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ABSTRACT Road pavement cracks detection has been a hot research topic for quite a long time due to
the practical importance of crack detection for road maintenance and traffic safety. Many methods have
been proposed to solve this problem. This paper reviews the three major types of methods used in road
cracks detection: image processing, machine learning and 3D imaging based methods. Image processing
algorithms mainly include threshold segmentation, edge detection and region growing methods, which are
used to process images and identify crack features. Crack detection based traditional machine learning
methods such as neural network and support vector machine still relies on hand-crafted features using image
processing techniques. Deep learning methods have fundamentally changed the way of crack detection
and greatly improved the detection performance. In this work, we review and compare the deep learning
neural networks proposed in crack detection in three ways, classification based, object detection based and
segmentation based.We also cover the performance evaluationmetrics and the performance of thesemethods
on commonly-used benchmark datasets. With the maturity of 3D technology, crack detection using 3D data
is a new line of research and application. We compare the three types of 3D data representations and study
the corresponding performance of the deep neural networks for 3D object detection. Traditional and deep
learning based crack detection methods using 3D data are also reviewed in detail.

INDEX TERMS Crack detection, image processing, deep learning, 3D imaging.

I. INTRODUCTION
With the rapid development of road traffic, people have
paid more and more attention to the importance of pave-
ment maintenance as road surface cracks not only affect the
transportation efficiency but also pose a potential threat to
vehicle safety. Many studies have been conducted to detect
the cracks of pavement surfaces. In early pavement crack
detection system, people analyzed the road images collected
by line scan or area scan cameras to examine the road
conditions. Such systems include the GERPHO [1] system
used in France, the DHDV [2] detection system of American
expressway, and the PAVUE [3] system of IMS in Sweden
and so on. The development of hardware technologies such
as the appearance of CCD [4] digital photography has greatly
advanced the effect of pavement crack detection.

Defect detection is to distinguish the part with defect fea-
tures from other defect free parts in the image, which has
both links and differences with image segmentation. From the
Wikipedia definition [5], image segmentation is the process
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FIGURE 1. Sample surface defect types: CRACK-Crack, POTHO-Pothole,
INPAT-Inlaid patch, APPAT-Applied patch, OPJOI-Open joint.

of assigning a label to every pixel in an image such that pixels
with the same label share certain characteristics. The idea
of image segmentation can be used to segment the defect
and the rest part of the image. The defects appearing on the
surface may have various shapes and types. Fig.1 shows a few
examples. Therefore, defect detection usually contains two
subtasks, i.e. locate the defect pixels and classify the type of
the defects.

Researchers have conducted in-depth researches on road
crack detection and proposed many methods to crack the
problem, from image processing to machine learning meth-
ods, including deep learning methods which have been
widely used nowadays. Image processing methods mainly
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include three categories [6], threshold segmentation, edge
detection and region growing methods. The threshold seg-
mentation method divides the image pixels into several cat-
egories by setting a proper pixel intensity threshold, so as
to separate the target crack from the background. The edge
detection method detects the edges of the road crack through
edge detection operators such as Sobel operator [7], Prewitt
operator [8], and Canny operator [9]. The region growing
method depicts the specific information inside the crack by
assembling the pixels with similar characteristics to form a
region.

The emergence of machine learning makes road crack
detection rise to a new level. Image processing techniques
can only be able to analyze some superficial defect fea-
tures, while machine learning can learn some deep features.
Machine learning takes advantage of the similarity between
data through the design of algorithms, so that the computer
can master the learning rules and predict from the unknown
data by itself. Especially, deep learning methods have greatly
advanced the accuracy of pavement crack detection.

Unlike other types of surface defects, pavement cracks are
usually deep and have large size, such as block cracks and
alligator cracks [10]. It is practically meaningful to measure
and detect the depth of the cracks. The detection of crack
depth can predict the future trend of the crack, which is
helpful to repair the pavement in time and reduce potential
safety risks [11]. In recent years, 3D imaging technology
has achieved great progress, making cracks detection in 3D
images has become a new research direction for scholars.
Owing to the extra depth dimension, the 3D structure of
road cracks can be constructed from the 3D images. Besides
this, 3D images can reduce the effect of shadow and other
noise [12].

In recent years, there have been several reviews available
from the literature. Sylvie et al. summarized the application
of image processing technologies in road detection, and pro-
posed a new automatic road cracks detection and evaluation
comparison protocol [13]. In the work of [14], Gopalakrish-
nan compared some deep learning frameworks, networks and
hyper-parameters used in pavement crack detection, and clas-
sified the previous papers, which provided a good reference
for developing pavement crack detection models. Tom et al.
listed different kinds of pavement defects, discussed different
defect detection methods and assessed different defect data
acquisition devices [15]. In [16]Mathavan et al. discussed the
detection of road surface lesions from the perspective of 3D
image defect detection, summarized the application of 3D
imaging technologies in road surface monitoring, analyzed
the imaging principle of different devices and compared the
advantages and disadvantages of different pavement detec-
tion technologies. These reviews address different emphasis
or aspect on road surface detection. In this review, we provide
a comprehensive review of pavement crack detection meth-
ods, especially the in-depth analysis of deep learning and 3D
image based methods.

