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Impact statement: We developed a method for metabolomic analysis of small numbers of flow 

cytometrically isolated cells from rare cell populations such as hematopoietic stem cells and 

circulating cancer cells. 
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Little is known about the metabolic regulation of rare cell populations because most 

metabolites are hard to detect in small numbers of cells. We previously described a 

method for metabolomic profiling of flow cytometrically-isolated hematopoietic stem 

cells (HSCs) that detects approximately 60 metabolites in 10,000 cells (Agathocleous et 

al., 2017). Here we describe a new method involving hydrophilic liquid interaction 

chromatography (HILIC) and high-sensitivity orbitrap mass spectrometry that detected 

approximately 160 metabolites in 10,000 HSCs, including many more glycolytic and lipid 

intermediates. We improved chromatographic separation, increased mass resolution, 

minimized ion suppression, extracted with acetonitrile, and eliminated sample drying. 

Most metabolites did not significantly change during cell preparation and sorting. We 

used this method to profile HSCs and circulating melanoma cells. HSCs exhibited 

increased glycerophospholipid metabolites relative to unfractionated bone marrow cells 

and altered purine biosynthesis after methotrexate treatment in vivo. Circulating 

melanoma cells were depleted for purine intermediates relative to subcutaneous tumors, 

suggesting they decrease purine synthesis during metastasis. These methods facilitate 

the routine metabolomic analysis of rare cell populations from tissues.  

 

Introduction 

Metabolomics is typically performed using millions of cells, often using cultured cells, 

whole tissues, or tumor specimens (Jang et al., 2018). This measures average metabolite levels 

across the cells in a specimen but is blind to metabolic differences among cells in the same 

sample. As a result, we have limited insight into metabolic heterogeneity among cells within 

tissues or tumors (Kim and DeBerardinis, 2019, Muir et al., 2018). This limitation is particularly 

apparent when considering rare cells, such as stem cells or circulating cancer cells, that may be 

metabolically different from other cells. The difficulty of performing metabolomics on small 

numbers of these cells is compounded by the need to purify them from tissues, introducing 
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additional technical challenges for metabolic analyses (Binek et al., 2019, Llufrio et al., 2018, 

Lau et al., 2020).  

It is extremely time consuming and difficult to isolate a million cells from a rare cell 

population by flow cytometry. One study isolated over 1 million highly enriched CD34-Flt3-

Lineage-Sca-1+c-kit+ hematopoietic stem cells (HSCs) by flow cytometry but had to pool bone 

marrow samples from 120 mice to do it, precluding the analysis of multiple replicates or routine 

application of this approach (Takubo et al., 2013). Metabolomics has also been performed on 

hundreds of thousands of flow cytometrically-isolated Lineage-Sca-1+c-kit+ (LSK) cells (Naka et 

al., 2015, Karigane et al., 2016), a larger and more heterogeneous population of hematopoietic 

stem and progenitor cells. Since only a small minority of these cells are HSCs, this strategy 

provides limited insight into metabolite levels in HSCs themselves. Others have characterized 

the phenotypes of mutant mice or metabolism in cultured hematopoietic stem and progenitor 

cells (Simsek et al., 2010, Ito et al., 2012, Ito et al., 2016, Ito et al., 2019, Wang et al., 2014, 

Ansó et al., 2017). However, it remains difficult to routinely compare metabolite levels between 

HSCs and other hematopoietic progenitors. 

Metabolites have been profiled in single cells (Evers et al., 2019, Comi et al., 2017). 

However, these studies often use very large cells like Xenopus eggs (Onjiko et al., 2015) or 

Aplysia neurons (Nemes et al., 2012). Other single cell analyses have focused on small 

numbers of metabolites or specific subsets of metabolites (Luo and Li, 2017). Single cell 

metabolomics methods often involve mass spectrometry without chromatographic separation, 

making it more difficult to identify the detected species (Duncan et al., 2019, Ali et al., 2019). 

We recently described a method for metabolomic analysis of highly purified, flow 

cytometrically isolated CD150+CD48-LSK HSCs that detected approximately 60 metabolites in 

10,000 cells (Agathocleous et al., 2017). Cells were kept cold during the entire purification 

process and sorted directly into 80% methanol to immediately quench enzymatic activity and 

extract metabolites. This method revealed that HSCs take up more ascorbate than other 
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hematopoietic cells and depend upon ascorbate for epigenetic regulation and leukemia 

suppression, though coverage of many metabolic pathways was limited. 

The challenge of performing metabolomic analysis in rare cells is not limited to stem 

cells as illustrated by a paucity of information about the metabolic state of circulating cancer 

cells. Many tumors spontaneously shed cancer cells into the blood (Micalizzi et al., 2017) but 

these cells are extremely rare, limiting the amount of material for analysis. We have developed 

methods for the flow cytometric isolation and characterization of circulating human melanoma 

cells from the blood of xenografted mice (Piskounova et al., 2015, Tasdogan et al., 2020). 

These cells undergo reversible metabolic changes during metastasis to survive oxidative stress, 

but these changes are just beginning to be characterized. Mass spectrometric analysis of single 

circulating cancer cells from the blood of patients revealed metabolites that differed among 

various kinds of cancer cells (Hiyama et al., 2015, Abouleila et al., 2019). Fluorescent probes 

have also been used to characterize metabolism in circulating cancer cells (Li et al., 2019). 

Here we present a new method for the metabolomic analysis of rare stem cell and 

cancer cell populations isolated by flow cytometry. We have increased the number of 

metabolites we can detect in 10,000 HSCs to approximately 160. We also applied this method 

to circulating cancer cells. Using these methods, the levels of most metabolites did not 

significantly change during cell preparation and sorting. 

 

RESULTS 

Chromatography and mass spectrometry 

In order to significantly increase the numbers of metabolites we detected in small 

numbers of flow cytometrically isolated cells, we re-examined the chromatography and mass 

spectrometry approaches we used. A key limitation is discriminating the low levels of 

metabolites present in small numbers of cells from background signals. Background reflects 

contamination from various sources as well as the co-association of salts with organic 
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compounds in mass spectrometers to generate organic salt clusters (matrix ions) that obscure 

the detection of metabolites. We reasoned we could improve the signal to noise ratio in low 

abundance samples and reduce interference by matrix ions by transitioning to a mass 

spectrometer with higher mass resolving power. 

We chose a Q-Exactive HF-X hybrid quadrupole-orbitrap mass spectrometer 

(ThermoScientific) because it offers four advantages over the triple-quadrupole mass 

spectrometer used in our previous method (Agathocleous et al., 2017). First, whereas the triple-

quadrupole instrument acquires data for a predetermined number of metabolites, the orbitrap 

instrument captures spectra for the full mass range (80 – 1200 Daltons) with each scan, greatly 

increasing the number of metabolites detected. Second, orbitrap mass analyzers have higher 

mass resolving power and higher mass accuracy, increasing the ability to discriminate relevant 

analytes from background ions. Third, through untargeted acquisition of product ion spectra, 

orbitrap instruments enable the comparison of spectra from experimental samples with 

annotated spectrum libraries for high-confidence identification of metabolites. Finally, compared 

to other orbitrap models, the HF-X front end optics increase the number of ions that can pass 

into the mass spectrometer, boosting the signal from low abundance analytes. 

 We also wondered if a hydrophilic interaction liquid chromatography (HILIC) system 

would improve the separation of polar metabolites as compared to the reverse phase 

chromatography method in our original study (Agathocleous et al., 2017). To test this, we 

extracted metabolites from 5x106 mouse whole bone marrow (WBM) cells in 500 µl of 80% 

methanol, dried the extracts in a vacuum concentrator, and reconstituted in water for reverse 

phase chromatography or 80% methanol for HILIC. Polar analytes eluted from the reverse 

phase column between 3 and 5 minutes, and from the HILIC column between 2 and 15 minutes, 

indicating that HILIC improved polar metabolite separation (data not shown).  

 When we ran high abundance samples either by reverse phase or HILIC we identified 

hundreds of metabolites by spectral database matching and manual peak review (data not 
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shown). However, the improved metabolite separation and peak quality we observed with HILIC 

yielded more high confidence identifications of metabolites via spectral database matching 

alone (Figure 1A). HILIC also enabled detection of early-eluting lipid metabolites, which were 

not detected using reverse phase chromatography.  Finally, HILIC eliminated the requirement 

for sample drying, which can alter the levels of certain metabolites and increases contamination 

(Lu et al., 2017). Given these advantages, we selected HILIC for further method development.  

