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ABSTRACT Light Field (LF) imaging is a promising solution for providing more immersive and closer
to reality multimedia experiences to end-users with unprecedented creative freedom and flexibility for
applications in different areas, such as virtual and augmented reality. Due to the recent technological
advances in optics, sensor manufacturing and available transmission bandwidth, as well as the investment
of many tech giants in this area, it is expected that soon many LF transmission systems will be available to
both consumers and professionals. Recognizing this, novel standardization initiatives have recently emerged
in both the Joint Photographic Experts Group (JPEG) and the Moving Picture Experts Group (MPEG),
triggering the discussion on the deployment of LF coding solutions to efficiently handle the massive amount
of data involved in such systems. Since then, the topic of LF content coding has become a booming
research area, attracting the attention of many researchers worldwide. In this context, this paper provides
a comprehensive survey of the most relevant LF coding solutions proposed in the literature, focusing on
angularly dense LFs. Special attention is placed on a thorough description of the different LF codingmethods
and on the main concepts related to this relevant area. Moreover, comprehensive insights are presented into
open research challenges and future research directions for LF coding.

INDEX TERMS Camera array, image compression, light field, plenoptic, video compression.

I. INTRODUCTION
Light Field (LF) imaging is a promising solution for
providing more immersive and closer to reality multimedia
experiences to end-users with unprecedented creative free-
dom and flexibility for applications in different areas, such
as Virtual Reality (VR) and Augmented Reality (AR) [1],
cinematography [2], three dimensional (3D) television [3],
[4], biometric recognition [5], and medical imaging [6]. Due
to the recent technological advances in optics, sensor manu-
facturing and available transmission bandwidth, the research
in richer imaging technologies has accelerated and practi-
cal designs of novel LF acquisition [2], [7] and LF dis-
play [3], [4], [8] systems have been rapidly maturing. These
devices allow sampling the light rays from every direction
through every point in a volume of space and allow using
this information to recreate the correct perspective of the
scene from any viewpoint position inside this volume. This
also enables a variety of post-capture processing capabilities
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[9], [10] such as refocusing, changing depth-of-field, extract-
ing depth/disparity information, and 3D modeling.

Many tech giants [11], [12] investing in VR have pointed
towards the power of LFs for achieving ultra-realistic
VR experiences [13], in which a user can freely walk into the
scene with head motion parallax — also called Six Degrees
of Freedom (6DoF) movement — and realistically perceive
every little detail about the materials and lighting, such as
shifting reflections and translucence. Following these trends,
two prototype systems have been recently proposed by Face-
book [11] and Google [12] for capturing, processing and
rendering LFs for VR media applications. In fact, given these
trends, it is wise to expect that soon many LF systems will
be available to both consumers and professionals [14]–[17].
Moreover, there is a recent advent of high-quality consumer
Head Mounted Displays (HMD) with positional head track-
ing — such as HTC Vive, Oculus Rift, and Windows Mixed
Reality — that provide new and compelling opportunities
for visualizing LFs in new commercial media applications.
To cite just a few, in the area of experimental education,
6DoF VR simulations [18] have the potential to effectively
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train students in an environment that might not have been
available to them before, enabling them to reach their full
potential. Additionally, in health care, recent researches [19]
have shown the benefits of using true-to-life VR exposure
therapy for the treatment of a variety of mental health dis-
orders, such as phobias and social anxiety.

Recognizing the potential of this technology, novel stan-
dardization initiatives have recently emerged. Among the
requirements being discussed, deploying LF coding solutions
to efficiently handle the massive amount of data involved
in such systems is one of utmost importance [20]. Notably,
the Joint Photographic Experts Group (JPEG) committee has
launched the JPEG Pleno standardization initiative [10] that
addresses representation and coding of emerging imaging
modalities and aims at providing the highest possible com-
pression efficiency trade-off given a set of advanced func-
tionalities, such as [21]: i) spatial random access; ii) low
latency and real time processing; and iii) scalability (e.g.,
depth resolution, viewing angle range, etc.). In addition,
the Moving Picture Experts Group (MPEG) has started a
newwork item on coded representations for immersive media
(MPEG-I) [22], focusing on the usage of emerging imaging
technologies in applications that provide an increased sense
of immersion, such as VR applications [22]. In terms of
visual representations, MPEG-I comprises a set of standards
that should be developed in several phases so as to sup-
port a growing number of DoF in virtual walkthroughs in
a bounded volume of space [22]. With the emergence of
these standardization initiatives [10], [22], the topic of LF
content coding has recently became a very active and relevant
research area, attracting the attention of many researchers
worldwide and being the topic of many special sessions in
international journals and conferences. Notably, JPEG Pleno
organized two grand challenges on light field coding at the
IEEE International Conference on Image on Multimedia and
Expo (ICME) in 2016 [23], and at the IEEE International
Conference on Image Processing (ICIP) in 2017 [24].

Although the topic of LF content coding only recently
became a booming research area, various LF coding solutions
have already been proposed in the literature in the last two
decades, following the advancement of digital multimedia
systems and coding technologies. However, despite the rel-
evance of the topic, there have been only a few surveys about
LF processing and coding recently published in the litera-
ture. In [25], the authors review the developments and trends
on LF imaging, mainly focusing on acquisition, calibration
and pre-processing techniques for lenslet-based LF cameras.
In [26], a brief overview of the main research directions in
relation to some critical problems in LF processing is pre-
sented, focusing on a few relevant solutions proposed in the
literature for coding, super-resolving and editing LFs. In [27],
an overview of LF imaging and processing is presented, cov-
ering techniques for LF acquisition, super-resolution, depth
estimation, coding, editing, rendering, and user interaction
applications. It is important to notice that all previous works
adopt a broader review perspective, covering many different

aspects of LF imaging and processing, but do not include
a comprehensive review of LF coding techniques. More-
over, most of them do not include explanations of technical
details of individual LF coding solutions and a comprehensive
discussion about the most relevant results, advantages, and
limitations.

Aiming to fill this gap, this paper provides a comprehensive
survey of the most relevant lossy coding solutions for LF
content proposed in the literature in the last 25 years. This
survey paper is mainly intended to assist readers who wish
to begin research in the area of LF processing and coding.
To accomplish this, special emphasis is placed on a thorough
description of the different LF coding methods and on the
main concepts and challenges related to this relevant area.
In summary, the main contributions of this survey paper are:

1) To better assist new researchers in this area, a brief
overview of the principles of LF imaging technology
and of LF processing is presented. This overview cov-
ers the main stages that are essential for delivering LF
content to end-users, including the recent developments
related to LF acquisition, representation, rendering,
display, and visual quality evaluation. Moreover, chal-
lenges in each stage are also discussed and references
to seminal works are provided.

2) A comprehensive analysis of LF coding solutions is
provided. For this, the LF coding solutions in the liter-
ature are carefully categorized in terms of the adopted
representation format, coding architecture, and tech-
nique for achieving compression.

3) Encompassing insights into future directions for LF
coding are presented, considering recent work found in
the literature and recent standardization activities.

A. BASIC CONCEPTS
The term light field was firstly adopted by Gershun
in 1936 for analytically describing the ‘‘light beams that
propagate in a straight line through a homogeneous medium
and which is the carrier of radiant energy in a space’’ [28].
Generally, the light field concept comes from the necessity
of describing and replicating the complete/full/whole visi-
ble light information in a given surrounding as accurately
as possible. Actually, this notion had been exploited earlier
by the polymath Da Vinci (1452–1519) when he suggested
the existence of the pyramids of sight [29], as well as by
the physics Nobel laureate Lippmann, in 1908, when he
introduced the concept of integral photography [30]. More
recently, the terms holoscopic (from the Greek hólos (whole)
+ optikos (vision)) [31], plenoptic (from the Latin plenus
(full) + opticus (vision)) [32], and lumigraph [33] have been
also adopted almost as synonymous.

In the early 1990s, with the popularity growth of com-
puter vision and computer graphics, the problem of geometri-
cally describing the visible space gained a major importance.
Notably, Adelson and Bergen proposed, in [32], to define the
total distribution of light as a seven dimensional (7D) func-
tion, which models the light rays at every possible location
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FIGURE 1. The 7D plenoptic function.

in space (x, y, z), toward every possible direction (θ, ϕ), over
any range of wavelengths (λ), and at any time (t) — referred
to as the plenoptic function (see Fig. 1):

P (x, y, z, θ, ϕ, λ, t) (1)

With this definition, it is possible to model different imag-
ing systems, including the Human eye [32], as samplings
of the 7D plenoptic function in (1). However, due to the
enormous amount of data that would be required for sampling
using a 7D representation, it is necessary to make reasonable
assumptions to reduce the dimensionality of the plenoptic
function and to appropriately sample it.

Therefore, Levoy and Hanrahan proposed, in [34], to use
the following three assumptions to reduce from the 7D
plenoptic function in (1) to a four dimensional (4D) function:

1) Static Scene — Assuming the scene is static,
the plenoptic function can be then reduced to
P (x, y, z, θ, ϕ, λ).

2) Constant Radiance along its Path (Free-Space) —
With the assumption that the air is truly transparent
and the light ray is transmitted in a free-space (i.e.,
region free of occluders [34]), the plenoptic function
can be then represented by its values along an arbitrary
selected surface surrounding the scene (see Fig. 1).
Hence, the radiance of any light ray in the space can
be always obtained by tracing it back to this selected
surface. This assumption allows reducing the plenoptic
function to P (x, y, θ, ϕ, λ).

3) Trichromatic Human Vision System (HVS) — The
Human eye has three types of photosensitive cells
(known as cones) in the retina for the perception of
colored light. Each of these cone types has its maxi-
mum sensitivity in a different wavelength, which cor-
responds to the primary colors Red (R), Green (G),
and Blue (B). Therefore, it is possible to restrict to the
HVS and to reduce the wavelength dimension in (1)
by assuming three different plenoptic functions (one
for each R, G, and B components). Finally, for each
color component, a 4D plenoptic function is defined as
P (x, y, z, θ, ϕ).

Moreover, it is common to use a two-plane parameteri-
zation to represent the 4D plenoptic function in Cartesian
coordinates. In this case, and as illustrated in Fig. 2, a spe-
cific light ray intersects the first plane at coordinates (x, y),
which defines the spatial location of the ray, and it is prop-
agated in free-space until it intersects the second plane at

FIGURE 2. Two-plane parameterization for the 4D plenoptic function.

coordinates (u, v), which specifies the propagation direc-
tion. Levoy and Hanrahan [34] baptized this 4D function,
L (x, y, u, v), as the 4D light field (a.k.a, lumigraph [33]).
In the context of this paper, it will suffice to describe

the complete visible light by this 4D LF function
L (x, y, u, v) [34]. This means that light is here understood
as a scalar radiance (one value for each color component R,
G, and B) traveling along straight lines (rays) with different
propagation directions. This 4D LF function will be then
used to represent a LF image. Additionally, a LF video can
also be represented by regularly sampling LF images per
unit of time.1 Moreover, this paper will particularly focus on
reviewing the literature on coding solutions for dense LFs.
While a better definition will be given later in the paper,
the term dense LF stands for angularly dense LF, and angular
density can be understood as the number of viewpoints that
are sampled by a LF imaging system in a volume of space.

B. OUTLINE
The remainder of this paper is organized as follows.
Section II briefly reviews the main stages that are essential
for efficiently delivering dense LF content to the end-users,
including the recent developments related to LF acquisi-
tion, representation, rendering, display, and visual quality
evaluation. Section III focuses on the coding requirements
and reviews the most relevant coding solutions for dense
LF content in the literature, while simultaneously deriving
some conclusions and highlighting some of the remaining
challenges. Finally, Section IV concludes the paper.

II. LIGHT FIELD IMAGING AND PROCESSING
Before concentrating on the LF coding solutions available
in the literature, this section provides a brief review on the
principles of LF imaging technology and on the main stages
that are essential for delivering LF content to end-users.

Essentially, an LF imaging processing chain comprises the
following functional stages, as illustrated in Fig. 3:
• LF Acquisition/Creation — The first step of the LF
processing chain is, naturally, the LF content generation,
which can be done through an optical setup or computa-
tionally created, i.e., through appropriate modeling and
rendering of the visual scene and the acquisition setup.

1In this case, light can be then described as a 5D function L (x, y, u, v, t).
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FIGURE 3. LF imaging processing flow [35].

Therefore, Section II-A reviews the principles of LF
imaging acquisition and lists some publicly available LF
datasets for LF coding.

• LF Representation—The LF data acquired in the pre-
vious stage may or may not be converted to a represen-
tation format that is different from the acquired format.
In this context, Section II-B presents a brief review of
representation formats that have been proposed in the
literature.

• LF Coding — Considering the huge amount of data
associated to LF transmission systems, efficient LF
encoding/decoding solutions become of paramount
importance. Since this is the main focus of this paper,
Section II-C presents a brief overview of possible LF
coding architectures, and a more detailed survey on LF
coding approaches proposed in the literature is presented
in Section III.

• LF Rendering — Rendering the decoded LF content
becomes also an important issue, especially to allow
adequate visualization of the decoded LF content in
conventional two dimensional (2D) and 3D displays.
Therefore, Section II-D addresses this issue and reviews
some LF rendering algorithms and their capabilities.

• LF Display — To take full advantage of the richer
visual information of the acquired LF content, new and
more immersive display devices are also needed. For
this reason, display technologies have been also evolv-
ing in recent years, and Section II-E overviews those
developments.

In addition to this, the display technology along with the
rendering capabilities will also determine what should be
expected in terms of the user experience in LF imaging appli-
cations. This fact brings up another challenging issue, which
is designing appropriate objective and subjective metrics for
LF quality evaluation. This issue is then briefly reviewed in
Section II-F.

A. LF ACQUISITION
With the target of increasing immersion, more advanced
imaging technologies are emerging that allow capturing
richer forms of visual data and representing the scene by
the 4D light field. Different acquisition techniques can be
used to capture LF content with different densities in each
of the 4D dimensions, depending on the requirements for
spatial or angular resolution. Generally, angularly dense LFs
allow a smooth transition between viewpoints without the
need for view interpolation. Another parameter that may
differ depending on the LF capturing system is the Field of

FIGURE 4. Examples of LF acquisition systems: (a) Multi-camera array
(From [36]); (b) Camera gantry (From [39]); and (c) Lenslet Camera.

View (FoV) that corresponds to the area of the scene over
which objects can be reproduced.

Among the possible techniques for acquiring LFs, three
main groups may be listed [14]:
• LF Imaging with Multi-Camera Array — In this
case, a number of views with parallax on a single or
on both directions (full parallax) is captured using an
array of multiple cameras (see Fig. 4a) in a linear [36],
circular [2], or even arbitrary arrangement [37]. The
spatial density depends on the camera’s sensor resolu-
tion and the angular density depends on the distance
between the cameras (baseline) on the array. For acquir-
ing (angularly) dense LFs, the baseline is usually on
the order of millimeters to centimeters [38]; this setup
is usually referred to as a High Density Camera Array
(HDCA). The FoV that is captured depends on the num-
ber of cameras and their optical setup, the baseline and
the rotation between the cameras. Usually, the camera
array configuration is designed targeting the require-
ments of a specific use case scenario. An example of
such LF acquisition system is the Stanford multi-camera
array proposed in [36], which is composed of 100 cus-
tom cameras, and supports reconfigurable arrangement
of the array for three different scenarios (i.e., for
panoramic video with high dynamic range; for syn-
thetic aperture photography; and for widely spaced 3D
scenes).

• LF Imaging with Camera Gantry — In this case,
a moving camera gantry (see Fig. 4b) is used to capture
different viewpoint images at different instants of time.
The spatial density depends on the camera’s sensor res-
olution and the angular density depends on the accuracy
of the gantry motion. The FoV depends on the degrees
of freedom that is supported by the gantry structure.
Examples of LF camera gantry systems are the Stanford
LF gantry [39] and the Fraunhofer robot system [40],
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both with four degrees of freedom camera movements
(translation along x and y and rotation along θ and ϕ
axes). Although camera gantries provide flexible and
lower cost capturing systems, they are restricted for
capturing static scenes.

• LF Imaging with Lenslet Camera — In this case,
the integral photography concept proposed by Lipp-
man [30] is adopted, in which LF content with full
parallax can be acquired by using a single-tier sen-
sor camera overlaid with a Microlens Array (MLA),
as shown in Fig. 4c. The MLA (a.k.a. lenslet array) can
be seen as a tiny 2D array of cameras with a very small
baseline, sampling the 4D light field and organizing it
in a conventional 2D image, known as the lenslet image.
As discussed in [41], [42], there are two lenslet camera
setups, namely: the unfocused (a.k.a. plenoptic camera
1.0), as used in the commercial Lytro cameras [2], [9];
and the focused (a.k.a. plenoptic camera 2.0), as used
in the commercial Raytrix cameras [7]. The difference
between these two setups is in the distance b of theMLA
to the image sensor (see Fig. 4c). For the unfocused
setup, the distance b is equal to the MLA focal length
f (i.e., b = f ), while b 6= f for the focused setup.
In practice, varying between these two setups will only
change the balance between providing larger angular or
spatial density in the captured LF (respectively, using
an unfocused or a focused lenslet camera) [41], [43].
In the unfocused lenslet camera, the light of a single
ray (or of a thin bundle of rays) from a given angu-
lar direction (θ, ϕ) converges on a specific microlens
at position (x, y) in the array and is collected at a
single pixel position in the image sensor underneath.
Hence, the angular density depends on the number of
pixels behind each microlens, and the spatial density
depends on the number of microlenses in the MLA.
In the focused lenslet camera, the closer distance b is
to f , the larger is the angular density (and vice-versa).
As in a conventional 2D camera, the FoV is defined by
the camera’s sensor size and the main lens focal length.
Although lenslet cameras can capture highly dense LFs
at a single shot, they are specially recommended for
capturing objects at small distances due to the their
small FoV.

Table 1 presents a list of publicly available datasets for
dense LFs in all of the three categories.

It is also possible to combine these techniques to meet
some specific requirements for spatial and angular density.
For instance, in [55], a gantry structure with a lenslet camera
is used for capturing LFs with a baseline varying between
micrometers (inside the lenslet camera) to meters (by vary-
ing the camera poses). Additionally, in [12], a one dimen-
sional (1D) array of GoPro cameras in a vertical arc are
placed in a horizontally rotating gantry structure to capture
dense LFs with 360◦ FoV. Moreover, depth cameras [58]
and Light Detection And Ranging (LIDAR) can also be
combined with the above LF techniques to acquire geometry

FIGURE 5. Possible acquired LF representation formats: (a) Lenslet
format; and (b) Full parallax multiview format.

information of the scene that may be useful for rendering
virtual viewpoints.