The rest of the paper is organized as follows. Section II
briefly reviews the crack detection methods mainly based
on image processing techniques. Crack detection based on
machine learning methods, including unsupervised learn-
ing, traditional supervised learning and deep learning, are
reviewed in Section III. Section IV talks about the 3D imag-
ing technologies and corresponding methods for pavement
defect detection. Discussions about the existing problems and
the prospect of crack detection is presented in Section V.
Section VI concludes this work.

II. CRACK DETECTION BASED ON IMAGE PROCESSING
Pavement is exposed to the natural environment for long
time, often affected by rain, shadow, stains and other factors.
Therefore, the images captured by imaging sensors usually
contain a lot of noises, textures and interferences. Cracks
on images appear as thin, irregular, dark curves, surrounded
by strong textured noise. Researchers have proposed various
image processingmethods to reduce the influence of the noise
on detection. These methods mainly include three categories:
threshold segmentation, edge detection and region growing.

A. THRESHOLD SEGMENTATION METHODS
Threshold segmentation [17] is a classical method in image
segmentation. For each pixel in the image, we can judge
whether its characteristic attributes meet a threshold require-
ment to determine the pixel belongs to the target area or the
background. This way, we can convert a gray image into a
binary image. Let f (x, y) be the original image and T be the
threshold value, image segmentation can be written as

g(x, y) =

{
1, f (x, y) ≥ T
0, f (x, y) < T

Obtaining reasonable threshold value is the key of this
method. Dynamic threshold method and local threshold
method have achieved good results in pavement defect detec-
tion. Oliveira and Correia [18] recognized the potential cracks
by identifying dark pixels in images with dynamic thresh-
old. In their work, thresholded images are divided into non-
overlapping blocks by entropy computation, and secondary
dynamic threshold of the generated Entropy Block Matrix
is used as the basis for identifying image blocks containing
crack pixels. Peng et al. proposed a twice-threshold segmen-
tation [19]. Firstly, the improved Otsu threshold segmentation
algorithm was used to remove the road markers in the run-
way image. Then, the improved adaptive iterative threshold
segmentation algorithm was used to segment images which
removed the markers. Finally, the outline of the crack can
be obtained through morphological denoising. In [20], a new
multi-scale local optimal threshold segmentation algorithm
was proposed to segment pavement cracks through crack den-
sity distribution. Compared with the global threshold method
and the optimal threshold method, this method achieved a
better segmentation effect.
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FIGURE 2. Detection effect of different edge operators.

B. EDGE DETECTION METHODS
Edge detection methods can also be used in crack detec-
tion. Common edge detection operators include Sobel oper-
ator, Roberts operator, Prewitt operator and Canny operator.
Different operators have different detection effects on edge
of the same type. Fig. 2 shows an example. Simply using
a single operator can hardly reach the expected effect.
Many scholars have improved the edge detection operators.
Zhao et al. proposed an improved Canny edge detection
method for road edge detection [21]. Mallat wavelet trans-
form was used to enhance the blurred edge, and a better
adaptive threshold Canny algorithm is obtained by using
genetic algorithm [22]. Ayenu-Prah and Attoh-Okine [23]
studied the road crack detection method which combines
bi-dimensional empirical mode decomposition (BEMD) and
Sobel edge detection. BEMD is an extension of EMD [24],
which removes noise from the signal without the need for
complex convolution processes.

C. REGION GROWING METHODS
The edge detection algorithm can get the edge distribution
of crack defects and outline the crack contour, but it can
not describe the information of internal pixels of cracks
concretely. The recognition method based on region growing
provides another idea for pavement crack detection. The basic
idea of region growing is to gather similar pixels to form
a region. The selection of seeds is very important, which
greatly affects the accuracy of image segmentation. In the
work of [25], after the road surface image was preprocessed,
the lane was marked and the uneven background part was
also processed. Then, the crack seeds were selected by grid
cell analysis and connected by Euclidean minimum spanning
tree structure. In this way, cracks can be detected quickly and
effectively. Li et al. proposed an automatic cracks detection
method based on FoSA-F* seed growth for better detection
of blurred and discontinuous cracks [26]. It exploited seed-
growing strategy to eliminate the requirement that start and
end points should be surrounded in advance. The global
search space is reduced to the interested local space to
improve the search efficiency.

III. CRACK DETECTION BASED ON MACHINE LEARNING
Machine learning has become a hot research topic and widely
used in various areas. It can give predictions by learning the
rules embedded in the data. Supervised learning and unsuper-
vised learning are commonly used for cracks detection and
analysis.

A. UNSUPERVISED LEARNING METHODS
The biggest difference between unsupervised learning and
supervised learning is absence of data labels in training.
Training samples for unsupervised learning have no labels
and no definite results for output, the computer needs to
learn the similarity between samples by itself and classify the
samples. The advantage of unsupervised learning is that there
is no need to label, reducing the influence of human subjective
factors on the results.