We also fundamentally changed our approach to data analysis. To determine which 

metabolites were detected in low abundance samples we created a list of metabolites with 

known masses and chromatographic retention times from the analysis of high abundance 

samples. We first used unbiased metabolite identification software (Compound Discoverer) to 

compare experimentally observed mass spectra with annotated spectrum libraries to identify 

571 metabolites. We confirmed the identities of each metabolite in the library by reviewing the 

MS2 spectra for each metabolite. We confirmed the retention times and mass spectra for over 

450 metabolites in the library by running chemical standards. This library was used to determine 

how many metabolites were detected in low abundance samples by manually analyzing 

chromatographic peaks derived from extracts of 100,000 WBM cells. This resulted in a low 

abundance library containing 283 detectable metabolites that was used for manual metabolite 

quantitation in low abundance samples. This manual approach was more time consuming but 

more accurate than relying upon automated peak-calling algorithms, which often failed to 

accurately integrate LC-MS peaks from low-abundance samples. 

 

Reducing sources of contamination  

Background signals arose from the staining medium in which we suspended the cells, 

the flow cytometer sheath fluid, the solvent we used to extract metabolites from the sorted cells, 

and the drying and reconstitution of samples prior to liquid chromatography/mass spectrometry 

(LC-MS) (Agathocleous et al., 2017). While these very low levels of background would be 
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negligible when analyzing high abundance samples, they did interfere with the ability to detect 

some metabolites in low abundance samples.  

When performing reverse phase separation, metabolites were extracted using 80% 

methanol and then dried in a vacuum concentrator so they could be reconstituted in water for 

chromatography (Agathocleous et al., 2017). Transitioning to HILIC made it possible to directly 

inject organic solvents into the column, without drying and reconstituting in water. To test if 

contamination was reduced by not drying in a vacuum concentrator, we sorted droplets of 

sheath fluid with no cells in volumes equivalent to that required to sort 10,000 cells and 

processed the samples side-by-side in three ways. Some samples were dried in a standard 

vacuum concentrator, then reconstituted in 80% methanol and injected into the HILIC column. 

Some samples were dried in a new vacuum concentrator housed in a HEPA-filtered PCR hood 

to minimize contamination from the air, then reconstituted in 80% methanol and injected into the 

HILIC column. The remaining samples were sorted into 80% methanol and injected directly into 

the HILIC column without drying. The highest level of background contamination was in the 

samples dried in the standard vacuum concentrator (Figure 1B). The lowest background was in 

the samples injected into the column without drying, suggesting drying increased contamination.  

To test whether we could detect more metabolites above background in low abundance 

samples if we did not dry and reconstitute, we sorted samples of 10,000 WBM cells, along with 

sheath fluid negative controls, and processed the samples side-by-side either with drying in a 

standard vacuum concentrator, with drying in a new vacuum concentrator in a HEPA-filtered 

PCR hood, or without drying. We detected 98, 123, and 130 metabolites significantly above 

sheath fluid background in the samples dried in a standard vacuum concentrator, dried in the 

HEPA-filtered vacuum concentrator, and undried, respectively (Figure 1C). We thus detected 

more metabolites above background in low abundance samples if we injected the sample 

directly into the HILIC column and incorporated this approach into the method. 
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Acetonitrile extraction 

Metabolites are most commonly extracted from cells using miscible aqueous-organic 

solvents, with the elimination of proteins, non-soluble components, and cellular debris by 

centrifugation. Different metabolites require different solvents for extraction (Rabinowitz and 

Kimball, 2007). To test different solvents, we extracted metabolites from 100,000 pipetted WBM 

cells using 80% methanol in water, 40:40:20 acetonitrile:methanol:water, or 80% acetonitrile in 

water. Using HILIC and orbitrap mass spectrometry we detected an average of 317 metabolites 

in samples extracted with 80% acetonitrile and 266 or 273 metabolites in samples extracted with 

80% methanol or 40:40:20 methanol:acetonitrile:water, respectively (Figure 1D). While we 

observed considerable overlap in the metabolites detected using each solvent, 80% acetonitrile 

yielded a number of metabolites that were not detected using the other solvents (Figure 1E). For 

these reasons, we selected 80% acetonitrile for further method development.  

 

Ion suppression and cell numbers 

Ion suppression of metabolite signals can occur as a result of the salt in the phosphate 

buffered saline (PBS) sheath fluid used for flow cytometric sorting: 1 to 3 nl of sheath fluid is 

sorted along with each cell depending on whether a 70 µm or 100 µm nozzle is used. Flow 

cytometry sheath fluid must contain salt in order to electrostatically charge droplets for sorting; 

sorting more cells also sorts more salt. When using reverse phase chromatography, we reduced 

the magnitude of ion suppression by using 0.5x PBS as sheath fluid and a 70 μm nozzle in 4-

way purity sort mode to minimize droplet volume (Agathocleous et al., 2017). After changing to 

HILIC, we retested whether 0.5x PBS or the 70 μm nozzle affected the number of metabolites 

we detected. We sorted 10,000 WBM cells using 0.5x PBS or 1x PBS sheath fluid and either a 

70 μm or a 100 μm nozzle. We found that sorting with the 70 μm nozzle increased the number 

of metabolites we could detect above background as compared to the 100 μm nozzle, 

regardless of sheath fluid PBS concentration (Figure 1F). We found no significant difference in 
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the number of metabolites detected above background using 0.5x versus 1.0x PBS (Figure 1F). 

These results suggest that metabolite signals were less sensitive to ion suppression using 

HILIC, in which salt eluted after metabolites of interest.   

Next we tested if the number of metabolites we detected above background increased 

with increasing numbers of cells. We pipetted 10,000, 20,000, 30,000, 50,000 or 100,000 WBM 

cells (in equal volumes of HBSS buffer) directly into 80% acetonitrile and quantitated 

metabolites. The number of metabolites detected above sheath fluid background increased 

significantly with increasing numbers of cells, from 157 ± 4 metabolites in 10,000 cells to 222 ± 

9 metabolites in 100,000 cells (Figure 1G). In the same experiment, we detected an average of 

155 ± 2 metabolites from 10,000 flow cytometrically sorted WBM cells (Figure 1G). We thus 

detected similar numbers of metabolites in flow cytometrically sorted and unsorted samples. 

 

Effect of flow cytometry on metabolite levels 

 To determine if metabolic differences between cells are preserved during cell sorting 

using the methods describe above, we sorted or pipetted 10,000 HNT-34 AML cells or 10,000 

DND-41 T-ALL cells into 80% acetonitrile. We detected 143 to 167 metabolites above 

background in each sample. Principal component analysis revealed differences between sorted 

and pipetted AML cells whereas differences among sorted and pipetted ALL cells were more 

subtle (Figure 1H). Irrespective of whether cells were sorted or pipetted, similar differences were 

observed between AML and ALL cells. Among sorted samples, 81 metabolites significantly 

differed between AML and ALL cells while among pipetted samples, 69 of the same metabolites 

differed (Figure 1I). Approximately 85% of the metabolites that significantly differed among 

sorted cells also significantly differed among pipetted cells and 75% of the significant 

differences among pipetted samples also significantly differed among sorted samples. Of the 12 

metabolites that significantly changed in sorted but not pipetted cells, 10 trended in the same 

direction. Of the 23 metabolites that significantly changed in pipetted but not sorted samples, 20 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.11.246900doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.11.246900


 
 

10 

trended in the same direction in the sorted cells. Thus, the vast majority of metabolites exhibited 

similar differences among AML and ALL cells irrespective of whether the cells were sorted. 

 To more systematically assess the similarity of pipetted and sorted samples, we plotted 

Log2-transformed fold change values between AML and ALL cells for all metabolites above 

background in sorted versus pipetted samples (Figure 1J). The slope of the regression was near 

1 (y = 0.96x – 0.06) and the correlation was strong for most metabolites (Spearman correlation 

coefficient, r = 0.81). When we restricted the analysis to metabolites that significantly differed 

between sorted AML and ALL cells (fold change > 2, FDR < 0.01), the correlation was even 

stronger (y = 0.95x – 0.08; r = 0.92; Figure 1K). While the levels of some metabolites did 

change during sorting, most metabolites strongly correlated in sorted and unsorted samples. 

