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Abstract: Although complex Lü systems have been considered in many studies, application of the 
self-time-delay synchronization (STDS) of complex Lü systems in secure speech communications 
does not appear to have been covered in much of the literature. Therefore, it is meaningful to study 
the STDS of complex Lü systems and its application in secure speech communication. First, a 
complex Lü system with double time-delay is introduced and its chaotic characteristics are 
analyzed. Second, a synchronization controller is designed to achieve STDS. Third, the improved 
STDS controller is used to design a speech communication scheme based on a complex Lü system. 
Finally, the effectiveness of the controller and communication scheme are verified by simulation. 
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1. Introduction 

The synchronization of complex dynamic chaotic systems can not only reveal many natural 
phenomena, but also has many applications in image processing, security communication, and 
mechanical engineering (see [1–5]). Many different synchronization modes have been well-studied, 
such as combination synchronization, phase synchronization, projection synchronization, and lag 
synchronization, and many important results have been obtained (see [6–11]). A chaotic system with 
time-delay is better for describing a real physical process than a chaotic system without time-delay. 
Due to its characteristics, the cipher text formed by a time-delayed chaotic signal exhibits better 
security. Time-delay chaotic systems are also a hot topic in chaos communication. 

Chaos is a definite but unpredictable state of motion [12]. Chaotic systems are unpredictable, 
controllable, and sensitive to initial values [13]. In 1990, Pecora and Carroll first proposed that chaotic 
synchronization could be realized by establishing a driver-response system and, on this basis, specific 
chaotic synchronization circuits could be established [14].  

In reality, the synchronization of the system is not necessarily simultaneous, and delays can 
occur. Therefore, a chaotic system may display self-time-delay synchronization (STDS). Time-delay 
is essential in certain applications. As the time-delay occurs in transmission, it is more suitable to 
describe the transmitter as the original chaotic system and the receiver as its time-delay system. In 
fact, it is more practical and economical to consider time-delay for real applications in engineering. 
In this article, the linear feedback method is used to design a controller to study STDS.  

Many control methods of time-delay chaotic synchronization have been reported [15–19]. A 
complex Lü system with time-delay has been studied in several papers and in different dimensions 
[20–22], but the application of STDS in secure communication is not present in much of the literature. 
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The STDS controller designed in this article can encrypt by using linear equations for state variables, 
which is very different from previous encryption methods. The security of the communication 
scheme for complex chaotic systems is the main problem in speech communication systems. A speech 
cipher is a solution for transmitting speech information by encrypting data at the sending side and 
decrypting at the receiving side. Encryption is obtained by scrambling the original spectrum, while 
decryption is obtained by the reverse process [23–26]. On the basis of the above discussion, a secure 
communication scheme was designed. The STDS of a complex Lü chaotic system was used to encrypt 
the voice. The simulation results show that the communication scheme is very good. The main 
contributions of this paper are as follows: 

1. The time-delay characteristics of complex Lü systems with different parameters are studied and 
a controller for realizing STDS is designed;  

2. The evolved STDS controller is applied to the encryption of speech communication using linear 
equations of state variables and its effect is verified by simulation experiments. 

The rest of this paper is structured as follows: In Section 2, the characteristics of complex Lü 
systems with time-delays are studied. In Section 3, a synchronous controller is designed and the 
mathematical proof for establishing self-time-delay synchronous control is given. In Section 4, speech 
signal transmission encryption is realized through the existing chaotic model of a complex Lü system. 
In Section 5, simulations are performed to verify the effectiveness of the STDS controller and to 
implement speech transmission encryption. Finally, the study is summarized in Section 6. 