Akagic et al. proposed a new unsupervised road crack
detection method based on gray histogram and Otsu method,
and a better results were obtained under the condition of
low signal-to-noise ratio [27]. In [28], Amhaz et al. intro-
duced an improved unsupervised learning algorithm based on
minimum path selection, which reduced the loop and peak
artifacts in crack detection by estimating the crack width.
In [29], Li et al. used a method based on the minimum
intensity path of the window to extract candidate cracks at
each scale in the image, compared the corresponding relations
of different scale cracks, established a crack evaluation model
based on multivariate statistical hypothesis.

B. SUPERVISED LEARNING METHODS
Supervised learning needs the labels of the training data.
Common supervised learning algorithms include logis-
tic regression [30], Naive Bayesian [31], Support Vector
Machine [32], artificial neural network [33] and random
forest [34]. Xu et al. used the self-learning characteristic of
neural network to transform cracks recognition into crack
probability judgment of each sub-block image in the work
of [35]. They first divide the binary image of cracks into sub-
images and extract the parameters representing the features of
crack from each sub-image, then select representative images
to train back propagation neural network. In [36], Crack For-
est, a road crack detection framework based on random struc-
ture forest, was proposed to effectively solve the problems
of uneven edge cracks and cracks with complex topological
structures. The authors extracted crack features frommultiple
levels and directions to train the random forest model. In [37],
an automatic pavement crack detection scheme is proposed.
Firstly, the crack image is preprocessed to smooth its texture
and enhance any existing cracks. Then the image is divided
into several non-overlapping blocks, each block produces a
feature vector, and the supervised learning algorithm support
vector machine is used to detect the cracks. These methods
heavily rely on the high-quality features extracted from the
images, which needs careful design of the algorithms.

1) DEEP LEARNING METHODS
In recent years, deep learning technologies have achieved
tremendous success in various computer vision tasks such as
image classification, object detection and image segmenta-
tion [38]–[42].Many deep learning basedmethods, especially
deep convolution neural networks, have been proposed for
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road crack detection. According to the way of handling the
crack detection problem, these methods can roughly divided
into three categories, pure image classification methods,
object detection based methods and pixel-level segmentation
methods.

a: CRACK DETECTION BASED ON CLASSIFICATION
Basically, this category of methods divide the input image
into overlapping blocks, and then classify the block image
into classes. If the block contains a certain number of defect
pixels or more, the block is labeled as defective block.
Crack Detection Based on Binary Classification: This kind

of methods divide the input images into overlapping blocks
and then use a deep convolution network to decide if the
block contains crack or not. For example, Lei et al. divided
the road image of 3264 × 2248 into small patches of size
99 × 99 × 3, and used their convolution neural network to
classify these small patches [43]. The output is the probability
that the small patch is crack or not. In the work of [44],
Li et al. modified GoogLeNet [45] to classify image blocks
and realized crack detection on real pavement using smart-
phone. In [46], Cha et al. used MatConvNet [47] to classify
the input pavement 256 × 256 images. Similarly, in [43],
the authors generated image patches of 99×99 from original
pavement images, where the patch is defective if its center
pixel is within 5 pixels of the crack center. The CNN model
was compared to the performance of SVM and boosting
methods. Leo et al. studied the relationship between net-
work depth and network accuracy using a self-designed CNN
model [48]. Unlike the work mentioned above, Chen et al.
processed pavement videos in [49]. In this work, a CNN
model was designed to classify the image patches of size
120 × 120 sampled from video frame and then adopted a
naive Bayes data fusion scheme to aggregate the information
obtained from each video frame to enhance the overall per-
formance and robustness of the system.
Crack Detection Based on Multi-Class Classification:

Crack detection based binary classification is not suitable for
the case when it is required to decide the defect types. In [50],
Fan et al. used one CNN model to learn the structure of
the pavement cracks as a multi-label classification problem.
Small crack image patches of 27 × 27 were used as the
input and the output layer had s × s nodes, representing the
intensity states of square block centered at the crack pixel.
For example, if s = 5, the model predicts 25 pixel state of the
block image of 5× 5. During training, the input 27× 27 was
resized to 5×5 as the ground truth. In [51], Li et al. proposed
a deep CNNs for pavement crack classification based on 3D
pavement images, and classify pavement patches cut from 3D
images into five categories including the normal category.
They trained four supervised CNNs classification models
with different sizes of receptive field, and find that different
size of receptive field have a slight effect on the classification
accuracy. The method proposed by Wang and Hu [52] is
quite different from above methods. In this work, the input
pavement images are segmented into non-overlapping grids

of size 32 × 32 or 64 × 64, then a simple CNN is used to
classify the grid image to decide if it contains crack. After
this, crack skeleton can be represented by the grid cells con-
taining cracks. PCA (principal component analysis) is used to
process the coordinate vector of the crack grid cells to decide
the crack type to be longitudinal, transverse or alligator crack.