 

Effect of time on metabolite levels 

 It typically took up to 2 hours to sort HSCs into acetonitrile starting from when the mice 

were killed. We wondered to what extent metabolite levels changed over time during cell 

isolation. To test this, we quickly flushed bone marrow from long bones and made single cell 

suspensions in HBSS that we kept on ice. We pipetted 10,000 cell aliquots of WBM cells into 

acetonitrile at 5, 15, 30, 60, 120, 180, and 240 minutes after killing the mice then performed 

metabolomic analysis on each sample. At all time points we detected 170 to 179 metabolites 

above sheath fluid background (Figure 1L). Relative to the samples collected at 5 minutes, only 

2 metabolites significantly changed (p<0.01, FC>2) in the samples collected at 15 minutes 

(Figure 1M). The number of metabolites that significantly changed increased over time, but most 

of the changes occurred by 120 minutes. At 120 minutes, 19 metabolites significantly increased 

and 6 metabolites significantly decreased relative to the 5 minute samples (Figure 1M; Figure 1, 

supplementary table 1 shows the metabolites that changed over time). Therefore, some 

metabolites did change over time, but these represented less than 15% of detected metabolites. 
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 To more broadly assess the similarity of the samples over time, we plotted Log2-

transformed values for all detected metabolites in 5 minute versus 120 minute samples (Figure 

1N). The slope of the regression was near 1 (y = 0.97x + 0.62) and the correlation was strong, r 

= 0.98. We also plotted non-transformed values for all detected metabolites in 5 minute versus 

120 minute samples, observing a similarly high correlation (Figure 1O). Finally, to most clearly 

show the differences between 5 and 120 minute samples, we plotted only metabolites with 

signal intensity < 1x108 (Figure 1P). Again, the slope of the regression was near 1 (y = 0.95x + 

1.1 x 106) and the correlation was strong, r = 0.97. Thus, metabolite intensity values strongly 

correlated among samples that incubated on ice for different periods of time. 

 

Metabolomic profiling of HSC/MPPs 

To assess the metabolomic profile of HSCs/MPPs we sorted 10,000 cell aliquots of 

CD48-Lineage-Sca1+c-kit+ cells and WBM cells. CD48-Lineage-Sca1+c-kit+ cells represent 0.05% 

of WBM cells and are a very highly enriched for HSCs and MPPs (Oguro et al., 2013). The 

metabolomic profiles of HSCs and MPPs are extremely similar (Agathocleous et al., 2017). We 

detected 160 ± 15 metabolites above sheath fluid background in HSCs/MPPs and 147 ± 15 in 

WBM samples (Figure 2A). A total of 98 metabolites significantly differed in abundance between 

HSCs/MPPs and WBM cells (FDR < 0.01, Figure 2 – supplementary table 1). Of these 98 

metabolites, 51 differed by at least 2.5 fold (Figure 2B). Of the 16 metabolites that Agathocleous 

et al. (Agathocleous et al., 2017) found to significantly differ between HSCs/MPPs and WBM 

cells, 13 also significantly differed, in the same direction, using the new method (Figure 2 - 

figure supplement 1). The other 3 metabolites either were not detected using the new method or 

could not be quantitated accurately due to extraction conditions. Thus, the new method detected 

most of the metabolic differences between HSC/MPPs and WBM cells observed by 

Agathocleous et al. (Agathocleous et al., 2017), while also detecting 82 additional differences. 
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Pathway enrichment analysis found only one pathway that was significantly enriched 

(FDR<0.01): 10 of 36 metabolites in the murine KEGG “glycerophospholipid metabolism” 

pathway significantly differed in abundance between HSC/MPPs and WBM cells. The biological 

significance of this is not clear. HSCs were enriched for many components of the Kennedy 

(cytidine diphosphate-choline) pathway (Li and Vance, 2008, Kennedy and Weiss, 1956), 

including choline, choline phosphate, CDP-choline, ethanolamine phosphate, 

glycerophosphorylcholine,  glycerophosphorylethanolamine, and many phosphatidylcholines 

(PC), phosphatidylethanolamines (PE), lysophosphatidylcholines (Lyso-PC), and 

lysophosphatidylethanolamines (Lyso-PE) (Figure 2B - figure supplement 2). Acetylcholine and 

several phosphatidylserine (PS) species were depleted in HSC/MPPs as compared to WBM 

(Figure 2B – figure supplement 2). These results raise the possibility that glycerophospholipid 

synthesis is activated in HSC/MPPs relative to WBM; however, additional studies will be 

required in the future to test this. The prominence of phospholipids among the differences 

between HSCs/MPPs and WBM cells illustrates the ability of the new method to detect 

differences not detected by prior methods.  

To determine whether metabolic perturbations in HSCs in vivo can be detected by this 

method, we treated mice for 3 days with methotrexate. Methotrexate inhibits dihydrofolate 

reductase (DHFR) and AICAR transaminase (ATIC), steps in de novo purine biosynthesis 

(Baggott et al., 1986). Methotrexate treatment did not significantly affect bone marrow cellularity 

or the frequencies of HSCs, MPPs, or LSK cells in the bone marrow (Figure 3A-D). 

Methotrexate treatment also did not significantly affect the reconstituting potential of WBM cells 

upon competitive transplantation into irradiated mice (Figure 3E). Metabolomic analysis of 

10,000 HSC/MPPs from the bone marrow of methotrexate-treated and control mice revealed 

that the only pathway that was significantly enriched among the metabolites that differed was 

“purine metabolism”. While methotrexate would also be expected to alter folate metabolism, 

folate species are very difficult to detect by metabolomics (Zheng et al., 2018, Chen et al., 2017) 
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and are not detected by our method. Given that methotrexate inhibits ATIC, AICAR levels would 

be expected to increase after methotrexate treatment (Cronstein et al., 1993, Baggott et al., 

1986, Allegra et al., 1985). Consistent with this, AICAR levels were 88 fold higher in 

HSCs/MPPs from methotrexate-treated as compared to control mice (Figure 3F). The method 

was thus capable of detecting expected metabolic perturbations in HSCs in vivo. 

 

Metabolomic profiling of circulating cancer cells 

To assess whether the method is broadly applicable, we tested if we could detect 

metabolic differences between circulating melanoma cells from the blood and the primary 

subcutaneous tumors from which they arose. We have shown previously that when efficiently 

metastasizing human melanomas are subcutaneously transplanted into NSG mice, they 

spontaneously metastasize, giving rise to rare circulating melanoma cells in the blood and 

metastatic tumors (Piskounova et al., 2015, Tasdogan et al., 2020). We subcutaneously 

transplanted M405 patient-derived melanoma cells into NSG mice. When the subcutaneous 

tumors reached 2.5 cm in diameter, we euthanized the mice and isolated 10,000 cell aliquots of 

melanoma cells by flow cytometry from mechanically dissociated subcutaneous tumors as well 

as from the blood of the same mice. We pooled blood from 6-10 mice per sample to isolate 

10,000 circulating melanoma cells. 

We detected 145 and 154 metabolites above sheath fluid background in the 

subcutaneous tumor and circulating melanoma cell samples, respectively (Figure 3G). Pathway 

enrichment analysis of all metabolites that significantly differed between subcutaneous tumor 

and circulating melanoma cells found one pathway that significantly (FDR < 0.01) differed - 

purine metabolism. Several purine biosynthesis intermediates were depleted in circulating 

melanoma cells as compared to subcutaneous tumors, including IMP, XMP, GMP, and AMP 

(Figure 3H-K; Figure 3 - figure supplement 1). Given that circulating melanoma cells experience 

high levels of oxidative stress (Piskounova et al., 2015, Tasdogan et al., 2020), these data raise 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.11.246900doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.11.246900


 
 

14 

the possibility that metastasizing melanoma cells reduce purine biosynthesis, and perhaps other 

anabolic pathways, to preserve NADPH for oxidative stress resistance. 