2. Characteristics of Complex Lü Chaotic Systems with Time-Delay 

The system of equations of a complex Lü system is as follows: 

11 2 1

2 2 2 1 3

3 3 3 1 1 22

( )

( ) / 2

y a y y
y a y y y
y a y y y y y

= −
 = −
 = − + +



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 (1) 

where 1 1 2y u ju= + , 2 3 4y u ju= +  are complex variables, 3 5y u=  is the real state variable, and 

1 2 3, ,a a a  are constants. By separating the real and imaginary parts of the system equation, a five-
dimensional chaotic system of equations can be obtained, as follows: 
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Consider the following time-delay complex Lü system of equations: 
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where ,0 10 mτ τ< ≤  is the delay factor, 1 1 2x u ju′ ′= + , 2 3 4x u ju′ ′= +  are the complex variables, and 

1 5x u′=  is the real state variable. By separating the real and imaginary parts of the system of 
equations, a five-dimensional time-delay chaotic system of equations can be obtained. 
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2.1. The Dissipation 

The divergence of a complex chaos system can be expressed as follows: 

1 2

1 2

i

i

u u uV
u u u

∂ ∂ ∂∇ = + + ⋅ ⋅ ⋅ +
∂ ∂ ∂
  

 (5) 

Therefore, the divergence of system (2) can be expressed as 1 2 32 2a a a∇=− + − , 1 2 32 2 0a a a− + − > , where 
the system is dissipative and converges in exponential form, 1 2 3( 2 2 )e a a a t− + − . In fact, the volume 
element of the initial volume V(0) becomes 1 2 3( 2 2 )V(t)=V(0)e a a a t− + −  at time T. When t → ∞ , each 
small volume element—including the trajectory of system (3)—converges to zero at an exponential 
rate 1 2 3( 2 2 )e a a a t− + −  and its motion is fixed on an attractor, which indicates that there exists an 
attractor in system (3). 

2.2. Sensitivity of Initial Values and Symmetry 

In terms of its sensitivity to initial values, a time-delay complex Lü chaotic system can be 
analyzed. Let =5sτ  and select two very similar initial values, such as T(1,2,3,4,1)  and 

T(1.001,2.001,3,4,1.001) . The state evolution is shown in Figure 1, which demonstrates that the time-
delay system is highly sensitive to the initial state value. The following transformation is introduced 
to system (3): 1 2 3 1 2 3( , , ) ( , , )x x x x x x→ − − ; under this, system (3) remains unchanged. As a result of this, system 
(3) is symmetrical with respect to 3x ; this symmetry is true for all parameters. 

 
Figure 1. Initial value sensitivity of a complex Lü system with time-delay ( =5sτ ). 

2.3. Chaotic Characteristics under Different Time-Delay Factors 

The chaotic characteristics of a time-delay complex Lü chaotic system are quite different from 
those of the original system, as the time-delay system has high randomness and an unpredictable 
time-series. The chaotic attractors of the projection plane and projection space of the original system 
and the time-delay system are shown in Figures 2 and 3. Moreover, due to changes in the time-delay 
parameters of time-delay systems, it can be seen from the Poincare section diagrams (Figures 4 and 
5), that time-delay complex Lü systems display great differences under different delay factors. 

 
Figure 2. Chaotic attractor phase diagram of the original system. 
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Figure 3. Chaotic attractor phase diagram of the time-delay complex Lü system ( =17sτ ). 

 
Figure 4. Poincare section diagram and phase diagram of a complex Lü system with time-delay ( =1sτ
). 

 
Figure 5. Poincare section diagram and phase diagram of a complex Lü system with time-delay (

=17sτ ). 

The stability of a time-delay complex Lü system is also related to the values of 1 2 3 1 2, , , ,a a a τ τ . 
Therefore, in order to observe the system more clearly, the initial values of 1 2 3, ,a a a  must remain 
unchanged and only the value of τ  is changed; however, the time-delay τ  still needs to meet the 
condition 1 18s sτ≤ < . This is because, according to the definition of the Lyapunov function employed 
to determine whether the system is in a chaotic state, there needs to be at least one positive Lyapunov 
exponent. Therefore, it can be judged from Figures 6 and 7 that the chaos disappears when =18sτ . 

 
Figure 6. Poincare section diagram of a complex Lü system with time-delay ( 1=18sτ ). 
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Figure 7. Lyapunov diagram of a complex Lü system with time-delay. 