B. LF REPRESENTATION
Initially, the data acquired by a LF imaging system can have
one of the following (raw) formats [59]:
• Lenslet Representation — For LF acquired using a
lenslet camera, the LF content is represented as a 2D
image comprising a 2D grid of microlens images (a.k.a.
micro-images, elemental images, and macro-pixels),
as depicted in Fig. 5a.

• Full Parallax Multiview Representation — For LF
acquired using a multi-camera array or a camera gantry,
the LF content is represented by a 2D grid of views (see
Fig. 5b) and, usually, each view has the same spatial
resolution.

Although it is possible to adopt these acquisition formats
for representing the LF data, in some cases, it may be neces-
sary to convert from the acquisition format to a more appro-
priate representation format. It is also possible to convert
from one to another and, in some cases, this conversion can
be invertible or non-invertible, depending on the type of the
camera and on the algorithm used [59]–[61].

In fact, a key issue for successful LF imaging applications
is the choice of a convenient representation for the LF data
acquired, given a certain set of application requirements.
If high compression efficiency is a dominant requirement
when choosing the LF representation format, then the deci-
sion should be made prioritizing a coding perspective, which
means that an efficient coded representation should be at
the forefront. In this context, this section briefly describes
some relevant LF representation formats that have been
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TABLE 1. List of publicly available datasets for dense LF content.

proposed in the literature in the context of LF coding. How-
ever, it should be noticed that the analysis and discussion of
specific LF coded representations performance will be done
in Section III.

1) LENSLET REPRESENTATION
This representation format corresponds to the raw acquisition
format of a lenslet camera and, in this case, no conversion
and/or further processing is required. Hence, the LF data
is represented as a 2D image comprising a grid of micro-
images, as depicted in Fig. 5a. As illustrated in Fig. 6,
each micro-image captures a low-resolution portion of the
scene. Moreover, several packing schemes, shapes and sizes
of microlenses are possible in the array (see Fig. 6), and
the structure of these micro-images is a consequence of the
chosen MLA. In addition to this, the micro-image charac-
teristics may also change depending on the chosen lenslet
camera setup (see Fig. 6). For instance, for an unfocused
lenslet camera, a micro-image is a picture of the back of
the main lens [41] (i.e., it is an image focused on the main

lens), while, for a focused lenslet camera, a micro-image is
(a low-resolution portion of) the image of the main lens that
is relayed through the microlens.

Analyzing this lenslet representation from a coding point
of view, it is observed that, independently of the camera setup
or MLA used, the LF content presents some inherent spatial
correlations, as illustrated by the autocorrelation function
in Fig. 7b. Notably, it can be seen that the pixel correlation in
a lenslet image is not as smooth as in conventional 2D images
(see Fig. 7a). Differently, a regular structure of spikes is evi-
denced in the autocorrelation function in Fig. 7b, in which the
constant distance between these regular spikes corresponds
to the micro-image spacing in the array. Moreover, as is
commonly observed in 2D images (see Fig. 7a), pixels inside
each micro-image are also significantly correlated within a
local neighborhood (see Fig. 7b).

2) PSEUDO VIDEO SEQUENCE REPRESENTATION
In this case, viewpoints are stacked together along a pseudo
temporal axis to be interpreted as a single Pseudo Video

VOLUME 8, 2020 49249



C. Conti et al.: Dense LF Coding: Survey

FIGURE 6. Examples of lenslet images captured using different LF camera setups and MLA structures.

FIGURE 7. Autocorrelation function: (a) 2D image; and (b) Lenslet image.

Sequence (PVS), as illustrated in Fig. 8b. If the LF acquisition
system supports full parallax, the 2D array of viewpoints
needs to be scanned using a specific topology to form a 1D
array of views, as depicted in Fig. 8a. Some examples of
scanning topologies are illustrated in Fig. 9. The (pseudo)
temporal correlation varies depending on the scanning topol-
ogy used to form the PVS and, consequently, the coding
performance will be directly related to this choice.

For representing LF video, the referred to as transposed
picture ordering [62] can be used. In this case, all views
from the same time instant are concatenated along the time
dimension. However, it is worthwhile to note that the tempo-
ral correlation between adjacent time instants no longer exists
in the final video sequence.

Although for the full parallax multiview acquisition format
there is no further pre-processing need prior to coding, for the
lenslet acquisition format, it is necessary firstly to convert the
lenslet image to a dense array of views. In this context, many
approaches have been proposed in the literature for extracting
views from a lenslet image:
• Based on Micro-Images — In this case, the lenslet
image needs to be firstly split into its multiple
micro-images, which are then represented as multiple
views with low resolution. For this, further calibra-
tion/processing is usually required, for instance: i) to
compute the micro-image centers; ii) to compensate

FIGURE 8. PVS representation: (a) Scanning the 2D grid of views in spiral
order; and (b) the resulting PVS.

for any potential optical/geometrical distortions that
may result in micro-images with different sizes; iii) to
deal with non-integer resolutions; and iv) to discard
incomplete micro-images (at the border of the lenslet
image). Examples of calibration/processing algorithms
for lenslet images can be found in [9], [63]. Apart from
the process of discarding incomplete micro-images, this
calibration/processing can be invertible.

• Based on Subaperture Images — Using the knowl-
edge of the exact LF optical setup (e.g., micro-image
coordinates and sizes), a subaperture image can be con-
structed by extracting one pixel with the same relative
position (u, v) from all micro-images. Hence, several
low-resolution subaperture images can be extracted at
different positions relative to the micro-image center.
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FIGURE 9. Possible scan topologies for arranging views: (a) Raster; (b) Serpentine; (c) Perpendicular; (d) Spiral; (e) Zig-zag; (f) Hilbert;
(g) U-shape; and (h) Lozenge.

Usually, extracting subaperture images is not straight-
forward, needing additional calibration/processing to
compute the micro-image centers and to align the micro-
image grid to the pixel grid. Moreover, if an MLA
with hexagonal grid is used, a transformation is needed
to convert from hexagonal to a rectangular MLA grid.
Examples of such processing algorithms can be found
in [9], [63]. For lenslet images captured using an unfo-
cused lenslet camera, each subaperture image repre-
sents an in-camera orthographic projection of the cap-
tured scene [41]. On the other hand, for lenslet images
captured using a focused lenslet camera, a subaperture
image (built by taking one pixel from eachmicro-image)
can be seen as a subsampled perspective of the captured
scene [64] or as a low resolution rendered view that
is focused at infinite [65], [66] which, consequently,
presents aliasing artifacts. Alternatives to deal with these
aliased views have been proposed in the literature and
involve resorting to depth-based rendering [64], [65]
or Laplacian-based rendering [67], [68]. In both cases,
an increase in the views’ resolution is observed and,
consequently, an increase in the LF data size. For this
reason, this process to generate views from focused
lenslet images is a non-invertible process [59], [60].

• Based on Epipolar Plane Images — In this case,
the LF data can be decomposed according to its light
ray distribution by using the Epipolar Plane Image (EPI)
technique [69]. Each EPI can be then interpreted as a
2D cut through the captured 4D light field. As an illus-
trative example, Fig. 10 shows an EPI built by stacking
together views in the same column (which corresponds
to fixing the dimension u, as shown in Fig. 10a) and,
then, taking a slice from these views in a particular
horizontal plane (by fixing the direction x, as shown
in Fig. 10a). A prospective characteristic of this EPI-
based representation is that the depth/disparity of the
objects can be estimated from the slope of the lines that
can be observed in Fig. 10b. Examples of this usage can
be found in [70]–[72].

3) MULTIVIEW REPRESENTATION
This representation may correspond to the full parallax mul-
tiview representation in Fig. 5b, in which the 4D LF content
is organized as a 2D grid of multiple views. For representing
LF videos, a 5D LF representation may be needed. However,
revisiting the literature on LF coding, it can be observed that

FIGURE 10. Extracting an EPI from the 4D light field: (a) Fixing the
dimensions x and u; and (b) the built EPI.

many of the authors have rather proposed to organize the 4D
LF content as a conventional 3D multiview format with only
horizontal parallax and to use the temporal axis to comprise
the fourth LF dimension, as illustrated in Fig. 11. Different to
the (single) PVS representation in Section II-B2, this multi-
view representation comprises a 1D array of multiple PVSs.
Thus, with this multiview representation, the correlations
in an LF image can be exploited in all dimensions — i.e.,
spatial, inter-view, and (pseudo) temporal. For representing
LF videos, the 2D array of viewpoints can be then firstly
scanned using a specific topology (see Fig. 9) to form the 1D
array of multiview videos.

From the full parallax multiview acquisition format there
is no further pre-processing need prior to coding. Differently,
to convert from the lenslet acquisition format, additional
calibration and processing is necessary to compute the micro-
image centers, to align the micro-image grid to the pixel
grid and possibly a transformation to convert from hexagonal
to a rectangular MLA grid, as discussed in Section II-B2.
Then, views can be constructed based on: i) micro-images;
ii) subaperture images; or iii) EPIs.

4) VOLUMETRIC REPRESENTATION
In this case, the dense 2D array of viewpoints needs to be
scanned using a specific topology (see Fig. 9) and stacked
together in the third dimension to form a 3D block volume as
illustrated in Fig. 12. The difference to the PVS representa-
tion is on how the LF content is partitioned and processed
on the subsequent encoding process. Instead of splitting it
into 2D blocks to feed the encoding process, as in the PVS
representation, the LF content is split into 3D blocks in the
volumetric representation. From this representation, it can
be observed that the correlation in the third dimension may
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FIGURE 11. Multiview representation constructed using the temporal axis
as the fourth dimension.

FIGURE 12. 3D volumetric representation constructed scanning the 2D
grid of views in spiral order.

vary depending on the scanning topology used to form the
3D volume.

It should be noticed that the full parallax multiview for-
mat in Fig. 5b can also be interpreted as a 4D volumetric
representation. This 4D volumetric representation has been
also considered in the literature for coding. As discussed in
Section II-B2, to convert from the lenslet acquisition format
to this volumetric representation, additional calibration and
processing steps are usually necessary to compute the micro-
image centers, to align the micro-image grid to the pixel grid,
and possibly a transformation to convert from hexagonal to a
rectangular MLA grid.

5) GEOMETRY-ASSISTED REPRESENTATION
In this case, the dense LF data is represented by a sparse
number of selected key views together with associated geom-
etry information as depicted in Fig. 13. The geometry infor-
mation may comprise, for instance, depth, disparity, or a
graph model estimated from the LF data. For lenslet-based
LF content, the sparse set of key views may comprise micro-
images, subaperture images, or views with higher resolution
(for LF content captured by a focused lenslet camera) that are
extracted from the LF data.

As geometry information can be used for synthesizing
views at the decoder side, the amount of views that needs
to be coded and transmitted in the processing chain may
be reduced. Consequently, the coding performance of this
representation is highly dependent on the selection of the
key views and the accuracy of the geometry information
estimated from the acquired LF data. Trying to deal with
the geometry estimation problem, various depth/disparity

estimation methods [73]–[78] and graph learning
models [79]–[81] have been recently proposed in the
literature.

C. LF CODING
For the earliest LF coding schemes proposed in the literature,
the most natural choice has been to use the classical image
coding architecture shown in Fig. 14 — comprising trans-
form, quantization and entropy coding blocks— and to apply
an approach that resembles the JPEG [82] or JPEG 2000 [83]
standards.

Later, following the advancement of digital multimedia
systems and coding technologies, most of the LF image
and video coding frameworks in the literature have been
based on a hybrid coding architecture due to its effective-
ness for providing high efficiency compression. Currently,
the most successful class of visual coding architectures are
based on this framework [84], which has been adopted in
most 2D video coding standards, including the state-of-the-
art HEVC [85] and the future video coding standard Versatile
Video Coding (VVC) [86], which has been developed in a
joint collaboration effort known as the Joint Video Explo-
ration Team (JVET) between ITU-T Video Coding Experts
Group (VCEG) and ISO/IEC MPEG. This model is called
hybrid as it combines the advantages of using a transform
coding stage from classical still image coding solutions with a
prediction modeling loop (see Fig. 14), in which a prediction
signal is generated from information available at both encoder
and decoder sides. The block diagram of a conventional
hybrid encoder is illustrated in Fig. 14 and comprises the
following functional blocks:
• Prediction Modeling— The prediction modeling aims
at reducing the redundancy by exploiting the inherent
correlations of the input content. Usually, in a hybrid
video coder, a prediction may be formed by using spa-
tially neighboring samples — known as intra predic-
tion—or by using neighboring frames—known as inter
prediction. Instead of coding the original pixels values
of the current block, only the difference between current
and prediction block, called residual block, is encoded
and transmitted. In inter-prediction, a motion compen-
sated prediction is used for modeling the translational
moving blocks in different frames. In this case, a dis-
placement vector — known as motion vector — is used
to indicate the horizontal and vertical positions (relative
to the current block position) of the prediction block
inside a previously encoded reference picture. Tradi-
tionally, inter prediction was designed for exploiting
the redundancy between neighboring temporal frames,
however, it can actually be generalized to other types
of redundancy (e.g., inter-view prediction and non-local
spatial prediction as will be seen later on in this paper).

• Transform — The goal of transform coding (see
Fig. 14) is to convert the residual block into the fre-
quency domain such that it has a representation that
is both decorrelated — i.e., separated into components

49252 VOLUME 8, 2020



C. Conti et al.: Dense LF Coding: Survey

FIGURE 13. Geometry-assisted representation, comprising a sparse set of key views plus
geometry information.

FIGURE 14. Block-diagram of a conventional hybrid video encoder. Built-in decoder is shown in gray shaded
blocks.

FIGURE 15. Multiview video coding architecture.

with minimal inter dependence — and compact — i.e.,
where most of the energy is concentrated into a small
number of values. The most effective and widely used
transform in image and video coders is the 2D Discrete
Cosine Transform (DCT). However, JPEG 2000 [83]
andMPEG 4Visual [87] standards have also adopted the
2D Discrete Wavelet Transform (DWT). The output of
this process is a transform blockwith the same size as the
residual block, representing the image in the frequency
domain. At the decoder side, an inverse transform is

used to reverse the operation and reconstruct the residual
block in spatial domain.

• Quantization—Quantization (see Fig. 14) is applied to
the transformed coefficients. The quantizer is designed
to discard insignificant values, such as near-zero coef-
ficients, while preserving a small number of significant
non-zero coefficients. In this process, the quantization
step is used to regulate the range of the quantized values
and consequently the output bit rate (or average bits per
pixel in the case of still pictures).

• Entropy Coding — The small number of signifi-
cant coefficients, as well the prediction parameters
(e.g., quantized residual block, and motion vectors), are
entropy coded to remove statistical redundancy. Among
the various possible entropy coders in the literature,
Context-based Arithmetic Binary Coding (CABAC) has
shown to be a powerful method for providing a high
degree of adaptation and redundancy reduction. For
this reason, the state-of-the-art HEVC standard has also
adopted CABAC-based entropy coding. In a nutshell,
CABAC starts with a binarization process in which
the entries are transformed to binary symbols (bins).
For each bin, a suitable context model is then selected
depending on the statistics of recently coded bins.
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FIGURE 16. Geometry-assisted LF coding architecture.

Thus, each bin is arithmetic coded according to the
selected context model. The output of this process is
the compressed bitstream, which can then be stored or
transmitted.

The encoder duplicates the decoder process to guarantee
that they both generate identical predictions for subsequent
frames (see shaded gray blocks in Fig. 14).

Instead of using a 2D video codec, some LF coding solu-
tions have adopted a multiview video coding architecture as
illustrated in Fig. 15, such as the one used in the HEVC
multiview extension MV-HEVC [88]. The basic idea in these
multiview video coding solutions is to exploit not only the
redundancies that exist temporally between the frames within
a given view, but also the redundancies between frames of
neighboring views — known as inter-view prediction. In this
case, a multilayer approach is used where different 2D video
coded representations, called layers, are multiplexed into one
bitstream. InMV-HEVC, a layer simply represents the texture
data belonging to the same camera perspective (i.e., a view).
In the first layer, usually denoted as the base layer, the pictures
are coded independently from other layers. The layers that
follow the base layer are denoted as enhancement layers.
In these enhancement layers, inter prediction methods are
used for both inter-view and temporal motion prediction by
making the decoded pictures from other views also available
as reference pictures.

Mainly motivated by the design of recent 3D coding solu-
tions, such as 3D HEVC [88], geometry-assisted LF coding
architectures have been also proposed in the literature for
LF coding. In this case, the geometry-assisted representation
format (see Section II-B5) is adopted in order to achieve com-
pression. As illustrated in Fig. 16, a sparse set of key-views is
selected from the LF data and encoded with a texture coder,
which may be a 2D video coder (see Fig. 14) or a multiview
video coder (see Fig. 15) solution. The geometry information
estimated from the LF data is usually independently coded
from the texture data by a dedicated geometry coder (see
Fig. 16). Afterwards, data from both coders are multiplexed
into one bitstream. At the decoder side, additional intermedi-
ate views are synthesized by using a specific view synthesis
technique, as it will be seen in Section III-D.

D. LF RENDERING
While traditional 2D and 3D decoded content may be directly
forwarded to the display stage without much processing,

decoded LF content requires, typically, an appropriate render-
ing algorithm to be visualized, for instance, in conventional
2D/3D displays or in more advanced HMD and LF displays.

In this context, one important requirement for the design
of LF rendering algorithms is to offer the best end-user
experience targeting a specific display technology. Moreover,
this requirement may eventually consider not only the visual
quality of the rendered content, but also the level of user
interaction that is enabled.

In this sense, among the advantages of the LF imaging
technology is the ability to open new degrees of freedom in
terms of content rendering, supporting post-production func-
tionalities not straightforwardly available using conventional
2D and 3D systems, such as:
• Perspective Shift — Changing the perspective of the
recorded scene can be obtained by simply switching
between the captured dense array of views, or by re-
tracing and interpolating light rays as they come from
a virtual perspective camera at an arbitrary position,
generating a virtual viewpoint [33], [89], [90]. The vir-
tual camera can be positioned along the camera path or
can be from within the captured scene - referred to as
z-rendering and step-in/out effect [91].