b: CRACK DETECTION BASED ON PIXEL SEGMENTATION
Pixel segmentation is to assign a label or a score to each pixel
in the image. In [50] Fan et al. proposed a network structure
with 4 convolutional layers with 2 max-pooling layers and
3 Fully Connected layers to directly segment the original
images. The output can have different resolution, from 1× 1
to 5× 5. In [53] Jenkins et al. proposed a semantic segmen-
tation algorithm for road cracks based on U-Net, where the
U-Net is basically encoder-decoder structure [54]. This net-
work can be divided into encoder layer and decoder layer. The
encoder layer mainly realizes feature mapping of images, and
the decoder layer is mainly used to promote feature vectors
during segmentation and generate probability distribution of
each pixel. Similarly, Zou et al. [55] proposed DeepCrack
which uses encoder-decoder architecture to segment pave-
ment image pixels into crack and background. And in [56],
the propose network structure used 4 convolution layers and
max poolings as the encoder to extract features and 4 subse-
quent modules as the decoder. The work of [57] employed
residue connections inside each encoder and decoder block
and attention gating block before the decoder to retain only
spatially relevant features of the feature map in the shortcut
connection. Fully convolutional network is also often used for
segmentation purpose, such as [58], [59].

c: CRACK DETECTION BASED ON OBJECT DETECTION
Object detection is an important task in computer vision.
Its goal is to locate the object with a bounding box in the
image and decide the object type. Many deep CNN models
have been proposed to improve the accuracy and efficiency,
such as faster R-CNN [60], SSD [61], YOLO [62] etc. Object
detection methods are also popular in road crack detection.

Faster R-CNN is widely used in object detection, which
has three major steps, 1) extract image features using CNN
structure like VGG, 2) propose candidate regions for objects
(RPN), 3) classification of object types and bounding box
coordinates regression. The CNN structure in step 1 is shared
by step 2 and 3. In [63], Suh and Cha used faster R-CNN to
detect the damages in civil infrastructure. Cha et al. modified
the faster R-CNN by using a ZF-net to speedup the feature
extraction in step 1 [64]. ZF-net [65] is slightly modified
from AlexNet [66] which is relatively simple and fast. In [67]
Li et al. used the faster R-CNN to detect six kinds of road
defects. The model can automatically identify and locate
defects under different lighting conditions with high accuracy
and stability.

SSD [61] combines predictions frommultiple feature maps
with different resolutions to naturally handle objects of var-
ious sizes and completely eliminates proposal generation
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and encapsulates the region classification and coordinates
regression in a single network. This makes SSD much faster
than faster R-CNN. And MobileNet [68] is a well known
light weight deep neural networks for mobile applications.
To test the crack detection on devices with limited resources,
Hiroya et al. compared SSD using MobileNet, SSD using
Inception v2 [69] for object detection on smart phones and
found that SSD using Inception v2 is two times slower than
SSD-MobileNet [70]. This conclusion is not surprising as
MobileNet is designed for acceleration purpose.

Unlike above methods, Crack-pot method in [71] com-
bined traditional image processing techniques and deep learn-
ing methods to detect the potholes and cracks in the road.
In these method, edge detection, dilation, contour detec-
tion were applied to generate candidate bounding boxes
for suspected potholes and cracks. Then these regions were
feed into a classification model which is modified from
SqueezeNet [72] by replacing the last pooling layer with a
learned dictionary [73].

Methods based on object detection like SSD and faster
R-CNN propose multiple candidate regions and perform the
location regression using the image features extracted from
CNN structure is a systematic way for object detection.
For defects with compact shapes, these methods may work
well. However, for defects like long curves or scratches
on the surface, the methods may fail to detect due to the
overly large bounding box proposed by the Region Proposal
Network (RPN).

2) METRICS TO EVALUATE MODEL PERFORMANCE
a: PRECISION, RECALL AND F1
The three most commonly used parameters for evaluating
crack detection performance are precision, recall, and F1.
Precision is the ratio of the correct detected results to all
the actual detected results, recall is the ratio of the correct
detected results to all the results that should be detected.
The F1 is the harmonic mean of the precision and the
recall. Precision = TP

TP+FP , Recall =
TP

TP+FN and F1 =
2∗TP

2∗TP+FP+FN . The detection accuracy is defined as Acc =
TP+TN

TP+TN+FP+FN . Table 1 shows the definition of FN (False
Negative), FP (False Positive), TN (True Negative) and TP
(True Positive).

TABLE 1. Definition of FN, FP, TN and TP.

b: ROC, AUC, and IOU
ROC (Receiver Operating Characteristic) [74] curve and
AUC (AreaUnder Curve) [75] can also be used tomeasure the

FIGURE 3. Two ROC curves and AUC.

detection performance. ROC curve describes the relationship
between TP rate and FP rate. Fig. 3 shows two ROC curves.
If the ROC curve is closer to the upper left corner, that’s
mean, FP is low, TP is high, and the better the model works.
Therefore, the Area under the ROC curve, namely AUC is
used to compare two ROC curves.

In object detection using models such as SSD, IOU (Inter-
section over Union) is often used to decide if the object is
correctly detected. The IOU means the overlap rate between
the bounding box given by the model and the ground truth
bounding box. If the IOU is larger than a predefined thresh-
old, which is usually 0.5, the object detection is considered
successful.