Remark 1: 1τ  must satisfy the condition 11 18s sτ≤ < , in order for the time-delay complex Lü system to 
be chaotic. 

Remark 2: In the simulation experiment, with increasing time-delay τ , it can be found that the system 
is no longer in a chaotic state when 1=18τ . When 1τ  is fixed at 1=17τ , the value of 0τ  can continue to 
increase and the system will still be chaotic. 

2.4. Chaotic Characteristics of Time-Delay Complex Lü Systems with Different Parameters 

Under different parameters, the characteristics of time-delay complex Lü systems are also 
different. Therefore, we first observe the chaotic characteristics of a time-delay complex Lü system 
with the change in 1a . In order to test the influence of the 1a  parameter, the values of 2 3 1 2, , ,a a τ τ  
are kept unchanged. It can be seen, from the Lyapunov exponent diagram in Figure 8, that when the 

1a  parameter is within the specified range, the system is chaotic; while the system beyond the value 
1=66a  is not chaotic. When 1=67a , it can be seen, from Figure 8, that its values are all negative 

numbers, and so Lyapunov’s definition of judging whether the system is chaotic is not satisfied. In 
order to observe the image clearly, the initial value was set to 1=33.5a  and the exponential graph of 
the Lyapunov function varying with the parameter was developed. After many observations, when 
the value of 1a  exceeded 66, the system no longer exhibited chaotic behavior. It can be seen from 
Figures 9 and 10 that the influences of different parameters of the system on the time-delay complex 
Lü system are relatively large. 

 
Figure 8. Lyapunov diagram of the time-delay complex Lü system with parameter 1a . 

 
Figure 9. Section diagram and phase diagram of a complex Lü system with time-delay ( 1=34, =5a sτ ). 
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Figure 10. Section diagram and phase diagram of a complex Lü system with time-delay ( 1=66, =5a sτ ). 

When 1=67a , the Poincare cross-sectional view of the system is the same as in Figure 6, the 
chaotic phenomenon of the system disappears, and there is only one point left (figure not shown to 
avoid repetition). Therefore, it is consistent with the previous conclusion drawn by the Lyapunov 
exponent chart. Similarly, changes in the other two parameters can also be discussed through 
numerical simulation. 

3. STDS of a Complex Lü System 

3.1. Definition of Self-Delay Synchronization 

Original system: 

y( ) ( ( ))t f y t= , { }1 2 n
...y( ) ( ), ( ), , ( ) Tt y t y t y t=  (6) 

Time-delay system: 

x ( ) ( ( )) ( ( ), ( ), ( ))t f x t v x t x t y tτ τ= − + − , { }1 2 n
...x( ) ( ), ( ), , ( ) Tt x t x t x t=  (7) 

where x( ), ( )t y t  represent the complex state variables and 1 2
...={ , , , }Tnτ τ τ τ , ...( 0, 1,2, , )i i nτ ≥ =  is the time-

delay factor vector. When there exists a controller v, 
2 2 2lim ( ) ( ) lim ( ) ( ) ( ) ( ) 0r r i ix t y t x t y t x t y t− = − + − = ( t → +∞ ) (8) 

where x(t) and y(t) represent self-time-delay synchronization [27–31]. 
Remark 3: If =0τ , the STDS is equivalent to complete synchronization. Therefore, STDS includes 

complete synchronization and further extends complete synchronization. 

3.2. Design of the STDS Controller 

Lemma 1: Consider a linear continuous time-delay system 

1 0 2 1z( ) ( ) ( ) ( ) ( )t A t z t B z t B z tτ τ= + − + −  (9) 

where ( ) nz t R∈ , ( )A t is n n×  time-varying real matrix, 1 2,B B are n n× constant real matrices, , 01 0τ τ > . If 
there is a positive definite matrix P, M1, M2 satisfying the negative definite matrix (10),  

