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Abstract: Deep hashing is the mainstream algorithm for large-scale cross-modal retrieval due to its 
high retrieval speed and low storage capacity, but the problem of reconstruction of modal semantic 
information is still very challenging. In order to further solve the problem of unsupervised cross-
modal retrieval semantic reconstruction, we propose a novel deep semantic-preserving 
reconstruction hashing (DSPRH). The algorithm combines spatial and channel semantic 
information, and mines modal semantic information based on adaptive self-encoding and joint 
semantic reconstruction loss. The main contributions are as follows: (1) We introduce a new spatial 
pooling network module based on tensor regular-polymorphic decomposition theory to generate 
rank-1 tensor to capture high-order context semantics, which can assist the backbone network to 
capture important contextual modal semantic information. (2) Based on optimization perspective, 
we use global covariance pooling to capture channel semantic information and accelerate network 
convergence. In feature reconstruction layer, we use two bottlenecks auto-encoding to achieve 
visual-text modal interaction. (3) In metric learning, we design a new loss function to optimize 
model parameters, which can preserve the correlation between image modalities and text 
modalities. The DSPRH algorithm is tested on MIRFlickr-25K and NUS-WIDE. The experimental 
results show that DSPRH has achieved better performance on retrieval tasks. 
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1. Introduction 

With the growth of multimodal data on the web, cross-modal retrieval has become an interactive 
method in visual and language understanding. Because of the high retrieval speed and low storage 
space, hashing algorithm has become a real-time processing method for multi-modal complex scenes 
to give machines cognitive and understanding capabilities. This is a method that can map high-
dimensional data to low-dimensional space and guarantee the similarity of original high-dimensional 
data in low-dimensional space. Hash algorithms include single-modal hash algorithms [1–4] and 
cross-modal hash algorithms [5,6]. Compared with the single-mode hash algorithm, cross-modal 
retrieval focuses on the mutual retrieval tasks between different modalities. 

Cross-modal retrieval tasks include real-value cross-modal retrieval and cross-modal hashing 
retrieval. Real-valued cross-modal retrieval processing methods include classification-based and 
embedded-based, and its typical representative works include stacked cross attention network 
(SCAN) [7] and saliency-guided attention network (SAN) [8]. In the two modalities of image and text, 
image-text retrieval is mainly to realize the matching problem of image and text to explore the 
correspondence between image regions and sentence words. In order to further capture the modal 
semantic information, reduce the amount of calculation and accelerate the retrieval speed, the deep 
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hash algorithm has become the mainstream method of image-text retrieval to measure modal 
semantic information in the Hamming space [9–11]. Figure 1 shows the overall architecture of cross-
modal retrieval. 

Figure 1. Overview of cross-modal retrieval. (a) shows multi-modal data, (b) shows real-valued cross-
modal retrieval and (c) is cross-modal hash retrieval. (b) mainly explores the matching process 
between image regions and text words, while (c) mainly maps images and text in the same Hamming 
space to measure the similarity of image and text modalities. The cross-modal hash retrieval 
algorithm is a binary representation, so it fits the computer calculation method, so the cross-modal 
hash has less storage and retrieval speed while mining modal information. 

Although the cross-modal hash algorithm can capture modal semantics quickly and efficiently, 
modal semantic alignment and semantic reconstruction still face great challenges. In unsupervised 
cross-modal hashing, Su et al. proposed [12] a semantic reconstruction framework to mine modal 
semantic information. Considering semantic alignment, Zhang et al. proposed [13] a deep semantic 
alignment hashing algorithm to explore the inner connection of modal semantics. In terms of the 
network model, Hu proposed [14] unsupervised knowledge distillation to create something from 
nothing. Bai et al. proposed [15] to resist loss to associate different modal semantics. Gu et al. 
proposed [16] an adversary-guided attention module to enhance feature learning. Shen et al. proposed 
[17] automatic twin-bottleneck hashing, whose main goal is to generate similarity graphs based on 
graph convolutional network (GCN). These studies have improved the performance of cross-modal 
hash retrieval to a certain extent. In current research, researchers have found that second-order 
statistics can speed up network convergence compared to stochastic gradient descent (SGD) [18], but 
these studies are still in the enlightenment stage, and these studies have not yet been explored in 
cross-modal hashing. In addition, modal semantic reconstruction is still the difficulty of cross-modal 
hashing. 

Encouraged by unsupervised cross-modal hashing algorithms [12–17], global covariance 
pooling [18–20] and spatial pooling network module [21], we propose a novel deep semantic-
preserving reconstruction hashing (DSPRH). The algorithm combines spatial and channel semantic 
information, and mines modal associated semantic information based on adaptive self-encoding and 
joint semantic reconstruction loss. The main contributions are summarized as follows: (1) We 
introduce a new spatial pooling network module based on tensor regular-polymorphic 
decomposition theory to generate rank-1 tensor to capture high-order context semantics, which can 
assist the backbone network to capture important contextual modal semantic information. (2) Based 
on optimization perspective, we use global covariance pooling to capture channel semantic 
information and accelerate network convergence. In feature reconstruction layer, we use two 
bottlenecks auto-encoding to achieve visual-text modal interaction. (3) In metric learning, we design 
a new semantic-preserving reconstruction loss (using semantic alignment and cosine triplet loss 
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function) to optimize model parameters, which can preserve the correlation between image 
modalities and text modalities. (4) The DSPRH algorithm is tested on two datasets (MIRFlickr-25K 
and NUS-WIDE). The experimental results show that DSPRH has achieved better performance on 
image2text and text2image retrieval tasks. 

The remaining chapters of this paper are organized as follows: Section 2 is related work. Section 
3 describes the proposed deep semantic-preserving reconstruction hashing method. Section 4 
presents the experimental results and analysis. Section 5 summarizes the work of this paper and 
proposes future research plans. 

2. Related Work  

Image-text retrieval is the technical support for building a new generation of cross-media search 
system and cross-media monitoring system, and it is the core technology of cross-media analysis and 
reasoning, intelligent cognition and understanding. Cross-modal retrieval has become a universal 
search engine and entertainment tool, which facilitates people’s production and life. For example, 
Taobao shopping, Jingdong shopping, and Kuaishou. These can realize the mutual search of images 
and texts. In the massive multi-modal heterogeneous data, how to quickly and accurately find 
different modal data has become a research hotspot and difficulty. The goal of cross-modal hash 
retrieval is to use less storage space to quickly retrieve modal information. Image-text retrieval is an 
important means of current question answering systems and video image description, and it is also 
an important field of machine understanding. In this section, we introduce deep cross-modal hashing 
and key modular knowledge. 

