5732 32.8327
100 33.1543 33.1316 33.1116 33.0136 33.0560 32.8704 33.0025
Ct4 10 24.9202 24.9105 25.0204 24.9932 25.0112 24.3884 24.6093
20 28.7235 28.7318 28.8147 28.6994 28.8868 27.6519 27.6428
30 30.1727 30.0947 30.4051 29.9998 30.2122 29.2940 28.6977
40 30.7513 30.8867 31.0502 30.7188 30.9422 30.1117 29.6410
50 31.2558 31.2829 31.3387 31.0564 31.2429 30.6949 30.2932
60 31.4774 31.4865 31.4513 31.3422 31.4985 31.1129 30.8719
80 31.7519 31.7621 31.7816 31.7059 31.7489 31.4269 31.4074
100 31.8636 31.8708 31.7756 31.7967 31.8458 31.6709 31.6038
Ccts 10 25.9479 25.8624 25.9493 25.8632 25.7995 25.1196 25.4050
20 29.8747 29.7453 30.2898 29.4749 29.8257 28.9057 28.9889
30 32.0100 32.0282 32.4423 31.6852 32.0339 31.1892 30.6350
40 33.3348 33.3868 33.5671 32.7428 33.1892 32.1122 32.3377
50 34.2223 34.2814 34.3885 33.5403 33.6921 33.1321 33.2755
60 34.7817 34.7564 34.6739 34.1727 34.3080 33.7635 33.9079
80 35.1748 35.1650 35.1262 34.7413 34.9482 34.5249 34.5881
100 35.3424 35.3531 35.2286 35.1508 35.2174 34.9130 35.0585

X1 10 26.4396 26.4077 26.0003 25.3781 25.3792 24.2924 25.9790
20 31.7614 31.1351 31.4536 30.2321 30.6570 29.3323 31.2057
30 33.7695 33.3255 33.6722 32.5147 32.8609 31.3919 329712
40 34.8530 34.3624 34.6389 33.7115 34.0642 32.7077 33.9689
50 35.3744 34.9688 35.3043 34.4811 34.8323 33.7750 34.5409
60 35.6864 35.5034 35.5637 34.9351 35.0762 34.3679 35.0276
80 35.8838 35.7419 35.8604 35.6048 35.6561 35.2083 35.4195
100 35.9787 35.9363 36.0043 35.7992 35.8689 35.5021 35.6632
X2 10 20.8763 20.8798 20.8803 20.8363 20.8573 20.5113 20.7013
20 21.5820 21.5748 21.5911 21.5245 21.5464 21.3895 21.4827
30 21.7437 21.7465 21.7689 21.6947 21.7366 21.5473 21.6463
40 21.8254 21.8047 21.8378 21.7960 21.8145 21.7538 21.7429
50 21.8687 21.8600 21.8681 21.8321 21.8464 21.7738 21.8154
60 21.8780 21.8707 21.8891 21.8595 21.8738 21.8301 21.8294
80 21.9029 21.8937 21.9025 21.8833 21.8947 21.8754 21.8763
100 21.9093 21.9056 21.9092 21.9020 21.9064 21.8962 21.8867
X3 10 26.0695 26.1092 26.0839 26.1641 26.0702 25.5570 25.7961
20 31.2699 31.4847 31.7178 31.1614 31.3774 30.0055 29.9148
30 34.6792 34.6760 35.0608 33.9729 34.4152 32.4621 32.4027
40 36.7248 36.9596 37.1281 35.8774 36.2978 34.4223 34.7787
50 38.6822 38.7828 38.7647 37.1489 37.6665 36.3515 36.2394
60 40.0923 39.7226 39.9296 38.2266 38.9595 37.2993 38.0785
80 41.2113 41.1223 41.0330 39.8809 40.7269 39.6003 39.6961
100 42.1024 42.0139 41.9592 41.3227 41.7962 40.1951 40.4920
X4 10 25.0917 25.0672 25.7366 25.2783 25.4134 25.1794 25.1261
20 27.2812 27.3797 27.5745 26.9743 26.8693 26.8318 27.4334
30 28.4108 28.1666 28.4055 27.8591 27.8288 27.8215 28.1297
40 28.7189 28.5647 28.7469 28.2718 28.3160 28.1095 28.5156
50 28.8820 28.7655 28.8800 28.4901 28.5137 28.4503 28.6864
60 28.8953 28.8468 28.9449 28.6880 28.6779 28.5253 28.7378
80 28.9638 28.9177 28.9577 28.8827 28.8557 28.7813 28.8366
100 29.0049 28.9687 29.0049 28.9277 28.9294 28.9005 28.9368

iterations would be neglected. To solve this problem, the RDR
strategy is used to move the particle that failed to find a better
solution within a consecutive number of iterations, gradually
toward the best solution even if the updated position isn’t
better than the old one. This will help the particle in exploring
whether other regions may contain a better solution. Because
the best solution is unified for all the members, the diversity
between the members of the population will reduce when the
particles move toward it. Accordingly, many better solutions
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may be generated, due to the exploration of more regions
by the particles that couldn’t find better solution within a
consecutive number of iterations.

V. RESULTS AND DISCUSSION
In this section, the conducted experiments are offered and
discussed to show the superiority of our proposed algorithm
for solving ISP. This section is organized as follows:

« Section A. Describes Test Images
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FIGURE 4. Average PSNR values obtained by each algorithm on selected threshold levels from 10 to 100.

« Section B. discusses Stability Analysis of all the com-
pared algorithms.

o Section C. discusses the results of The Peak Signal to
Noise Ratio (PSNR) metric.