IOU =
Detection Result ∩ Ground Truth
Detection Result ∪ Ground Truth

c: AIU, ODS and OIS
In [76], the authors proposed three new evaluation metrics,
AIU, ODS and OIS. AIU is the average intersection over
union between the predicted area and ground truth area. ODS
represents the best F1 score on the dataset with fixed scale,
and OIS represents the aggregated F1 score on the dataset
with the best proportion of each image. ODS and OIS are
defined as follows:

ODS = max
{
2
Pt × Rt
Pt + Rt

: t = 0.01, 0.02, . . . , 0.99
}

OIS =
1

Nimg

Nimg∑
i

max
{
2
Pit×Rt
Pt + Rt

: t=0.01, 0.02, . . . , 0.99
}

where t represents the threshold value, i is the index of image,
Nimg is the total number of images, Pt and Rt are precision
and recall at threshold t on the dataset. Pit and R

i
t represent

the accuracy rate and recall rate on image I respectively.

3) PUBLIC DATASETS FOR ROAD CRACK DETECTION
Road crack detection has been research topic for years. There
are many public datasets to help us do better research.
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a: CRACKFOREST DATASET (CFD)
The CrackForest dataset consists of 118 images of cracks on
urban road surface in Beijing taken by iphone5. Each image is
resized to 480×320 pixels and has been labeled. It is available
at https://github.com/cuilimeng/CrackForest-dataset.

b: AIGLERN DATASET
AigleRN dataset contains 38 pre-processed gray-scale
images on French pavement. Half of them are 991 × 462
and half of them are 311 × 462. The dataset is available at
http://telerobot.cs.tamu.edu/bridge/Datasets.html.

c: CRACK500
500 pictures of pavement cracks with the size of 2000×1500
were taken by smartphone. Each crack image has a binary
mask image for annotation. The dataset is divided into three
parts, 250 images for training, 50 for validation, and 200 for
test. It is available at https://github.com/fyangneil/pavement-
crack-detection.

d: GAPs DATASET
German asphalt pavement disease (Gaps) dataset, includ-
ing 1969 gray-scale pavement images, is partitioned into
1418 training images, 51 validation images, and 500 test
images. The image resolution is 1920 × 1080 pixels.
It is available at http://www.tu-ilmenau.de/neurob/data-sets-
code/gaps/.

e: RESULTS ON BENCHMARK DATASETS
The following tables list the results comparison on different
benchmark datasets. In Table 2 and Table 3, the tolerance
margin is the number of pixels of the predicted pixel away
from the ground truth pixel when we count the true negatives.
For example, if the tolerance margin is 2, a ground truth pixel
is hit if there is a predicted pixel within its 2-pixel neighbor-
hood. AIU, ODS, OIS are used to compare the performance
of different methods on CRACK500 dataset in Table 4.

TABLE 2. Test results on CFD dataset.

TABLE 3. Test results on AigleRN dataset.

Reference [80] presented GAPs dataset to test pavement
defect type classification. On this dataset, the authors com-
pared four methods, shown in Table 5, where the RCD

TABLE 4. Results comparison on CRACK500 dataset.

TABLE 5. Test results on Gaps dataset.

net [43] is just a simple and small CNN with four blocks
of alternating convolutional and max-pooling layers, and the
ASINVOS net [80] is modified from RCD net by adding
more blocks, the ASINVOS-mod [80] is a further version
of ASINVOS net by replacing large convolutional filters by
multiple smaller filters.

4) DATA AUGMENTATION
The training of deep neural network model requires a large
amount of data. However, it is costly to acquire and label
this amount of data. Data augmentation is an effective tech-
nique to relieve the problem. Common data augmentation
methods include image rotation, flipping, mirroring, adding
noise, changing the illumination etc. These techniques are
usually combined to get more data. Table 6 shows the data
augmentation techniques used in road crack detection.

IV. CRACK DETECTION BASED ON 3D DATA
Most of existing crack detection methods are based on
2D images. With the development of stereo camera and
range-based sensors, stereovision is becoming a promising
approach in crack detection as it can provide accurate and
robust data for the depth information.

A. REPRESENTATION OF 3D DATA
Basically, there are three kinds of 3D data representations,
namely, multi-view, point cloud and voxel data.

Earlier representations of 3D images were made through
multi-view. Multi-view represents a collection of 2D images
of a rendered polygon grid captured from different view-
points to convey 3D geometry in a simple manner, as shown
in Fig.4(a). This method is easy to understand, but difficult
to express the spatial structure of 3D data. On the other
hand, since multi-view projections can only represent 2D
contours of 3D objects, some detailed geometrical informa-
tion is inevitably lost during the projection process [81].

Point cloud is a set of points in the 3D space, where
each point is specified by the 3D coordinates (x, y, z) and
other information such as RGB value of color. These huge
amount of points are used to interpolate the geometric shape
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TABLE 6. Data augmentation.

FIGURE 4. Three expressions of 3D data, (a) Multi-view, (b) point cloud
and (c) voxels.

of object surface, the more dense point clouds are, the more
accurate models can be created, this process is called 3D
reconstruction, as shown in Fig.4(b). 3D scanners and LiDAR
devices can be used to generate point cloud data [82].