2.1. Cross-Modal Hashing 

With the rapid increase of network data, deep cross-modal retrieval has become a research hotspot 
in recent years. Many researchers have carried out a lot of research on loss function design and network 
model construction. Specifically, Li et al. proposed self-supervised adversarial hashing [5] to discover 
high-level semantic information. Wu et al. proposed unsupervised deep cross-modal hashing [6] to 
integrate deep learning and matrix factorization. Zhang et al. proposed unsupervised generative 
adversarial cross-modal hashing [9] to perform unsupervised representation learning. Liu et al. 
proposed matrix tri-factorization hashing [10] to explore effective objective functions. Wang et al. 
proposed semantic-rebased cross-modal hashing [11] to achieve unsupervised learning. From the 
perspective of semantic reconstruction and alignment, joint semantic reconstruction and semantic 
alignment have received extensive attention in retrieval [12–16]. Hu et al. proposed collective 
reconstructive embeddings [22] to deal with heterogeneous challenges. Chen et al. proposed shallow 
modal representation [23]. Some research work [24,25] has carried out research on cross-modal 
retrieval network models, the main goal of which is to obtain robust modal semantic description. 
There is also some research work [26–30] to improve the loss function to maintain semantic relevance. 
Nie et al. proposed [31] multi-scale fusion transmembrane retrieval to effectively use modal 
information. Lin et al. proposed [32] mask cross-modal hashing to capture inter-modal semantic 
information. Zhang et al. proposed [33] a multi-pathway unsupervised hashing method based on a 
generative adversarial network (GAN) to utilize multi-modal information. In addition, Zhang et al. 
proposed [34] semi-supervised GAN hashing to mine image modal and text modal information. 
Although cross-modal retrieval faces great challenges, these researches have greatly promoted the 
progress of cross-modal hashing technology.  

2.2. Second-Order Covariance Pooling 

In recent years, researchers have found that second-order optimization has better network 
optimization performance than SGD. Li et al. improved [20] the performance of large-scale visual 
recognition tasks based on matrix power normalization. The iSQRT-COV is proposed [19] to 
accelerate network convergence. In order to deal with three-dimensional tensors, the researcher 
proposed GSoP-Net block [35], which is a network module that is easy to embed. Wang et al. 
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discussed [18] the benefits of global covariance pooling (GCP) to the network from loss optimization 
and gradient prediction. The research shows that second-order statistical optimization can enhance the 
feature expression ability of convolutional neural networks. Specifically, when the backbone network 
is fixed, compared with global average pooling, global covariance pooling has better feature description 
capabilities. In addition, Wang et al. gave [36] a better feature representation method based on GCP. 
Research has found that second-order optimization algorithms (such as GCP) can accelerate network 
convergence algorithms and improve overall network performance compared to first-order optimization 
(such as global mean pooling (GAP)). 

In summary, loss function and model optimization are currently the main techniques for cross-modal 
retrieval. Encouraged by DJSRH [12] and DSAH [13], our main goal is to explore a new metric learning 
method to complete cross-modal retrieval tasks. Specifically, the core idea of DJSRH [12] is to reconstruct 
a joint semantic loss to associate two modal information (image feature space and text feature space). This 
technology was published in ICCV 2019. Compared with DJSRH [12], the DSAH [13] algorithm increases 
the semantic alignment loss based on the joint semantic reconstruction loss. DSAH [13] 
comprehensively utilizes feature space semantics and Hamming space semantic information, so its 
retrieval performance is better than DJSRH. DSAH [13] was proposed in ICMR 2020. Encouraged by 
the DJSRH [12] and DSAH [13] algorithms, we propose the DSPRH algorithm. We use the idea of 
feature fusion to reconstruct the image feature space, and propose a new cross-modal retrieval loss 
function based on considering multiple modal semantic alignment loss, pairwise loss and cosine 
triple loss.  

3. Our Method 

In the current research, researchers are focusing on accelerating network convergence and cross-
modal hash information reconstruction. The goal of these works is to enhance the ability of feature 
expression to explore visual-language understanding tasks. Different from the current cross-modal 
hash research, our main contributions are as follows: (1) We introduce a new spatial pooling to assist 
the backbone network AlexNet to capture important contextual semantic information. (2) In terms of 
network training and feature extraction, we use GCP to accelerate network convergence and use GCP 
to capture channel semantic information. In addition, we use two bottlenecks auto-encoding to 
achieve visual-text modal interaction. (3) In metric learning, we propose a new semantic-preserving 
reconstruction loss, which can reserve important modal semantic information. 

3.1. The Overall Architecture of The Algorithm 

Figure 2 shows the architecture of DSPRH. Specifically, Figure 2 contains three main steps. 
DSPRH uses ImgNet to extract image feature space, and uses TxtNet to extract text feature space. 
Where ImgNet uses GCP-based optimization to accelerate network convergence. In addition, 
ImgNet’s unique technology is based on SPNet to extract important modal spatial features, and based 
on GCP to obtain important modal channel features. In order to further reconstruct the modal 
semantic information, we used the two bottlenecks module to reconstruct the text feature space and 
the image feature space, which is a self-encoding process. Finally, we proposed a new semantic-
preserving reconstruction loss.  

This work is different from the existing unsupervised cross-modal hashing work. Specifically, 
we introduced a new reconstruction feature space and used alignment loss to reconstruct modal 
information. In addition, we used pairwise loss and cosine triple loss to preserve the semantic 
information of image modal and text modal. The experiment showed the effectiveness of semantic-
preserving reconstruction loss.  

In Figure 2, the paired semantic information entered the text network to obtain the text feature 
space, and the paired semantic information entered the image network to obtain the image feature 
space. Visual-language feature extraction consists of image feature space and text feature space. 
Visual-language feature extraction consists of image feature space and text feature space. Visual-
language feature extraction is shown in Section 3.2.  
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Figure 2. The overall architecture of the deep semantic-preserving reconstruction hashing. 

In Section 3.2, we mainly introduce visual-language feature extraction. We propose a feature 
fusion strategy, which includes 3 types of features. The fully connected layer did not need to go 
through the iSQRT-COV layer to obtain the feature description of the image, and the output of the 
convolutional layer needed to go through the iSQRT-COV layer mapping to obtain the high-level 
semantics of the image. The iSQRT-COV was proposed [19] to accelerate network convergence, and 
iSQRT-COV can work with convolutional networks to obtain high-level image semantic description, 
and its output form was consistent with the output form of the fully connected layer. The full name 
of the iSQRT-COV module is iSQRT-COV meta-layer. The three types of feature outputs were 
weighted and fused, which we named the fusion layer. In this way, we reconstruct the image feature 
space. The image-text feature extraction process is shown in Figure 3. In Figure 3, SPNet block [21] is 
a low-rank expression convolution kernel, which is a strip pooling operation to reconstruct the 
semantic feature map, which was proposed in the CVPR 2020 conference. 

 

Figure 3. Image-text feature extraction process. In Figure 3, the backbone network of image features 
is the pre-trained AlexNet, which is the current mainstream cross-modal hash architecture to ensure 
comparison fairness. 
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The DSPRH mainly includes three main technologies: (1) ImgNet’s backbone network is 
AlexNet, and we used spatial pooling and GCP optimization to extract robust image descriptions. (2) 
After ImgNet and TxtNet extract visual and language features, respectively, the two bottleneck 
coding model was used to reconstruct text features and image features. (3) We proposed a new loss 
function, the full name is semantic-preserving reconstruction loss. This loss function includes 
alignment loss, pairwise loss and cosine triple loss. Research work shows that this modal semantic 
reconstruction can significantly improve the performance of unsupervised cross-modal hashing. 