 

Discussion 

The new method for metabolomic analysis of rare cells significantly increased metabolite 

numbers and pathway coverage relative to our prior method (Agathocleous et al., 2017) (Fig. 4A 

and 4B). We improved signal to noise ratio by using HILIC and an orbitrap mass spectrometer. 

We decreased contamination by eliminating sample drying and improved chromatographic 

performance by extracting metabolites with 80% acetonitrile. In principle, this method can be 

used to analyze any cell population isolated by flow cytometry, though in practice it is most 

useful when cell numbers are limited. 

Cells can undergo metabolic changes upon removal from their in vivo environment (Lau 

et al., 2020). This is a particular problem when cells are enzymatically dissociated at 37°C, 

when they exchange metabolites with the dissociation medium, or when cells are sorted into 

buffers that require additional processing steps before cell lysis and metabolite extraction (Lau 

et al., 2020, Binek et al., 2019, Llufrio et al., 2018). For this reason, we have avoided analyzing 

enzymatically dissociated cells. To avoid changes in metabolites during cell processing, we 

worked quickly and kept the cells cold from the time they left the animal until they were sorted 

into acetonitrile. Cellular metabolism is immediately quenched by sorting into cold acetonitrile. 

The levels of most metabolites strongly correlated in sorted and unsorted samples (Figure 1H-

K). Some metabolites exhibited changes in levels over time during cell processing (Figure 1M) 

but the levels of most metabolites strongly correlated in samples at 5 and 120 minutes after 

removal from the mouse (Figure 1N-P). Overall, these control experiments suggest that most 

metabolite levels were not significantly changed by cell preparation and sorting. 

Transitioning to HILIC provided several advantages. First, we were able to avoid sample 

drying, which significantly reduced contamination (Figure 1B-C). Second, we reduced ion 
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suppression compared to our prior reverse phase method because salt eluted after the 

metabolites of interest on HILIC columns (Figure 1F). Third, HILIC improved the separation of 

polar metabolites, such as central carbon metabolites, while also enabling the detection of many 

lipid species. Nonetheless, some metabolites are better resolved and detected by reverse 

phase chromatography. Therefore, while HILIC provided a net advantage for our purposes, 

adapting this low cell number method to other chromatographies could improve the detection of 

certain classes of metabolites. 

The extraction conditions described above are not suitable for the quantitation of some 

metabolites, including those that spontaneously oxidize (Lu et al., 2018). For example, 

ascorbate spontaneously oxidizes upon extraction from cells (Washko et al., 1992); therefore, in 

our prior study we added EDTA to the extraction solvent to prevent spontaneous oxidation 

(Agathocleous et al., 2017). In an effort to devise a general method in the current study, we did 

not add EDTA to the extraction solvent and therefore did not measure ascorbate levels 

accurately. Consistent with this, ascorbate was one of the 3 metabolites that differed between 

HSCs and WBM cells in our prior study (Agathocleous et al., 2017) that we did not detect as 

different in the current study (Figure 2 - figure supplement 1). The other two were spermidine 

and betaine, which were not detected using the new method. 

We observed differences in the abundance of glycerophospholipids between 

HSCs/MPPs and WBM cells. Functional studies will be required to assess the biological 

significance of this difference. Few studies have examined lipid metabolism in HSCs (Xie et al., 

2019, Ito et al., 2012, Ito et al., 2016, Lee et al., 2018, Pernes et al., 2019), partly because 

methods have not been readily available to quantitate lipid levels in HSCs. The ability of the new 

method to detect more than 60 lipids in 10,000 HSCs may facilitate future studies of lipid 

metabolism in stem cells. We also performed metabolomics on circulating melanoma cells from 

xenografted mice. Cancer cells must undergo metabolic changes to survive oxidative stress 
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during metastasis (Piskounova et al., 2015, Tasdogan et al., 2020). Better understanding the 

metabolic changes could reveal new therapeutic vulnerabilities to block cancer progression. 

 

METHODS 

Isolation of hematopoietic cells for metabolomics 

Bone marrow cells were collected quickly and maintained at 0 to 4°C throughout the 

staining and isolation procedure to minimize metabolic changes. Mice were euthanized by 

cervical dislocation. Bones were rapidly dissected and stored on ice in Hank’s Buffered Salt 

Solution without Mg2+ and Ca2+ (HBSS, Corning). Muscle was stripped from the bones, then 

they were crushed in 2.5 ml of HBSS using a pre-cooled mortar and pestle, on ice. Bone 

marrow cells were filtered through a 40 µm strainer into a 50 ml conical tube. The cells were 

then stained with fluorochrome-conjugated antibodies against B220 (FITC, Tonbo), Gr-1 (FITC, 

Tonbo), Ter119 (FITC, Tonbo), CD2 (FITC, Tonbo), CD3 (FITC, Tonbo), CD5 (FITC, 

BioLegend), CD8 (FITC, Tonbo), c-kit (APC-eFluor780, eBiosciences), Sca-1 (PerCP-Cy5.5, 

BioLegend), CD48 (APC, eBiosciences), and CD150 (PE, BioLegend) for 30 minutes on ice. 

Beginning 10 minutes before adding the antibodies, and continuing after the antibodies had 

been added, para-magnetic beads conjugated to anti-c-kit antibodies (Miltenyi) were added to 

the cells to facilitate pre-enrichment of c-kit+ cells in samples from which HSCs were sorted. To 

ensure that WBM cells were processed in the same way, these samples were enriched by 

positive selection of para-magnetic beads bound to anti-CD45 antibodies (Miltenyi). Positive 

selection was performed in the cold room at 4°C using a QuadroMACS manual separator 

(Miltenyi) and LS Columns (Miltenyi).  Cells were eluted from columns in 2 ml of HBSS, 

centrifuged for 5 minutes at 300 x g, and resuspended in HBSS with 4’,6-diamidino-2-

phenylindole (DAPI, 1 µg/ml, Sigma) for flow cytometry. The gating strategy for the isolation of 

HSCs/MPPs is depicted in Figure 3 – figure supplement 2A. 
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Isolation of melanoma cells for metabolomics 

Mice were transplanted subcutaneously with human melanoma cells and the cells were 

allowed to spontaneously metastasize until the subcutaneous tumors reached 2.5 cm. At this 

point, single cell suspensions were obtained by dissociating tumors mechanically with a scalpel 

on ice followed by gentle trituration. Cells were filtered through a 40 μm strainer to generate a 

single cell suspension. Blood was collected from mice by cardiac puncture with a syringe 

pretreated with citrate-dextrose solution (Santa Cruz).  

Subcutaneous tumor and blood specimens were first incubated on ice for 10 minutes 

with Ammonium-Chloride-Potassium (ACK) lysing buffer to eliminate red blood cells. The cells 

were washed with PBS and then stained with antibodies prior to flow cytometry. All antibody 

staining was performed for 20 minutes on ice, followed by washing with PBS and centrifuging at 

200 x g for 5 minutes. Cells were stained with directly conjugated antibodies against mouse 

CD45 (APC, Tonbo Biosciences), mouse CD31 (APC, Biolegend), mouse Ter119 (APC, Tonbo 

Biosciences) and human HLA-A, B, C (G46-2.6-FITC, BD Biosciences). Human melanoma cells 

were isolated as cells that were positive for HLA and DsRed (melanoma cells were tagged with 

constitutive DsRed before subcutaneous transplantation), and negative for mouse endothelial 

(CD31) and hematopoietic markers (CD45 and Ter119). Cells were washed with PBS and 

resuspended in DAPI (1 μg/ml, Sigma) to eliminate dead cells from sorts and analyses. The flow 

cytometry gating strategies for the isolation of primary tumor cells and circulating melanoma 

cells are depicted in Figure 3 – figure supplement 2B-C. 

 

Preparation of cultured cells for metabolomics 

 HNT-34 AML cells and DND-41 T-ALL cells were cultured in RPMI medium with 10% 

fetal bovine serum and 1% penicillin/streptomycin. Cells were maintained at a density of 5x105 

cells/ml, and cultured at 37°C with 5% CO2. Cells were washed once with PBS, and 

resuspended at a density of 1x106 cells per ml in ice cold PBS for flow cytometry. Pipetted cells 
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were isolated by pipetting 10 µl (containing 10,000 cells) into 40 µl 100% acetonitrile.  