2 21 1
1 2

1 1
1

2 2
2

( ) ( )
22
0

2

02

TTT

T

T

PB B PPB B PA t P PA t M M
PB B P

M

PB B P M

 ++ + + +
 

+ − 
 + − 
 

 (10) 

then z(t) = 0 is the global stability point of the system (9).  
Theorem 1: If the complex L ü system (2) is used as the main system, the following controlled time-delay 

complex Lü system is taken as the slave system: 
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the STDS controller is designed as follows: 

1 1 1

2 2 2
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5 3 0 3 2 4 2 4 5 51 1 35 5

v
v
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k e
k e
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 (12) 

where e ( ) ( ) ( )i i it u t u t′= − , e ( ) ( ) ( )i i it u t u tτ τ τ′− = − − − , i 1,2,3,4,5= ,then there are , ( 1,2,3, 4,5)ik R i∈ =  

making
5 2

i =1
( - )lim 0i i

t
u u

→+∞
′ = , which establishes the STDS between the complex Lü system (2) and the time-delay 

complex Lü system (11). 
Proof 1:  Let e ( ) ( ) ( )i i it u t u t′= − , e ( ) ( ) ( )i i it u t u tτ τ τ′− = − − − . The time-delay error system of 

equations can then be obtained as 
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As u ( 1,2,3,4,5)i i =  is a bounded system state variable and 1 2 3, ,a a a  are constant, the matrix 
A(t) is bounded. Therefore, system (13) can be regarded as a linear time-varying system. Suppose

1 2, 4 , 10P I M I M I= = = .  Equation (10) can then be transformed into 
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where ( ) ( ) 14TA t A t I+ + =
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2 2 +14
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k a
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 − 
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 

. 

According to Lemma 1, the real symmetric matrix (14) becomes the dominant row diagonal 
matrix and requires all diagonal elements to be negative. Therefore, the following criteria must be 
satisfied. 

Row 1: 1 12 2 14 0k a− + < ; 

(15) Row 2: 2 12 2 14 0k a− + < ; 

Row 3: 3 2 32 14 ,2 14 0k a k+ > + < ; 

Row 4: 2 442 14 ,2 14 0k a k+ > + < ; 
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Row 5: 5 532 14 ,2 14 0k a k+ > + < . 

According to the Lyapunov stability theory, 1, 2 1 7k a< − , 3, 4 27 / 2k a< − − , and 5 37 / 2k a<− − , 
which make the error system asymptotically stable. The master system (2), the corresponding slave 
system (11), and the controller (12) thus complete the STDS. The proof is finished. 

4. Speech Secure Communication 

The time-delay complex Lü system signal is inherently random and is difficult to replicate. In 
this article, according to the characteristics of the chaotic system, an audio codec based on the time-
delay complex Lü chaotic system is proposed using the designed controller, which is used to encrypt 
the transmission of speech signals. This kind of audio encoding body is easier to implement than 
other schemes in the transmission process and its recovery effect is very good, with the signal 
basically being completely recovered. Moreover, it is not easily destroyed in the transmission process 
due to the time-delay characteristics of chaotic signals [32,33]. 

The following complex Lü system L1 (16) is used as the transmitter, while the complex time-
delay Lü system L2 (11) is used as the receiver.  

1 1 3 1

2 1 4 2

3 2 3 1 5

24 4 2 5

5 2 43 5 1 3

( )
( )

1:

i

j

u a u u bh
u a u u bh

L u a u u u
u a u u u
u a u u u u u

= − +
 = − + = −
 = −

= − + +







 (16) 

Figure 11 shows a block diagram of our communication scheme. At the sending end of the 
speech transmission, cheerful "Traveling" music was selected as the audio signal, the L1 system was 
used as the encrypted voice signal, and the L2 system was used as the decrypted voice signal. The 
transmitted signals were related to all parts of the master system and information signal. There is no 
longer a need to transmit each information signal using a separate channel. The transmitted signals 
are the state variables of the main system and the linear equations are encrypted to improve the 
security of communication. The transmission signal at the sending end is expressed as 

r
1 1 3 1 1( ) ( ) k ( )s t a u t u t bhτ τ= − − − + , 2 22 1 4( ) ( ) k ( ) is t a u t u t bhτ τ= − − − + , where r