Point cloud data can convert to structured 3D regular
grids [83], namely, voxel. Voxel is the smallest unit of digital
data in 3D space segmentation, each unit can be viewed as a
grid with fixed coordinates. Similar to 2D image, it also has a
resolution, the finer the 3D space is divided, the smaller each
grid is, and the greater the resolution is. Fig.4(c) shows 3D
occupancy grids in different resolution. For easy reference,
we compared these three kinds of representation in Table 7.

B. COMPARISON OF DIFFERENT 3D REPRESENTATIONS
Different 3D data representation will affect the effectiveness
of the methods. We compared different methods in terms

FIGURE 5. Distribution of 3D object classification methods on data
representations.

of object classification performance on benchmark Model-
net40 [86]. Modelnet40 contains 40 categories of CAD 3D
models and is a standard dataset for evaluating semantic
segmentation and classification of 3D deep learning mod-
els [87]. For 3D object classification, we studied the 60 meth-
ods submitted to the web site, Fig. 5 shows the distribution
of these methods on different data types. We can see that
21.33% of these methods were based on multi-view, 17.27%
were based on point cloud data, 18.29% were based on
voxel, and 7.11% were based on other methods. The high-
est classification accuracy (97.37%) was achieved by Rota-
tionNet [88], which jointly estimates the object categories
and viewpoints for each single-view image and aggregates
object class predictions from partial multi-view image sets.
As just mentioned, different data representation may affect
the classification performance. We analyzed three different
3D data representation methods in terms of classification
performance. The average accuracy based on multi-view is
92.31%, based on point cloud data is 90.43%, and based on
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TABLE 7. 3D data representation.

FIGURE 6. Average accuracy of different classification methods.

voxel is 86.73%, as shown in Fig. 6. It can be found that in the
classification task, the method based on multiple views and
point cloud are more accurate than that based on voxel.

C. DEEP NETWORKS FOR 3D OBJECT CLASSIFICATION
In the work of [84], the authors presented a CNN architecture
that combines information frommultiple views of a 3D shape
into a single and compact shape descriptor offering even
better recognition performance. In this method, images from
each view were passed through a separate CNN to extract
view-based features. Then, an additional CNN is used to
combine these features for final classification.

Following the first volumetric CNN is 3D ShapeNets [86],
Maturana et al. proposed VoxNet in [85] to process volumet-
ric data with grid resolution of 32 × 32, where the model
consists of 4D convolution filters to hold 3D spatial features.
Rahul Dev also proposed CNN models to classify 3D object
based on volumetric data [89]. LightNet [81] is a faster ver-
sion ofVoxNet to address heavy computation problem for real
time 3D object recognition.

Point cloud is an unordered set of points scanned from
the 3D object. The critical problem to solve is to make the

model invariant to the permutation of the data points. Point-
Net [90] is the first CNN model to directly work on the raw
point cloud. The method operates on each point separately
and accumulate features from all the points by a symmetric
function, which is a max pooling layer. Pointnet++ intro-
duces a hierarchical neural network that applies PointNet
recursively on a nested partitioning of the input point set.
By exploiting metric space distances, the method is able to
learn local features with increasing contextual scales [91]. To
further address the problem, DGCNN was proposed in [92].
Instead of working on individual points like PointNet, this
method constructs a neighborhood graph to capture the local
geometric information and proposes EdgeConv operation to
apply convolution-like operations on the edges.

These methods were all tested on modelnet40 dataset.
We compared them in terms of the number of model param-
eters, input type, forward time, accuracy and the deep learn-
ing framework in Table 8. We can see that, the multi-view
model is much larger than the other two methods in terms
of model parameters. In terms of classification accuracy, data
representation based onmulti-view and point cloud is slightly
higher than based on voxel. This is caused by the resolution of
voxel, the higher the resolution of voxel, the larger calculation
amount and the more complex the model is. Generally, only
32 × 32 × 32 or 64 × 64 × 64 resolutions are selected for
training.

For multi-view, the performance of the model will get
better as the number of images from different perspectives
increases. The same is true to point cloud data. The more
points used to describe an object, the more comprehensive
the 3D information of the object will be, and the classification
accuracy will be improved. Similarly, the higher the resolu-
tion of voxel data, the better the performance of the model.

D. FEATURE EXTRACTION USING 3D DATA
Feature extraction is a very important step in crack detec-
tion. 3D data can provide richer features than 2D images.

14538 VOLUME 8, 2020



W. Cao et al.: Review of Pavement Defect Detection Methods

TABLE 8. Comparison of different methods on modelnet40 dataset.

Several methods explicitly extract features from 3D data to
feed to traditional machine learning models. For example,
in the work of [93], the authors combined the extracted
features from 2D and 3D to train classifiers, and in [94],
spatiotemporal features were extracted from videos using
3D ConvNets. These features followed by a linear classifier
achieved state-of-the-art results at the publication time.