« Section D. discusses the results of the Signal to Noise
Ratio (PSNR) metric.

« Section E. demonstrates the outcomes of the Structures
similarity index metric (SSIM).

« Section F. elaborates the results of the universal quality
index (UQI).

o Section G. demonstrate the obtained Kapure’s entropy
values

« Section H. shows some segmented images using IMPA,
and MPA

A. DESCRIPTION OF TEST IMAGES

In our experiment, eight COVID-19 Chest images taken
from  https://github.com/ieee8023/covid-chestxray-dataset
are used to validate the performance of our proposed algo-
rithm and other algorithms in extracting the similar regions.
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These images are labelled X1, X2, X3, X4, X5, X6, X7,
X8, and X9. The original images and the histogram of
each are shown in Fig.2. We compared our proposed model
and selected state-of-art algorithms: SCA [56], WOA [31],
EO [57], HHA [36] and SSA [58] using the same parameters
and running environment. The population size N was set
to 20, and the maximum iterations #,,,, set to 150 for a fair
comparison. The experiments are performed on a desktop
computer equipped with Windows 7 ultimate platform and
1 GB memory space. The RDR strategy is implemented on
each particle that exceeds 3 iterations (CN = 3) without a
better solution.

B. STABILITY ANALYSIS
To measure the dispersion of the results obtained by each

algorithm, the standard deviation (Std) is calculated using
Eq. 20.

1 n -2
Std = \/m Zi:l (fl —f) (20)
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TABLE 2. SNR values obtained by each algorithm.

HHA WOA SCA SSA Im HHA WOA SCA SSA

Im T IMPA MPA EOI[57] 136] [31] [56] 58] T IMPA MPA EOI[57] 136] [31] [56] [58]
Ctl 10 10.8240 10.7786 10.8778 10.7495 10.7820 9.9459 10.4284 X1 10 10.6334 10.8049 10.2043 9.1994 9.5566 8.5098 10.4864
20 17.4175 17.3917 17.9046 17.0106 17.0999 15.5589 16.5632 20 20.5694 20.0733 20.3042 17.5131 18.0261 16.4368 15.2409
30 22.2459 21.9222 22.8575 20.8455 21.4097 19.0977 20.6808 30 26.5105 25.2425 25.9821 21.6466 23.9526 20.4738 17.2882
40 25.2272 25.1935 25.3231 23.6141 24.5227 22.4483 23.3454 40 30.2926 29.1103 29.6285 26.3234 26.8573 23.8391 19.3932
50 26.8063 27.1618 26.8225 25.1452 26.2737 24.4223 25.5653 50 32.0761 31.2943 31.4070 28.9808 30.2410 26.7129 21.5355
60 28.3107 28.0683 28.0373 26.6751 27.4298 25.5240 26.6113 60 33.6086 32.3895 32.8834 30.6751 31.0281 29.0854 223165
80 29.3228 29.0125 29.1183 28.3127 28.4868 27.6240 28.1309 80 34.3374 33.8719 34.1858 32.5410 33.1873 31.3298 23.9892
100 29.7972 29.6562 29.6316 29.3327 29.2809 28.6254 29.2171 100 34.9276 34.6412 34.6057 33.8629 34.2499 32.9533 24.7140
Ct2 10 13.2361 12.7460 12.9408 13.0049 13.0303 12.0739 12.0083 X2 10 5.8820 5.8718 5.8702 5.8050 5.8361 5.6404 10.9554
20 20.4176 20.5281 21.7423 19.1905 20.2597 18.4100 19.0179 20 6.5623 6.5496 6.5569 6.4543 6.5273 6.3630 17.8530
30 27.4094 27.9633 29.4428 26.0650 27.1676 24.5532 24.8258 30 6.7526 6.7362 6.7699 6.6998 6.7374 6.6066 21.6100
40 33.7004 33.1953 33.8089 30.4968 31.5892 29.0149 30.5808 40 6.8653 6.8522 6.8671 6.8114 6.8386 6.7532 27.0730
50 36.7602 36.4549 36.5976 33.5335 34.3721 30.9607 34.5072 50 6.9095 6.9009 6.9095 6.8660 6.8945 6.8169 28.9120
60 39.5965 38.8336 38.0979 35.6575 36.9086 33.6730 36.1078 60 6.9395 6.9322 6.9438 6.9016 6.9291 6.8630 31.7581
80 41.4819 41.0862 40.6519 38.9296 39.6565 37.6209 39.0347 80 6.9667 6.9650 6.9666 6.9471 6.9557 6.9316 34.9387
100 42.0208 422317 41.8943 40.9642 41.0937 39.5952 41.0296 100 6.9827 6.9796 6.9800 6.9620 6.9729 6.9513 36.2522
Ct3 10 10.7088 10.6294 10.8627 10.3970 10.4540 9.3811 10.1963 X3 10 13.5002 13.2116 13.0320 13.2529 13.0777 12.1990 11.0452
20 17.1397 17.2531 18.1058 16.4281 16.9194 15.4037 15.9523 20 24.8626 25.2788 25.5137 23.6436 25.0664 20.9306 19.4441
30 21.8271 21.5179 22.4702 20.6409 21.0605 19.0334 20.0211 30 37.4303 36.4281 37.9659 33.3239 34.9028 27.9437 24.0457
40 24.2833 24.1751 24.4793 22.5780 22.9051 20.4875 23.2512 40 49.1392 48.9013 50.1542 40.7477 42.6703 35.7066 27.2235
50 25.9867 25.4154 25.5696 24.3743 24.6076 22.7335 24.8419 50 60.2658 59.4602 59.5526 48.0404 54.0166 42.8576 29.0866
60 26.8013 26.4296 263118 25.2730 25.7686 24.4078 25.4008 60 70.9716 68.8028 66.2353 55.3538 60.8479 50.0217 30.6795
80 27.4246 27.1625 27.2031 26.5442 26.8317 25.6777 26.6347 80 80.1626 78.9483 80.0544 68.4719 74.3533 63.1169 31.9762
100 27.7901 27.6192 27.4659 27.1407 27.1630 26.7232 27.0462 100 88.0085 90.1688 82.8517 77.9799 83.2123 70.9763 33.6479