 

Flow cytometer preparation 

Flow cytometers were thoroughly cleaned before sorting low abundance samples to 

minimize background. All flow cytometry was performed using a FACSAria II or a FACSAria 

Fusion (BD Biosciences). The fluidics shutdown protocols were performed using 80% ethanol 

before each sort. A clean, metabolomics-dedicated FACSAria sheath tank was rinsed with 

ultrapure water several times to reduce contamination, before being filled with 4 l of 0.5x 

phosphate buffered saline (PBS) made from tablets (Sigma) dissolved in ultrapure water. The 

metabolomics sheath tank was connected to the sorter using a dedicated 0.22 µm filter.  The 

fluidics startup protocol was performed using freshly made 0.5x PBS sheath fluid. The sorter 

was configured to use a 70 µm nozzle but before the nozzle was inserted two cycles of clean 

flow cell protocols were performed with Windex. The sheath fluid was then run through the flow 

cytometer without a nozzle for 5 minutes to flush Windex and any remaining debris from the flow 

cell. At the same time, the 70 µm nozzle was sonicated for 5 minutes to remove contamination 

and debris, and the cleanliness of the nozzle was confirmed by microscopy. The sheath fluid 

stream was turned off and the sort chamber was cleaned with a lint-free wipe and cotton swabs. 

The nozzle was then inserted and the stream was turned on. The sample line was cleaned 

again by running a 5 ml sample tube of Windex for 5 minutes, followed by ultrapure water for 5 

minutes. Four-way purity sort mode was used to minimize droplet size. The cell sample, the 

sorting chamber, and the collection tube adapter were all maintained at 4°C during sorting. 

 

Sorting cells for metabolomics 

The Eppendorf tubes into which cells were sorted were loaded with 40 µl of 100% 

acetonitrile (Optima, Fisher Scientific) or methanol (Optima, Fisher Scientific) before sorting. We 

used a freshly opened bag of clean Eppendorf tubes (USA Scientific) and filtered pipette tips. 
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The Eppendorf tubes were maintained at -20°C until just prior to sorting. Cell samples were 

filtered through a 40 µm strainer before sorting. The flow rate was minimized to reduce shear 

stress. Just before sorting, the Eppendorf tubes were opened using a clean microfuge tube 

opener (USA Scientific) to avoid contamination. After sorting, the tubes were sealed, vortexed 

and centrifuged briefly to collect all the liquid in the bottom of the tube, and placed on dry ice. 

Metabolites were extracted by vortexing again for 1 minute at high speed, followed by 

centrifugation at 17,000 x g for 15 minutes at 4°C. The supernatant was transferred to auto-

sampler vials with low volume inserts and analyzed immediately by LC-MS (see details below). 

 

Liquid chromatography and mass spectrometry 

Liquid chromatography was performed with a Vanquish Flex UHPLC (Thermo Scientific). 

The reverse phase method used a Waters HSS C18 column (2.1 x 150 mm, 1.7 μm) with a 

binary solvent gradient. Mobile phase A was water with 0.1% formic acid and mobile phase B 

was acetonitrile with 0.1% formic acid. Gradient separation proceeded as follows: from 0 to 5 

minutes, 0% B; from 5 minutes to 45 minutes mobile phase B was ramped linearly from 0% to 

100%; from 45 minutes to 52 minutes, mobile phase B was held at 100%; from 52 to 52.1 

minutes, mobile phase B was ramped linearly to 0%; from 52.1 to 60 minutes, mobile phase B 

was held at 0%. Throughout the course of the method, the solvent flow rate was kept to 100 

μl/minute and column temperature was held at 30°C.  

The HILIC method used a Millipore Sigma ZIC-pHILIC column (2.1 x 150, 5 μm) with a 

binary solvent gradient. Mobile phase A was water containing 10 mM ammonium acetate, pH 

9.8 with ammonium hydroxide; mobile phase B was 100% acetonitrile. Gradient separation 

proceeded as follows: from 0 to 15 minutes mobile phase B was ramped linearly from 90% to 

30%; from 15 minutes to 18 minutes, mobile phase B was held at 30%; from 18 minutes to 19 

minutes, mobile phase B was ramped linearly from 30% to 90%; mobile phase B was held at 

90% from 19 minutes to 27 minutes to regenerate the initial chromatographic environment. 
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Throughout the method, solvent flow rate was kept at 250 μl/minute and the column 

temperature was maintained at 25°C. For low abundance samples, 20 μl of sample was injected 

onto the column. For high abundance samples, 10 μl was injected. 

All mass spectrometry data were acquired using a Thermo Scientific (Bremen, Germany) 

QExactive HF-X mass spectrometer (LC-MS/MS). For low abundance samples, a polarity-

switching MS1 only acquisition method was used. Each polarity was acquired at a resolving 

power of 120,000 full width at half maximum (FWHM); the automatic gain control (AGC) target 

was set to 1,000,000 with a maximum inject time of 50 milliseconds. The scan range was set to 

80-1200 Daltons. High-abundance samples analyzed for library construction were acquired with 

two separate ddMS2 methods – one for positive mode and another for negative mode. 

Precursor MS1 data for this method were acquired with the exact same settings as those 

described above. Product ion MS data were acquired with a resolving power of 15,000 FWHM; 

the AGC target was set to 200,000, with a maximum inject time of 150 ms. A top-10 data 

dependent MS scheme was used with an isolation window of 1 Da and an isolation offset of 0.5 

Da. Analytes were fragmented with stepped collision energies of 30, 50 and 70 Normalized 

Collision Energy (NCE) units. The minimum AGC target was set to 8,000 with a dynamic 

exclusion of 30 seconds.  

 

Metabolite library development 

To develop the metabolite library we used to analyze samples, we acquired LC-MS/MS 

data from high abundance samples using a data dependent MS/MS method. Metabolites were 

identified in an unbiased fashion using Compound Discoverer 3.0 (ThermoScientific). 

Metabolites were added to the initial library only if they met the following criteria. First, 

chromatographic peaks had to align in all samples, and peak intensity had to increase with cell 

number. Second, precursor mass accuracy had to be within 5 ppm of theoretical mass, with an 

naturally occurring isotope pattern that matched that predicted by the chemical formula. Third, 
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the MS/MS product ion spectra had to either match an annotated database (mzCloud, Human 

Metabolome Data Base, Lipid Maps, and ChemSpider) or had to be confirmed by analysis of 

chemical standards. This process yielded a 590 metabolite library with known masses and 

chromatographic retention times. This library was imported into the manual peak review 

software Trace Finder 4.1 (ThermoScientific) for manual peak integration of all low abundance 

LC-MS data. To narrow this list of 590 metabolites to the metabolites that might be detected in 

10,000 sorted cells, we determined which of the 590 metabolites were observed in 100,000 

WBM cells. We found 289 metabolites that were detected in 100,000 WBM cells. This 289 

metabolite library was used for manual analyses of LC-MS data from low abundance samples. 

When additional metabolites were observed in new experiments they were added to the library. 

 

Melanoma specimens 

Melanoma specimens were obtained with informed consent from all patients according 

to protocols approved by the Institutional Review Board (IRB) of the University of Michigan 

Medical School (IRBMED approvals HUM00050754 and HUM00050085 (Quintana et al., 2012)) 

and the University of Texas Southwestern Medical Center (IRB approval 102010-051). Materials 

used in the manuscript are available, though there are restrictions imposed by IRB requirements 

and institutional policy on the sharing of materials from patients. 

 

Mouse studies and xenograft assays 

All mouse experiments complied with all relevant ethical regulations and were performed 

according to protocols approved by the Institutional Animal Care and Use Committee at the 

University of Texas Southwestern Medical Center (protocols 2016-101360 and 2019-102632). 

For all experiments, mice were kept on normal chow and fed ad libitum. The mice used in all 

experiments were 8 to 12 week-old C57BL/Ka mice, with the exception of melanoma studies, 

which were subcutaneously xenografted into 4 to 8 week-old NOD.CB17-Prkdcscid Il2rgtm1Wjl/SzJ 
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(NSG) mice. Both male and female mice were used. For melanoma experiments, the maximum 

permitted tumor diameter was 2.5 cm. Subcutaneous tumor diameters were measured weekly 

with calipers until any tumor in the mouse cohort reached 2.5 cm in its largest diameter. At that 

point, all mice in the cohort were killed, per approved protocol, for analysis of subcutaneous 

tumors and circulating melanoma cells. For each replicate, subcutaneous tumors and circulating 

melanoma cells were pooled from 6-10 mice. 