3.2. Visual-Language Feature Space 

Visual-language feature extraction is one of the key elements of DSPRH in Figure 2. We detailed 
the visual-text feature extraction steps in Figure 3. For fair comparison, we used AlexNet as the 
backbone network for visual feature extraction. Visual feature extraction consists of three parts. Based 
on the pre-trained AlexNet model, we extracted the fc7 feature f3. We used the feature of conv5 as iSQRT-
COV meta-layer [19] to capture the semantic information between channels, and the feature was f2 after 
passing through the fully connected layer. In order to quickly capture the spatial modal information, we 
input the features of conv5 into the SPNet block [21], and then cascaded the iSQRT-COV meta-layer 
[18,19,35,36] and the fully connected layer fc to extract the image feature f1. Where the weights of f1, 
f2, and f3 were w1, w2 and w3 in the image feature fusion layer. The text feature space was constructed 
based on Text Net. In order to maintain the fairness of text feature extraction, we kept the Text Net 
model parameter settings consistent with most existing works [11–13,15,16]. 

3.3. Feature Reconstruction Layer 

In Figure 2, the dimension of the image feature space and the dimension of the text feature space 
were inconsistent, and the dimension of the hash code was much smaller than the dimension of the image 
and text feature space. In order to align image-text semantics, inspired by twin-bottleneck hashing [17], 
we introduced an image feature reconstruction layer after the image feature space, and we introduced 
a text feature reconstruction layer after the text feature space. In Figure 2, we introduced the feature 
reconstruction layer, which included image feature reconstruction layer and text feature 
reconstruction layer. In the image feature reconstruction layer, it included image encoder, image 
coding and image decoder. In the text feature reconstruction layer, it included text encoder, text 
coding and text decoder.  

In Figure 2, through the feature reconstruction layer, we aligned image and text feature 
semantics, and aligned image and text hash code semantics. Therefore, we proposed alignment loss. 
Considering that there were image hash code output and text hash code output in cross-module 
hashing, we proposed pairwise loss to optimize the DSPRH model parameters. Similar to the idea of 
pairwise loss, inspired by the triple loss, we proposed the cosine triple loss to further optimize the 
network parameters. Based on the above considerations, we proposed semantic-preserving 
reconstruction loss, which is a new metric learning method that considers both semantic alignment 
and modal semantic association. 

The definition of basic symbols is shown in Table 1. 

Table 1. Definition of basic symbols. 

Symbol Definition Symbol Interpretation  𝐹ூ Image feature space  𝐹்  Text feature space  𝑂௞  k-th input image-text semantic pair  𝐹ூᇱ  Reconstruct image feature space  𝐹ᇱ்   Restructure text feature space  𝐼௞  k-th semantic image feature  𝑇௞  k-th semantic text feature 

Assuming we have M semantic pairs, we can define it as: 
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O = ሼ𝑂௞ሽ௜ୀଵெ = ൛ሼ𝐼௞, 𝑇௞ሽൟ௜ୀଵெ  (1) 

where the feature of 𝐼௞ is 𝐹ூ𝜖ℝெ×஽಺ and the feature of 𝑇௞ is 𝐹்𝜖ℝெ×஽೅. i represents the semantics of 
the i-th image. 

We defined the encoder function, coding function and decoder function as Enc, Cod and Dec, 
respectively. In image feature reconstruction layer, the basic definition is as follows: 𝐻ூ = 𝐸𝑛𝑐(𝐹ூ; 𝜃ூ) (2)  𝐵ூ = 𝐶𝑜𝑑(𝐻ூ)  (3)  𝐹ᇱ் = 𝐷𝑒𝑐(𝐵ூ; 𝜂ூ)  (4) 

where 𝐻ூ  is the output of the image coding layer, 𝐵ூ  is the image hash code and 𝐹ᇱ்  is the 
reconstructed text feature space. 𝜃ூ  and 𝜂ூ  are encoder layer and decoder layer parameters, 
respectively.  

In the same way, we can get text feature encoding 𝐻், text hash code 𝐵் and reconstructed 
image feature space 𝐹ூᇱ. 𝐻் = 𝐸𝑛𝑐(𝐹்; 𝜃்) (5) 

 𝐵் = 𝐶𝑜𝑑(𝐻்)  (6) 

 𝐹ூᇱ = 𝐷𝑒𝑐(𝐵்; 𝜂்)  (7) 

where 𝜃் and 𝜂் are text encoder layer and text decoder layer parameters, respectively. 

3.4. Semantic-Preserving Reconstruction Loss 

This loss includes alignment loss (reconstruction loss), pairwise loss and cosine triple loss. 

3.4.1. The Entire Alignment Loss 

The reconstruction loss 𝐿ி is defined as follows: 𝐿ி = ∑‖𝐹ூᇱ − 𝐹்‖ଶ + ∑‖𝐹ᇱ் − 𝐹ூ‖ଶ  (8) 

Based on the diagonalization trend of the similarity matrix program between modalities, the 
ranking loss is proposed to effectively associate the modal semantic information. 𝐿ோଵ = ∑ ฮ1 − 𝑆ூ,஻் (𝑖, 𝑖)ฮଶெ௜ୀଵ   (9) 

 𝐿ோଶ = ଵଶ ∑ ∑ ฮ𝑆ூ,஻் (𝑖, 𝑗) − 𝑆ூ,஻் (𝑗, 𝑖)ฮଶெ௝ୀଵெ௜ୀଵ   (10) 

 𝐿ோ = 𝐿ோଵ + 𝐿ோଶ  (11) 

where 𝐿ோଵ  represents the semantic alignment loss within the modal, and 𝐿ோଶ  represents the 
semantic alignment loss between the modalities. 𝑆ூ,஻்  is the similarity matrix based on 𝐵, where I is 
the image modality and T is the text modality. 𝐿ோ is the sort alignment loss. 

In order to further correlate the modal semantics, the fusion feature matrix is defined as follows: 𝑆ூ,ி் = 𝜆𝑆ூ,ூி + (1 − 𝜆)𝑆்,்ி  (12) 

where 𝜆 is a hyperparameter. 𝑆ூ,ூி  is the spatial similarity of image semantic features and 𝑆்,்ி  is the 
spatial similarity of image semantic features. 

The semantic alignment loss of feature space and hash code space is 𝐿௪ to reduce the semantic gap. 𝐿ௐ = ∑ ฮ𝑘𝑆௑,௑ி − 𝑆ூ,஻் ฮଶெ௜ୀଵ + 𝜇 ∑ ฮ𝑘𝑆ூ,ி் − 𝑆௑,௒஻ ฮଶெ௜ୀଵ   (13) 
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where (𝑋, 𝑋)𝜖ሼ(𝐼, 𝐼), (𝑇, 𝑇)ሽ, (𝑋, 𝑌)𝜖ሼ(𝐼, 𝐼), (𝑇, 𝑇), (𝐼, 𝑇)ሽ. 𝑆௑,௒஻  is the similarity matrix based on 𝐵. 𝑆௑,௑ி  
is the similarity matrix based on 𝐹 in (𝑋, 𝑋). u is the hyperparameter to balance the importance of 
different modalities. 