• Refocusing — Refocus can be understood as virtu-
ally sliding the camera focus plane to a different plane
(within the captured depth range). In its basic form,
this operation can be obtained by aligning the views at
a particular depth plane and integrating them over the
directional axis [89]. Therefore, objects that are at the
chosen depth plane appear in sharp focus in the rendered
view, while the remaining objects are blurred. It is pos-
sible to select multiple depth planes to be in focus and
to create an all in-focus rendered view. Some relevant
algorithms proposed in the literature for refocusing can
be found in [41], [65], [89], [92]–[94].

• Depth-of-Field Control (Synthetic Aperture) —
Extending or narrowing the depth-of-field in the ren-
dered view can be obtained by defining greater or
smaller depth ranges where scene objects are rendered in
focus. This capability emulates the effect of changing the
aperture size in conventional photography where larger
apertures produce images with shallower depth-of-field,
and with smaller apertures more of the scene appears
in focus. As discussed in [89], an arbitrary synthetic
aperture size can be obtained when rendering a view by
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choosing more or less views to be integrated over the
directional axis. The shape of the synthetic aperture and,
consequently, the bokeh in the rendered view can also
be controlled by weighting differently the samples from
each view [89].

• Super-Resolution — It is possible to take advantage
of the full potential of the LF information to apply
super-resolution either in the spatial or in the angular
dimensions. LF spatial super-resolution typically uses
depth information, estimated from the LF data, to super-
resolve a view by propagating light rays intensity values
from neighboring views to sub-pixel positions, as pro-
posed in [64], [66], [95]. Angular super-resolution is typ-
ically used to synthesize virtual viewpoints from a small
set of views, as proposed in [96]–[98]. View synthesis
algorithms proposed in the literature for compression
purposes will be seen in Section III-D.

• Distance Measurement — If the optical properties of
the LF system are known precisely, it is possible to
translate the relative estimated depth data into absolute
distance from the lens, as proposed in [99]–[101].

• Dooly-Zoom (Vertigo Effect) — This effect is used
to make a subject in the foreground remain in a rela-
tively static position while the background compresses
or stretches. This capability can be accomplished by
combining a virtual zoom out/in with a step-in/out
effect [102].

E. LF DISPLAY
Naturally, since LF imaging systems allow recording the 4D
light field, the LF content can bemore easily played in awider
variety of display technologies by simply re-creating different
displayable versions of the same LF content. In this context,
among the possible display technologies that are currently
available for LF content visualization, one can cite:
• 2D Displays — In this case, a single 2D view, or more
specifically, a 2D version of the LF content must be
rendered from the decoded LF content.

• Stereo Displays — In this case, a pair of views need
to be rendered from the lenslet image and delivered to
the display. This type of display technology allows then
improving the user’s depth perception (with respect to
the 2D display) by presenting a different view to his/her
left and right eyes (typically, by means of a pair of
eyeglasses).

• Multiview Autostereoscopic Displays — Multiview
Autostereoscopic is a glassless display technology that
allows creating a more natural 3D illusion (with respect
to the stereo display) to the end-user by presenting
a different perspective as the user moves horizontally
around the display (known as horizontal motion paral-
lax). In this case, multiple views need to be rendered
from the LF content and delivered to the display.

Moreover, following the recent developments in sen-
sor and optical manufacturing, the display technologies
are also evolving for providing a more natural and

immersive visualization. Therefore, some prospective display
technologies have also started to show up. Among them, it is
possible to cite:
• AR and VR Displays — AR and VR HMD allow
the user to see different perspectives as he/she moves
through the scene. In the case of an AR HMD, the real
environment is seen through half-transparent mirrors
and then virtual 2D views are seamlessly blended into
the real scene [1], [103]. In the case of a VR HMD,
a large number of virtual 2D views are delivered to the
HMD for providing to the user the impression of immer-
sion in a real environment. Some AR and VR solutions
have proposed to take advantage of a microlens-
based [1], [104] or a mirror-based [105] LF imaging
technology for creating a more natural visualization in
AR and VR HMDs.

• LF Displays — A display technology using an optical
setup similar to the one used in lenslet cameras can
be also designed for LF visualization, as proposed by
Nippon Hōsō Kyōkai (NHK) Japan Broadcast Corpo-
ration [3]. Another LF display technology uses a very
dense number of views to create a replica of the 4D light
field, as proposed by Holografika [4], Ostendo [8], and
Looking Glass Factory [106].

F. LF QUALITY EVALUATION
A new challenging research topic is also to assess the visual
quality as perceived by end-users after processing and com-
pressing LF content. Visual quality assessment is generally
carried out by determining suitable objective and subjective
evaluation techniques.

Among objective quality metrics, Peak Signal to
Noise Ratio (PSNR) and the Structural Similarity Index
(SSIM) [107] have been the most commonly used metrics
to assess the visual quality of 2D image and video under
compression distortions. In the context of LF content, JPEG
Pleno [108] and MPEG-I [59] have also adopted these met-
rics in core experiments. In this case, PSNR and SSIM are
calculated per view for all color components and the average
over all viewpoint positions is adopted as an overall quality
measure. Apart from this, there have been only a few works
specifically addressing objective quality assessment metrics
for LF content. In [109], a sparse angle-dependent and a
sparse depth-dependent metric are proposed. In the sparse
angle-dependent metric, the average SSIM is taken in a set
of five views from equidistant viewing angles. In the sparse
depth-dependent, depth information is estimated and the
average PSNR is taken in a rendered view (with fixed angular
position) over sets of pixels in different depth layers. In [110],
a quality evaluation method based on contrast and gradient
measurements is proposed that measure the impact of LF
compression in the visual quality by measuring the amount of
compression blur in rendered views. In [111], a no-reference
metric is proposed to quantify the amount of distortion due
to LF rendering based on the number of light rays per
unit area of the scene that is used to estimate an unknown
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FIGURE 17. The LF coding solutions in the literature are grouped into four categories (in shaded gray blocks).

light ray. In [112], an objective metric that combines a
spatial component and an angular component is proposed
to evaluate the visual quality of 3D content on light field
displays.

Following the standardization initiatives of JPEG Pleno
and MPEG-I, methodologies for subjectively assessing the
visual quality of LF content have also started being addressed
in the literature. In [23], a methodology is proposed for visu-
ally evaluating compressed Lytro Illum lenslet images using
a conventional 2D display and Double Stimulus Continuous
Quality Scale (DSCQS) metric [113]. In [114], a method-
ology as well as prototype software for performing subjec-
tive quality assessment of compressed Lytro Illum lenslet
images is proposed that aims at designing a methodology
that enables global assessment of quality of experience in a
flexible and interactive way [114]. In [115], a LF dataset for
quality evaluation is proposed (see Table 1) and an analysis of
the subjective quality of compressed LF image is presented.
In [54], an analysis of the impact of different visualization
techniques — i.e., image-based and animated-based visual-
ization of rendered views in a 2D display — on the obtained
scores in subjective quality evaluation is presented. In [116],
an analysis of how light field subsampling affects the per-
ceived quality of refocused views visualized in an animated
fashion is presented. In [53], a subjective evaluation on a
3D monitor with head tracking is performed to assess the
performance of various objective quality metrics on distorted
LF contents. In [117], a subject evaluation on a light field
display [4] is performed aiming at analyzing the correlation
between spatial and angular resolution and discussing ways
to improve parallax perception.

III. LITERATURE REVIEW ON DENSE LIGHT FIELD CODING
After reviewing the most relevant aspects of LF imaging
and processing in the previous section, it is then possible to
better characterize the existing LF coding approaches in the
literature. To facilitate this, the various LF coding approaches

are clustered into the two major classes depicted in Fig. 17,
by identifying which functional part of the codec is responsi-
ble for exploiting the inherent LF correlations. Notably:
• Transform-Based Approaches — As its name sug-
gests, transform-based approaches exploit the LF cor-
relations in the transform domain, based on a particular
transform coding technique. LF coding solutions in this
class are reviewed in Section III-A.

• Predictive-Based Approaches — Differently, predic-
tive based approaches exploit the LF correlations in
a predictive manner. As illustrated in Fig. 17, pre-
dictive based approaches can be further categorized
depending on the particular data format and prediction
schemes adopted. Notably, three categories are identi-
fied: i) LF coding based on inter-view prediction, which
is reviewed in Section III-B; ii) LF coding based on non-
local spatial prediction, reviewed in Section III-C; and,
finally, iii) LF coding based on view synthesis, reviewed
in Section III-D.

Although transform and predictive based approaches
appear separated from each other in Fig. 17, it does not mean
that a transform based approach excludes completely any type
of predictive coding tool from its architecture (or vice versa).
For instance, a predictive based approach may use a hybrid
coding architecture, as seen in Section II-C.
It is worth mentioning that, the evaluation procedures and

the coding conditions are usually divergent among different
publications, which makes it difficult a straightforward com-
parison between distinct LF coding solutions in the literature.
Nevertheless, when discussing about the performance of each
LF coding solution presented, an effort was made to include
some quantitative results in terms of bit savings as long as it
was available in the original publication (alternatively, coding
gains in decibel (dB) are presented). Additionally, at the end
of each section, a high-level discussion is provided to high-
light the most relevant results, advantages, and limitations of
the LF coding solutions in each category.
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A. TRANSFORM-BASED LF CODING
Starting with transform based approaches, these correspond
to LF coding solutions that rely on transform coding for
exploiting the inherent LF correlations. Specifically, various
transform coding techniques can be used to decorrelate the LF
image and then remove the redundant information between
neighboring views. Therefore, it is possible to group the
transform based approaches into five categories, depending
on the type of used transform (see Fig. 17): i) Discrete
Cosine Transform (DCT)-based; ii) Discrete Wavelet Trans-
form (DWT)-based; iii) Karhunen Loève Transform (KLT)-
based; iv) Graph Fourier Transform (GFT)-based; and v)
combined approaches.

These approaches have been mainly proposed for lenslet
LF coding. In this case, the lenslet image undergoes a pre-
processing operation to convert it to the volumetric represen-
tation format presented in Section II-B4. Therefore, not only
the existing spatial redundancy within each view is exploited,
but also the redundancy between neighboring views.

1) DCT-BASED CODING
Inspired by the approach adopted by JPEG standard, the LF
coding schemes in this group make use of the classical image
coding architecture shown in Fig. 14, but to apply a 3D or 4D
version of the DCT transform.

In [118], a DCT-based coding solution is proposed for
lenticular-based imaging [119], where a 1D cylindrical MLA
is used for capturing instead of the 2D array of microlenses.
The lenslet image is organized into stacks of 8 adjacentmicro-
images and the 3D DCT is applied to each 8×8×8 block.
Then, the resulting DCT coefficients are uniformly quan-
tized and both DC and AC quantized coefficients are equally
entropy coded by using a combination of run-length and
Huffman coding. It is shown that the proposed solution
presents significant improvements compared to JPEG for
gray-level lenslet images. In [120], further improvements in
compression performance are achieved by using an alter-
native quantization strategy. In [121], the solution with the
3D DCT from [118] is generalized for lenslet LF with full
parallax. In this case, both the horizontal and vertical micro-
images are decorrelated simultaneously by the 3D DCT.
Hence, it is shown that different scan ordering approaches
for gathering the horizontal and vertical micro-images (to
form 8×8×8 stacks) result in different Rate-Distortion (RD)
performances. This fact has motivated the work in [122],
which proposes to use a Hilbert space-filling curve (see
Fig. 9f) for scanning the micro-images in the array and
forming 8×8×8 stacks to be 3D DCT coded. Various scan-
ning topologies are compared, namely: raster, perpendicular
and spiral (see Fig. 9) and it is shown that the 3D DCT
in conjunction with the Hilbert scan outperforms all other
tested solutions. In addition, an adaptive 3D DCT based
framework is proposed in [123], in which the number of
micro-images involved in a single 3DDCT is varied (between
8×8×1, 8×8×2, 8×8×4, and 8×8×8 stacks of micro-
images) according to the micro-image cross correlation in

a neighborhood. In this case, the micro-image mean values
are used as a measure of correlation between micro-images.
Consequently, it is shown that the adaptive 3D DCT could
significantly outperform the non adaptive solution from [118]
(for lenticular-based images). An alternative adaptive 3D
DCT-based approach has been proposed in [124]. Similarly
to [123], the mean value is used as a correlation metric.
However, the 3D DCT is applied to stacks of subaperture
images and the size of the 3D DCT is varied between
16×16×16 down to 4×4×4, depending on the correlation
between neighboring subaperture images. From this, it is
shown that further improvements can be achieved compared
to the adaptive solution proposed in [123] (when also applied
to subaperture images).

More recently, a lenslet LF coding approach using a 4D
DCT is proposed in [125] and referred to asMultidimensional
Light Field Encoder (MuLE). To explore the 4D redundancy
of LFs, the lenslet image is converted to its full-parallax
multiview format (see Fig. 5b) and it is divided into 4D
blocks (with two spatial plus two directional dimensions) and
a separable 1D DCT is applied to each dimension. Then,
the resulting DCT coefficients are grouped into bitplanes and
processed by an hexadeca-tree coder to cluster zero coef-
ficients into 16 4D subregions — referred to as hexadeca
tree partition [125]. Both the hexadeca-tree bits and the bits
from the significant coefficients are entropy coded using an
adaptive arithmetic coder. This solution is compared against
a PVS-based solution in which all subaperture images are
scanned in serpentine order (see Fig. 9b) to be coded using
HEVC and VP9 codecs, and against a LF solution based
on JPEG 2000 and view synthesis proposed in [126] (see
Section III-D1. Compared against the PVS-based HEVC
solution for coding lenslet images from the EPFL LF Dataset
(see Table 1), the MuLE achieves, in average, 38.1% of bit
savings, while the view synthesis solution in [126] achieves
36.4 % of bit savings, and the PVS-based VP9 solution
achieves 20.5% of bit savings. This solution has been recently
adopted in the JPEG Pleno Verification Model (VM) [127]
(since version 2.0) for lenslet LF coding.

2) KLT-BASED CODING
Instead of using the DCT as in the previous section, other
schemes propose to use a KLT-based approach for LF cod-
ing. The KLT — a.k.a. Principal Components Analysis
(PCA) [128] decomposition andHotelling [129] transform—
is a block based transform that exploits the statistical charac-
teristics of the input data. The KLT consists of decomposing
the input data in a set of orthonormal basis functions (known
as the principal components) into which the variance of the
input data is maximal. This corresponds to ordering the eigen-
vectors of the covariance matrix (the KLT matrix), which
is calculated with the input data, according to the largest
eigenvalues.

The idea of applying the KLT transform for compres-
sion comes from the fact that a linear combination of any
reduced number, k , of eigenvectors corresponds to the best
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FIGURE 18. KLT-based LF image coding schemes: (a) Proposed by Jang,
Yeom, and Javidi [131]; and (b) Proposed by Kang, Shin, and
Kim [133], [134].

approximation of the input data in a reduced k-dimension
subspace (i.e., the approximation with minimal mean square
error) [130]. Therefore, different compression ratios can be
achieved by simply discarding less (or more) eigenvectors
(i.e., discarding rows from the covariance matrix). Concern-
ing the usage of KLT for image compression, although the
KLT is very efficient in compacting the energy in a small
number of eigenvectors, there are still some implementation
related difficulties, mainly due to the fact that the KLT basis
functions are image dependent. However, it may be suitable
in applications where the statistics of the data change slowly
and the covariance matrix is kept small [130].

Regarding LF coding, a KLT-based coding scheme is
proposed in [131] for lenslet LF coding, in which a Vector
Quantization (VQ) scheme is used for clustering different
micro-images into a representative set of vectors to be then
coded with KLT, as illustrated in Fig. 18a. For this, the lenslet
image is divided into consecutive blocks of d × d samples
which are treated as a (d × d)-dimensional vector. These
vectors are then grouped into S different classes by using the
Linde-Buzo-Gray (LBG) optimization algorithm [132]. As a
result, a codebook is derived, consisting of S representative
vectors (known as code vectors). Then, a KLT with (k × k)-
dimension is applied into the vectors from each of the S
classes so as to reduce the dimensionality of their vectors
from (d × d) to (k × k)-dimension vectors, where k ≤ d .
Afterwards, the reduced KLT coefficients, together with the
codebook and the KLT matrix, are scaled and rounded to
the nearest integer to compose the output bitstream. From
the presented results, it is shown that varying the d × d
block size does not affect the RD efficiency for lenslet image
coding. However, the larger the number of sets S, the better is
the observed RD performance. Moreover, the presented KLT
scheme always outperforms the JPEG standard for lower bit
rates.

An alternative KLT-based coding scheme is also proposed
in [133], [134], as illustrated in Fig. 18b. In this case,
the lenslet image is decomposed into its subaperture images,
which are then KLT coded. It is worth noting that there is

no further information on how the resulting KLT coefficients
together with the KLT matrix are coded and transmitted
in [133], [134]. It is shown that this approach achieves better
RD performance compared to JPEG and the same KLT based
approach applied to micro-images. In addition, it is observed
that the statistical characteristics between subaperture images
are more easily decorrelated than between micro-images,
having most of the relevant information compacted into a
smaller number of eigenvectors. As stated in [134], due to
the small FoV of the microlenses in the array, each captured
micro-image comprises only a small portion of the 3D scene,
which may have different characteristics in different areas of
the 3D scene. On the contrary, all subaperture images com-
prise the complete 3D scene, which are only slightly different
on the angles of projection. Consequently, LF redundancy
is considerably larger in subaperture images than in micro-
images.

3) DWT-BASED CODING
In alternative to block-based transforms, such as the DCT and
KLT, some authors proposed to use an approach based on
DWT coding, closer to the coding techniques used in JPEG
2000 codecs [83].

In [135], a 3D DWT-based coding scheme is proposed for
lenslet LF coding following the classical still image coding
architecture illustrated in Fig. 14. For this, the lenslet image
is firstly decomposed into a stack of subaperture images and
a separate 1D DWT is recursively applied in the third dimen-
sion of this stack until the lowest frequency subband contains
only two samples (in the third dimension). Then, a two level
2D DWT decomposition is applied to these two sets of lowest
frequency bands. Similarly to JPEG 2000, the lowest fre-
quency subbands are quantized using a deadzone quantizer,
while the remaining high frequency coefficients are quantized
using a uniform scalar quantizer. Following this, a new scan-
ning pattern is proposed to be used to scan samples from all
subbands together, which are then arithmetic coded.