Ct4 10 10.9000 10.9284 11.0123 11.0230 11.1165 10.3880 10.4284 X4 10 8.1361 8.4347 8.7699 8.4424 8.6813 8.3840 5.7619
20 17.5245 17.2812 17.6530 17.4189 17.7865 15.5524 16.5632 20 11.2343 10.9065 11.4610 10.5505 10.4609 10.2462 6.4290

30 20.8501 20.8875 21.1782 20.6200 20.8453 18.7619 20.6808 30 12.7251 12.5197 12.7841 11.6103 12.0625 11.3950 6.6575

40 22,5714 22.3695 23.1355 22.0724 22.6847 20.9587 23.3454 40 13.2048 13.1761 13.3454 12.6216 12.6054 12.4319 6.7531

50 23.8669 23.9407 24.1753 23.3263 23.7954 22.2017 25.5653 50 13.6000 13.3924 13.5202 13.1921 13.1169 12.8830 6.8421

60 24.5506 24.5702 24.8386 23.8685 24.5009 23.5310 26.6113 60 13.7012 13.5994 13.7367 13.2129 13.3289 13.1332 6.8887

80 25.2961 25.3651 25.2164 25.0001 25.2380 24.3972 28.1309 80 13.7380 13.7187 13.7247 13.6217 13.6082 13.4898 6.9243

100 25.6519 25.6600 25.6033 25.4650 25.6415 25.0475 29.2171 100 13.8342 13.7926 13.8842 13.7255 13.6892 13.6272 6.9549

Ct5 10 12.1281 12.1480 12.1333 11.8906 11.9761 10.8363 12.0083

20 19.3158 19.2837 20.4187 19.0932 19.1566 17.4755 19.0179
30 25.0686 24.7065 26.4808 24.1239 25.2583 21.5859 24.8258
40 29.9916 29.6286 30.2685 27.7150 29.0109 26.2733 30.5808
50 33.0794 32.7930 33.2645 31.0167 31.5333 29.0920 34.5072
60 34.9871 34.6218 34.9864 32.8950 33.2601 30.7869 36.1078
80 36.9259 36.6796 36.4429 34.8612 35.5948 34.2273 39.0347
100 37.5329 37.5768 37.0237 36.5845 37.0026 35.8944 41.0296

TABLE 3. SSIM values of each algorithm.