The entire alignment loss ( 𝐿ଵ ) of DSPRH is defined as follows: 𝐿ଵ = 𝐿ி + 𝐿ோ + 𝐿ௐ (14) 

3.4.2. Cosine Triplet Loss 

Cosine triple is a loss function in which triples and cosines are nested. The image hash code is 𝑥௜, 𝑦௝ା is a text hash code related to 𝑥௜, and 𝑦௞ି  is text hash code not related to  𝑥௜.  
The relevant definition of the loss function of the cosine triplet is as follows: 𝐿ூ→் = ∑ max൫cos(𝑥௜, 𝑦௞ି ) − cos൫𝑥௜, 𝑦௝ା൯ + 𝜈, 0൯௜,௝,௞   (15) 

where 𝐿ூ→் is the cosine triple loss of the image search text. Cos(𝑥, y) represents the cosine distance 
metric between 𝑥 and y.  𝐿்→ூ = ∑ max൫cos(𝑦௜, 𝑥௞ି ) − cos൫𝑦௜, 𝑥௝ା൯ + 𝜈, 0൯௜,௝,௞   (16) 

where 𝐿்→ூ is the cosine triple loss of the text search image. Text hash code is 𝑦௜, 𝑥௝ା is a image hash 
code related to 𝑦௜, and 𝑥௞ି  is image hash code not related to  𝑦௜. 

The entire cosine triple loss (𝐿ଶ) of DSPRH is defined as follows: 𝐿ଶ = 𝐿ூ→் + 𝐿்→ூ (17) 

3.4.3. Pairwise Loss 

We define the pairwise loss of DSPRH, and its goal is to reserve modal semantic information. In 
the semantic pair, the image hash code is 𝑑௜, the text hash code is 𝑑௝ and the semantic similarity 
matrix 𝑆. 𝑠௜௝ is the similarity between i-th image and j-th text. Based on the maximum likelihood 
criterion, we can define the cross-modal pairwise loss of DSPRH. Its definition is as follows: 

𝐿ଷ = −𝑙𝑜𝑔𝑃(𝑆|𝐵) = ∑ ቀ𝑠௜௝Ω௜௝ − ൫1 + 𝑒𝑥𝑝ஐ೔ೕ൯ቁ௦೔ೕఢௌ   (18) 

where 𝐿ଷ is the cross-modal pairwise loss, Ω௜௝ = ଵଶ 𝑑௜் 𝑑௝. 

3.4.4. Semantic-Preserving Reconstruction Loss (All Loss of DSPRH) 

Based on alignment loss, pairwise loss, and cosine triple loss, the total loss of DSPRH is defined 
as follows: 𝐿஺௟௟ = 𝛼𝐿ଵ + 𝛽𝐿ଶ + 𝛾𝐿ଷ (19) 

where 𝛼 , 𝛽  and 𝛾  are three hyperparameters, which mainly reflect the importance of the three 
losses to network optimization. 𝐿ଵ is the alignment loss and reconstruction loss of DSPRH, 𝐿ଶ is the 
cosine triple loss of DSPRH and 𝐿ଷ is the cross-modal pairwise loss of DSPRH. 

4. Experiments 

In this section, we test the performance of DSPRH on two public datasets (MIRFlickr-25K and 
NUS-WIDE). We compare the performance of the DSPRH method with some state-of-the-art 
methods. 

4.1. Datasets, Evaluation Indicators and Baselines 

Datasets introduction: We evaluated the DSPRH algorithm on two datasets; MIRFlickr-25K and 
NUS-WIDE. Specifically, MIRFlickr-25K contains 25,000 image-text semantic pairs. Each semantics is 
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labeled with one of 24 categories. In the experimental part, we used 20015 semantic pairs in our 
experiment, these settings are based on the current cross-modal hash retrieval algorithm settings [12–
16]. Among them, 2000 semantic pairs were used for query. 

Another dataset was NUS-WIDE. The data set contains 269,498 semantic pairs and defines 81 
categories. During the experiment, 186,577 semantic pairs and the top 10 most frequent annotations 
were executed in our experiment. This experiment was also performed according to the current 
standards of most cross-modal hashing algorithms [12–16]. Among them, 2000 semantic pairs were 
used for query. 

Experimental details: For a fair comparison, our backbone network selects the AlexNet network, 
which is also the current cross-modal hashing general setting [6,12,13,29]. The AlexNet used by 
DSPRH is a pre-trained model used in the Image network. We added ResNet34 as the backbone 
network mainly to illustrate the scalability of our algorithm, which was just an additional experiment 
of the DSPRH algorithm. Performing related experiments on MIRFlickr-25K, we extracted 4096-
dimensional image features and extracted 1386-dimensional bag-of-words (BOW) features for each 
text. When performing experiments on the NUS-WIDE dataset, we extracted 4096-dimensional 
features of each image and 500-dimensional BOW features of each text. 𝜆 is a hyperparameter in 
formula 12, where 𝜆 is 0.9 based on pre-work [12]. In formulas 15 and 16, the hyper-parameter ν is 
equal to 0.001. In Equation 19, the weight distribution of the three loss functions (𝛼, 𝛽 and 𝛾 ) is 
described in the section of ablation analysis. 

Evaluation indicators: The mean average precision (MAP) is a general index to measure the 
performance of cross-modal retrieval algorithms, which can reflect the average of the average 
retrieval accuracy of all query samples. In this article, cross-modal retrieval involved 6 evaluation 
indicators, including Image2text MAP@50, Image2text MAP, Text2image MAP@50, Text2image 
MAP, MAP@50 and MAP. 

Baselines: This paper selected 8 algorithms to perform MAP comparison, and 17 algorithms to 
perform MAP@50 comparison to evaluate algorithm performance. To test the effectiveness of the 
DSPRH algorithm, we repeated the DJSRH [12] and DSAH [13], because the DSPRH enlightenment 
idea originated from DJSRH [12] and DSAH [13]. Specifically, these baselines are described as 
follows: UKD [14] (CVPR 2020), SRCH [11] (IJCAI 2020), MGAH [33] (TMM 2020), UGACH [9] (AAAI 
2018), DJSRH [12] (ICCV 2019), DSAH [13] (ICMR 2020), DBRC [28] (TMM 2019), CRB [22] (TIP 2019), 
DADH [15] (ICMR 2020), AGAH [16] (ICMR 2019), UDCMH [6] (IJCAI, 2018), SCH-GAN [34] (TOC, 
2020); DSPOH [29] (TNNLS, 2019), SCRATCH [23] (TCSVT, 2019), MTFH [10] (TPAMI, 2019), EGDH 
[37] (IJCAI, 2019), DMFH [31] (TCSVT, 2020), BATCH [26] (TKDE, 2020), ATFH-N [25] (TETCI, 2020), 
MDCH [32] (TMM, 2020), CPAH [27] (TIP, 2020), MLCAH [30] (TMM, 2020) a d SSAH [5] (CVPR, 
2018). 

4.2. DSPRH and Baselines Comparison 

4.2.1. Performance Comparison on MIRFlickr-25K 

Most current algorithms actually focus on MAP@50 and MAP when calculating the performance 
of cross-modal hashing algorithms. MAP is the result of all query semantics, and MAP@50 mainly 
calculates MAP for the first 50 elements of the query. Table 2 shows the performance comparison on 
MIRFlickr-25K. In Table 2, inspired by the two algorithms corresponding to the blue font [12,13], the 
alignment loss of DSPRH partly comes from these two algorithms, so we repeated these two 
algorithms [12,13] and calculated the corresponding MAP and MAP@50 results. In addition, we 
analyzed the work of cross-modal hashing algorithms in recent years. We found that we could mine 
modal semantic information from the aspects of semantic spatial information reconstruction and loss 
function, which can greatly improve performance. 
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Table 2. Performance comparison on MIRFlickr-25K. 