In [136], a similar approach with a 3D DWT applied to
a stack of subaperture images is proposed. However, in this
case, the three (separable) 1D DWTs are recursively applied
to each dimension of the stack, producing 8 subbands in each
decomposition level. Afterwards, the 3D DWT coefficients
are quantized using a deadzone scalar quantizer and coded
using the method of Set Partitioning In Hierarchical Trees
(SPIHT) [137]. Similarly to the Embedded Block Coding
withOptimal Truncation (EBCOT) [138], used in JPEG2000,
the SPIHT algorithm is used as a form of entropy coding
applied to bitplanes of quantized coefficients to allow pro-
gressive transmission of the LF data. The proposed approach
is compared to a 2D version of the coding scheme, in which
a 2D DWT is applied to the entire lenslet image followed by
SPIHT. The 3D DWT scheme presents significant improve-
ments compared to the 2D DWT. Moreover, several DWT
bank filters are analyzed for the 3D DWT coding, and the
Biorthogonal 2.2 filters show the best results, but are very
similar to the Daubechies filters. In [139], a 4D DWT-based
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FIGURE 19. 1D DWT lifting structure.

scheme is proposed for coding LF acquired with multi-
camera arrays. For this, a separable 1D DWT is applied to
each of 4D dimensions of a LF data. The obtained 4D DWT
coefficients are then coded by using SPIHT [137].

Regarding standard DWT based coding solutions, a study
on lenslet image coding is presented in [140], in which the
performance of two DWT based coding solutions (JPEG
2000 and SPIHT) and one DCT based standard solu-
tion (JPEG) are compared. The performance is analyzed
in terms of the objective quality of views rendered from
the coded and reconstructed lenslet image, by using aver-
age PSNR and average SSIM index. It is shown that the
SPIHT scheme presents better RD performance than JPEG
for low bit rates, but JPEG 2000 outperforms them both
for either PSNR or SSIM metrics. In [141], a similar study
is performed for comparing two standard solutions, JPEG
2000 and JPEG XR [142], for lenslet image coding. This
study focuses on comparing the performance, in terms of
objective quality of rendered views, of the different transform
coding solutions used in each standard, namely: the JPEG
2000 DWT and the block-based DCT transform used in
JPEGXR [142]. In the presented results, JPEG 2000 achieves
slightly better RD performance than JPEG XR both in terms
of PSNR and SSIM metrics. In addition, an empirical per-
formance analysis is presented in [143] for synthetic lenslet
images. For this, JPEG 2000 is compared to its exten-
sion for volumetric data compression — JPEG 2000 Part
10 [144], known as JP3D — for lenslet image compres-
sion. The JP3D solution supports 3D DWT decompositions
and extends tiles, code-blocks and Region of Interest (ROI)
functionalities accordingly to support volumetric data. In the
presented study [143], JPEG 2000 is applied to the entire
lenslet image, while two different scenarios are considered
for JP3D, in which the 3D DWT is applied to stacks of micro-
images, and to stacks of subaperture images. It is shown
that the JP3D solution outperforms the JPEG 2000 for both
scenarios.

In [145], a 4D DWT scheme is proposed for coding LF
captured with a multi-camera array. Firstly, a 2D lifting-
based Haar DWT [146] is carried out by applying a 1D
DWT lifting structure horizontally and vertically across the
2D array of views. As depicted in Fig. 19, estimated disparity
information is used in the prediction and update steps of the
1DDWT lifting structure to exploit the inter-view correlation.
For this, the views are divided into two interlaced sets of
even and odd views. In the prediction step, the disparity
information is used to predict an odd view by warping it from
an even view. Then, the resulting prediction residual from the

odd view corresponds to the high frequency subband of the
Haar DWT. Afterwards, in the update step, this high fre-
quency subband is then warped and added to the even view
to generate the low frequency subband, which is approx-
imately the disparity compensated average between even
and odd views. After this 2D inter-view transform, a multi-
level 2D DWT is applied to each frequency subband images.
To encode the transformed coefficients, a modified SPIHT
algorithm is adopted to work in a block-wise manner. It is
worth mentioning that this coding architecture supports view
scalability by progressively decoding the interview frequency
subbands. Moreover, the number of scalable layers can vary
by applying more or less decomposition levels in the inter-
view DWT. Motivated by this fact, a scalable lenslet LF cod-
ing scheme based on DWT lifting is proposed in [147]. In this
scheme, the disparity information is derived by matching a
set of SIFT descriptors extracted from two different subaper-
ture images and estimating the corresponding homography
transform. Then, the resulting homography matrix is trans-
mitted to the decoder side. Similarly to [145], a 2D lifting-
based Haar DWT is applied to exploit inter-view correlation.
Afterwards, the inter-view frequency subband images are
coded using JPEG 2000 coder. Experimental results for cod-
ing lenslet images from the EPFL LF Dataset (see Table 1)
show that it is possible to reach, in average, 62.85% and
78.80% of bit savings compared to coding each subaperture
image independently using JPEG 2000 and JPEG, respec-
tively. In [148], a lifting-based DWT scheme is also pro-
posed for coding LFs captured with a multi-camera array.
Similarly to [147], the DWT subband images are coded using
JPEG 2000. However, in this case, the views are divided into
Groups of Views (GOV) and the disparity is coded for only
one reference view from each GOV. For this, an anchored
disparity modeling is proposed for representing the disparity
data and a backfilling methodology is proposed for deriving
disparity relationships in disoccluded areas. Then, the dis-
parity data in reference views are coded using a break point
adaptative DWT with 5 levels of decomposition followed by
EBCOT. Experimental results are presented for coding LF
images from the Fraunhofer LF Dataset (see Table 1), which
compare the proposed solution against a PVS-based solution
with serpentine ordering (see Fig. 9b) andHEVC. It should be
noticed that, in these experiments, only a subsampled set of
views are coded with the proposed scheme and the remaining
views are interpolated using the 4 nearest coded views. The
results show a superior performance of the proposed solution,
achieving gains of 2 dB and 3–4 dB, respectively, at high and
low bit rates.

4) GFT-BASED CODING
Graph signal processing has proved to be a powerful tool
for modeling irregular structures and the complex interac-
tions among them [149]. Notably, the GFT allows extending
the notions of classical Fourier transform to signal sam-
ples indexed by nodes of an arbitrary directed or undirected
graph. A graph is commonly defined as a mathematical struc-

VOLUME 8, 2020 49259



C. Conti et al.: Dense LF Coding: Survey

ture G = (V ,E) composed of N nodes (a.k.a. vertices),
V = {v0, v1, . . . , vN−1}, and a set of edges E . The set of
nodes is used to model elements of a system, while the set
of edges is used to encode any relevant relationship between
these elements. From this, the graph signal can be defined
as a vector s ∈ CN , where its n-th entry sn denotes the signal
value on the node vn of the graph— called the vertex domain.
There are many choices for defining the frequency represen-
tation to be used in GFT, and the decision between them
usually depends on the problem being considered [149]. The
two most widely used representations consider the adjacency
matrix A and the graph Laplacian L [150] as shift (delay)
operators. Generically, the adjacency matrix A generalizes
the shift operator of classical discrete signal processing and
applies to directed and undirected graphs, while the graph
Laplacian L applies only to undirected graphs with positive
weights, so that L is symmetric and positive semidefinite,
which avoids some numerical difficulties that may arise when
choosing A [149]. Assuming the simplest case when the shift
matrix (A or L) is symmetric, the GFT can be obtained
from the eigen decomposition of A or L. In this particular
case, all the eigenvalues are real and nonnegative, and the
full set of orthogonal eigenvectors can be obtained. Then,
the eigenvectors are the basis vectors to the GFT matrix,
and the eigenvalues are the graph frequencies. The basis
vectors are ordered from low to high graph frequencies.
Similar to the KLT, the corresponding GFT matrix is image
dependent.

GFT-based methods have been recently proposed for LF
coding. In this case, a graph-based representation is used to
model color, depth/disparity or other geometry information
from the LF content. In [151], the authors propose a GFT-
based scheme for coding LFs captured by a multi-camera
array. For this, a graph representation based on the adjacency
matrix is constructed for each possible residual block of d×d
samples by defining each pixel position in the block as a
node, and the residual value in each pixel as the graph signal.
Then, a sparse adjacency matrix A is built according to a 2D
Nearest-Neighbor (NN) graph model [152]. This scheme is
based on the HEVC codec, but the DCT is replaced by the
proposed GFT to encode the residual data. Hence, the LF
data is organized as a PVS (see Section II-B2) to be coded
by scanning the views in different orders [151]. To avoid
transmitting A for every single block of d × d samples in
every view, the proposed scheme assumes that blocks in
the same position in different views are highly correlated.
Results for LF images from the Stanford LF Archive and
HCI 4D LF Dataset (see Table 1) show that it is possible
to reduce up to 22% the number of coefficients compared to
DCT. In [153], a GFT-based solution for lenslet LF coding is
proposed using the graph lifting transform. To achieve further
compression, the lenslet image acquired by the sensor is
calibrated, converted to subaperture images, and coded prior
to demosaicking. Thus, a graph is constructed to represent the
sparsely distributed color pixels in each subaperture image,
by defining each pixel position as a node, and the color

intensity in each pixel as the graph signal. For each non-
overlapping block of d×d samples, a sparse adjacencymatrix
is constructed for each color component by connecting pixels
based on the Euclidian distance between its nodes. Once
the graph is constructed, a graph lifting transform [154] is
applied. The transformed coefficients are uniformly quan-
tized and entropy coded using an Amplitude and Group
Partitioning (AGP) method [153]. Experimental results for
lenslet images from the EPFL LF Dataset (see Table 1) show
significant coding gains only for high bit rates compared to a
scheme in which demosaicking is applied prior to coding and
each subaperture image is coded independently with HEVC.
Since the solution is outperformed by HEVC for low bit
rates, the authors suggest using the solution for applications
such as archiving and instant storage on lenslet cameras.
In [155], a GFT solution with a support defined on super-ray
segmentation is proposed for lenslet LF coding. As proposed
in [156], a super-ray segmentation is used for grouping light
rays of similar color values and being close spatially in the
3D space by taking into account the disparity information.
This corresponds to grouping perceptually similar regions
across all subaperture images. Then, two separable GFTs
are applied locally in each super-ray region for exploiting
both spatial and angular dependencies. Firstly, a GFT is
constructed for each segmented region in a reference sub-
aperture image by defining each pixel position in the region
as a node which is connected (through edges) to its spatially
neighboring pixels. To increase the correlation of spatial GFT
coefficients across different subaperture images (and, conse-
quently, improve energy compaction), a graph optimization
method is proposed for finding coherent spatial GFT basis
vectors for segmented regions on the remaining subaperture
images. Afterwards, an angular GFT is constructed for each
spatial graph frequency inside a super-ray. For this, the nodes
are defined as the subaperture images where the spatial graph
frequency exists, and the edges are drawn from one node to its
direct four neighbors. Finally, the GFT coefficients are quan-
tized and encoded using CABAC. The segmentation map
of the reference subaperture image and the disparity value
per super-ray are also encoded using an arithmetic coder
and transmitted to the decoder side. Experimental results for
lenslet images captured by a Lytro Illum camera (including
three LF images from the EPFL LF Dataset in Table 1) are
shown, in which the proposed solution is compared against
four different LF coding solutions: i) a PVS-based solution
using lozenge scan order and HEVC; ii) a PVS-based solu-
tion proposed in [157] (see Section II-B2); iii) a LF coding
solution based on view synthesis proposed in [158], [159]
(see Section III-D1); and iv) a LF coding solution based
on view synthesis proposed in [49] (see Section III-D3).
From these results, it is seen that the proposed solution is
outperformed by the PVS-based solution in [157] and by the
view synthesis-based solution in [49], but is able to present
some coding gains at high bit rates when compared to the
PVS-based with lozenge scan and the views synthesis-based
solution in [158], [159].
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FIGURE 20. Block diagram of combined-transform coding schemes for
lenslet image compression. When using the KLT as the block-based
transform, quantization and entropy coding processes are bypassed (as
illustrated by the dashed line).

5) COMBINED TRANSFORM CODING
This category corresponds to LF coding schemes in which
two or more types of transforms are combined to separately
exploit the spatial redundancy between samples in a local
neighborhood and the inherent LF cross correlation in neigh-
boring views. A common characteristic of most of these LF
coding approaches is that an image-based transform (notably,
the 2D DWT) is used to exploit the local sample correla-
tion, followed by a block-based transform that is applied
to the lowest subbands across different views, as illustrated
in Fig. 20. The major motivation for this choice is to reduce
the blocking artifacts that are likely to appear in the recon-
structed image when using a block based transform coding.

In [160], a combined transform scheme is proposed for
lenslet LF coding that combines a 2D DWT with a 2D DCT.
In this scheme, the lenslet image is divided into tiles with
the micro-image size to be recursively decomposed with a
2D DWT. Following this, a packet partition scheme is used
to rearrange the samples from the same DWT subband into
blocks of 8×8 samples to be DCT coded. The 2DDCT coeffi-
cients are then scalar quantized and entropy coded similarly to
JPEG encoding. The presented approach outperforms JPEG
with significant gains, mainly at low bit rates.

In [161], an approach combining a 2D DWT and a 3D
DCT is proposed for coding lenticular-based images. For this,
the 2D DWT is recursively applied to each subaperture image
extracted from a lenslet image to decompose them in two
levels. Then, the lowest subbands from different subaperture
images are stacked into 8×8×8 blocks to be processed by
a 3D DCT. Afterwards, all coefficients within all the sub-
bands are quantized using a deadzone scalar quantizer. Then,
the 3D DCT coefficients are Huffman coded while all the
other coefficients are arithmetic coded. In [162], the previous
solution is extended for full parallax lenslet image, which
is then compared to the solution in [121]. It is shown that
the combined transform approach achieves improved RD
performance at low bit rates when compared to the scheme
proposed in [121], in which only the 3D DCT is used.

In [163], instead of using the DCT as the block-based
transform, the 2D DWT is combined with the KLT. In this
case, a one level 2D DWT decomposition is individually
applied to all micro-images, resulting in four subbands per
micro-image. Then, samples in the same subband from all
micro-images are arranged into four arrays, and the KLT is
applied to each of them. Then, the four arrays with reduced
dimensionality are transmitted together with the KLT matrix.
It is shown that the combined solution performs significantly
better, in terms of RD performance, compared to a scheme

very similar to the one proposed in [131] (see Fig. 18a), where
only the KLT is used.Moreover, several filter banks are tested
for the 2D DWT, and the Daubechies is the one that results in
better RD performance for lenslet image coding.

6) DISCUSSION
Several LF coding schemes proposed to exploit the inherent
correlations of the LF content in the transform domain. The
greater advantage of such schemes is the simplicity of the
proposed coding architecture, inspired by the most popular
still image codec, the JPEG standard. Generically, the pro-
posed transform-based LF coding solutions have presented
significant coding gains compared to standard transform-
based solutions, such as JPEG and JPEG 2000. Additionally,
4D transforms have been shown to be the most suitable for LF
coding, independently of the transform family that is adopted
(e.g., DCT, DWT, or combined approaches), since they are
able to better exploit all the LF correlations.

From the different transform coding techniques proposed,
4D DWT-based approaches, either when applied alone (as
in [145], [147], [148]) or combined with a block-based
transform (as in [163]), have shown to present the best RD
performance while providing other typically required func-
tionalities, such as quality and resolution scalability, random
access and ROI coding. Nevertheless, recent experimental
results have suggested that the 4D DCT-based MuLE solu-
tion in [125], as adopted in the JPEG Pleno VM 2.1 [127],
can present competitive RD coding performance. Moreover,
in the context of JPEG Pleno VM 2.1 [127], a random access
extension of the 4D DCT-based solution is proposed in [164]
by independently coding a set of adjacent blocks of 4D DCT
coefficients. However, random access is supported at the
price of significantly increasing the bit rate (to almost the
double [164]).

Compared to other LF coding solutions in the litera-
ture (outside the transform-based category), it has been
shown [165] that the transform-based solutions [125] can
achieve competitive RD performance when compared against
LF coding solutions based on inter-view prediction (such as
PVS-based approaches) and some solutions based on view
synthesis [158], [159], but only for coding LF acquired using
lenslet cameras, where the 4D redundancy is considerably
larger than in LF acquired using multi-camera or gantry
setups.

B. LF CODING BASED ON INTER-VIEW PREDICTION
Instead of exploring the inherent LF correlations in the
transform domain, as discussed in the previous section,
other authors have proposed to do it relying on a pre-
dictive approach to exploit the correlation between views
(which may comprise micro-images, subaperture images,
or viewpoint images with high resolution) for achieving
compression.

LF coding solutions based on inter-view prediction
can be divided into two groups, which are distinguished
according to the adopted representation format and coding
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FIGURE 21. Prediction structures proposed in the literature for PVS based LF coding approaches. Different temporal layers are
illustrated with different colors and capitalizing formats: (a) PIP (top) and PBI (bottom) [168]; (b) MPEG-2-based structure with M = 3
and N = 6 [170]; (c) Central 1D structure [173]–[175]; HEVC-based structures [176], [177]: (d) Low Delay P, (e) Low Delay B, and
(f) Random Access; (g) 2D hierarchical prediction structure proposed by the winner of ICME 2016 grand challenge on LF
compression [157]; and (h) Enhanced 2D hierarchical prediction structure proposed in [178], where the order for coding each view is
depicted by the numbers inside the boxes.

architecture: i) PVS-based, in which the LF full parallax
multiple views are organized in a PVS format (see Fig. 8b)
and encoded with a hybrid 2D video coding solution (see
Fig. 14); and ii) multiview-based, in which the LF full par-
allax multiple views are organized in a multiview format (see
Fig. 11) to be encoded with a multiview video coding solution
(see Fig. 15).

Although conceptually different, both PVS and multiview
based coding approaches have the same basic purpose of
proposing an efficient prediction configuration for better
exploiting the inter-view correlations. For this, different scan-
ning patterns for ordering the views (as exemplified in Fig. 9),
as well as different prediction structures (as summarized
in Figs. 21 and 22), are proposed.