HHA WOA SCA SSA Im EO HHA WOA SCA SSA
Im T IMPA MPA  EOI57] 36] 31] 56] 58] T IMPA  MPA 1571 36] 31] [56] 58]
1 10 0.9880 0.9879 0.9880 0.9879 0.9880 0.9861 0.9870 6 10 0.9804 0.9803 0.9771 0.9724 0.9717 0.9637 0.9268
20 0.9931 0.9930 0.9934 0.9926 0.9929 0.9916 0.9922 20 0.9915 0.9906 09912 0.9882 0.9895 0.9859 0.9337
40 0.9944 0.9943 0.9944 0.9940 0.9942 0.9934 0.9937 40 0.9933 0.9928 0.9931 0.9915 0.9921 0.9899 0.9348
60 0.9948 0.9949 0.9949 0.9946 0.9948 0.9941 0.9944 60 0.9939 0.9935 0.9937  0.9928 0.9932 0.9916 0.9348
80 0.9951 0.9952 0.9951 0.9949 0.9950 0.9946 0.9949 80 0.9942 0.9939 0.9941 0.9934 0.9938 0.9927 0.9350
100 0.9953 0.9953 0.9952 0.9951 0.9952 0.9949 0.9950 100 0.9943 0.9942 0.9942  0.9938 0.9939 0.9932 0.9353
120 0.9954 0.9954 0.9954 0.9952 0.9953 0.9951 0.9952 120 0.9944 0.9943 0.9943  0.9941 0.9942 0.9939 0.9351
150 0.9954 0.9954 0.9954 0.9954 0.9954 0.9953 0.9954 150 0.9944 0.9944 0.9944  0.9942 0.9943 0.9940 0.9352
2 10 0.9884 0.9881 0.9883 0.9882 0.9879 0.9851 0.9862 7 10 0.9293 0.9293 0.9296  0.9294 0.9293 0.9269 0.9844
20 0.9929 0.9929 0.9932 0.9922 0.9929 0.9912 0.9920 20 0.9347 0.9348 0.9340  0.9340 0.9342 0.9332 0.9905
40 0.9945 0.9947 0.9949 0.9940 0.9945 0.9936 0.9939 40 0.9355 0.9357 0.9351 0.9348 0.9353 0.9350 0.9926
60 0.9952 0.9952 0.9953 0.9948 0.9950 0.9943 0.9945 60 0.9355 0.9356 0.9352  0.9351 0.9353 0.9352 0.9942
80 0.9954 0.9954 0.9955 0.9951 0.9953 0.9949 0.9952 80 0.9355 0.9353 09352 0.9352 0.9353 0.9351 0.9948
100 0.9957 0.9957 0.9956 0.9954 0.9954 0.9951 0.9955 100 0.9356 0.9356 0.9351 0.9353 0.9352 0.9353 0.9954
120 0.9957 0.9957 0.9957 0.9956 0.9957 0.9955 0.9955 120 0.9353 0.9355 09352  0.9354 0.9353 0.9353 0.9958
150 0.9958 0.9958 0.9957 0.9957 0.9957 0.9956 0.9956 150 0.9353 0.9354 0.9351 0.9351 0.9352 0.9351 0.9959
3 10 0.9847 0.9850 0.9852 0.9835 0.9840 0.9816 0.9845 8 10 0.9853 0.9855 0.9854  0.9855 0.9853 0.9828 0.9223
20 0.9910 0.9912 0.9916 0.9902 0.9907 0.9888 0.9905 20 0.9929 0.9932 0.9934  0.9928 0.9931 0.9906 0.9400
40 0.9927 0.9927 0.9928 0.9921 0.9923 0.9912 0.9919 40 0.9948 0.9948 0.9949  0.9943 0.9947 0.9931 0.9424
60 0.9932 0.9931 0.9932 0.9927 0.9930 0.9922 0.9929 60 0.9953 0.9954 0.9954  0.9950 0.9952 0.9942 0.9441
80 0.9935 0.9934 0.9934 0.9930 0.9932 0.9928 0.9930 80 0.9957 0.9958 0.9957  0.9953 0.9955 0.9950 0.9448
100 0.9936 0.9936 0.9935 0.9933 0.9934 0.9931 0.9933 100 0.9959 0.9959 0.9959  0.9956 0.9958 0.9953 0.9450
120 0.9937 0.9937 0.9936 0.9935 0.9936 0.9934 0.9936 120 0.9960 0.9960 0.9960  0.9958 0.9960 0.9958 0.9453
150 0.9937 0.9937 0.9937 0.9936 0.9937 0.9936 0.9936 150 0.9961 0.9961 0.9961  0.9960 0.9961 0.9958 0.9458
4 10 0.9860 0.9858 0.9862 0.9862 0.9863 0.9840 0.9849 9 10 0.9250 0.9244 0.9293  0.9241 0.9256 0.9230 0.9268
20 0.9914 0.9915 0.9915 0.9914 0.9916 0.9897 0.9894 20 0.9393 0.9397 0.9409  0.9358 0.9349 0.9342 0.9337
40 0.9926 0.9925 0.9928 0.9924 0.9926 0.9915 0.9904 40 0.9444 0.9433 0.9442  0.9409 0.9406 0.9406 0.9348
60 0.9928 0.9930 0.9931 0.9928 0.9931 0.9923 0.9914 60 0.9454 0.9447 0.9454  0.9426 0.9431 0.9417 0.9348
80 0.9931 0.9931 0.9932 0.9930 0.9932 0.9927 0.9921 80 0.9458 0.9453 0.9461  0.9434 0.9438 0.9433 0.9350
100 0.9933 0.9933 0.9933 0.9932 0.9933 0.9930 0.9927 100 0.9460 0.9457 0.9461  0.9447 0.9448 0.9435 0.9353
120 0.9934 0.9935 0.9935 0.9934 0.9935 0.9932 0.9932 120 0.9461 0.9459 0.9461  0.9456 0.9454 0.9451 0.9351
150 0.9935 0.9935 0.9934 0.9935 0.9935 0.9934 0.9933 150 0.9461 0.9459 0.9461  0.9458 0.9458 0.9457 0.9352
5 10 0.9890 0.9889 0.9890 0.9886 0.9887 0.9867 0.9879
20 0.9938 0.9937 0.9942 0.9934 0.9938 0.9925 0.9928
40 0.9951 0.9951 0.9953 0.9948 0.9951 0.9945 0.9937
60 0.9956 0.9956 0.9957 0.9953 0.9956 0.9949 0.9949
80 0.9959 0.9959 0.9960 0.9956 0.9957 0.9954 0.9954

100 0.9961 0.9961 0.9960 0.9959 0.9959 0.9957 0.9957
120 0.9962 0.9962 0.9962 0.9960 0.9961 0.9959 0.9959
150 0.9962 0.9962 0.9962 0.9962 0.9962 0.9961 0.9961

where n is the number of runs, f; indicates the fitness value within all the runs. Note that the lower value of Std metric
of the i-th run, and f is the mean of the fitness value obtained refers to better stability.
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FIGURE 5. Average SNR values obtained by each algorithm for selected threshold levels of 10 to 100.

To check the stability of our proposed model, the aver-
age of Std values was calculated for each algorithm using
20 independent runs on all test images and all the thresh-
old levels and introduced in Fig. 3, which shows that
IMPA and MPA have lower Std values compared with
the other algorithms investigated. As a result, both IMPA
and MPA provide results with better consistency and
stability.