 

Methotrexate treatment 

8-12 week old C57BL/Ka mice were intraperitoneally injected daily with methotrexate 

(1.25 mg/kg/day) or DMSO vehicle control, for 3 days. Mice were sacrificed by cervical 

dislocation 2 hours after the final methotrexate dose and bone marrow cells were collected for 

analysis. 

  

Statistical analysis of metabolomic data 

We developed an R tool for the analysis of metabolite LC-MS peak intensity data. The 

data were visualized using multiple methods, including violin-box plots, histograms, clustered 

heatmaps, principle component analysis, and correlation plots to assess data quality and 

identify batch effects. To assess the statistical significance of differences in metabolite levels 

between samples we used R’s Generalized Linear Models (GLM) (Dobson and Barnett, 2018) 

function with the Gaussian distribution on the log-transformed data. To compare metabolite 

levels in cell samples to sheath fluid samples we used GLM with log2(x+1)-transformed, non-

normalized data. Metabolites with fold change > 2 and FDR < 0.05 were considered above 

background. To assess the statistical significance of differences in metabolite levels between 

two types of cells, we normalized the cell samples using the Relative Log Expression (RLE) 

method (Anders and Huber, 2010), and log2(x+1)-transformed the normalized data. For all 

comparisons between samples, we used the half-minimum imputation to replace zero values 
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with half of the minimum non-zero value for each metabolite, and used R’s GLM method. To 

adjust for multiple comparisons we used the False Discovery Rate (FDR) method. When 

samples were from the same mice we used pairing as an independent variable in the GLM. 

When batch effects were observed we used batch as an independent variable in the GLM. R 

packages used by this tool include stats, openxlsx, data.table, gtools, matrixStats, cplm, 

ggplot2, cowplot, pheatmap, ggcorrplot, eulerr, and GGally. 

The metabolomics data analysis tool can be downloaded from 

https://git.biohpc.swmed.edu/CRI/ODA for academic use. This tool includes an ODA.R script 

file, an accompanying Excel data template file, and example analyses. The script can be run 

from Linux/MacIntosh Terminal or Windows PowerShell using the Rscript command followed by 

the Excel input file name and the Excel output file name. R with the Rscript command (version 

3.5.1 or later is recommended) and internet access are required to run this tool as other R 

packages must be auto-downloaded by the tool. Data should be entered into the Excel template 

and parameters for analysis selected. First-time users should read the instructions in the data 

template. The analysis reports and figures are saved together in the Excel output file. Figures 

are also saved in a folder in the .png and .ps formats. Example analysis results are provided to 

illustrate typical analysis settings and their outputs. 

 

Assessing statistical significance 

Mice were allocated to experiments randomly and samples processed in an arbitrary 

order, but formal randomization techniques were not used. Prior to analyzing the statistical 

significance of differences among treatments, we tested whether the data were normally 

distributed and whether variance was similar among treatments. To test for normal distribution, 

we performed the Shapiro–Wilk test when 3≤n<20 or the D'Agostino Omnibus test when n≥20. 

To test if variability significantly differed among treatments, we performed F-tests (for 
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experiments with two treatments) or Levene’s median tests (for more than two treatments). 

When the data significantly deviated from normality or variability significantly differed among 

treatments, we log2-transformed the data and tested again for normality and variability. If the 

transformed data did not significantly deviate from normality and equal variability, we performed 

parametric tests on the transformed data. Fold change data were always log2-transformed. 

All the statistical tests we used were two-sided, where applicable. To assess the 

statistical significance of a difference between two treatments, we used Student’s t-tests or 

paired t-tests (when a parametric test was appropriate). To assess the statistical significance of 

differences between two cumulative frequency distributions, we used the Kolmogorov–Smirnov 

tests.  Multiple Kolmogorov–Smirnov tests were followed by Holm-Sidak’s multiple comparisons 

adjustment. To assess the statistical significance of differences between more than two 

treatments, we used repeated measures one-way or two-way ANOVAs (when a parametric test 

was appropriate) followed by Tukey’s, Dunnet’s, or Sidak’s multiple comparisons adjustment. To 

assess the statistical significance of differences between transplant data, we used mixed-effects 

analysis (when a parametric test was appropriate and there were missing data points) followed 

by Sidak’s multiple comparisons adjustment. To assess the correlation between two sets of 

samples, we calculated Spearman correlation coefficients (r, the data were not normally 

distributed) and performed linear regression analysis. 

All statistical analyses were performed with Graphpad Prism 8.3. All data represent 

mean ± standard deviation. Samples sizes were not pre-determined based on statistical power 

calculations but were based on our experience with these assays. No data were excluded; 

however, mice sometimes died during experiments, presumably due to complications 

associated with irradiation and bone marrow transplantation. In those instances, data that had 

already been collected on the mice in interim analyses were included (such as donor 

contribution to peripheral blood chimerism over time). 
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FIGURE LEGENDS 

Figure 1: Sample processing and chromatography parameters.  
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 (A) The number of metabolites identified with high confidence spectral database matching in 

WBM samples after reverse phase versus HILIC (n = 3 replicates per group from a single 

experiment). (B) Average peak intensities in sheath fluid background samples after drying with a 

standard vacuum concentrator, a vacuum concentrator housed in a positive pressure HEPA-

filtered clean hood, or with no drying (n = 5 replicates per treatment from one experiment). (C) 

Number of metabolites significantly above sheath fluid background in 10,000 sorted WBM cells 

after drying with a standard vacuum concentrator, a vacuum concentrator housed in a clean 

hood, or with no drying (n = 5 replicates per treatment from one experiment; fold change > 2, 

FDR < 0.05 by GLM). (D) Metabolites detected in 100,000 WBM cells extracted with 80% 

acetonitrile in water (ACN), 80% methanol in water (MeOH), or 40% ACN plus 40% MeOH in 

water (Mix) (n = 3 replicates per treatment from one experiment; fold change > 2, FDR < 0.05 by 

GLM). (E) Overlap in metabolites detected with each extraction solvent (n = 3 replicates per 

treatment from one experiment). (F) Number of metabolites significantly above background in 

10,000 WBM cells sorted using a 70 or 100 μm nozzle, and 0.5x or 1.0x PBS sheath fluid (n = 5 

replicates per treatment in each of 3 independent experiments; fold change > 2, FDR < 0.05 by 

GLM). (G) Number of metabolites significantly above background in 10,000 sorted WBM cells or 

10,000 to 100,000 pipetted WBM cells (n = 5 replicates per treatment in each of 3 independent 

experiments; fold change > 2, FDR < 0.05 by GLM). (H-K) H, Principal component analysis of 

10,000 sorted or pipetted HNT-34 AML (AML) cells or DND-41 T-ALL (ALL) cells (one 

experiment with n = 8 replicates per treatment). (I) Metabolites that significantly changed 

between AML and ALL cells in sorted versus pipetted samples. (J) Correlation between Log2 

fold changes (in AML versus ALL cells) in sorted versus pipetted samples for all detected 

metabolites. (K) Correlation between Log2 fold changes (in AML versus ALL cells) in sorted 

versus pipetted samples for metabolites that significantly differed between sorted AML versus 

ALL cells. (L-P) l, Number of metabolites observed above background in 10,000 pipetted WBM 

cell samples at various time points after the death of the mouse (one experiment with n = 5 
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replicates per time point). (M) Number of metabolites that significantly increased or decreased 

at each time point relative to the 5 minute time point (fold change > 2, FDR < 0.01 by GLM; the 

identities of the metabolites are shown in Table 1). (N) Log2 transformed intensity values for all 

metabolites in the 5 minute versus 120 minute samples. (O) Non-transformed intensity values 

for all metabolites in the 5 minute versus 120 minute samples. (P) Non-transformed intensity 

values for metabolites < 1x108 in the 5 minute versus 120 minute samples. Statistical 

significance was assessed using paired t-test (A), Kolmogorov–Smirnov test (B) followed by 

Holm-Sidak’s multiple comparisons adjustment, repeated measures one-way ANOVA followed 

by Tukey’s (D) or Dunnett’s (G) multiple comparisons adjustment, repeated measures two-way 

ANOVA followed by Sidak’s multiple comparisons adjustment (F), or Spearman correlation 

analysis (J, K, N-P). All statistical tests were two-sided. Data represent mean ± SD. 