1) PVS-BASED LF CODING
Back in 1995, the very first LF coding solution in the litera-
ture [166] (to the best of the authors’ knowledge) proposed to
introduce a Differential Pulse Coding Modulation (DPCM)
coding into a DCT based image coding loop in order to
encode lenticular-based lenslet images. For this, the lenslet
image was organized as a PVS of micro-images and then
encoded with the proposed codec, by using the previously
encoded micro-image as the predictor. Since then, the PVS-
based approaches proposed in the literature have naturally
followed the evolution of hybrid 2D video coding standards.

In [139], a PVS-based scheme for coding light field
acquired using a multi-camera array is proposed. The cod-
ing process starts by selecting a set of evenly distributed
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FIGURE 22. Prediction Structures proposed in the literature for multiview based LF coding approaches.
Different hierarchical layers are illustrated with different colors and capitalizing formats: (a) IBP
structure [196], [197]; (b) Typical prediction structure used in MVC; (c) 2D hierarchical inter-view prediction
structure proposed in [198]; (d) 2D parallel inter-view prediction structure proposed in [199]; (e) 2D
hierarchical prediction structure propose in [200]; and (f) 2D hierarchical prediction structure propose
in [201].
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views to be independently coded as intra or I-frames. Then,
the remaining views are coded as P-frames by choosing one
of the coded I-frames as a reference frame. In [167], a multi-
hypothesis prediction scheme is proposed to improve the
coding performance of the solution in [139] by using bi-
predicted B-frames. Experimental results show 10% of bit
savings compared against the solution in [139]. In [168],
a combination of JPEG and MPEG-1 [169] standard codecs
is used to encode lenslet LF content represented as a PVS
of micro-images. For this, two prediction configurations are
used to exploit the correlations between neighboring micro-
images, as illustrated in Fig. 21a. It is shown that, the pro-
posed hybrid coding solution always outperforms the JPEG
standard (used for encoding the entire lenslet image, without
micro-image extraction) with significant gains when the PBI
configuration in Fig. 21a (bottom) is used. In [170], the PVS
of micro-images is proposed to be encoded with MPEG-2
[171], using the prediction structure shown in Fig. 21a and
three different scanning patterns: i) raster; ii) perpendicular;
and iii) spiral (see Fig. 9). From the presented results, it is
shown that the inter-view prediction using raster scan order
is much less efficient than spiral and perpendicular due to the
reduced number of available vertical inter-view predictions
and increased distance between coding frame and reference
frame(s). Due to similar reasons, a variation in the inter-view
performance is also observed for different prediction config-
urations, i.e., for different M and N parameters in Fig. 21b.
In [172], the authors propose to use a Hilbert scan (see
Fig. 9f) for ordering the micro-images in a PVS, which is
then encoded using MPEG-2 [171], as in [170]. It is shown
that the Hilbert scan results in a significant improvement in
RD performance when compared to the raster, perpendicular,
and spiral scans (see Fig. 9).
In [173], [175], the authors propose to scan all subaperture

images from a lenslet LF content in spiral order (see Fig. 9d)
and to encode the resulting PVSwith a combination of DPCM
and theH.264/AVC. For this, the prediction structure depicted
in Fig. 21c is used, in which the central subaperture image
is considered the only reference frame available for coding
all the remaining subaperture images. Then, the difference
between the current subaperture image being coded and its
reference frame is encoded as a frame using H.264/AVC.
The proposed scheme outperforms a JPEG based solution,
in which each subaperture image is independently coded with
JPEG. Afterwards, in [179], the authors propose to improve
the performance of the solution proposed in [173], [175] by
replacing the previous DPCM based scheme by a motion
compensated prediction, and to encode the motion compen-
sated residual using H.264/AVC. Moreover, in [180], for
further RD performance improvements, the authors propose
to equally divide the array of subaperture images into four
parts before scanning them in spiral order to form the PVS,
so as to reduce the distance between a current subaperture
image being coded and its reference frame.

In [181], a PVS is constructed by scanning all sub-
aperture images from a lenslet LF content in raster order

(see Fig. 9a), which is then encoded with H.264/AVC. The
proposed encoder is then compared against JPEG and JPEG
2000, where both standard solutions are used to encode the
entire lenslet image, without subaperture image extraction.
From the presented results (for synthetic images computa-
tionally generated using a pinhole lens array model approx-
imation [181]), JPEG 2000 is shown to be more efficient
than JPEG for lenslet image coding. However, the PVS cod-
ing solution based on subaperture images outperforms JPEG
2000 with significant gains. In [182], the authors propose
to extend their previous work [181] by considering raster,
serpentine, spiral, and zig-zag (see Fig. 9) scan for ordering
the subaperture images in the PVS. It is shown that, for
synthetic lenslet images as in [181], changing the scanning
patterns does not result in significant differences in the RD
performance. Moreover, a comparison between the proposed
PVS based on subaperture image and a PVS based on micro-
images (both coded with H.264/AVC) is also performed
for synthetic lenslet images generated with different micro-
image and subaperture image sizes. It is suggested that the
subaperture images shall be preferred to micro-image in a
PVSwhen the subaperture image size is larger than themicro-
image size. However, from the presented results, it is also
shown that the difference in RD performance between these
two PVS approaches (based onmicro-images and subaperture
images) may also depend on the scene characteristics. For
instance, for LF generated using pinhole lens array model
and a scene with highly detailed objects distributed in var-
ious depth planes, subaperture images are more difficult to
encode than micro-images since near and far objects are
equally noticeable in the subaperture image [182] (in other
words, the objects size is invariant to depth in the subaperture
image due to its orthographic property). Similarly, in [183],
a PVS-based approach using H.264/AVC is proposed for
coding LF images captured by a Lytro lenslet camera. In this
case, the PVS is constructed using raster and spiral scanning
topologies (see Fig. 9). Experimental results show significant
coding gains compared to a solution in which JPEG is used
to encode the entire lenslet image.

In [143], a performance comparison between a PVS based
approach and a transform-based approach is proposed. For
this, the PVS based approach using H.264/AVC in [182]
is compared to a transform-based approach using the JP3D
standard, in which a 3D DWT is applied to stacks of micro-
images or subaperture images. It is shown in the results
that the PVS-based approach (using H.264/AVC) outper-
forms the transform-based approach (using JP3D) with sig-
nificant gains at lower bit rates, and produces less visible
distortion. Also regarding a comparison against transform-
based approaches, a hybrid coding solution combining a
motion compensated prediction and a KLT transform cod-
ing is proposed in [174], and compared against the KLT-
based approach proposed in [133], [134]. For the proposed
hybrid solution, a PVS of subaperture images is extracted
from the lenslet image in spiral scan order, and the central
subaperture image is used as the reference frame for encoding

49264 VOLUME 8, 2020



C. Conti et al.: Dense LF Coding: Survey

all the remaining subaperture images (see Fig. 21c). Then,
the Normalized Cross-Correlation (NCC) [184] is used as
the matching criterion for the motion estimation process and,
afterwards, the residual information (from motion compen-
sation) is encoded using the KLT-based coding scheme pro-
posed in [133], [134]. From the experimental results, it is
shown that the proposed hybrid solution achieves significant
bit savings when compared to the transform-based solution
in [133], [134].

In [185], a performance study of HEVC compatible coding
solutions for lenslet images captured by the Lytro Illum cam-
era is presented. For this, subaperture images are extracted
and organized in a PVS using two different scan orders —
raster and spiral (see Fig. 9). The PVS is encoded with HEVC
using three different prediction structures — Low Delay P,
LowDelay B, andRandomAccess [177] (see Fig. 21d to 21f).
The different PVS based approaches are also compared to the
case where the rectified lenslet image (i.e., after calibrating
and converting to a rectangular lenslet grid) is encoded in
its entirety using HEVC Still Picture Profile [85]. From this
study, it is shown that, in general, the PVS-based solution
outperforms the HEVC Still Picture Profile coding the entire
rectified lenslet image. In addition, it is seen that the rela-
tive RD performance of the PVS-based coding approaches
is not consistent for all images, and, consequently, it is
not possible to reach a general conclusion regarding which
would be the best scanning topology and prediction struc-
ture to be used in the PVS-based coding scheme. Similar
PVS-based schemes for lenslet LF coding have also been
proposed in [186], [187] using different scanning topolo-
gies to order the subaperture images which are then coded
with HEVC. In [188], a study is presented comparing the
performance of different image/video coding standards —
i.e., JPEG 2000, H.264/AVC, HEVC, Google VP9 [189],
and the Joint Exploration Model (JEM) codec [190] (which
was the starting point of the future VVC standard) — for
coding LF content acquired using a lenslet camera and a
camera gantry. Results using LF images from the EPFL
and Stanford LF Datasets (see Table 1) show that a PVS-
based solution with HEVC or VP9 significantly outperforms
JPEG 2000 and H.264/AVC. However, a PVS-based solution
using JEM presents an impressive compression efficiency
with about 43% of bit savings compared to HEVC.

In [191], a PVS-based approach using JEM is proposed for
coding LF images captured by a Lytro lenslet camera. In this
case, the PVS is constructed using aU-shaped scanning topol-
ogy (see Fig. 9g) and a hybrid topology combining serpentine
andU-shaped (see Fig. 9b and 9g) scans. Experimental results
show significant coding gains compared to coding the lenslet
image with JPEG, and to a solution in which JEM is used
to code independently each subaperture image. Similarly,
in [192], the same PVS-based approach in [191] is adopted,
but including also an enhanced block-based illumination
compensation and an adaptive filtering of the reconstructed
subaperture images. Experimental results for the EPFL LF
Dataset (see Table 1) show that further bit savings, of 3.5%

in average, can be achieved compared to the solution in [191].
In [193], a PVS scheme is proposed in which the lenslet
image is partitioned into tiles of equal size that are scanned
in serpentine order (see Fig. 9b). The tile-based PVS is then
coded with HEVC using the configuration Low Delay B (see
Fig. 21e). The proposed solution achieved significant coding
gains at low bit rates when compared against a solution using
JPEG standard for coding the entire lenslet image. In [157],
a PVS is constructed by organizing the subaperture images
in the 2D hierarchical structure illustrated in Fig. 21g, which
are then coded using the JEM codec [190]. Similar to what
is done in conventional HEVC and JEM inter coding, each
subaperture image in the PVS is assigned to a different tempo-
ral layer. The lowest layer is assigned to the central subaper-
ture image that is compressed as an I-frame. The remaining
subaperture images are then compressed as P- or B-frames
by using the nearest subaperture images (at top, bottom, left,
and right directions, as illustrated in Fig. 21g) as reference
frames. From the presented results, significant coding gains
were observed (average of 4.5 dB) compared to a solution
using JPEG standard for coding the entire lenslet image. This
solution in [157] was selected as the winner of the ICME
2016 grand challenge based on the adopted objective and
subjective quality evaluation criteria [194] using the EPFL
LF Dataset (see Table 1). In [178], the authors propose to
improve their previous work by equally dividing the array of
subaperture images into four parts and coding them indepen-
dently using an enhanced 2D hierarchical prediction structure
depicted in Fig. 21h. Additionally, an optimal bit allocation
for the proposed prediction structure is presented. Results for
the EPFL LF Dataset (see Table 1) show that their improved
solution is able to achieve 18.3% of bit savings compared to
their previous solution in [157].

LF video can also be coded with a PVS-based approach
by using the called transposed picture ordering as proposed
in [62]. However, it is worthwhile to note that the temporal
correlation between adjacent time instants no longer exists in
the final video sequence since all views from the same time
instant are concatenated along the time dimension.

2) MULTIVIEW-BASED LF CODING
In this case, the LF content is organized as a conventional
3D multiview format (see Section II-B3) to be coded using
standard 3D video coding solutions — such as MVC [195],
and MV-HEVC [88]. This solution can be used in alternative
to the PVS-based solutions to exploit the correlations in LF
content in all dimensions. For coding LF still content with full
parallax, the temporal axis of the multiview representation
can be used to organize the fourth LF dimension, as discussed
in Section II-B3. For representing LF videos, the 2D array
of viewpoints are usually scanned using a specific topology
(see Fig. 9) to form a 1D array of multiview videos. Then,
different to the transposed picture ordering [62], the temporal
correlation can be fully exploited in this scheme.

In [197], [202], the authors propose to decompose the
lenslet LF video into multiple subaperture video sequences
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scanned in raster order (see Fig. 9a) and to jointly exploit
motion (temporal prediction) and disparity (inter-view pre-
diction) similarly to what is done in MVC [195]. For this,
the prediction structure depicted in Fig. 22a is adopted,
and the Evolutionary Strategy (ES) is used to speed up the
motion estimation process. In [196], the authors significantly
improve their previous work by using motion estimation with
half pixel precision. In [203], the authors propose to scan the
subaperture video sequences in raster order (see Fig. 9a) and
to encode it with MVC by using the conventional prediction
structure used in MVC as shown in Fig. 22b. It is seen
that the proposed solution outperforms a H.264/AVC based
coding solution, in which the LF video sequence is encoded
in its entirety using H.264/AVC. It is worthwhile mention-
ing that these coding schemes [196], [197], [202], [203]
consider only lenticular-based content (i.e., only horizontal
parallax) with a small number of subaperture images (up to
eight). The same approach as in [189] is proposed in [190]
for coding synthetic lenslet LF video with 3×3 subaperture
sequences. From the presented results, the multiview-based
arrangement outperforms a PVS-based approach (in which
the subaperture sequences are reordered using transposed pic-
ture ordering [62] and encoded with H.264/AVC), as well as
a H.264/AVC based coding solution (in which the lenslet LF
video sequence is encoded in its entirety using H.264/AVC)
with significant RD gains.

In [198], a hierarchical 2D inter-view prediction structure,
shown in Fig. 22c, is proposed for lenslet LF video coding
using MVC. The idea is to optimize the inter-view prediction
structure to the 2D grid of subaperture sequences, and then to
further minimize the distance between the current subaper-
ture image and its inter-view reference frame(s). The pro-
posed hierarchical prediction structure is compared against
the Hilbert scan (see Fig. 9f) of subaperture images proposed
in [172], and presents expressive RD performance improve-
ments. Moreover, a parallel implementation of the proposed
prediction structure is also designed, which significantly
reduces the overall encoding time. Similarly, in [199], a 2D
parallel inter-view prediction structure, shown in Fig. 22d,
is proposed for coding lenslet LF video using MVC. The
proposed prediction structure is compared against the con-
ventional MVC prediction structure (in Fig. 22b) and against
a spiral scan (see Fig. 9d) of subaperture images proposed
in [204], in which the central subaperture image is considered
the only inter-view reference for coding all the remaining
subaperture images (similar to the prediction structure shown
in Fig. 21c). From the presented results (for stopmotion video
sequences captured using the Lytro 1st generation camera
[2] [9]), it is seen that the proposed solution outperformed
the other two tested solutions, except at low bit rate values,
where it is outperformed by the MVC prediction structure
in Fig. 22b. To improve the RD performance, a rate allocation
scheme is proposed to efficiently assign the Quantization
Parameter (QP) to the multiview sequences. As discussed
in Section II-B2, for LF images acquired using a focused
lenslet camera, the texture resampling from micro-images to

the subaperture images usually results in very low-resolution
images with significant aliasing artifacts [73]. Motivated by
this fact, an alternative multiview based data arrangement
using views with higher resolutions is proposed in [20], [205]
which are then coded using MV-HEVC. In this scheme,
a scalable coding architecture is also proposed in which
lower layers comprise multiple views with higher resolution
while the last enhancement layer comprises the entire lenslet
image.

More recently, a multiview-based solution is proposed
in [200] using MV-HEVC for coding lenslet LF images.
For this, the subaperture images are organized as multiview
video sequences, as depicted in Fig. 11, which are then
coded with MV-HEVC using the 2D hierarchical structure
illustrated in Fig. 22e. Experimental results using the EPFL
LF Dataset (see Table 1) show that the proposed MV-HEVC
solution significantly outperforms a PVS-based solution in
which all views are scanned in spiral order and coded with
HEVC, achieving 2.4 dB of coding gains in average. In [201],
the authors propose to improve the coding efficiency of their
previous work in [200] by using optimized prediction and rate
allocation schemes for coding LF images acquired using a
lenslet camera and a multi-camera array. In this case, the 2D
prediction scheme in Fig. 22f is adopted, in which the central
subaperture image is coded independently as an I-frame,
and the remaining subaperture images are coded using an
estimated QP for each frame by considering its distance,
prediction level, and decoding order with respect to the cen-
tral subaperture image. Experimental results are shown using
LF images from the EPFL LF Dataset and the Stanford LF
Archive (see Table 1) and comparing the proposed solution
against: i) a PVS-based solution using serpentine scan and
HEVC inter coding; ii) the PVS-based solution in [157] (but
using HEVC instead of JEM), iii) their previous multiview-
based solution in [200]; and iv) a LF coding solution based on
non-local spatial prediction in [206]. From these results, it is
shown that the proposed solution outperforms all of the other
LF coding solutions with significant coding gains against
the PVS-based solutions (0.91 dB, for lenslet images, and
1.51 dB, for LF images capture with a multi-camera array,
in average compared to the solution with serpentine scan) and
the non-local spatial prediction based solution in [206]. Com-
pared against their previous solution in [200], the proposed
solution presents slightly better RD performance at low bit
rates.

3) DISCUSSION
Coding based on inter-view prediction has been the most
popular approach proposed in literature for dense LF coding
so far. Generically, it has been shown that, using standard 2D
or 3D video coding solutions, it is possible to achieve com-
petitive RD coding performance for LF content acquired with
either lenslet, multi-camera or gantry LF setups. Moreover,
the coding approaches in this category leave open the possi-
bility of a huge variety of data arrangements and prediction
structures for better exploiting the LF correlations.
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FIGURE 23. LF image and video coding architecture based on non-local spatial prediction.

From the different prediction structures proposed in the lit-
erature, 2D hierarchical structures [157], [178], [198], [199]
have shown to achieve the best RD performance for LF
still images using both PVS and multiview-based coding
solutions. However, an advantage of using multiview-based
solutions is that scalability and backward compatibility are
straightforwardly supported using a 3D coding standard.
In addition, multiview-based solutions can be easily extended
for coding LF videos.