Algorithm 
Journal,  MIRFlickr-25K 

year Backbone Image2text Text2image 
  16 32 64 128 16 32 64 128 

MAP 
DSPRH(ours) - ResNet34 0.762 0.767 0.775 0.781 0.758 0.772 0.783 0.796 
DSPRH(ours) - AlexNet 0.733 0.746 0.752 0.759 0.737 0.741 0.752 0.766 
UKD-SS [14] CVPR, 2020 VGG19 0.714 0.718 0.725 0.720 0.715 0.716 0.721 0.719 
SRCH [11] IJCAI, 2020 VGG16 0.681 0.692 0.700 - 0.697 0.708 0.715 - 

MGAH [33] TMM, 2020 VGG19 0.685 0.693 0.704 0.702 0.673 0.676 0.686 0.690 
UGACH [9] AAAI, 2018 VGG19 0.685 0.693 0.704 0.702 0.673 0.676 0.686 0.690 
DJSRH [12] ICCV, 2019 AlexNet 0.647 0.651 0.664 0.680 0.639 0.653 0.669 0.683 
DSAH [13] ICMR, 2020 AlexNet 0.684 0.690 0.699 0.707 0.687 0.703 0.699 0.709 
DBRC [28] TMM, 2019 - 0.592 0.592 0.585 0.591 0.594 0.595 0.594 0.590 
CRE [22] TIP, 2019 - 0.621 0.625 0.629 - 0.615 0.618 0.622 - 

MAP@50 
DSPRH(ours) - ResNet34 0.932 0.937 0.944 0.951 0.892 0.910 0.917 0.924 
DSPRH(ours) - AlexNet 0.890 0.918 0.920 0.929 0.878 0.892 0.904 0.914 

DJSRH [12] ICCV, 2019 AlexNet 0.776 0.805 0.836 0.863 0.749 0.790 0.825 0.84 
DSAH [13] ICMR, 2020 AlexNet 0.855 0.875 0.890 0.900 0.850 0.870 0.877 0.883 
DADH [15] ICMR, 2020 CNN-F 0.802 0.807 0.818 - 0.792 0.796 0.806 - 
AGAH [16] ICMR, 2019 CNN-F 0.792 0.794 0.807 - 0.789 0.790 0.805 - 
UDCMH [6] IJCAI, 2018 AlexNet 0.689 0.698 0.714 0.717 0.692 0.704 0.718 0.733 

SCH-GAN [34] TOC, 2020 VGG19 0.738 0.745 0.757 0.768 0.771 0.790 0.793 0.804 
DSPOH [29] TNNLS, 2019 VGG16 0.853 0.859 - - 0.834 0.848 - - 
DSPOH [29] TNNLS, 2019 AlexNet 0.832 0.840 - - 0.832 0.841 - - 

SCRATCH [23] TCSVT, 2019 CNN-F 0.723 0.741 0.766 0.776 0.798 0.818 0.842 0.851 
MTFH [10] TPAMI, 2019 - 0.747 0.761 0.765 0.768 0.804 0.815 0.817 0.835 
EGDH [37] IJCAI, 2019 CNN-F 0.757 0.773 0.796 0.790 0.779 0.794 0.799 0.801 
DMFH [31] TCSVT, 2020 CNN-F 0.780 0.792 0.795 - 0.798 0.810 0.810 - 
BATCH [26] TKDE, 2020 CNN-F 0.738 0.744 0.745 0.749 0.821 0.829 0.835 0.838 
ATFH-N [25] TETCI, 2020 VGG19 0.734 0.748 0.733 0.722 0.790 0.803 0.794 0.768 
MDCH [32] TMM, 2020 VGG19 0.805 0.822 0.834 - 0.806 0.817 0.823  
CPAH [27] TIP, 2020 VGG16 0.789 0.796 0.795 - 0.778 0.786 0.785 -- 

MLCAH [30] TMM, 2020 CNN-F 0.796 0.808 0.815 - 0.794 0.805 0.805 - 
SSAH [5] CVPR, 2018 VGG19 0.797 0.809 0.810 - 0.782 0.797 0.799 - 
SSAH [5] CVPR, 2018 CNN-F 0.782 0.790 0.800 - 0.791 0.795 0.803 - 

Compared with some current frontier works (based on graph convolution, model pruning and 
GAN), our proposed DSPRH has better performance. Compared with these two algorithms (DSAH 
[13] and DJSRH [12]), DSPRH is based on the tensor generation module (TRM), which generates 
many level 1 tensors to capture contextual feature fragments. Then, we used these level 1 tensors to 
recover high-order context features through the TRM. Therefore, our proposed DSPRH can obtain 
the semantic modal information of the fusion context on the one hand with less computational 
complexity. In addition, the DSPRH algorithm is based on three loss functions to optimize network 
parameters, confirming the effectiveness of DSPRH. 

Specifically, if we choose AlexNet as the backbone network, for the image2text retrieval 
performance, DSPRH compared to DSAH [13] MAP@50 improved by 4.1%, 4.9%, 3.4% and 3.2% at 
16, 32, 64 and 128 bits, respectively. For text2image retrieval performance, DSPRH MAP@50 has been 
improved by 3.3%, 2.5%, 3.1% and 3.5% at 16, 32, 64 and 128 bits, respectively, compared to DSAH 
[13]. Compared to baselines, both image2text MAP and text2image MAP, DSPRH showed better 
performance. The ResNet34 as the backbone network is to verify the scalability of DSPRH, which can 
further significantly improve the performance of DSPRH. 

4.2.2. Performance Comparison on NUS-WIDE 

Table 3 shows performance comparison on NUS-WIDE. Similar to Table 2, we compare the 
performance of MAP and MAP@50, respectively. Encouraged by DJSRH [12] and DSAH [13], we 
proposed DSPRH. The blue font corresponds to the main comparison algorithm, and the red part is 
the proposed algorithm (including AlexNet for the backbone network and ResNet34 for the backbone 
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network). AlexNet as the backbone network was mainly to evaluate the effectiveness of the 
algorithm, which was a fair comparison experiment. ResNet34 can further improve the performance 
of the algorithm, which was used to illustrate the network scalability of the algorithm in this paper. 

Table 3. Performance comparison on NUS-WIDE. 

Algorithm 
Journal,  NUS-WIDE 

year Backbone Image2text Text2image 
  16 32 64 128 16 32 64 128 

MAP 
DSPRH(ours) - ResNet34 0.639 0.661 0.667 0.667 0.637 0.67 0.68 0.699 
DSPRH(ours) - AlexNet 0.605 0.636 0.648 0.656 0.611 0.646 0.666 0.673 
UKD-SS [14] CVPR, 2020 VGG19 0.614 0.637 0.638 0.645 0.630 0.656 0.657 0.663 
SRCH [11] IJCAI, 2020 VGG16 0.544 0.557 0.567 - 0.553 0.567 0.575 - 

MGAH [33] TMM, 2020 VGG19 0.613 0.623 0.628 0.631 0.603 0.614 0.640 0.641 
UGACH [9] AAAI, 2018 VGG19 0.613 0.623 0.628 0.631 0.603 0.614 0.640 0.641 
DJSRH [12] ICCV, 2019 AlexNet 0.476 0.491 0.517 0.537 0.474 0.501 0.523 0.533 
DSAH [13] ICMR, 2020 AlexNet 0.566 0.587 0.599 0.599 0.563 0.593 0.603 0.631 
DBRC [28] TMM, 2019 - 0.393 0.404 0.410 0.402 0.425 0.421 0.428 0.436 
CRE [22] TIP, 2019 - 0.513 0.530 0.533 0.534 0.493 0.509 0.515 0.516 