C. PEAK SIGNAL TO NOISE RATIO (PSNR)

PSNR is an indicator used to evaluate the similarity of the
predicted image with the original by calculating the ratio
between the square of 255 and the mean square error between
the original image and the predicted one. This metric can be
calculated using Eq. 21 and Eq. 22.
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where MSE is the mean squared error which is calculated as
follows:

Y M N IAGL) — G
M« N

where A (i, j) , S(i, ) represent the gray level of the predicted
and original images, respectively. M, and N are the number of
columns and rows of the image matrix. The greater value of
the PSNR refers to a better quality of the predicted image.
The average PSNR values obtained over 20 runs by each
algorithm using Kapur’s entropy are listed in Table 1, which
shows that both IMPA and MPA have the best performance
in 40 cases out of 72, while IMPA alone has the best
performance in 31 cases. With small threshold levels, pro-
posed IMPA algorithm is competitive with the EO algorithm.
In contrast, the proposed algorithm presents the best PSNR
values with an increase in the number of thresholds level.
Based on this analysis, the proposed algorithm can determine
the relevant threshold values for each image, especially for

MSE =

(22)
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FIGURE 6. Average SSIM values obtained by each algorithm for selected threshold levels between 10 and 100.

the images with high threshold levels, and subsequently,
the segmented image generated by IMPA is very close to the
original. Fig. 4 shows the average of the PSNR values across
20 runs, from which it can be seen that the proposed IMPA
algorithm has the best performance for high threshold levels,
and its performance is competitive of EO and MPA for small
threshold levels.

D. SIGNAL TO NOISE RATIO (SNR)

SNR [59] is the error summation method that is used to
measure the quality of the predicted images by calculating
the ratio of the error between the original and the segmented
images, and is computed using the Eq. 23.

12
SNR = 1010g10 (E)

where I is the average of the intensities of the original image
and is calculated using Eq. 24.

YL X))
N M %N

(23)

1 24)
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and SE is the squared error and is calculated using Eq. 25.

SE=Y0 Z,il X (G, j) = Y G, )l

where X (i,j), Y(i,j) represent the original and the seg-
mented images, respectively. Note that the higher value of
SNR refers to better performance.

The average of SNR values obtained over 20 runs by each
algorithm using Kapur’s entropy are listed in Table 2, which
shows that IMPA is competitive with EO for small threshold
levels and is superior for high threshold levels, as shown
in Fig.5.

(25)

E. STRUCTURED SIMILARITY INDEX METRIC (SSIM)

The SSIM [60] metric is used to calculate the differ-
ence between the structure of the segmented and original
image, which takes into consideration the structure similarity,
brightness, and contrast distortion between the original and
segmented images. The mathematical model of SSIM is
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TABLE 4. Average UQI values of each algorithm.