Compared to lenslet LF coding solutions based on non-
local spatial prediction, multiview-based solutions [200] are
seen to perform better, especially for coding lenslet LF
images captured using the unfocused lenslet camera. More-
over, in [24], the multiview-based solution proposed in [200]
shows consistently better objective and subjective RD perfor-
mance in low bit rates, than two LF coding solutions based on
view synthesis in [126], [207] (see Sections III-D1 and III-
D3), selected as the winners of the ICIP 2017 grand chal-
lenge on LF compression. However, it should be noticed that,
the expressive RD gains come with the price of very complex
prediction structures, which is undesirable for supporting
efficient random access.

C. LF CODING BASED ON NON-LOCAL SPATIAL
PREDICTION
Also trying to exploit the LF correlations in a predictive
manner, the LF coding solutions in this category propose
to exploit the non-local spatial correlation that exists when
the lenslet representation is adopted (see Fig. 7b). For this,
the lenslet image is encoded in its entirety with a hybrid
2D video codec and by using a special LF non-local spatial
prediction as illustrated in Fig. 23.

LF coding approaches in this category can be separated
in two groups, depending on the type of non-local spatial
prediction that is used (see Fig. 17): i) spatial compensated
prediction; and ii) learning-based prediction.

1) SPATIAL COMPENSATED PREDICTION
The idea of exploiting non-local spatial redundancy has been
firstly proposed for 2D image and video compression to

further enhance the performance of H.264/AVC intra pre-
diction. Notably, the intra macroblock compensation tech-
nique [208], [209] proposes to extend the usage of motion
compensated prediction to intra I-frames in order to reduce
the number of bits needed in conventional intra coding while
still supporting random access [209].

Lenslet LF content compression using non-local spatial
prediction has been firstly proposed in [210] with the pur-
pose of exploiting the existing micro-image cross-correlation
of this type of content to improve the performance of
H.264/AVC standard for lenslet image coding. In [211],
the Self-Similarity (SS) prediction is proposed to be added
to the HEVC coding architecture, so as to take advantage
of the flexible partition patterns used in this type of video
codecs. Similarly to motion compensation, the SS estimation
process uses a block-based matching over a causal search
window (i.e., a search window containing only previously
coded pixels, as seen in Fig. 24a), to find the ‘best’ predic-
tor for the current block, in an Rate-Distortion Optimiza-
tion (RDO) sense. As a result, the relative position of the
chosen predictor block is signaled by a displacement vector
(see Fig. 24a), referred to as SS vector. In [212], the predictor
block is generated from a single candidate block — referred
to as uni-SS prediction — and the resulting SS vector can be
either encoded explicitly, similar to motion vectors in HEVC
or using an SS-skip mode which creates a list of candidate
with the SS vectors used to encode neighboring blocks (in
the left, above, and above-left positions). To take advantage
of the distinctive characteristics of these SS vectors, a novel
SS vector prediction scheme, referred to as Micro-Image
Vector Prediction (MIVP) is also proposed [212], in which a
list of candidate vectors from neighboring micro-images (in
the left, above, and above-left positions) are used to predict
the SS vectors. Experimental results show that it is possible
to achieve significant bit savings compared to HEVC when
coding lenslet LF images (38.4% in average) and lenslet LF
videos (22.9% in average at low bit rates).

Although not targeting lenslet image coding, a scheme
very similar to the SS prediction, known as Intra Block
Copy (IntraBC) [213], has been proposed in the context of
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FIGURE 24. Non-local spatial prediction approaches: (a) Spatial
compensated prediction; and (b) Learning-based prediction.

HEVCScreen Content Coding (SCC) [213] extension. Firstly
proposed in [214], it aims at improving the HEVC coding
efficiency for screen video compression,motivated by the fact
that this kind of content often contains a substantial amount
of still or moving rendered graphics and texts with repetitive
patterns. The IntraBC also uses a block-based matching algo-
rithm to estimate a single displacement vector that indicates
the relative position of the predictor block to the current block
being coded. However, the estimated vector uses only integer
pixel accuracy. An improved IntraBC version is proposed
in [215], [216], in which the searchwindow is expanded to the
entire Coding Block (CB) row or column (for 16×16 CBs),
or to the entire previously coded area of the picture by using
a hash-based search (for 8×8 CBs).

In [206], [217], the authors propose to extend the SS pre-
diction concept by using HEVC inter B-frame bi-prediction
to further improve the RD performance for LF image coding.
However, in this case, to guarantee that the two prediction sig-
nals come from two differentMIs, the search area is separated
into two non-overlapping parts. In [218], [219], the authors
propose to extend their previous work in [212] with a bi-
SS prediction. Different from the solution in [206], [217],
the predictor block is generated from a combination of two
candidate blocks jointly estimated from the same search area.
Experimental results are shown using the EPFL LF Dataset
(see Table 1) comparing against: i) HEVC SCC; ii) the uni-
SS prediction in [212]; iii) the spatial compensated prediction
in [206], [217]; and iv) a learning-based spatial prediction
proposed in [220] (see Section III-C2). From these results,
it is shown that the proposed solution outperforms all of the
other solutions with bit savings of (in average): 32.0% against

HEVC SCC; 14.4% against the uni-SS prediction in [212];
9.4% against solution in [206], [217]; and 7.8% against
the solution in [220]. In [221], a weighted SS prediction is
proposed in which an adaptive set of weighting coefficients
are used for combining the two jointly estimated candidate
blocks. Experimental results for the EPFL LF Dataset (see
Table 1) show that it is possible to achieve 3.4% of bit savings
comparing against the bi-SS prediction in [218], [219].

In [222], a lenslet image reshaping scheme, referred to as
macro-pixel, is proposed to align the micro-image structure
in the Lytro Illum lenslet image with the coding grid of a
block-wise image/video coding standard. The purpose was to
reach further bit savings when coding a lenslet image with
any HEVC-based solutions, such as: i) HEVC SCC standard;
and ii) a learning-based prediction proposed in [223] (see
Section III-C2). From the results, it is shown that it is possible
to achieve in average 11.6% and 9.8% of bit savings when
applying the reshaping prior to coding the lenslet image
with, respectively, HEVC SCC and the solution in [223].
In [224], the authors propose to extend their previous work
with three spatial compensated prediction modes, referred
to as Boundary Matching Prediction (BMP), Multi-block
Weighted Prediction (MWP) and Co-located Single-block
Prediction (CSP) [225]. In the MWPmode, an adaptive set of
weighting coefficients are used for combining four candidate
blocks selected from neighboring macro-pixels (in the left,
above, above-left, and above-right positions) to generate the
predictor block. In the BMP mode, a linear weighted predic-
tion is also used, but, in this case, only the boundary samples
of the candidate blocks are used to derive the weighting
coefficients. Differently, in the CSPmode, the predictor block
is directly selected from a list of candidate neighboring blocks
(in the left, above, above-left, and above-right positions),
similar to the SS-skip mode proposed in [212]. Experimental
results are shown for coding lenslet LF images from the
EPFL LF Dataset (see Table 1) and comparing the proposed
solution against: i) HEVC SCC standard; ii) a learning-based
prediction proposed in [223] (see Section III-C2); and iii) the
PVS-based scheme proposed in [193] using tiling of lenslet
images. From the results, it is seen that the proposed solution
can achieve, in average, bit savings of 37.2% against HEVC
SCC, 37.5% against the learning-based prediction in [223],
and 10.5% against the PVS-based scheme in [193]. It is worth
noting that the BMP mode has been considered in MPEG-I
exploration experiments [60] for coding LF content using
a lenslet representation and is able to achieve an additional
1.29% of bit savings (in average) when included into the
HEVC SCC standard for coding LF video [60].

In [226], a high order compensated prediction is proposed
to exploit the fact that neighbor micro-images represent a
portion of the scene captured from slightly different per-
spectives which may not be explored with a translational
compensated prediction. For this, geometric transformations
with up to 8 degrees of freedom (namely, affine, bilinear
and projective) are used to map perspective changes from
the block being coded to the causal search window shown
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in Fig. 24a). To decrease the computational complexity when
choosing the transformation parameters, the SS estimation is
applied in a first stage and the best SS candidate block is used
as a starting point for applying the geometric transformations.
As a result, a set of four vectors is coded and transmitted,
each of them defining the position of one corner of the (trans-
formed) prediction quadrilateral.

Although these coding schemes have shown to achieve
significant compression gains when compared to state-of-
the-art 2D image coding solutions, the proposed 2D-based
coding architecture does not support functionalities, such as,
scalability, random access, and ROI coding.Motivated by this
fact, a lenslet LF coding architecture is proposed in [221],
[227] for supporting FoV and quality scalability, random
access, and ROI coding. The proposed coding architecture
comprises a base layer compliant with HEVC standard, com-
plemented by one or more enhancement layers that progres-
sively support richer forms of the same LF content by hier-
archically organizing the angular information of the captured
lenslet image. Each enhancement layer is encoded using the
bi-SS prediction in [218], [219] and other exemplar-based
inter-layer predictions. From the presented results using the
EPFL LF Dataset (see Table 1), it is shown that the pro-
posed scalable design provides flexibility in the bitstream at
no rate cost (in average) compared to HEVC Still Picture
Profile.

2) LEARNING-BASED SPATIAL PREDICTION
Learning-based prediction methods have been increasingly
considered for still image compression [228], being espe-
cially powerful for predicting highly complex textured areas
of the image. The idea of this type of prediction is basically
to search for an optimized combination of k texture patches
that best approximate the sample values of the coding block.
These texture patches can be selected from a previously
coded neighborhood of the coding block (known as template),
as depicted in Fig. 24b, or from a previously learnt dictio-
nary of samples. The former is referred to here as neighbor-
embedding prediction and the latter is referred here to as
dictionary-based prediction.

In the neighbor-embedding prediction, an optimized linear
combination of k-Nearest Neighbor (k-NN) texture patches
is estimated and, then, the resulting weighting coefficients
are used to approximate the unknown samples in the coding
block (see Fig. 24b). Examples of neighbor-embedding pre-
diction methods proposed in the literature for image coding
are the Non-negative Matrix Factorization (NMF) [229] and
the Locally Linear Embedding (LLE) [230] dimensional-
ity reduction techniques. Moreover, the Template Matching
(TM) [231] algorithm can be seen as a particular case of
neighbor-embedding prediction, in which a unique 1-NN
texture patch is found with the linear weighting coefficient
equal to 1 [228].

With regard to lenslet image compression, the work
in [232] proposes to replace one of the conventional intra
directional prediction modes of HEVC by a prediction

scheme based on TM for better adapting to the repetitive
micro-image texture patterns. Similar to TM, the proposed
prediction method uses an implicit approach to avoid trans-
mitting any information about the used predictor. In this
scheme, three neighboring CBs are used as the template and
two separate search windows are adopted for finding two
best predictors to this template. From the selected predictors,
two 1D vectors are derived, and their combination deter-
mines the block predictor for the current CB. It is shown
that the proposed scheme outperforms the TM algorithm
(when including the TM in the HEVC coding framework)
for lenslet image coding, being able also to considerably
reduce the computational complexity for the same search
window.

In [223], an LLE prediction is propose for lenslet LF
coding based on HEVC. In this case, the predictor to the
current CB is given as a linear combination of its k-NN
patches inside a causal search window in the lenslet image
(see Fig. 24b). To avoid transmitting information about the
selected k-NN patches, the LLE method searches for them,
in terms of Euclidian distance, at both encoder and decoder
side. Afterwards, the set of weighting coefficients for com-
bining the k-NN patches are determined by solving a least-
squares optimization problem with a constraint on the sum
of the coefficients that must be 1. After finding the optimally
estimated coefficients, the predictor block is determined by
using the same linear coefficients estimated for the template
to combine the square blocks associated to each k-NN patch
(see Fig. 24b). For improved performance, the encoder tests
different k values, from 1 up to 8, and the one that produces
the best block prediction result (in RDOmanner) is explicitly
transmitted to the decoder. To avoid further signaling in the
HEVC bitstream, up to 8 HEVC intra directional modes are
replaced by the LLE based mode using a different number of
k-NN patches. From the presented results, it is shown that the
proposed LLE-based coding solution always outperformed
HEVCStill Picture Profile (with bit savings of up to 38%) and
the SS-based solution proposed in [211], [233] (up to 15% of
bit savings when the number of k-NN templates is adaptively
chosen by varying from 1 to 8). In [234], the LLE-based
prediction [223] is combined with the uni-SS prediction [212]
(referred here to as LLE+SS solution) to further improve the
coding performance for lenslet image coding. Results using
the EPFL LF Dataset (see Table 1) show that it is possible to
achieve 16.9% of bit savings in average compared against the
uni-SS solution [212].

In [220], the authors propose an HEVC-based neighbor-
embedding predictive solution using Gaussian Process
Regression (GPR) for lenslet image coding. Similarly
to [223], k-NN patches are firstly chosen in terms of Euclid-
ian distance in a causal search window. However, in order to
reduce the computational complexity, the causal search win-
dow is divided into two different search windows (horizontal
and vertical search windows, as in [232]), and the template
thickness, T (see Fig. 24b), is substantially reduced. Then,
a filtering method based on the NCC [184] is used to judge
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the reliability of the obtained k-NN patches. Afterwards,
the prediction from the k-NN patches is modeled as a non-
linear (Gaussian) process, and GPR is then used for estimat-
ing the predictor block. The GPR-based neighbor-embedding
prediction is then included into HEVC by replacing one of
the HEVC intra directional modes and no further signaling
is needed. The proposed GPR based is compared against
HEVC SCC [213], as well as against the TM-based solution
proposed in [232] and the LLE-based solution in [223] (but
fixing 6-NN patches, instead of adaptively varying ‘‘k’’ from
1 to 8 as in [223]). It is shown that the proposed GPR based
solution outperforms the TM-based solution [232] andHEVC
SCC (with up to 21% of bit savings) with significant coding
gains, and always outperforms the LLE-based solution (with
up to 5% of bit savings), showing that improved prediction
results could be obtained by using GPR instead of LLE for
texture and edge regions.

In [235], an `1-optimized prediction is proposed for cod-
ing lenslet LF content with hexagonal-shaped micro-images
(such as, the lenslet images captured with Lytro cameras).
In this case, HEVC is adapted to consider the micro-image
as the elementary coding unit — referred to as macro-pixel.
Hence, the current macro-pixel is predicted as a linear com-
bination of three previously coded neighboring macro-pixels,
corresponding to the top, left and top-left macro-pixels. The
weighting coefficients are chosen by minimizing the `1-norm
of the residual with a constraint on the sum of the coef-
ficients that must be 1. For coding the weighting coeffi-
cients more efficiently, they are chosen from 32 possible
sets of weights. To further improve the coding performance,
a modified directional intra prediction replaces the original
HEVC intra prediction modes. From the presented exper-
imental results using the EPFL LF Dataset (see Table 1),
it is shown that the proposed `1-optimized solution always
outperforms HEVC Still Picture Profile (with bit savings of
59.6% in average) and the PVS-based solution winner of
ICME 2016 grand challenge in [157] (with bit savings
of 30.9% in average). More recently, in [236], the authors
propose to extend their previous work [236] by including a
dictionary-based prediction scheme. In this case, the predic-
tion of a current macro-pixel is found as a linear combination
of samples in a learnt dictionary. To decrease the complexity
for learning the dictionary, a sparse dictionary is consid-
ered, in which a fixed base dictionary with large samples
is multiplied by an adaptable sparse matrix which selects
which samples of the dictionary are considered. The base
dictionary was trained on 4 images different than the images
used to assess the coding performance. The ‘‘best’’ pre-
diction mode between dictionary-based, `1-optimized, and
directional prediction is chosen in an RDO manner. The pro-
posed dictionary-based solution leads to significant bit sav-
ings compared against the LLE+SS solution in [234] (with
54.8%of bit savings), the PVS-based solutions in [157], [178]
(with 49.7% of bit savings), and a solution based on view
synthesis (see Section III-D3) in [237] (with 47.9% of bit
savings).

3) DISCUSSION
LF coding solutions using non-local spatial prediction have
been specifically proposed for coding lenslet LF content.
The advantage of this prediction scheme is that it enables
exploring the particular correlation of lenslet LF content with-
out requiring any explicit knowledge about the used optical
system, being less dependent on a very precise calibration
pre-process [212]. Generically, it has been shown that, by
integrating a non-local spatial prediction in a 2D coding
solution, it is possible to achieve significant coding gains
compared to standard 2D coding solutions, such as HEVC
Still Picture Profile. However, it has been shown that using
the explicit knowledge of the MLA structure — as in the
lenslet LF coding solutions based on macro-pixel reshaping
in [222], [224], [225], [235], [236] — may result in further
coding gains.

Comparing different non-local spatial predictions,
learning-based techniques, such as the dictionary-based solu-
tions in [235], [236], have been shown to perform signif-
icantly better than solutions based on spatial compensated
prediction. With respect to LF coding solutions in other
categories, exploration experiments performed in the context
of the MPEG-I standardization activity [60] show that a
multiview-based LF coding solution with a 2D hierarchi-
cal prediction structure performs significantly better than
coding the lenslet content using HEVC SCC. Nevertheless,
the dictionary-based solution in [236] achieves competitive
RD performance compared to PVS-based [157], [178] and
view synthesis-based [237] solutions.

However, apart from the work in [221], [227], none of the
coding solutions in this category (to the best of the authors’
knowledge) have addressed supporting other functionalities,
such as scalability, random access and ROI coding. There-
fore, a question that remains open is if it is possible to
support these functionalities without sacrificing the coding
performance.

D. LF CODING BASED ON VIEW SYNTHESIS
Differently from the previous predictive LF coding
approaches, the coding solutions in this category aim at
greatly reducing the amount of LF texture data that is encoded
and transmitted to achieve compression. For this, the LF data
is represented by a sparse set of key views plus geometry
information (see Section II-B5), which are then encoded and
transmitted. Hence, at the decoder side, the sparse set of views
plus geometry data are used to synthesize the information
discarded at the encoder side. Since the reconstructed views
are, in many cases, used as a reference frame for prediction,
the LF coding solutions in this category are also connected to
the node of predictive solutions in Fig. 17.

The proposed LF coding solutions in this category are
divided in three main groups, according to the approach used
for view synthesis (see Fig. 17): i) synthesis using Depth
Image Based Rendering (DIBR); ii) transform-assisted syn-
thesis; and iii) learning-based synthesis.
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FIGURE 25. Examples of sparse sampling views (in shaded gray blocks) for LF coding solutions based on view synthesis: (a) k-Uniform;
(b) k-Colunm uniform; (c) Adaptative; (d) 4-Corner; (e) 2-Corner; (f) Overlapping cross; and (g) Circular.