MAP@50 
DSPRH(ours) - ResNet34 0.817 0.848 0.851 0.863 0.774 0.805 0.820 0.842 
DSPRH(ours) - AlexNet 0.791 0.817 0.845 0.855 0.751 0.776 0.809 0.822 

DJSRH [12] ICCV, 2019 AlexNet 0.663 0.688 0.741 0.772 0.626 0.677 0.703 0.715 
DSAH [13] ICMR, 2020 AlexNet 0.772 0.789 0.811 0.826 0.741 0.777 0.787 0.811 
DADH [15] ICMR, 2020 CNN-F 0.649 0.666 0.666 - 0.650 0.668 0.681 - 
AGAH [16] ICMR, 2019 CNN-F 0.646 0.660 0.651 - 0.631 0.642 0.634 - 
UDCMH [6] IJCAI, 2018 AlexNet 0.511 0.519 0.524 0.558 0.637 0.653 0.695 0.716 

SCH-GAN [34] TOC, 2020 VGG19 0.713 0.724 0.732 0.749 0.738 0.742 0.769 0.782 
DSPOH [29] TNNLS, 2019 VGG16 0.701 0.723 - - 0.737 0.753 - - 
DSPOH [29] TNNLS, 2019 AlexNet 0.695 0.711 - - 0.713 0.731 - - 

SCRATCH [23] TCSVT, 2019 CNN-F 0.643 0.649 0.67 0.673 0.789 0.807 0.827 0.832 
MTFH [10] TPAMI, 2019 - 0.655 0.659 0.676 0.675 0.757 0.780 0.795 0.804 
EGDH [37] IJCAI, 2019 CNN-F - -- - - - - - - 
DMFH [31] TCSVT, 2020 CNN-F 0.631 0.647 0.680 - 0.607 0.621 0.640 - 
BATCH [26] TKDE, 2020 CNN-F 0.627 0.651 0.669 0.669 0.760 0.778 0.782 0.784 
ATFH-N [25] TETCI, 2020 VGG19 0.615 0.611 0.620 0.605 0.695 0.714 0.722 0.699 
MDCH [32] TMM, 2020 VGG19 0.665 0.682 0.692 - 0.692 0.699 0.707 - 
CPAH [27] TIP, 2020 VGG16 0.607 0.627 0.634 - 0.642 0.662 0.665 - 

MLCAH [30] TMM, 2020 CNN-F 0.644 0.641 0.643 - 0.662 0.673 0.687 - 
SSAH [5] CVPR, 2018 VGG19 0.636 0.636 0.637 - 0.653 0.676 0.683 - 
SSAH [5] CVPR, 2018 CNN-F 0.642 0.636 0.639 - 0.669 0.662 0.666 - 

Specifically, DSAH [13] and DJSRH [12] were the two most relevant baselines in this article. 
Because the performance of DSAH [13] was better than DJSRH [12], we mainly analyzed the 
performance comparison between DSPRH and DSAH [13]. If we choose AlexNet as the backbone 
network, for the image2text retrieval performance, DSPRH compared to DSAH [13] MAP@50 
improved by 2.5%, 3.6%, 4.2% and 3.5% at 16, 32, 64 and 128 bits, respectively. For text2image 
retrieval performance, DSPRH MAP@50 has been improved by 1.4%, −0.1%, 2.8% and 1.4% at 16, 32, 
64 and 128 bits, respectively, compared to DSAH [13]. 

Based on MAP to measure cross-modal hashing retrieval performance, we also select 8 baselines 
for evaluation. If we choose AlexNet as the backbone network, for the image2text retrieval 
performance, DSPRH MAP compared to DSAH [13] improved by 6.9%, 8.4%, 8.2% and 9.5% at 16, 
32, 64 and 128 bits, respectively. For text2image retrieval performance, DSPRH MAP improved by 
8.5%, 8.9%, 10.5% and 6.7% at 16, 32, 64 and 128 bits, respectively, compared to DSAH [13]. DSPRH 
can be further expanded. When we choose ResNet34 as the backbone network, the performance of 
DSPRH algorithm can be further improved. In short, DSPRH achieved better performance compared 
to baselines. DSPRH was tested on two public data sets. Experimental results show that our algorithm 
has better retrieval performance and can fully mine modal context semantic information. 
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4.3. Ablation Analysis 

4.3.1. Loss Function Ablation Analysis 

In this section, we analyzed the influencing factors of DSPRH, including loss function influence, 
modal semantic information fusion influence and hyperparameter sensitivity analysis. The loss 
function of DSPRH is semantic-preserving reconstruction loss (full loss). Full loss includes alignment 
loss, cosine triple loss and pairwise loss as shown in Figure 2 and Equation 19. Therefore, we 
performed ablation analysis on the loss function part. We show the loss function ablation analysis in 
Table 4, which represents the loss function ablation analysis under the hash code length of 128, 64, 32 
and 16. The figures of the loss function ablation analysis is described in Appendix A. 

Loss ablation analysis on MIRFlickr-25K: We discuss the loss function ablation analysis with 
different bits in Figure A1. In Figure A1, we found the best performance of our proposed semantic-
preserving reconstruction loss (full loss). The cosine triple loss (𝐿ଶ ) contributed the most to full loss 
compared to alignment loss and pairwise loss with 128 bits. In Figure A1, we found the best 
performance of our proposed semantic-preserving reconstruction loss (full loss) with 64 bits. The 
cosine triple loss (𝐿ଶ) contributed the most to full loss compared to alignment loss and pairwise loss 
with 64 bits. In Figure A1, we found the best performance of full loss with 32 bits. The pairwise loss 
(𝐿ଷ ) contributed the most to full loss compared to alignment loss and cosine triple loss with 32 bits. 
In Figure A1, we found the best performance of full loss with 16 bits. The pairwise loss (𝐿ଷ ) 
contributed the most to full loss compared to alignment loss and cosine triple loss with 16 bits. 

In short, we found that DSPRH can get the best performance on MIRFlickr-25K in full loss 
(alignment loss, cosine triple loss and pairwise loss). When hash bits were 64 bits and 128 bits, the 
cosine triple loss will benefit the most from full loss. When hash bits were 32 bits and 16 bits, the 
pairwise loss will benefit the most from full loss. 

Loss ablation analysis on NUS-WIDE: We discuss the loss function ablation analysis with 
different bits in Figure A2. In Figure A2, we found the best performance of our proposed semantic-
preserving reconstruction loss (full loss). In Figure A2, pairwise loss contributed the most to our 
proposed semantic-preserving reconstruction loss with different bits. The order of the advantage of 
loss function was: Pairwise loss > alignment loss > cosine triple loss. 

Loss ablation analysis summary: Table 4, Figures A1 and A2 show the loss function ablation 
analysis of DSPRH under different datasets. The experimental results showed that pairwise loss 
achieves good results on both data sets. This loss was mainly used in image single-mode retrieval 
research and was less concerned by cross-mode retrieval. However, in cross-modal retrieval, the 
meaning of semantic information interaction between image modality and text modality was 
consistent with the meaning of single-modal image for information interaction, so this loss can also 
be applied to cross-modal retrieval tasks. 