HHA  WOA  SCA  SSA  Im HHA  WOA  SCA _ SSA
Im T IMPA MPA EOI[57] 136] 31] 156] 58] T IMPA MPA EOI[57] 36] 131] 56] 58]
Ct1 10 0.9897 0.9896 0.9898 0.9895 0.9896 0.9875 0.9889 X6 10 0.9787 0.9810 0.9748 0.9668 0.9706 0.9623 0.9796
20 0.9949 0.9949 0.9951 0.9947 0.9947 0.9935 0.9942 20 0.9923 0.9920 0.9922 0.9888 0.9901 0.9881 0.9914
30 0.9963 0.9962 0.9964 0.9959 0.9961 0.9951 0.9958 30 0.9941 0.9938 0.9940 0.9916 0.9932 0.9909 0.9930
40 0.9968 0.9968 0.9968 0.9965 0.9967 0.9962 0.9962 40 0.9948 0.9946 0.9947 0.9937 0.9939 0.9926 0.9940
50 0.9970 0.9971 0.9970 0.9967 0.9969 0.9966 0.9968 50 0.9951 0.9949 0.9949 0.9943 0.9947 0.9937 0.9943
60 0.9972 0.9972 0.9972 0.9970 0.9971 0.9968 0.9969 60 0.9953 0.9951 0.9951 0.9947 0.9948 0.9943 0.9947
80 0.9973 0.9973 0.9973 0.9972 0.9972 0.9971 0.9971 80 0.9953 0.9953 0.9953 0.9950 0.9951 0.9947 0.9949
100 0.9973 0.9973 0.9973 0.9973 0.9973 0.9972 0.9973 100 0.9954 0.9953 0.9953 0.9952 0.9953 0.9950 0.9952
Ct2 10 0.9906 0.9901 0.9903 0.9903 0.9903 0.9884 0.9887 X7 10 0.9313 0.9312 0.9312 0.9304 0.9309 0.9295 0.9294
20 0.9949 0.9949 0.9955 0.9941 0.9948 0.9933 0.9940 20 0.9364 0.9362 0.9358 0.9352 0.9359 0.9352 0.9348
30 0.9964 0.9966 0.9969 0.9961 0.9964 0.9956 0.9957 30 0.9371 0.9372 0.9365 0.9361 0.9367 0.9363 0.9364
40 0.9973 0.9972 0.9972 0.9967 0.9970 0.9965 0.9967 40 0.9372 0.9370 0.9367 0.9364 0.9367 0.9364 0.9364
50 0.9975 0.9974 0.9974 0.9971 0.9972 0.9967 0.9972 50 0.9372 0.9371 0.9368 0.9368 0.9367 0.9369 0.9364
60 0.9977 0.9976 0.9975 0.9973 0.9975 0.9971 0.9973 60 0.9370 0.9370 0.9365 0.9368 0.9367 0.9367 0.9363
80 0.9978 0.9977 0.9977 0.9976 0.9976 0.9974 0.9976 80 0.9368 0.9370 0.9366 0.9367 0.9367 0.9368 0.9365
100 0.9978 0.9978 0.9978 0.9977 0.9977 0.9976 0.9977 100 0.9368 0.9367 0.9366 0.9368 0.9366 0.9368 0.9368
Ct3 10 0.9871 0.9869 0.9873 0.9858 0.9859 0.9823 0.9856 X8 10 0.9899 0.9895 0.9892 0.9894 0.9892 0.9865 0.9878
20 0.9930 0.9932 0.9935 0.9923 0.9928 0.9913 0.9919 20 0.9965 0.9967 0.9967 0.9959 0.9966 0.9938 0.9948
30 0.9947 0.9946 0.9949 0.9942 0.9944 0.9933 0.9937 30 0.9982 0.9981 0.9983 0.9977 0.9980 0.9961 0.9968
40 0.9952 0.9952 0.9953 0.9947 0.9948 0.9939 0.9949 40 0.9989 0.9988 0.9989 0.9982 0.9985 0.9976 0.9976
50 0.9955 0.9954 0.9954 0.9951 0.9952 0.9946 0.9953 50 0.9991 0.9991 0.9991 0.9987 0.9990 0.9982 0.9984
60 0.9956 0.9956 0.9955 0.9953 0.9954 0.9951 0.9953 60 0.9993 0.9993 0.9993 0.9989 0.9992 0.9986 0.9987
80 0.9957 0.9957 0.9957 0.9955 0.9956 0.9954 0.9956 80 0.9994 0.9994 0.9994 0.9993 0.9994 0.9991 0.9991
100 0.9958 0.9957 0.9957 0.9956 0.9957 0.9956 0.9956 100 0.9995 0.9995 0.9994 0.9994 0.9995 0.9993 0.9993
Ct4 10 0.9880 0.9880 0.9881 0.9881 0.9883 0.9864 0.9870 X9 10 0.9270 0.9283 0.9309 0.9260 0.9285 0.9249 0.9264
20 0.9934 0.9932 0.9935 0.9933 0.9936 0.9919 0.9913 20 0.9424 0.9409 0.9437 0.9372 0.9371 0.9340 0.9394
30 0.9944 0.9945 0.9946 0.9944 0.9945 0.9935 0.9923 30 0.9468 0.9460 0.9469 0.9418 0.9437 0.9409 0.9455
40 0.9948 0.9947 0.9950 0.9947 0.9949 0.9943 0.9932 40 0.9474 0.9474 0.9478 0.9450 0.9453 0.9449 0.9465
50 0.9951 0.9951 0.9952 0.9950 0.9951 0.9946 0.9941 50 0.9482 0.9477 0.9481 0.9469 0.9467 0.9454 0.9465
60 0.9952 0.9952 0.9953 0.9951 0.9952 0.9950 0.9944 60 0.9485 0.9482 0.9485 0.9468 0.9472 0.9466 0.9473
80 0.9953 0.9954 0.9953 0.9953 0.9954 0.9952 0.9950 80 0.9483 0.9483 0.9483 0.9479 0.9479 0.9476 0.9476
100 0.9954 0.9954 0.9954 0.9954 0.9954 0.9953 0.9951 100 0.9486 0.9484 0.9486 0.9482 0.9480 0.9479 0.9480
Cts 10 0.9907 0.9907 0.9907 0.9902 0.9905 0.9878 0.9890
20 0.9955 0.9955 0.9959 0.9953 0.9954 0.9943 0.9946
30 0.9968 0.9967 0.9970 0.9965 0.9968 0.9957 0.9954
40 0.9974 0.9974 0.9974 0.9971 0.9973 0.9968 0.9968
50 0.9977 0.9977 0.9977 0.9975 0.9975 0.9972 0.9971
60 0.9978 0.9978 0.9978 0.9976 0.9977 0.9974 0.9974
80 0.9979 0.9979 0.9979 0.9978 0.9979 0.9977 0.9978
100 0.9980 0.9980 0.9979 0.9979 0.9979 0.9979 0.9979
TABLE 5. Fitness values of each algorithm.
WOA  SCA  SSA Im WOA  SCA  SSA
Im T IMPA MPA  EO  HHA (56] (58] T IMPA  MPA  EO  HHA o (56] (58]
Ctl 10 33.3836 33.3791 33.3788 33.3673 33.3835 33.0613 33.3116 X6 10 31.5893 31.5929 31.5752 31.2919 31.3899 30.7541 31.1677
20 50.6666 50.7408 50.6118 50.0839 50.3998 48.6168 50.0565 20 47.2966 47.0362 47.3958 46.4763 46.8973 44.6209 46.2646