1) DIBR-BASED VIEW SYNTHESIS
LF coding schemes in this group synthesize discarded views
at the decoder side by simply applying a disparity shift or by
using DIBR techniques [238]. Essentially, DIBR techniques
use camera calibration information, a sparse set of views,
and associated depth map to perform image-based 3D warp-
ing, projecting the original views into the 3D space. Then,
the resulting 3D world points are forward projected into an
intermediate view position to be synthesized. The projected
points are then merged and an inpainting algorithm is used
to fill missing areas due to disocclusion problems or due to
quantization errors when lossy encoding the disparity/depth
information. Afterwards, a filtering process can also be used
to provide a more natural appearance to the synthesized
view [238].

In [239], [240], the authors propose to represent the
LF data by a sparse set of micro-images that are uni-
formly subsampled from the lenslet image, as illustrated
in Fig. 25a, to remove the redundancy between neighboring
micro-images for achieving compression. Thus, the discarded
micro-images are synthesized at the decoder side by sim-
ply using the optical geometry used when acquiring the LF
content. The proposed scheme is able to improve the RD
compression performance when incorporated into the JPEG
standard. In [241], [242], the disparity between adjacent
micro-images is used to better reconstruct discarded micro-
images in the sparse set of micro-images. In [241], JPEG
is used as the texture coder and lossless arithmetic coding
is used for the disparity data. In [242], the sparse set of
micro-images is represented as multiview content and each
micro-image is then encoded using a method similar to MVC
simulcast coding [195]. Moreover, the disparity is lossless
encoded using a run-length coding scheme followed by Huff-
man coding. At the decoder side, the discarded micro-images
are reconstructed by applying a disparity shift, in [241], and
by using a DIBR algorithm modified to support the multi-
ple micro-images as input views, in [242], followed by an
inpainting algorithm to fill in the missing areas. In [241],
the disparity is assumed to be the same for all pixel posi-
tions inside a micro-image. On one hand, this can be a
valid approximation since each micro-image has a small FoV.
On the other hand, this assumption is likely to be inaccurate
at object boundaries since a single micro-image can still
capture (small) portions of objects in different depth planes.
Hence, the quality of the reconstructed micro-images — and,

consequently, the quality of rendered views — is severely
affected by these disparity inaccuracies at the encoder side.
For this reason, instead of uniformly selecting the micro-
images in the lenslet image, the selection is carried out adap-
tively, as exemplified in Fig. 25c, so as to obtain better view
reconstruction [241], [242]. In [241], an iterative selection of
micro-images is performed based on a cumulative disparity
metric. In [242], a visibility test is used to select extra micro-
images to be encoded and transmitted by identifying possible
hole-causing regions.

However, a common characteristic of these approaches is
that the quality of rendered views is negatively affected by
inaccuracies in the synthesis of missing micro-images. The
reconstruction artifacts are even more challenging for syn-
thesizing micro-images due to their small FoV and resolution
(compared to view synthesis in conventional depth assisted
3D coding solutions). For this reason, in [243], an alternative
coding architecture is used, as depicted in Fig. 26, in which
the entire lenslet image is also encoded and transmitted in
an LF enhancement layer so as to provide rendered views
with better quality (i.e., rendered from the content in the
LF enhancement layer). In this case, an HEVC-based coding
scheme is used for encoding the sparse set of micro-images
(in the base layer), as well as the disparity information repre-
sented as 2D images. Then, the coded texture and disparity are
used for reconstructing the lenslet image, which is later used
as a reference frame for coding in the LF enhancement layer.
From the experimental results, it is shown that the proposed
disparity-assisted solution presents significant bit savings (up
to 65% when subsampling the grid of micro-images by a
factor of 2) compared to encoding the entire lenslet image
with HEVC Still Picture Profile. A substantial difference in
objective quality between the reconstructed LF content in the
lower layers and the LF enhancement layer content is also
observed.

An alternative DIBR-based coding approach is proposed
in [244] also using the coding architecture in Fig. 26, but,
in this case, a sparse set of views is rendered from the lenslet
image and then encoded together with the disparity informa-
tion. For estimating the disparity, the block-based matching
algorithm proposed in [65] is adopted, in which a single
4-bit value of disparity is computed for each micro-image.
Then, this disparity information is used to render a single
view from the lenslet image by using the disparity-assisted
weighted blending algorithm proposed in [65]. For encoding
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FIGURE 26. Alternative LF coding architecture based on view synthesis, including an LF enhancement coder at the
highest enhancement layer.

the rendered view, 3D-HEVC standard is used as the texture
coder, and the coding configuration (notably, the QP value)
is selected so as to optimize the RD coding performance in
the LF enhancement layer encoding process. Differently, dis-
parity information is directly transmitted to the decoder side,
bypassing the disparity coder block in Fig. 26. Afterwards,
at the LF enhancement layer coder, the reconstructed view
is low-pass filtered using an average filter [65]. This filtered
view and disparity information are then used to build a ref-
erence picture, which is simply subtracted from the original
lenslet image and encoded with HEVC intra coding. From the
presented results, it is shown that further bit savings could be
achieved (up to 31.1% of bit savings compared to HEVC Still
Picture Profile [85]) by using the proposed approach when an
optimized set of QP values are selected. In [245], the authors
propose to extend their previous coding solution in [244]
so as to consider more than one extracted view (notably,
a set of 3, 5, and 9 views). These views are then encoded
with 3D-HEVC using an IPP inter-view prediction structure
(similar to Fig. 21c) and a set of optimized QP values. The
proposed solution achieved up to 29.1% (when 3 views are
extracted), 27.9% (when 5 views are extracted), and 27.2%
(when 9 views are extracted) of bit savings compared to
HEVC Still Picture Profile [85].

In [246], a solution for coding lenslet LF content is pro-
posed based on DIBR for view synthesis. However, in this
case, only a sparse set of four subaperture images on the
extreme corner positions, as depicted in Fig. 25d are coded
as a PVS using HEVC inter coding and transmitted. At the
decoder side, disparity map of the four coded and recon-
structed subaperture images are estimated using a deep learn-
ing algorithm for computing the optical flow. Afterwards,
a DIBR technique is used in which a low rank matrix comple-
tion algorithm is used to fill the holes in texture and disparity
map since the disoccluded areas of different warped views
from only four corner views are unlikely to overlap [246].
Experimental results are shown using the INRIA LF Dataset
(see Table 1) and comparing the proposed solution against:
i) a view synthesis technique using deep learning in [97]
(proposed for LF super-resolution); and ii) a PVS-based solu-
tion using lozenge scan (see Fig. 9h) of subaperture images

coded with HEVC. It is shown that the proposed solution
outperforms all the other solutions with significant RD gains
compared to the PVS-based solution and slightly coding
gains at low bit rates compared to the deep learning-based
solution. In [247], a lenslet LF coding approach based on
the 3D-HEVC standard is proposed. Using the representation
format in Fig. 11, the subaperture images with full paral-
lax are organized as a multiview sequence by interpreting
the vertical directional dimension v as a (pseudo) temporal
dimension. Hence, half of these multiview videos with the
associated depth maps are uniformly selected to be encoded
using 3D-HEVC. As illustrated in Fig. 25b, this corresponds
to uniformly selecting subaperture images in sparse columns.
An algorithm for estimating the depth maps (prior to coding)
based on the EPIs is also proposed. At the decoder side,
the remainder subaperture images are synthesized using the
DIBR technique proposed in [238]. The proposed solution
is compared against two PVS-based solutions: i) a solution
using spiral scan and HEVC inter coding; and ii) the winner
solution at the ICME 2016 Grand Challenge in [157]. From
the results using the EPFL LF Dataset (see Table 1), it is
shown that the proposed solution achieves in average 64.1%
of bit savings compared to the HEVC-based solution, and
presents significant gains at high bit rates and similar RD per-
formance at low bit rates compared to the solution in [157].

In [126], a lenslet LF coding scheme is proposed using the
coding architecture in Fig. 26. In the lower layers, a sparse set
of subaperture images are uniformly selected (see Fig. 25a)
and stitched together to be encoded with JPEG 2000. Addi-
tionally, depth map estimated using the algorithm proposed
in [78] are quantized and coded using a context-based coder.
These lower layers can be then used to synthesize the remain-
ing subaperture images using the DIBR technique proposed.
The DIBR technique uses the coded information from the
key set of subaperture views to warp and merge texture and
depth maps for the remaining views. In addition to this,
in the LF enhancement layer (see Fig. 26), a sparse pre-
diction scheme using a linear regression model is proposed
to improve the quality of synthesized subaperture images.
For this, the parameters used in the sparse prediction are
quantized, coded using Golomb-Rice coding, and transmitted
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to the decoder side. This solution was recognized as the most
innovative algorithm at the ICIP 2017 grand challenge on
LF compression [24]. In [158], [159], the authors propose to
extend their previous solution in [126] for coding LF con-
tent acquired using a multi-camera array. For this, a coding
scheme similar to the one used in [126] is adopted. However,
in this case, JPEG 2000 is used as the depth map coder
in lower layers. Additionally, in the LF enhancement layer,
residual between original and predicted views are encoded
with JPEG 2000 and transmitted to the decoder side, along
with the sparse prediction parameters. Experimental results
using the Fraunhofer LF Dataset (see Table 1) show that
the proposed solution achieves significant coding gains com-
pared to JPEG 2000 (as shown in [159]), and can outperform
a PVS-based solution using HEVC at low bit rates (as shown
in [158]). This solution, referred to as Warping and Sparse
Prediction (WaSP) [158], has been recently adopted in the
JPEG Pleno VM [127] (since version 1.0) for coding LF
images acquired by multi-camera arrays.

More recently, in [248], the authors propose to improve
their WaSP solution [158] by introducing a more efficient
region-based sparse prediction scheme and by using HEVC.
In this scheme, the synthesized views are segmented into
regions using the disparity map and, for each region, an opti-
mal sparse prediction is estimated. Differently from their
previous WaSP solution in [158], [159], the sparse set of
key views and the residual of synthesized views are coded
using HEVC with serpentine scan-order (see Fig. 9b). Addi-
tionally, a hierarchical coding scheme is adopted, in which
the views are divided into two or more disjoint subsets rep-
resenting different hierarchical layers. Thus, the views on a
lower layer are used as possible reference views to encode
the views in the higher layers. Therefore, as the encoder
proceeds towards the higher hierarchical layers, the density of
the reference views increases and the intermediate view pre-
diction becomes more efficient [248]. Experimental results
are shown for coding LF images from the EPFL, HCI 4D
and Fraunhofer LF Datasets (see Table 1) and comparing
the proposed solution to eight different LF coding solutions:
i) the WaSP solution [158] as in JPEG Pleno VM 2.1 [127];
ii) the DCT-based solution MuLE [125] as in the JPEG Pleno
VM 2.1 [127]; iii) the lifting DTW-based solution in [148];
iv) the GFT-based solution in [155]; v) a PVS-based solution
using serpentine ordering (see Fig. 9b) and HEVC; vi) the
solution in [249] using transform-assisted view synthesis (see
Section III-D2); vii) the solution in [250] using learning-
based synthesis (see Section III-D3); and viii) the solution
in [49] also using learning-based synthesis. For coding lenslet
LF images, the proposed solution is seen to significantly
outperform the WaSP [158], MuLE [125] and the GFT-based
solution [155], while it is outperformed at low bit rates by
the solutions using learning-based synthesis in [49], [250].
It is seen that, in average, the proposed solution achieves
bit savings of 48.1% compared to WaSP [158] and 27.8%
compared to MuLE [125]. For coding LF images acquired
using a multi-camera array, the proposed solution achieves

28% of bit savings compared to WaSP [158] and slightly
better performance, mainly at low bit rates, than the lifting
DWT-based solution [148] and the solution in [249] using
transform-assisted synthesis.

2) TRANSFORM-ASSISTED VIEW SYNTHESIS
Transform-assisted view synthesis is built upon the assump-
tion that it is possible to compute a frequency represen-
tation of a sparse signal using only a subset of samples.
Then, assuming the LF is k-sparse in the angular frequency
domain, it can be represented as a linear combination of
k non-zero continuous angular frequency coefficients [96].
The view synthesis algorithm then searches for the fre-
quency values and the corresponding coefficients to recon-
struct the discarded samples. This approach can be seen as
an alternative to DIBR-based solutions for synthesis of non-
Lambertian scenes since depth/disparity estimation is shown
to fail on such scenes that contain, for instance, refractive
and/or mirror-like objects [96], [98].

In [251], a coding scheme is proposed for LF acquired
using a multi-camera array in a parallel arrangement. In this
scheme, only a sparse set of views are uniformly selected
(see Fig. 25a) and converted into a PVS using serpentine scan
to be compressed using HEVC. At the decoder side, a view
synthesis technique based on a shearlet transform, previously
proposed by the authors in [98], is adopted. For this, the coded
key views are organized as EPIs (see Fig. 10) and a shearlet
transform is used to recover the line slopes in the sparse EPIs.
The algorithm is applied interactively for recovering the EPIs
taken from horizontal and vertical directions. Experimental
results are shown using the Stanford LF Archive and Fraun-
hofer LF Dataset (see Table 1) and the proposed solution
is compared to a PVS-based solution using HEVC. It is
shown that the proposed solution achieves significant coding
gains only at low bit rates, but it underperforms the PVS-
based HEVC solution at high bit rates. In [249], a LF coding
solution based on Fourier Disparity Layer (FDL) decompo-
sition [252] and the coding architecture shown in Fig. 26
is proposed. In this case, the LF content is divided into
various sparse sets of views that are hierarchically encoded
in different layers. In the base layer, a set of key views are
arranged as a PVS in spiral order (see Fig. 9d) and directly
encoded using HEVC inter coding. Afterwards, one or more
LF enhancement layers are defined, each of which compris-
ing a set of the remaining views to be encoded. The previously
coded views in the lower layers are then used for synthesizing
the remaining views in an LF enhancement layer by using
FDL. As previously proposed in [252], the FDL decomposes,
in the Fourier domain, the sparse set of views into a discrete
sum of depth layers by solving a linear regression problem.
The set of parameters from this FDL decomposition gathers
the geometry information and is then transmitted as meta-
data to the decoder side. Additionally, the residual between
synthesized and original views is encoded in a LF enhance-
ment layer as a PVS with spiral ordering using HEVC inter
coding. Experimental results are shown using three different
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datasets (HCI 4D, INRIA, and EPFL LF Datasets, as seen
in Table 1) and comparing the proposed solution against: i) a
PVS-based solution with spiral ordering (see Fig. 9d) and
HEVC inter coding; and ii) the DIBR-based WaSP solution
in [158], [159]. For this comparison, uniform (see Fig. 25a)
and circular (see Fig. 25g) sampling patterns are considered
for selecting the key views in the proposed solution. From the
presented results comparing against theWaSP solution [158],
[159], it is seen that the proposed solution can achieve,
in average, 56.5%of bit savingswhile the PVS-based solution
achieves 35.42% in average.

In [80], a LF coding scheme is proposed based on a tex-
ture plus graph representation (see Fig. 13) and the coding
architecture shown in Fig. 26. In the lower layers, only two
key views from the extreme left bottom and right top corner
positions (see Fig. 25e) are encoded and transmitted to the
decoder side. To describe the 3D scene geometry, a graph-
based representation is proposed by defining each pixel posi-
tion in the subaperture image as a node, and the color intensity
in each pixel as the graph signal. The adjacency matrix A is
derived from the disparity between the two key views and,
based on the concept of epipolar segment [81], it is sparsified
in an RDO manner. The key view at left bottom corner and
the sparse adjacency matrix A are coded with HEVC Still
Picture Profile. Differently, a diffusion-based prediction of
the key view at right top corner is computed and the residual is
coded using a GFT. At the decoder side, the coded key views
and the sparse adjacency matrix A are used to synthesize
the remaining views. Additionally, in the LF enhancement
layer, further views are sparsely selected and the residual
between original and predicted views are coded with HEVC
and transmitted to improve the quality of the synthesized
views in disoccluded areas. Experiments using synthetic LF
content from the HCI 4D LF Dataset (see Table 1) show that,
compared to a PVS-based solution usingHEVC, the proposed
solution can yield some RD gains only at low bit rates, while
it is outperformed by the PVS-based HEVC solution at high
bit rates.

In [253], a texture plus graph representation is also pro-
posed for lenslet LF coding. In this case, a sparse set of
subaperture images are uniformly selected and encoded as
a PVS using HEVC with Low Delay B configuration (see
Fig. 21e). Under the assumption that there are smooth tran-
sitions between pixels intensities in different subaperture
images, a single graph is constructed to model the disparity
between the views. The graph learning algorithm proposed
in [79] is then used to build a sparse graph, which is then loss-
less encoded using GFT. At the decoder side, the sparse set of
key views and the graph is used to synthesize the remainder
subaperture views by solving an optimization problem that
enforces smoothness. Experimental results are shown using
the EPFL LF Dataset (see Table 1) and comparing the pro-
posed solution to: i) a PVS-based solution using serpentine
ordering (see Fig. 9b) and HEVC; ii) the DIBR-based WaSP
solution in [158], [159]; and iii) a LF coding solution using
learning-based view synthesis in [207] (see Section III-D3).

It is shown that the proposed solution achieves, in aver-
age, 46.7% of bit savings against PVS-based HEVC, 53%
against the WaSP solution [158], [159], and 43.0% against
the learning-based view synthesis in [207].

3) LEARNING-BASED VIEW SYNTHESIS
The LF coding solutions in this category can be divided
into approaches that use conventional machine learning tech-
niques, such as sparse coding and dictionary learning, and
approaches that use deep learning techniques, by notably,
making use of a Convolutional Neural Network (CNN).

The first set of approaches are inspired by the problem
referred to as robust PCA that consists in decomposing a
matrix as the sum of a low rank matrix and a sparse matrix
representing the noise. Then, the problem is reduced to find-
ing an optimal low rank approximation model of the data
that minimizes the noise. These LF coding solutions are then
built upon the assumption that if one warps the views of
the various viewpoint positions to a common warping center
(i.e., to align the views) and considers each warped view
as one column in a matrix, then this matrix will have low
rank. Usually, a local linearity assumption is adopted to solve
this low rank approximation problem — referred to as linear
approximation.