Specifically, the performance of cosine triplet loss was better than pairwise loss at a higher 
number of bits (64 bits and 128 bits), and the performance of pairwise loss was better than alignment 
loss in Figure A1. The order of the advantage of loss function on MIRFlickr-25K was: Full loss > cosine 
triple loss > alignment loss > pairwise loss. On the contrary, the performance of the pairwise loss was 
better than the alignment loss at a lower number of bits (32 bits and 16 bits), and the performance of 
the alignment loss was better than the cosine triplet loss in Figure A1. The order of the advantage of 
loss function on MIRFlickr-25K was: Full loss > pairwise loss > alignment loss > cosine triple loss. In 
the NUS-WIDE dataset with a large amount of data, pairwise loss contributed the most to our 
proposed semantic-preserving reconstruction loss with different bits. The order of the advantage of 
loss function was: Full loss > pairwise loss> alignment loss> cosine triple loss. Therefore, the loss 
function proposed in this paper had better performance and achieved better retrieval performance 
than current cross-modal retrieval algorithms. 
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Table 4. Loss function ablation analysis on two datasets. 

Bits Evaluation MIRFlickr-25K NUS-WIDE  𝑳𝑨𝒍𝒍   𝑳𝟏   𝑳𝟐   𝑳𝟑   𝑳𝑨𝒍𝒍   𝑳𝟏   𝑳𝟐   𝑳𝟑  
16 

Image2test MAP@50 0.890 0.853 0.720 0.868 0.791 0.762 0.740 0.774 
Text2image MAP@50 0.878 0.858 0.648 0.853 0.751 0.761 0.713 0.772 

Image2test MAP 0.733 0.680 0.625 0.693 0.605 0.558 0.578 0.579 
Text2image MAP 0.737 0.684 0.607 0.694 0.611 0.573 0.581 0.600 

32 

Image2test MAP@50 0.918 0.876 0.859 0.883 0.817 0.783 0.576 0.800 
Text2image MAP@50 0.892 0.873 0.852 0.876 0.776 0.779 0.495 0.783 

Image2test MAP 0.746 0.688 0.707 0.706 0.636 0.571 0.479 0.598 
Text2image MAP 0.741 0.697 0.712 0.707 0.646 0.591 0.460 0.607 

64 

Image2test MAP@50 0.920 0.889 0.911 0.906 0.845 0.811 0.731 0.822 
Text2image MAP@50 0.904 0.879 0.893 0.889 0.809 0.787 0.693 0.793 

Image2test MAP 0.752 0.696 0.740 0.715 0.648 0.597 0.592 0.615 
Text2image MAP 0.752 0.697 0.743 0.715 0.666 0.602 0.594 0.622 

128 

Image2test MAP@50 0.929 0.901 0.926 0.911 0.855 0.826 0.833 0.835 
Text2image MAP@50 0.914 0.884 0.904 0.895 0.822 0.809 0.791 0.815 

Image2test MAP 0.759 0.707 0.748 0.725 0.656 0.598 0.636 0.615 
Text2image MAP 0.766 0.708 0.748 0.727 0.673 0.630 0.651 0.640 

4.3.2. Feature Space Fusion Analysis 

In Figure 3, visual feature extraction included three types: 𝑓ଵ, 𝑓ଶ and 𝑓ଷ. The weights of the 
three features were 𝑤ଵ, 𝑤ଶ and 𝑤ଷ. 𝑓ଷ was a fully connected feature of AlexNet. 𝑓ଶ was a feature 
of AlexNet’s conv5, GCP and fully connected layer cascade. 𝑓ଵ was a feature of strip pool block, GCP 
and fully connected cascade. In Figure 3, 𝑤ଵ + 𝑤ଶ + 𝑤ଷ = 1, in order to simplify the parameter, we 
assume 𝑤ଶ was equal to 𝑤ଵ. We also carried out relevant experiments to verify, and the results found 
that when 𝑤ଶ was equal to 𝑤ଵ, the retrieval performance was the best. Next we showed the relevant 
ablation analysis. Overall, 𝑤ଵ, 𝑤ଶ and 𝑤ଷ were 0.25, 0.25 and 0.5 on MIRFlickr-25K, respectively. 𝑤ଵ, 𝑤ଶ and 𝑤ଷ were 0.125, 0.125 and 0.75 on NUS-WIDE, respectively. 

During feature fusion, 𝑤ଵ  and 𝑤ଶ  were equal and both related to 𝑤ଷ , so we only need to 
display the parameter sensitivity analysis of 𝑤ଷ. In Figure 4, the feature space based on feature fusion 
has better results. Specifically, when the values of  𝑤ଷ , 𝑤ଶ  and 𝑤ଵ  were 0.5, 0.25 and 0.25, 
respectively, DSPRH retrieval performance was the best. 

In Figure 4, the feature space based on feature fusion had better results. When w3 was equal to 
1, w1 and w2 were both 0, which means that no feature fusion was performed. At this time, the MAP 
and MAP@50 evaluations of DSPRH were both unstable. When w3 was equal to 0.75 and w1 and w2 
were both 0.125, DSPRH evaluation performance was relatively stable. Specifically, in Figure 4c,d as 
w3 increased, DSPRH obtained better performance. However, when w3 reached the maximum value, 
the performance of DSPRH was unstable. Therefore, when w3, w2 and w1 were 0.75, 0.125 and 0.125, 
respectively, DSPRH retrieval performance is the best. 

In Figure 3, we show the feature space reconstruction method, and the performance analysis of 
the proposed feature fusion strategy is shown in Figure 4. We found that when w3 is equal to 1, the 
algorithm retrieval performance did not achieve the optimal value in Figure 4, so the image feature 
space reconstruction method of weighted fusion can obtain better retrieval performance. Therefore, 
the image feature space of DSPRH algorithm was implemented in Figures 3 and 2 based on the 
proposed feature space reconstruction method. This also fully confirmed that the proposed multi-
feature fusion feature extraction module was very effective in Figure 3. 
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Figure 4. Feature space analysis on two datasets. (a) feature space analysis on MIRFlickr-25K with 
MAP@50; (b) feature space analysis on MIRFlickr-25K with MAP; (c) feature space analysis on NUS-
WIDE with MAP@50; and (d) feature space analysis on NUS-WIDE with MAP. 

4.3.3. Hyper-Parameter Sensitivity Analysis 

There are four hyper-parameter sensitivities (λ in Equation 12; α, β and γ in formula 19) which 
need to be determined in DSPRH. The value of the λ was 0.9, which follows the standards of DSAH 
[13] and DJSRH [12]. Next we analyzed the impact of the other three parameters. DSPRH chooses six 
indicators to discuss the validity of the parameters. Among them, Figure 5 contained 6 retrieval 
evaluation indicators (Image2text MAP@50, Image2text MAP, Text2image MAP@50, Text2image 
MAP, MAP@50 and MAP). 

In Figure 5a, when the value of parameter α was 1, the DSPRH had the best performance on 
MIRFlickr-25K. Therefore, the parameter α of DSPRH is 1 in this paper. In Figure 5b, when the value 
of parameter β was 0.03, the DSPRH had the best performance on MIRFlickr-25K. Therefore, the 
parameter β of DSPRH is 0.03. In Figure 5c, when the value of parameter γ was 1, the DSPRH had 
the best performance on MIRFlickr-25K. Therefore, the parameter γ of DSPRH is 1 in this paper. 