30 63.2219 63.0729 62.7617 61.4903 62.3863 58.8067 61.9757 30 58.0215 57.7706 58.1852 56.3265 57.2249 52.6965 54.8890
40 72.0141 71.8148 71.4438 69.0027 70.7450 65.1804 69.7906 40 65.2540 64.5915 65.0492 62.6099 63.7088 58.9034 60.8165
50 78.1178 77.6420 76.5053 74.3391 75.7645 69.7310 75.0080 50 69.9040 68.8916 69.4750 66.7810 68.2375 61.9954 65.2348
60 81.7290 81.4173 80.1712 77.8921 78.7307 73.6387 77.0840 60 72.4115 71.7330 71.7199 68.7843 70.1651 64.5805 67.4993
80 84.3752 82.7900 82.9483 80.6207 82.9251 76.2387 80.0392 80 73.8612 72.4551 72.9647 71.1998 72.8018 67.3230 69.2689
100 83.8191 82.5376 82.3885 81.5434 83.3713 77.9723 80.9316 100 72.8533 71.4457 71.2847 71.3912 73.0903 67.5624 69.5892
Cct2 10 32,9948 33.0503 33.0207 32.9895 33.0003 32.5761 32.8997 X7 10 31.1518 31.1570 31.1576 31.0972 31.1250 30.6794 30.9437
20 50.7444 50.7180 50.4685 50.0280 50.3551 48.5961 50.1893 20 48.0638 48.0734 48.1347 47.6678 47.9632 45.9222 47.0744
30 62.9013 62.6455 62.7304 61.4564 62.3250 58.7272 61.5795 30 59.6533 59.3953 59.8302 58.0685 59.2733 54.7545 57.3738
40 71.8339 71.3278 71.1538 68.9371 70.0454 65.2889 69.3460 40 67.5255 66.7608 67.6199 65.3957 66.5310 61.2539 63.7609
50 78.0826 77.3373 76.7628 73.8218 75.8373 69.8954 74.5778 50 72.4357 72.0532 72.5209 69.0589 70.7139 64.7523 68.6399
60 81.9169 80.3250 80.3818 77.3270 78.8840 73.3069 78.0291 60 75.5314 74.7870 75.5839 72.4266 73.6599 67.5709 70.5475
80 84.1614 83.3880 82.0502 80.5783 82.9959 76.6019 79.9523 80 77.3389 76.1367 77.0588 74.0920 76.4432 70.4026 72.8325
100 84.1750 83.0583 82.3519 81.1241 84.2952 77.9796 80.2345 100 76.7677 75.3350 75.8684 74.6560 77.2512 71.1332 73.0065
Ct3 10 32.8796 32.9977 32.9013 32.7559 32.7881 32.3223 32.5762 X8 10 33.1972 33.1965 33.1940 33.1845 33.1962 32.8727 33.1530
20 50.0643 50.0544 50.0320 49.4083 49.6320 47.6843 49.5135 20 50.5809 50.6196 50.6264 50.3357 50.5401 48.6413 49.8881
30 62.3648 62.2672 62.3457 60.6139 61.3919 57.8846 60.7238 30 62.8081 62.9281 62.3849 61.7474 62.5851 58.5744 61.5774
40 70.9823 70.8978 70.3592 68.3540 69.6190 64.9980 68.6979 40 71.8516 71.7460 71.0376 69.2304 70.9029 65.5907 69.8655
50 77.4592 76.5634 75.6136 72.9337 75.2009 69.1971 73.8070 50 77.9587 77.5786 76.2312 73.8804 75.9637 70.2503 74.5393
60 81.4128 80.1103 79.4793 77.0907 78.2720 72.9562 76.9950 60 82.0902 80.8981 79.7576 77.7272 79.9423 73.2119 78.3120
80 83.6163 83.0158 82.1438 79.6195 82.7296 76.4800 79.4819 80 84.4951 82.9751 82.2213 80.8753 83.8355 76.5397 80.4860
100 83.6217 81.6677 81.9086 81.0315 83.0729 77.4564 79.7233 100 84.1934 82.5087 82.6473 81.9399 84.8653 78.0873 80.1949
Ct4 10 34.0596 34.0604 34.0698 34.0556 34.0642 33.7030 33.9965 X9 10 30.2267 30.2082 30.2673 30.1879 30.2103 29.8635 30.1062
20 51.3501 51.3218 51.3354 51.1577 51.3971 49.4443 50.7032 20 46.8422 46.6803 46.8562 45.7739 45.9310 44.1466 45.8979
30 63.7392 63.5213 63.6234 62.4526 63.4963 59.3442 62.3605 30 57.9428 57.7300 58.1393 56.0265 56.6398 52.9713 56.3791
40 72.4528 72.1003 72.2635 70.1696 71.9924 66.0286 70.6134 40 65.1922 65.1086 65.3392 62.1173 63.3764 58.7390 62.7586
50 78.8880 78.3060 77.0876 74.9167 76.9559 70.7051 75.3911 50 70.0605 69.5722 70.3854 65.6610 66.7122 62.5229 66.1647
60 82.5116 81.9368 80.5221 78.2999 80.7298 74.2779 78.2886 60 72.1979 71.4663 72.6608 68.3612 69.7424 65.1107 68.0328
80 85.1952 83.9329 84.0062 82.4015 84.3660 77.1946 81.2387 80 73.4339 72.1343 73.7919 71.0006 72.2233 67.3730 69.5737
100 85.0031 83.0850 81.2806 82.3355 85.0956 78.4746 81.0291 100 73.1347 71.2715 72.9829 71.1972 72.1598 67.8850 69.4808
Cts 10 33.1003 33.0785 33.0879 33.0808 33.0409 32.6580 32.9509
20 50.5406 50.4425 50.3396 49.9905 50.3133 48.4944 50.0702
30 62.8457 62.6845 62.4136 61.4570 62.2537 58.6242 61.7189
40 71.6470 71.6542 71.0002 68.4977 70.0888 65.2492 69.7716
50 77.9361 77.4284 77.1878 73.6602 74.6824 69.7864 74.7814
60 81.6466 80.8228 80.4929 77.2242 78.5282 73.1465 77.3013
80 83.8592 82.8844 82.6728 80.4211 82.0528 76.3083 80.1077
100 83.6500 82.4052 81.1981 81.1517 83.4398 77.5154 80.2067
formulated as in Eq.26. where 1,, ity are the mean intensities of the original and
segmented image; o, and oy are the standard deviation of the
SSIM(O, S) = Creops +a) (2005 +b) (26) original and segmented image; o is the co-variance between