1) SPATIOTEMPORAL FEATURES
In [94] Tran et al. proposed a simple and efficient method
to learn spatial feature of 3D data by using 3D convolutional
neural network to learning spatiotemporal features for videos.
They found that 3×3×3 convolutional kernels in all layers are
among the best performing architectures for 3D ConvNets.
In [95] Owoyemi and Hashimoto proposed an end-to-end
spatiotemporal gesture learning method for 3D point cloud
data, mapping the point cloud data into a dense occupancy
grid and learning the spatiotemporal characteristics of the
data. In this work, 3D ROI jittering method is used in training
to expand 3D data.

2) GEOMETRIC FEATURES
In [96] Furuya and Ohbuchi proposed a deep local fea-
ture aggregation network (DLAN) for 3D model retrieval.
It combines the extraction of rotation invariant 3D local
features with their aggregation in a single depth architecture.
DLAN describes the local 3D region of a 3D model by
using a set of 3D geometric features that are not affected
by local rotation. Zheng et al. proposed a data-driven model,
3DMatch [97], which learns a local volumetric patch descrip-
tor to establish corresponding relationships between local 3D
data and can match local geometric features well in real depth
images. Deng et al. proposed PPFNet [98], a 3D local feature
descriptor for in-depth learning of global information, which
can be matched to corresponding parts in disordered point

cloud data. PPFNet uses a new n-tuple loss and architecture
to naturally inject global information into local descriptors
and enhance the representation of local features.

E. 3D PAVEMENT DEFECT DETECTION
With 3D data acquisition is becoming easier, the applica-
tion of 3D technology to pavement defect detection is more
and more common. 3D data can well represent the spatial
information (length, width and depth) of road defects, and
conduct multi-directional analysis on the area, volume and
other aspects of defects.

Xu et al. [99] used 3D mobile LiDAR to collect road point
cloud data and studied the automatic extraction of road curbs,
in order to improve the robustness and accuracy of the model,
they designed a new energy function to extract the constrained
candidate points and refined the candidate points with the
least cost path model. They sampled the point cloud data at
a rate of 100%, 50%, 10% and 1% respectively. Even if the
point cloud drops to 1%, the method proposed in this paper
can still extract the road curbs.

1) TRADITIONAL METHODS FOR 3D CRACK DETECTION
Zhang et al. utilized the Microsoft Kinect to reconstruct
pavement surfaces and capture geometric features of pave-
ment cracking, including crack width, length, and depth
to identify the distress severities of three major types of
pavement cracks, namely, alligator cracking, traverse crack-
ing, longitudinal cracking [100]. In the work of [101],
Li et al. employed laser-imaging techniques to model the
pavement surface with dense 3D points and used an algo-
rithm based on frequency analysis (Fourier transformation)
separate potential cracks from the control profile andmaterial
texture of the pavement assuming that the road pavement
in the absence of pavement distresses commonly holds a
relatively uniform control profile. Tsai and Li proposed a
dynamic-optimization-based crack segmentation method to

VOLUME 8, 2020 14539



W. Cao et al.: Review of Pavement Defect Detection Methods

TABLE 9. Network performance comparison.

test 1 to 5 mm wide cracks collected by 3D laser at differ-
ent depths and lighting conditions [102]. To detect similar
cracks in masonry, the work [103] presented mathematics to
determine the minimum crack width detectable with a terres-
trial laser scanner, in which the main features used include
orthogonal offset, interval scan angle, crack orientation, and
crack depth. In [93], the whole image is divided into sub
images of 128 × 128 pixels and filtered by a set of Gabor
filters. The maximum value of the magnitude of every filtered
image is the feature used to train weak classifiers. To detect
crack in pavement images, binary segmentation is a straight-
forward way. Unlike most 2D thresholding techniques based
on the assumptions that the distress pixels are darker than
their surroundings, [104] proposed a probabilistic relaxation
labeling technique to enhance the accuracy of the distress
detection, which take account of the non-uniform illumina-
tion and complicated contents on the pavement surface areas.
The work of [105] proposed a unique method which uses
Dempster-Shafer (D-S) theory to combine the 2D gray-scale
image and 3D laser scanning data as a mass function, and
the corresponding detection results are fused at the decision-
making level.

2) DEEP NETWORK FOR 3D CRACK DETECTION
Applying deep learning neural network in 3D crack
detection is currently a new and hot research direction.
In 2017, Zhang et al. proposed CrackNet network to
implement pixel-level detection of pavement cracks and
defects [106]. The model consists of five layers with two
fully connected layers, two convolution layers and one output
layer. The feature extractor utilizes line filters oriented at
various directions and with varied lengths as well as widths to
enhance the contrast between cracks and the background. The
model was trained with 1,800 3D pavement images collected
from DHDV [2].

Later on, in the work of [107], the authors proposed
an improved architecture of CrackNet called CrackNet II
for enhanced learning capability and faster performance.
CrackNet II has a deeper architecture with more hidden
layers but fewer parameters. Such an architecture yields
five times faster performance compared with the original
CrackNet. Similar to the original CrackNet, CrackNet II

still uses invariant image width and height through all lay-
ers to place explicit requirements on pixel-perfect accuracy.
In addition, they deepened the network and the combination
of repeated convolution and 1 × 1 convolution is used to
learn the local features with different local receptive fields.
Recently, Zhang’s team put forward the CrackNet V [108],
which includes a pre-processing layer, eight convolutional
layers and an output layer. They used a 3 × 3 filter for the
first six convolutions, and stack multiple 3 × 3 convolutions
together for depth extraction, which reduced the number of
parameters and improves the efficiency of feature extrac-
tion. In addition, they designed a new activation function to
improve the detection accuracy of shallow cracks.