In Figure 5d, when the value of parameter α was 1, the DSPRH had the best performance on 
NUS-WIDE. Therefore, the parameter α of DSPRH is 1. In Figure 5e when the value of parameter β 
was 0.03, the DSPRH had the best performance on NUS-WIDE. Therefore, the parameter β of DSPRH 
is 0.03. In Figure 5f, when the value of parameter γ was 1, the DSPRH had the best performance on 
NUS-WIDE. Therefore, the parameter γ of DSPRH is 1. 

In short, the three parameters (α, β and γ) of DSPRH have the same parameter settings on two 
datasets (MIRFlickr-25K and NUS-WIDE). Specifically, in Equation 19, the values of α, β and γ are 1, 

Ev
al

ua
tio

n

Ev
al

ua
tio

n

Ev
al

ua
tio

n

Ev
al

ua
tio

n

(a) (b)

(c) (d)



Entropy 2020, 22, 1266 15 of 21 

 

0.03 and 1, respectively. Therefore, the proposed DSPRH has better parameter adaptability in cross-
modal retrieval tasks. 

 
Figure 5. Hyper-parameter sensitivity analysis on two datasets. (a) parameter α analysis on 
MIRFlickr-25K in formula 19; (b) parameter β analysis on MIRFlickr-25K in formula 19; (c) parameter 
γ analysis on MIRFlickr-25K in formula 19; (d) parameter α analysis on NUS-WIDE in formula 19; (e) 
parameter β analysis on NUS-WIDE in formula 19; and (f) parameter γ analysis on NUS-WIDE in 
formula 19. 

In Figure 5a, when the value of parameter α was 1, the DSPRH had the best performance on 
MIRFlickr-25K. Therefore, the parameter α of DSPRH is 1 in this paper. In Figure 5b, when the value 
of parameter β was 0.03, the DSPRH had the best performance on MIRFlickr-25K. Therefore, the 
parameter β of DSPRH is 0.03. In Figure 5c, when the value of parameter γ was 1, the DSPRH had 
the best performance on MIRFlickr-25K. Therefore, the parameter γ of DSPRH is 1 in this paper. 

In Figure 5d, when the value of parameter α was 1, the DSPRH had the best performance on 
NUS-WIDE. Therefore, the parameter α of DSPRH is 1. In Figure 5e when the value of parameter β 
was 0.03, the DSPRH had the best performance on NUS-WIDE. Therefore, the parameter β of DSPRH 
is 0.03. In Figure 5f, when the value of parameter γ was 1, the DSPRH had the best performance on 
NUS-WIDE. Therefore, the parameter γ of DSPRH is 1. 

In short, the three parameters (α, β and γ) of DSPRH had the same parameter settings on two 
datasets (MIRFlickr-25K and NUS-WIDE). Specifically, in Equation 19, the values of α, β and γ are 1, 
0.03 and 1, respectively. Therefore, the proposed DSPRH has better parameter adaptability in cross-
modal retrieval tasks. 

4.3.4. Other Ablation Analysis 

We showed that the precision-recall rate curve and the change curve of precision with top-K are 
at 128 bits. DJSRH [12] and DSAH [13] were the two baselines most relevant to DSPRH, so we perform 
other ablation analyses (precision-recall, precision @top-K). 

Figure 6a shows Image2text precision-recall curve. Figure 6b shows text2image precision-recall 
curve. Figure 6a,b shows that the DSPRH achieved better Image2text and text2image precision-recall 
curve performance than DJSRH [12] and DSAH [13]. Figure 6c shows Image2text precision @top-K 
curve. Figure 6d shows text2image precision @top-K curve. Figure 6c,d show that the DSPRH 
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achieved better Image2text and text2image precision @top-K curve performance than DJSRH [12] and 
DSAH [13]. 

 
Figure 6. Other ablation analysis on two datasets. (a) Image2text precision-recall curve with 128 bits; 
(b) Text2image precision-recall curve with 128 bits; (c) Image2text precision @ top-K curve with 128 
bits; and (d) Text2image precision @ top-K curve with 128 bits. 

DJSRH [12] was proposed in ICCV 2019, the main goal is to reconstruct the loss function. The 
algorithm reconstructs the semantic loss based on image modal and text modal features. DJSRH [12] 
achieved better performance, but the algorithm did not consider semantic alignment loss. Compared 
with DJSRH, DSAH [13] considers semantic alignment loss, so image modal semantics and text modal 
semantic information are aligned and associated. DSAH [13] was proposed in ICMR 2020. 
Encouraged by the DSAH algorithm, we propose the DSPRH algorithm. We used the idea of feature 
fusion to reconstruct the image feature space, and propose a new cross-modal retrieval loss function 
based on considering multiple modal semantic alignment loss, pairwise loss and cosine triple loss. 

In this way, semantic alignment loss can reduce the semantic differences between the two 
modalities, and the pairwise loss and cosine triple loss can shorten the distance between similar 
samples between the two modalities and maintain the differences between dissimilar samples 
between the two modalities. Figure 6 further shows that the proposed DSPRH has better retrieval 
performance, which also fully demonstrates that the proposed technology is scalable and suitable for 
cross-modal retrieval tasks. Therefore, the experimental chapter shows that the proposed algorithm 
has better retrieval performance, and further elaborates the reliability and effectiveness of the 
proposed algorithm. 
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5. Conclusions 

In this work, we propose a novel unsupervised cross-modal hash retrieval method, named deep 
semantic-preserving reconstruction hashing. This work uses tensor regular-polymorphic 
decomposition theory, two bottlenecks auto-encoding and semantic-preserving reconstruction loss 
to complete the cross-modal retrieval task. The specific description is as follows: In the original 
feature space, we use tensor regular-polymorphic decomposition theory to generate rank-1 tensor to 
capture high-order context modal information. This can assist the backbone network to capture 
important modal semantic information. Based on second-order statistical theory, we use global 
covariance pooling to capture channel semantic information and accelerate network convergence. In 
order to achieve modal and semantic interaction, we propose a two bottlenecks self-encoding feature 
reconstruction layer to achieve visual-text modal information interaction. In the metric learning part, 
we design a new semantic-preserving reconstruction loss to achieve modal alignment and 
information reconstruction, which can reserve important modal semantic information. The 
experiment was performed on two datasets (MIRFlickr-25K and NUS-WIDE), and the paper gives 
detailed experimental evaluation, parameter setting, baseline comparison and ablation analysis. 
Experimental results show that DSPRH has achieved better retrieval performance. 

The proposed method has good adaptability to perform cross-modal retrieval tasks, and we do 
not need to adjust the parameters of the loss function to deal with different cross-modal retrieval 
tasks. In this work, the study found that the construction of the loss function is the key to cross-modal 
retrieval, and the metric learning strategy is the key to affecting the performance of cross-modal 
retrieval. When reconstructing the feature space, the proposed algorithm adopts a multi-feature 
fusion strategy. At this time, the parameters need to be fine-tuned and manually adjusted. In future 
research, we will continue to explore key technologies for cross-modal retrieval, such as image-text 
retrieval, image-text matching and video-text retrieval. 
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Appendix A 

 

Figure A1. Loss function ablation analysis with different bits on MIRFlickr-25K. 
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Figure A2. Loss function ablation analysis with different bits on NUS-WIDE. 
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