VOLUME 8, 2020

(13 + 12 +a) (62 + 02 +b)

the predicted and original image; and a and b are constant
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FIGURE 7. Average UQI of each algorithm on selected threshold levels from 10 to 100.

values equal to 0.001 and 0.003 respectively. A higher value
of SSIM indicates better results.

The average SSIM values obtained over 20 runs by
each compared algorithm using Kapur’s entropy are listed
in Table 3, from which it can be identified that both IMPA
and MPA are competitive with EO for both small and high
thresholds levels. Fig. 6 shows the average of the SSIM values
over 20 runs.

F. UNIVERSAL QUALITY INDEX (UQI)

UQI [61] is an indicator used to measure the quality of the
segmented image based on three factors: loss of correlation,
brightness, and contrast distortion instead of the error summa-
tion between the original and segmented. The mathematical
model of UQI is formulated as in Eq. 27.

(40osthofls)
(15 +13) (05 + 03)
O, and S refer to the original and segmented images, (Lo, [Ls

are the mean intensities of the original and segmented image;
0, and oy are the standard deviation of the original and

UQI(O, S) = (27

79534

segmented image; o, is the co-variance between the pre-
dicted and original image. A higher value of UQI indicates
better results.

The average UQI values obtained over 20 runs by each
algorithm using Kapur’s entropy are listed in Table 4, which
shows that both IMPA outperforms all the other algorithms
in 26 of 72 cases, while achieves the same values as EO
in 15 cases. Meanwhile, MPA outperforms both EO and
IMPA in 2 cases of 72. Further, EO outperforms our pro-
posed IMPA in 19 cases of 72. The proposed IMPA therefore
achieves high quality for the segmented images especially for
the images with the upper threshold levels. Fig. 7 introduces
the average of the UQI values obtained over 20 run at each
threshold level.

G. FITNESS VALUES USING KAPUR’'S ENTROPY

Table 5 shows the average of the fitness values across 20 runs
obtained by each algorithm using Kapur’s entropy. It can
be seen that both IMPA and MPA outperform the other
algorithms in 55 cases of 72, while IMPA alone could out-
perform in 50 cases of the 72, presenting the best fitness
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FIGURE 8. Average fitness values of each algorithm on selected threshold levels from 10 to 100.
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FIGURE 9. Average fitness values obtained by each algorithm on all threshold levels (10 to 100).

values with all threshold levels in most cases. Fig. 8 shows the
average of the fitness values within 20 times obtained by each
algorithm using Kapur’s entropy for selected threshold levels
from 10 to 100. Fig. 9 presents the average across 20 runs of
Kapur’s entropy for all thresholds levels, from which it can be
seen that the proposed IMPA algorithm outperforms all other
algorithms investigated.
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H. CONVERGENCE RATE

The convergence toward the best solution is illustrated
in Fig.10; at the outset of iterations, MPA has high explo-
ration capabilities, so the convergence rate toward the best
solution is low compared with the other algorithms, as shown
in Fig.10. After that, at the intermediate phase of the opti-
mization process specifically between maximum iterations
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FIGURE 10. (Continued.) Convergence rate towards the best value obtained by each algorithm using Kapur's entropy.

and maximum iterations, MPA is between the exploration
and exploitation operators, where it divides the population
into two parts: the first part will move using the explo-
ration operator and while the second will be moved using
the exploitation operator. So in this case, MPA moves faster
toward the best solution, and the convergence rate increases,
this is illustrated in Fig.10 at the half of the iterations. In the
final stage, all the prey would be moved with the exploitation
step, so the convergence rate increases significantly towards
the best solution.

However, MPA still suffers from low convergence due to
spending many iterations in exploration, so RDR is used
to help IMPA to achieve a high convergence rate toward
the optimal solution as shown in Fig.10. Further, IMPA
can outperform all the other algorithms in convergence rate
for all threshold levels, especially for high threshold levels.
In Figure 10, the convergence rate is shown for all algorithms
for the threshold levels 20, 30, 40, 80, and 100. For threshold
level 20, WOA has a higher convergence rate, but after
100 iterations, the performance of WOA drops, while IMPA
increases significantly. For threshold level 20, MPA couldn’t
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outperform WOA. For threshold levels 30, 40, 80, and 100,
IMPA, and MPA could outperform all the other algorithms in
convergence rate during the second half of iterations.

I. SEGMENTED IMAGES OF THE PROPOSED MODEL

This section shows a graphical comparison between MPA
and IMPA to illustrate better the performance improvement.
Table 6 shows the segmented images obtained by the pro-
posed IMPA algorithm and MPA. All the results of the per-
formance metrics discussed before confirm that IMPA could
produce higher quality segmented images than MPA. As a
result, the segmented images produced by IMPA, and intro-
duced in Table 6 is better than the images produced by MPA,
and introduced also in Table 6 It is noticeable in Table 6 that
IMPA outperforms MPA for all threshold levels.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new hybrid model to detect
the COVOD-19 using an improved marine predators algo-
rithm (IMPA) and a ranking-based diversity reduction (RDR)
strategy to obtain the number of particles that can’t find a
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TABLE 6. The segmented images obtained by the proposed IMPA algorithm.

Segmented images
Threshold IMPA MPA
level ~
10 , il

20

30

40

50

60

80

100
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better solution within a consecutive number of iterations.
Our model works on the x-ray images to extract similar
small regions, in an attempt to obtain the regions that may
contain COVID-19. Extracting these regions can be treated
as an image segmentation problem. The performance of our
proposed IMPA algorithm was compared with five state-
of-art algorithms—whale optimization algorithm (WOA),
sine-cosine algorithm (SCA), salp swarm algorithm (SSA),
Harris hawks algorithm (HHA), and Equilibrium optimizer
(EO)—using a set of chest X-Ray images with threshold
levels between 10 and 100. The performance of our proposed
IMPA algorithm is shown to outperform all other investigated
algorithms in the fitness values, Std, and a range of threshold
metrics. In addition, the performance of our proposed model
and EO was shown to be convergent on all the thresholds level
in SSIM and UQI metrics.

In the future work, the proposed algorithm can be
applied to color image segmentation and different medical
applications.
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