In [207], a lenslet LF coding solution is proposed, based on
a linear approximation prior and using the coding architecture
in Fig. 16. In this case, a sparse set of key views are uniformly
selected (see Fig. 25a), organized as a PVS in zig-zag order
(see Fig. 9e) and encoded with HEVC. To collect geometry
information, a linear approximation model of the discarded
views is proposed using the coded key views. The coefficients
of this linear approximation are then coded as an image using
JPEG standard. At the decoder side, the discarded views are
approximated as the weighted sum of the selected views.
Experimental results using theEPFLLFDataset (see Table 1)
shows that the proposed solution can achieve 37.4% of bit
savings, in average, compared to a PVS-based solution with
serpentine scan (see Fig. 9b) of subaperture images that are
coded with HEVC. This solution was recognized as the win-
ner of the ICIP 2017 grand challenge on LF compression [24]
as the best performing algorithm. In [246], a similar scheme
is proposed based on linear approximation for coding lenslet
LF content. In this case, homography projections are searched
for each subaperture image to obtain the best low rank matrix
approximation for a given target rank k (where k is less than
the total number of subaperture views). In the cases where
the scene contains several layers of depth, the method is
also extended to search for one homography for each depth
plane. The obtained rank k matrix is expressed as a product
of a matrix B, containing k basis vectors, with a matrix
C containing weighting coefficients. The matrix B is then
reshaped representing a sparse set of k images which are
compressed with HEVC Still Picture Profile. The matrix C
and the homography parameters representing the geometry
data are lossless compressed using entropy coding. In case
where multiple homographs are applied, one depth map is

49274 VOLUME 8, 2020



C. Conti et al.: Dense LF Coding: Survey

also encoded with HEVC Still Picture Profile to be transmit-
ted to the decoder side. At the decoder side, the subaperture
images are reconstructed by recovering the low rank matrix
and applying inverse warping. Results are shown comparing
to a PVS-based solution using lozenge scan (see Fig. 9h)
and HEVC, for images from the EPFL, INRIA, and HCI 4D
LF Datasets (see Table 1). The proposed solution is shown
to achieve 2.2 dB of gains in average. Similarly, in [250],
a lenslet LF coding scheme is proposed based on a linear
approximation prior. In this case, a sparse set of uniformly
selected key subaperture images (see Fig. 25a) arranged as a
PVS in serpentine order (see Fig. 9b) is encoded with HEVC.
Then, a translation estimation is proposed to search for the
best linear approximationmodel. The estimation is performed
in a block-based manner by segmenting the key subaperture
images into several depth planes. To limit the encoder com-
plexity, a quadtree segmentation is employed to compute the
segmented blocks. The weighting coefficients of the linear
approximation are then represented as 16-bit floating point
numbers and transmitted. At the decoder side, the discarded
subaperture images are reconstructed as the weighted sum of
the key subaperture images. In an LF enhancement layer (see
Fig. 26), the residual between original and synthesized sub-
aperture images is decomposed using KLT and only the first k
coefficients are transmitted to the decoder side. Experimental
results are shown using the EPFL LF Dataset (see Table 1)
and comparing the performance of the proposed solution
against: i) a PVS-based solution using HEVCwith serpentine
scan order (see Fig. 9b); ii) the MuLE solution [125] as
adopted in JPEG Pleno VM 2.1 [127]; iii) the WaSP solu-
tion [158], [159] as in JPEG Pleno VM 2.1 [127]; and iv) the
solution in [253] using graph learning for synthesis. From
these results, the proposed solution is seen to achieve bit sav-
ings of, in average, 58.5% against PVS-based HEVC, 49.4%
against MuLE [125]; 54.8% against WaSP [158], [159], and
24.8% against the graph learning-based solution [253].

In [237], a lenslet LF coding scheme is proposed using the
coding architecture in Fig. 16 and a dictionary-based learning
approach for view synthesis. In this case, the subaperture
images are divided into overlapping coding regions with
dimension d × d , and a sparse set of key subaperture views
are selected in the overlapping area as seen in Fig. 25f. For
each region, a disparity map is estimated using a maximum
a posteriori estimator. Both the set of key views and the
disparity map are organized as a PVS and coded with JEM
using Low Delay P configuration (see Fig. 21d). At the
decoder side, the coded texture and depth data in each coding
region are used to learn a disparity-guided dictionary. Then,
the discarded subaperture views in this coding region are
reconstructed as an optimized combination of samples in the
constructed dictionary. In addition, in an LF enhancement
layer (see Fig. 26), the residual between original and synthe-
sized views are coded with JEM as a PVS using the prediction
structure proposed in [157] (see Fig. 21g). From experimental
results using the EPFL LF Dataset (see Table 1), it is shown
that the proposed solution can achieve 37.9% of bit savings

compared to a PVS-based solutions using serpentine order
(see Fig. 9b) and JEM, and 16.4% compared to the winner of
the ICME 2016 grand challenge in [157].

Inspired by the recent success of deep learning in a vari-
ety of applications, many LF coding solutions propose to
use deep learning for view synthesis. Among the possible
different techniques, CNNs are deep learning techniques
particularly powerful for image analysis problems, such as
recognition and classification. Essentially, the input image
is fed into the CNN and then processed through a series of
hidden layers before revealing the solution to the problem.
Firstly, in a convolution layer, a filter is applied to extract
low-level features, such as edges, from the input image.
Then, a pooling layer is used to reduce the dimensionality of
the convolved features to decrease the computational power
required to process the data. Finally, the data is vectorized and
fed to a conventional feed-forward neural network.

In [254], a lenslet LF coding scheme using a CNN for
view synthesis is proposed. In this case, a sparse set of
four subaperture images on the extreme corner positions (see
Fig. 25d) are coded as a PVS using HEVC inter coding and
transmitted. At the decoder side, a CNN-based view synthesis
algorithm proposed in [97] for LF super-resolution is used
to synthesize the discarded subaperture images. In this case,
two sequential CNNs are used for estimating the dispar-
ity and, then, for reconstructing the discarded subaperture
images. In an LF enhancement layer (see Fig. 26), the residual
between original and synthesized subaperture images are
organized as a PVSwith raster-scan ordering (see Fig. 9a) and
encodedwith HEVC inter coding. AnRD optimizationmodel
is also proposed to select the optimal QPs for coding key
and residual of discarded subaperture images. Experimental
results using the EPFL LF Dataset (see Table 1) show that
the proposed solution can achieve 13.2% of bit savings (in
average) compared to a PVS-based scheme using HEVCwith
Random Access configuration (see Fig. 21f). In [255], a sim-
ilar lenslet LF coding framework is proposed using the same
four key subaperture images to be coded (see Fig. 25d) and
the same CNN architecture [97] for synthesizing the remain-
ing subaperture images at the decoder side. However, in the
LF enhancement layer (see Fig. 26), the residual of discarded
subaperture images is coded using GFT. For this, a super-
pixel segmentation proposed in [256] is used to subdivide
a reference subaperture image into uniform regions where
the residual signal is supposed to be smooth. These super-
pixel regions are then considered co-located to all subaperture
images. Then, a separable GFT is applied to each super-pixel,
comprising a local spatial GFT and an inter-view GFT. GFT
coefficients are then coded using an arithmetic coder. For
the inter-view GFT, the Laplacian matrix is learned from a
training set and fixed. Experimental results compare the pro-
posed solution against: i) a PVS-based coding using lozenge
scan (see Fig. 9h) and HEVC; and ii) a CNN-based solu-
tion similar to [254]. It is shown that the proposed solution
slightly outperforms the CNN-based solution and achieves
1.2 dB (in average) compared to the PVS-based solution.
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In [257], the authors propose to replace the GFT used in
their previous work in [255] by a 4D shape adaptive DCT for
coding the residual of discarded subaperture images. For this,
the super-ray segmentation proposed in [156] is applied to
the residual of discarded subaperture images and used as the
support for two separable 2D shape adaptive DCT for exploit-
ing spatial and angular correlations. To further improve the
coding performance, a super-ray merging is proposed in an
RD optimization manner. Experimental results, comparing
to the PVS-based solution using lozenge scan (see Fig. 9h)
and HEVC, show that the proposed solution can achieve
coding gains of 1.4 dB (in average) at low bit rates, but it
is outperformed at high bit rates.

In [258], the authors propose a lenslet LF coding solution
where they replace their linear approximation model pro-
posed in [207] by two CNN networks for view synthesis.
In this case, only a sparse set of uniformly sampled sub-
aperture images (see Fig. 25a) are coded as a PVS using
HEVC. At the decoder side, the first network aims at reducing
compression artifacts in the coded key subaperture views,
while the second network is used to recover the discarded
subaperture images. Experimental results are shown using the
EPFL LF Dataset (see Table 1) and comparing the proposed
solution against: i) a PVS-based solution using serpentine
scan of subaperture images (see Fig. 9b) and HEVC; and
ii) their previous solution in [207] using linear approxima-
tion. The proposed solution is shown to outperform the other
solutions with up to 0.78 dB against the PVS-based solution
and 0.36 dB against the linear approximation-based solution
in [207].

In [259], a LF coding scheme is proposed using a Gener-
ative Adversarial Network (GAN) for view synthesis. In this
case, a sparse set of uniformly sampled subaperture images
(see Fig. 25a) are organized as a PVS and coded with
HEVC using the coding configuration proposed in [178] (see
Fig. 21h). At the decoder side, the discarded subaperture
views are synthesized using three CNNs. The first network
uses the coded key subaperture images to generate a high
order approximation of the discarded subaperture views.
Afterwards, a second network is used to refine the quality of
this high order approximation. To ensure sharp edges as well
as detailed textures, a discriminative network is applied using
adversarial learning. In addition, in an LF enhancement layer
(see Fig. 26), the residual of discarded subaperture images is
organized as a PVS and coded with HEVC. An RD optimiza-
tion is also proposed for optimal bit allocation between key
and discarded subaperture images. Experimental results are
shown for coding LF images from the EPFL LF, Stanford
LF Archive, and HCI 4D LF Datasets (see Table 1). The
proposed solution is then compared to: i) a PVS-based solu-
tion with HEVC using Random Access configuration (see
Fig. 21f); ii) the PVS-based solution winner of the ICME
2016 grand challenge in [157]; and ii) the CNN-based solu-
tion in [254]. From these results, the proposed solution is
shown to achieve 14.8% bit savings compared to PVS-based
HEVC, 8.1% compare to the PVS-based solution winner of

ICME 2016 grand challenge in [157], and 4.9% compared
to the CNN-based solution in [254]. In [260], a lenslet LF
coding scheme is proposed using a hybrid scheme for view
synthesis. In this case, two set of key subaperture images are
uniformly selected from the LF data. The first set is organized
as a PVS in zig-zag order (see Fig. 9e) and coded with JEM
inter coding. From the second set, a linear approximation
model is estimated by spectral projected gradient method and
the resulting coefficients are entropy coded. At the decoder
side, the key subaperture views of the second set are recon-
structed as a linear combination of the key subaperture views
in the first set. In addition, two sequential CNNs are used to
estimate a disparity map and then to synthesize the remain-
ing subaperture images. The proposed solution is compared
against: i) a PVS-based solution using HEVC inter coding;
and ii) the solution using only linear approximation in [207].
Results using the EPFL LF Dataset (see Table 1) show
that the proposed solution achieves, in average, 51.1% bit
savings against the PVS-based, and 30.8% against the linear
approximation-based [207] solutions.

4) DISCUSSION
LF coding approaches using view synthesis for achieving
compression have recently increased in the literature. Gener-
ically, the coding performance of these solutions is closely
related to the selection of the key views, the performance of
the synthesis algorithm, and the accuracy of the geometry
information estimated from the acquired LF data. However,
there have not yet been in-depth studies (to the best of
authors’ knowledge) directly analyzing the influence of the
key view selection and geometry estimation algorithms on the
compression performance.

An advantage of using the LF coding approaches in this
category is that scalability, random access and backward
compatibility are straightforwardly supported using a 3D
coding standard in the lower layers. Quality scalability is also
supported by using only information from the lower layers in
reconstructing the views from the higher layers.

Among the different view synthesis techniques proposed,
learning-based techniques, mainly using a low-rank approxi-
mation alone (as in [250]) or combinedwith CNN-based tech-
niques (as in [260]), have shown to achieve the best coding
performance with significant gains when compared to DIBR-
based [158], [159] and transform-assisted [253] synthesis.
Nevertheless, the DIBR-based solution proposed in [248] has
shown competitive RD performance at high bit rates for cod-
ing lenslet LFs by making use of a sparse prediction scheme
for coding residuals in LF enhancement layers. Additionally,
transform-assisted techniques for view synthesis, such as the
GFT-based technique in [253] and the FDL-based technique
in [249] have shown competitive performance compared to
some DIBR-based techniques [158], [159].

With respect to other LF coding solutions in the litera-
ture (outside the view synthesis category), view synthesis-
based solutions have generally shown better RDperformance,
mainly at low bit rates, compared to PVS-based LF coding
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TABLE 2. List of the most relevant dense LF coding solutions in each category (in chronological order).

FIGURE 27. Time evolution of the number of papers on dense LF coding
in each category.

solutions. Moreover, the most recent DIBR-based [248]
and learning-based solutions [250], [260] have shown to
significantly outperform the MuLE solution based on 4D
DCT [125] for coding all kinds of LF content, including
lenslet LFs.

IV. FINAL REMARKS
This paper provided a comprehensive survey of the most
relevant lossy coding solutions for dense LF content proposed
in the literature in the last 25 years. A detailed analysis of LF
coding solutions was provided as well as a careful catego-
rization of the representation format, coding architecture and
techniques considered for achieving compression. A high-
level discussion was also presented to highlight the most
relevant results, advantages, and limitations of the LF coding
solutions in each category.

As a summary, Table 2 presents a chronological list of
all reviewed papers in each coding category, while Fig. 27
shows the distribution of these papers along time. From
this, it is possible to observe that the number of LF cod-
ing solutions based on transform coding and inter-view

prediction almost exclusively dominated the research efforts
until 2010. Moreover, there has been a marked increase in
the number of LF coding solutions based on view synthe-
sis (since 2006) and based on non-local spatial prediction
(since 2011).

Given the richness of methods proposed in the literature,
it is unfeasible to make a single recommendation of what
would be the winning solution for LF coding. Moreover,
when determining the effectiveness of a solution, there are
typically several other requirements, apart from RD compres-
sion performance, that need to be considered. These include,
for instance, scalability, complexity, random access, and ROI
capabilities. Depending on a particular application scenario,
some of these requirements might be more important than
others. However, analyzing the recent LF coding solutions
that present the most promising results, the following char-
acteristics stand out:
• Use of View Synthesis — Most of the recent and
promising LF coding solutions, in terms of RD per-
formance, make use of view synthesis for achieving
efficient compression. This approach has been also
under consideration in most JPEG Pleno [108] and
MPEG-I [59] core experiments. An advantage of such
solutions is that scalability, random access and back-
ward compatibility are easily supported. As geometry
information is used for synthesizing views at the decoder
side, the amount of views that needs to be encoded and
transmitted is greatly reduced. Nevertheless, encoding
the residual in an LF enhancement layer by using the
synthesized views as a prediction has been shown to
be advantageous to improve the perceived quality of
synthesized views. It is worth noting that, althoughmany
different schemes for selecting the key views have been
proposed, there have not yet been done in-depth studies
directly analyzing the influence of the key view selection
on the coding performance. Moreover, accurate geome-
try estimation and representation still need to be further
studied since they have a strong impact on the coding
performance.
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• Use of Image-Based Learning Techniques — Mainly
due to the nature of LFs, represented as a large collection
of viewpoint images, image-based learning techniques
have shown to be hugely advantageous for prediction
and view synthesis. Among the possible techniques,
low-rank approximation, as in [250], has demonstrated
to be a powerful tool to gather geometry information
for view synthesis. In addition, deep learning tech-
niques, mainly based on CNNs as in [260], have pre-
sented promising results for depth/disparity estimation
and view synthesis. Moreover, learning-based trans-
form decomposition schemes, as in [24], [249], have
shown to be advantageous for view synthesis. Regarding
prediction, learning-based prediction schemes, such as
sparse and dictionary-based prediction, have also shown
promising results either when applied in an image basis
(to predict the entire view, as in [248]) or in a coding
block basis (to predict a coding block, as in [236]).

• Use of Highly Efficient Hybrid Video Codecs —
Using hybrid video codecs, such as HEVC and VVC,
for coding texture and residual information has generally
resulted in better RD performance than using classical
image coding solutions, such as JPEG and JPEG 2000.
In fact, the majority of recent LF coding solutions in the
literature has adopted this framework due to its effective-
ness for providing high efficiency compression. Nev-
ertheless, it has been seen that 4D transform-based LF
coding solutions— such as the 4D DCT inMuLE [125],
the 4D shape adaptive DCT in [257], and the 4D lifting-
based DWT in [148] — can be promising alternatives,
being able to achieve competitive RD performance using
a classical image coding architecture.

Based on the recent activities in JPEG andMPEG, the next
years will certainly continue to be very productive for the
research in LF coding. With respect to JPEG, the Draft
International Standards for both JPEG Pleno Part 1 (Frame-
work) and Part 2 (LF coding) have been recently com-
pleted [261]. For LF coding, the two solutions MuLE [125]
and WaSP [158], [159] are supported as coding modes,
respectively, for coding LFs acquired with lenslet camera
and multi-camera arrays. Moreover, JPEG has recently cre-
ated an ad hoc group for studying promising learning-based
2D image codecs, mainly using deep neural network mod-
els [261]. In this context, it has been shown that learning-
based solutions can achieve competitive objective and subjec-
tive qualities when compared to 2D image and video coding
standards [261]. Following this trend, it is safe to expect that
many new LF coding solutions in this category will also be
proposed in the near future. With respect to MPEG-I video,
a Multiview plus Depth (MVD) coding solution [262] has
been recently under exploration for 3 DoF and 3 DoF with
some limited motion parallax (3 DoF+), in which a DIBR-
based view synthesis technique is used. It is expected that,
after its final standardization in mid–end of 2020, a Call
for Proposals will be issued for long-term 6 DoF activities,
including LF video coding standardization [262].
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