In order to improve the recall rate, they put forward
CrackNet-R [109] based on recurrent neural network.
As a recursive unit, gated recurrent multi-layer perceptron
(GRMLP) is designed to update the internal memory of
CrackNet-R recursively. GRMLP aims to abstract the features
of input and hidden state more deeply by multi-layer nonlin-
ear transformation at gate unit. The resultant model achieved
about four times faster and introduces tangible improvements
in detection accuracy, when compared to CrackNet. The per-
formance comparison of the networks shown in Table 9.

3) FACTORS AFFECTING 3D PAVEMENT DEFECT DETECTION
There are many factors that can influence the detec-
tion of pavement defects. Yi et al. [102] proposed a
dynamic-optimization-based crack segmentation method to
test 1 to 5 mm wide cracks collected by 3D laser at different
depths and lighting conditions. Experiments show that cracks
with width equal to or greater than 2 mm can be effectively
separated from the pavement background, while cracks with
width of 1 mm can only be partially separated. In addition,
it was found that the light intensity had little effect on the test
results.

Li et al. [101] used laser imaging technology to model 3D
dense point road surface and proposed a 3D point cloud crack
detection method based on sparse point grouping, which can
reduce the influence of light variation and shadow on crack
detection. They tested the effect of the data acquisition vehi-
cle on the performance of the proposed method at different
speeds(10km/h to 80km/h). The experimental results show
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that at different speeds, the crack test effect is roughly the
same, but the slower the speed, the more detailed the crack
contour description.

Debra et al. [103] found through the experiment that crack
depth depends on three factors: scanning distance, scanning
angle and crack width.The scanning distance is the distance
between the crack and the laser scanner, and the scanning
angle is the offset angle between the crack and the laser
scanner. Cracks with a width of 1 to 7 mm were scanned at
distances of 5m and 7.5m and angles of 0◦, 15◦ and 30◦. The
results show that the crack depth cannot be detected when the
crack width is less than 1 mm, because the smaller the crack
width is, the more difficult to obtain the depth information of
crack. As the crack width increases, the detection of the crack
depth becomes more accurate. With the increase of scanning
angle, the error of crack depth detection will also increase.
The closer the scanning distance is, the higher the detection
accuracy will be.

Khurram et al. [110] usedKinect to predict and analyze the
depth and volume of pothole, the mean percentage error are
2.58% and 5.47%, respectively. In addition, the test perfor-
mance of pothole with water, dust and oil is also discussed.
Experimental results show that the error of test results will
increase with the increase of water, dust and oil content, and
the error is also related to the types of these media.

V. EXISTING PROBLEMS AND RESEARCH PROSPECTS
After years of development, many achievements have been
made in pavement defects detection, which has made great
contributions to the maintenance of pavement and the safety
of vehicles. However, there are still some problems in the
practical application:

1) Due to the complex and dynamic environmental fac-
tors, there may be some errors in the detection of
road cracks under the condition of poor light in rainy
days or when there is water on the road.

2) Different algorithms are needed to test on different road
surface conditions, and the algorithm transplantation
performance is poor.

3) The process of defects detection is always offline,
so the performance of real-time is not good in reality.

Therefore, we need to further enhance the detection accuracy
and real-time performance of the algorithm to ensure the opti-
mal detection results in real applications. The generalization
and robustness of the methods is also very important as the
factors such as road and weather conditions greatly affect the
detection. As for 3D cracks detection, the depth information
of cracks is added to make the cracks have spatial structure.
Although the overall information of cracks is more complete,
it undoubtedly increases the complexity of the algorithm
and greatly increases the computational cost. The algorithm
can be improved and the computing cost can be reduced
by referring to some progress in deep convolutional neural
networks for 2D images such as network architecture and
model compression techniques. On the other hand, there are
few public 3D cracks datasets, researchers collect pavement

crack data for training and testing by themselves, and it
is impossible to conduct performance analysis on the same
dataset. Collecting 3D crack benchmark datasets will greatly
benefit future study of the 3D crack detection.

VI. CONCLUSION
The automatic detection of pavement crack has been studied
extensively due to its practical significance. From traditional
image processing methods to machine learning methods to
deep learning algorithms that have become popular in recent
years. In this work, we review these methods, and we focus
on the detailed comparison and analysis on deep learning
methods and 3D image based methods. Particularly, deep
learning methods are grouped and reviewed in three cate-
gories, image classification, object detection and pixel-level
segmentation. For 3D crack detection methods, we compare
the different data representations and study the corresponding
performance of the deep neural networks for 3D object classi-
fication. Traditional and deep learning based crack detection
methods using 3D data are also reviewed.
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