 

Figure 2. Metabolic differences between HSC/MPPs and WBM cells. 

(A) Metabolites significantly (by two-sided paired t-test) above background in 10,000 sorted 

HSC/MPPs or WBM cells (n = 3-7 replicates per treatment in each of 4 independent 

experiments; fold change > 2, FDR < 0.05 by GLM). (B) Heat map of metabolites that were 

significantly depleted (left) or enriched (right) in HSC/MPPs as compared to WBM cells (FDR < 

0.01, fold change > 2.5, the z score reflects the number of standard deviations from the mean 

for each metabolite in each sample, signal intensity values for each metabolite were log2 

transformed before calculating z scores). Data in (A) represent mean ± SD. 

 

Figure 3.  Metabolic differences between methotrexate-treated and control HSCs or 

circulating melanoma cells and primary tumors.  

(A-D) Bone marrow cellularity (A) and the frequencies of CD150+CD48-Lin-Sca1+c-kit+ HSCs 

(B), CD150-CD48-Lin-Sca1+c-kit+ MPPs (c), and Lin-Sca1+c-kit+ cells (D) in femurs and tibias 

from mice treated with methotrexate or vehicle control (n = 5 mice per treatment from 2 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.08.11.246900doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.11.246900


 
 

34 

independent experiments). (E) Percentage of nucleated blood cells that were donor-derived 

after competitive transplantation of bone marrow cells from methotrexate-treated versus control 

mice into irradiated recipients (two independent experiments). (F) AICAR levels in HSC/MPPs 

from mice treated with methotrexate or vehicle (11 control samples and 9 MTX samples from 4 

independent experiments). (G) Metabolites detected above background in primary tumor cells or 

circulating melanoma cells (n=3 or 4 replicates per treatment in one experiment; fold change > 

2, FDR < 0.05 by GLM). (H-K) Levels of the purines IMP (H), XMP (I), GMP (J), and AMP (K) in 

primary tumor and circulating melanoma cells. Statistical significance was assessed by t-test 

(A), repeated measures two-way ANOVA (B-D) or mixed effects analysis (E) followed by Sidak’s 

multiple comparisons adjustment. All tests were two-sided. Data represent mean ± SD. 

 

Figure 4: Metabolomic profiling of hematopoietic stem cells (HSCs) isolated by flow 

cytometry. (A) Overview of the method. (B) Metabolites detected above background in 10,000 

HSCs/MPPs in this study (green numbers, 159 metabolites total) as compared to our prior study 

using a different method(Agathocleous et al., 2017) (blue numbers, 57 metabolites total). These 

data are from a single experiment, representative of 4 independent experiments. Metabolites 

detected above background were calculated by comparing 3 WBM or 3 HSC/MPP samples to 3 

sheath fluid blanks (fold change > 2, FDR < 0.05 by Generalized Linear Models adjusted for 

multiple comparisons using the False Discovery Rate (FDR) method). 

 

Supplementary Figures 

Figure 2 - figure supplement 1. Metabolites that were detected as being different between 

HSCs/MPPs and WBM cells using the Agathocleous et al. metabolomics method 

(Agathocleous et al., 2017) versus the new method. Metabolites identified by Agathocleous 

et al. as (A) enriched or (B) depleted in HSC/MPPs as compared to WBM cells (FDR < 0.01 by 

GLM) (the new method data are from the experiments shown in Figure 2). 
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Figure 2 - figure supplement 2. Glycerophospholipids are enriched in HSC/MPPs as 

compared to WBM cells. (A) Schematic of glycerophospholipid metabolism and (B) list of 

phosphatidylcholines (PC), phosphatidylethanolamines (PE), phosphatidylserines (PS), Lyso-

PCs, and Lyso-PEs detected in 10,000 HSCs/MPPs or WBM cells by our method. Red 

metabolites were enriched in HSC/MPPs and blue metabolites were depleted in HSC/MPPs. 

Purple metabolites were detected but not significantly changed. Black metabolites were not 

detected (n = 11 replicates per cell population from a total of 4 independent experiments). 

 

Figure 3 - figure supplement 1. Metabolites that differed between circulating melanoma 

cells and primary subcutaneous tumors in xenografted mice. The heatmap shows z scores 

of all the metabolites that significantly (P < 0.05 by GLM) differed between 10,000 cell aliquots 

of circulating melanoma cells and primary subcutaneous tumor cells. The z score reflects the 

number of standard deviations from the mean for each metabolite in each sample (n = 4 

replicates per cell population from one experiment; signal intensity values for each metabolite 

were log2 transformed before calculating z scores). 

 

Figure 3 - figure supplement 2. Flow cytometry gating strategies. (A) Flow cytometry gating 

strategies for isolating CD150+CD48-Lin-Sca1+c-kit+ HSCs (0.0057% of bone marrow cells), 

CD150-CD48-Lin-Sca1+c-kit+ MPPs (0.0047% of bone marrow cells), and Lin-Sca1+c-kit+ cells 

(0.19% of bone marrow cells). (B) Flow cytometry gating strategy for isolating live 

HLA+DsRed+mTer119-mCD45-mCD31- human melanoma cells from mechanically dissociated 

subcutaneous tumors from xenografted NSG mice (all melanomas were tagged with stable 

DsRed expression). (C) Flow cytometry gating strategy for isolating live HLA+DsRed+mTer119-

mCD45-mCD31- circulating melanoma cells from the blood of xenografted NSG mice. 
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Figure 1 – supplementary table 1. Metabolites enriched or depleted at different time 

points after animal death as compared to 5 minutes after animal death 

Metabolite FC FDR Metabolite FC FDR Metabolite FC FDR
Carnitine (3-hydroxy-14:0) 2.34 0.0040 Guanosine monophosphate 3.42 0.0092 Carnitine (3-hydroxy-C16:0) 3.65 0.0000
Carnitine (3-hydroxy-C16:0) 2.25 0.0001 Carnitine (3-hydroxy-14:0) 3.29 0.0000 Guanosine monophosphate 3.64 0.0052

Carnitine (3-hydroxy-C16:0) 3.08 0.0000 Carnitine (3-hydroxy-14:0) 3.61 0.0000
Adenosine monophosphate 2.78 0.0010 Carnitine (3-hydroxy-8:0) 3.25 0.0073
Hypoxanthine 2.50 0.0052 Hypoxanthine 3.25 0.0003
2'_3'-CyclicCMP 2.42 0.0054 2'_3'-CyclicCMP 3.23 0.0002

Adenosine 2.87 0.0000
Adenosine monophosphate 2.83 0.0006
Inosine 2.74 0.0000
Carnitine (16:0) 2.36 0.0000
Nicotinamide 2.13 0.0000
Carnitine (16:1) 2.01 0.0000
Lyso-PC (18:2) 0.44 0.0000

Metabolite FC FDR Metabolite FC FDR Metabolite FC FDR
arg-ala 11.36 0.0017 arg-ala 16.17 0.0004 Hypoxanthine 18.20 0.0000
Hypoxanthine 8.43 0.0000 Pentose-phosphates 14.00 0.0000 arg-ala 13.03 0.0009
tyrosylarginine 7.23 0.0027 Hypoxanthine 12.32 0.0000 Inosine 12.04 0.0000
Pentose-phosphates 6.92 0.0017 Inosine 8.57 0.0000 tyrosylarginine 8.94 0.0009
Inosine 6.48 0.0000 tyrosylarginine 8.44 0.0012 Pentose-phosphates 8.35 0.0007
Guanosine monophosphate 4.65 0.0008 Guanosine monophosphate 7.63 0.0000 Xanthine 7.14 0.0009
Hydroxyoctanoic acid (C8, -OH) 4.48 0.0035 Uridine Monophosphate 6.03 0.0001 Eicosadienoic acid 5.42 0.0002
Eicosadienoic acid 3.97 0.0017 Xanthine 5.02 0.0070 Hydroxyoctanoic acid (C8, -OH) 5.07 0.0014
Adenosine 3.85 0.0000 2'_3'-CyclicCMP 4.46 0.0000 Guanosine monophosphate 4.38 0.0009
Uridine Monophosphate 3.59 0.0030 Adenosine monophosphate 3.98 0.0000 Adenosine 4.35 0.0000
2'_3'-CyclicCMP 3.59 0.0001 Eicosadienoic acid 3.80 0.0022 Carnitine (3-hydroxy-8:0) 3.65 0.0019
Carnitine (3-hydroxy-C16:0) 3.15 0.0000 Adenosine 3.72 0.0000 Uridine Monophosphate 3.57 0.0026
Carnitine (3-hydroxy-14:0) 3.11 0.0000 Carnitine (3-hydroxy-C16:0) 3.03 0.0000 2'_3'-CyclicCMP 3.54 0.0001
Carnitine (3-hydroxy-8:0) 3.03 0.0092 Adenosine diphosphate ribose 2.90 0.0030 Carnitine (3-hydroxy-C16:0) 3.29 0.0000
Adenosine monophosphate 3.03 0.0002 Nicotinamide 2.87 0.0000 Nicotinamide 3.25 0.0000
Carnitine (16:0) 2.95 0.0000 Carnitine (16:0) 2.61 0.0000 Carnitine (16:0) 2.95 0.0000
Nicotinamide 2.48 0.0000 Carnitine (3-hydroxy-14:0) 2.34 0.0007 hydroxydecanoic Acid (C10:0, -OH) 2.72 0.0014
hydroxydecanoic Acid (C10:0, -OH) 2.45 0.0046 Choline 2.04 0.0000 Adenosine monophosphate 2.54 0.0012
Choline 2.13 0.0000 Platelet-activating factor 0.43 0.0000 Choline 2.41 0.0000
NAD+ 0.46 0.0017 Lyso-PC (22:4) 0.34 0.0000 Carnitine (3-hydroxy-14:0) 2.28 0.0009
CyclicADP-ribose 0.46 0.0084 Lyso-PC (18:1) 0.31 0.0000 Oleic acid 2.06 0.0073
Lyso-PC (22:4) 0.38 0.0000 Lyso-PC (16:0) 0.30 0.0000 Platelet-activating factor 0.41 0.0000
Lyso-PC (18:1) 0.36 0.0000 Lyso-PC (18:2) 0.16 0.0000 NAD+ 0.35 0.0000
Lyso-PC (16:0) 0.35 0.0000 Lyso-PC (17:0) 0.11 0.0001 CyclicADP-ribose 0.33 0.0003
Lyso-PC (18:2) 0.21 0.0000 Lyso-PC (16:0) 0.26 0.0000

Lyso-PC (22:4) 0.26 0.0000
Lyso-PC (18:1) 0.26 0.0000
Adenosine triphosphate (ATP) 0.17 0.0086
Lyso-PC (18:2) 0.13 0.0000
Lyso-PC (17:0) 0.04 0.0000

60 min vs 5 min30 min vs 5 min15 min vs 5 min

120 min vs 5 min 180 min vs 5 min 240 min vs 5 min
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Figure 2 – supplementary table 1. Metabolites enriched or depleted in sorted HSC/MPPs 

as compared to WBM cells 

 

 

Depleted in HSC/MPP vs WBM  Enriched in HSC/MPP vs WBM 
Metabolite FC FDR  Metabolite FC FDR 

PC (18:0/18:0) 0.0030 0.0000  SM (d18:1/18:1) 45 0.0000 
Uric acid 0.018 0.0000  Glycerylphosphorylcholine 29 0.0000 
N-Ribosylnicotinamide 0.036 0.0000  Glycerophosphorylethanolamine 22 0.0000 
Acetyl-hexosamine-sulfate 0.067 0.0000  PE (38:1) 19 0.0000 
2'_3'-CyclicCMP 0.077 0.0000  Hexoses 16 0.0000 
Argininosuccinic acid 0.081 0.0000  PC (44:8) 14 0.0000 
Inosine-5'-monophosphate 0.10 0.0000  Lyso-PC (22:4) 9.7 0.0000 
DL-Stachydrine 0.11 0.0000  Cysteinylglycine(Cys-Gly) 7.4 0.0000 
2-(alpha-D-Mannosyl)-3-phosphoglycerate 0.12 0.0000  Glycerol1_2-cyclicphosphate 5.8 0.0001 
AICAR 0.12 0.0000  SM (d18:1/18:0) 5.7 0.0000 
PS (38:6) 0.14 0.0000  L-Tyrosine 5.2 0.0028 
3-Hydroxycarnitine (18:1) 0.17 0.0000  Adenosine diphosphate ribose 4.9 0.0002 
PS (34:2) 0.18 0.0000  P-DMEA 4.6 0.0000 
Cholesteryl-acetate 0.18 0.0007  Choline 4.5 0.0000 
DL-Carnitine 0.21 0.0000  Cholinephosphate 4.3 0.0000 
Isoleucine/ Leucine 0.24 0.0023  UTP 3.8 0.0035 
PC (36:4) 0.25 0.0000  Valyllysine 3.7 0.0000 
Propionylcarnitine 0.26 0.0000  S-Methyl-thioadenosine 3.6 0.0001 
N6,N6,N6-Trimethyl-L-lysine 0.27 0.0000  Deoxy-heptulose-7-phosphate 3.6 0.0044 
PI (32:0) 0.29 0.0000  Lyso-PC (18:1) 3.5 0.0000 
Lyso-PC (18:0) 0.31 0.0013  PC (40:5) 3.1 0.0000 
Carnitine (16:1) 0.32 0.0000  Dipthamide 2.8 0.0008 
Glutamine 0.33 0.0000  S-Adenosylmethionine 2.7 0.0000 
Carnitine (4:0) 0.36 0.0000  Cytidine 5'-diphosphocholine 2.5 0.0007 
Acetylcholine 0.37 0.0000  O-Phosphorylethanolamine 2.4 0.0000 
Aminolevulinic Acid 0.38 0.0016  PC (40:4) 2.4 0.0000 
3-Dehydroxycarnitine 0.39 0.0000  PC (36:1) 2.3 0.0000 
Carnitine (18:1) 0.42 0.0000  Hydroxypyruvate 2.3 0.0010 
Guanidine acetic acid 0.43 0.0000  D-Saccharicacid 2.2 0.0001 
Carnitine (14:0) 0.44 0.0000  PC (34:1) 2.2 0.0000 
Carnitine (3-hydroxy-C16:0) 0.44 0.0012  PC (40:8) 2.1 0.0000 
Carnitine (3-hydroxy-14:0) 0.45 0.0054  SM (d18:1/22:0) 2.0 0.0000 
SM (d18:1/16:1) 0.47 0.0000  Lyso-PE (20:4) 1.9 0.0064 
Carnitine (16:0) 0.48 0.0000  PE (36:3) 1.9 0.0000 
Carnitine (12:0) 0.48 0.0015  PE (38:3) 1.8 0.0000 
D-(+)-Malic acid 0.51 0.0001  Adenosine monophosphate 1.8 0.0010 
PE (40:5) 0.55 0.0000  PC (40:6) 1.8 0.0000 
N-Acetylaspartic acid 0.57 0.0000  Oleic acid 1.8 0.0080 
PS (40:7) 0.59 0.0064  PE (34:1) 1.8 0.0000 
L-Glutathione oxidized 0.62 0.0035  PC (38:4) 1.8 0.0000 
UDP-Hexose 0.62 0.0000  PE (38:5) 1.8 0.0000 
Taurine 0.64 0.0000  PE (36:1) 1.7 0.0000 
Uridine5'-diphosphate(UDP) 0.64 0.0000  PE (38:4) 1.7 0.0000 
FA (8:0) 0.66 0.0031  PS (36:1) 1.6 0.0000 
PE (36:6) 0.67 0.0022  Adenosine triphosphate (ATP) 1.6 0.0021 
PS (40:6) 0.67 0.0044  L-Glutathione (reduced) 1.6 0.0026 
    PC (36:5) 1.5 0.0000 
    Cytidine monophosphate 1.4 0.0010 
    Platelet-activating factor 1.4 0.0099 
    PC (32:2) 1.3 0.0099 
    PC (36:2) 1.3 0.0009 
    PS (38:5) 1.3 0.0044 
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