, ih h  are the information 
signals and b is the parameter. The superscripts r and i stand for the real and imaginary parts of the 
complex vector, respectively. The signals at the receiving end are a linear combination of the variables 
of the master system and the slave system, expressed as 11 1 3 1( ) ( ) k ( )s t au t u tτ τ′ ′= − − −  and 

2 1 4 2 2( ) ( ) k ( )s t au t u tτ τ′ ′= − − − , respectively. The controller (17) evolved from the STDS controller (12) is 
used as our speech communication controller: 

 
Figure 11. Block diagram of our communication scheme. 
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1 11 1 1

2 2 2 22

3 1 5 51 3 3 2 13 3

4 2 4 4 2 15 2 4 45

5 3 0 3 2 4 2 4 5 51 1 35 5

v
v

+ ( ( ))
+ + ( ( ))

( ( ))    +

r

i

s s k e bh
s s k e bh

v u u u u k e a u u t
v u u u u k e a u u t
v a u u t u u u u u u u u k e

τ
τ

τ

′= − = +
 ′= − = + ′ ′= − + − −
 ′ ′= − − −

′ ′ ′ ′= − + − − − + +

 (17) 

The recovered signal is 1 ( )gh b s s− ′= −  and the error is ( ) ( ) ( )gme t h t h t= − . As the speech signal has a 
large number of samples, it is necessary to observe several fragments, which were sufficient for 
completing the simulation experiment. In addition, the encrypted signal completely covers the 
original speech signal, such that the eavesdropper is less likely to extract the original speech. 

Compared with other examples of communication systems [34–40], the proposed secure 
communication scheme based on the time-delay complex Lü system has the following advantages: 

1. Due to the time lag in the transmission process, the synchronization phenomenon between the 
transmitter and the receiver is closer to the real situation; 

2. The STDS controller based on Lyapunov's stability design is relatively simple and has strong 
stability. Equipped with double time-delay, the complex Lü system is safer; 

3. Encryption is performed using linear equations of state variables, which is quite different from 
previous encryption methods. 

Remark 4: The b value is only used to adjust the signal amplitude, in order to ensure that the transmitted 
signal can completely cover the information signal; its magnitude can be positive or negative. 

5. Simulation Experiment 

5.1. STDS Controller Simulation 

The complex Lü system (2) was taken as the master system and the double time-delay complex 
Lü system (11) as the slave system. The initial values of the system were u(0) [1,2,3,4, 1]= −  and 
u (0) [ 2, 3, 3, 4, 8]′ = − − − − − , while the time-delays were 0 1=5, =3sτ τ . The controller of system (12) was 
adopted, where 1 2 20k k= = − , 3 4 44k k= = − , and 5 70k = − .  The STDS state error graph was obtained, 
as shown in Figure 12. The effect of this simulation was better. The error tended to be zero and the 
simulation results were basically consistent with the mathematical analysis, verifying the 
effectiveness of the controller. 

 
Figure 12. Time-delay synchronization error status analysis diagram. 

Remark 5: As the controller has better effectiveness, the error system is rapidly stabilized and, as shown 
in Figure 13, the waveform started to overlap with x(t) and y(t) after =0.3sτ . 
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Figure 13. Self-delay synchronization state analysis diagram. 

5.2. Speech Communication Simulation 

System (16) was used as an L1 transmitter, system (11) was used as an L2 receiver, and system 
(17) was used as a controller for the MATLAB simulation. The initial values of the system were set to 
u(0) [1,2,3,4, 1]= −  and u (0) [ 2, 3, 3, 4, 8]′ = − − − − − . The system parameters were set as 1 45,a =  

2 325, 6a a= = and the time-delays were set as 0 1=5s, =5sτ τ . The "Travelling" music, as an audio 
signal, was transformed into a waveform signal in MATLAB for encryption and decryption.  

The original speech signal, ( )h t , is shown in Figure 14. The transmission signal, s(t), is an 
encrypted signal which completely hid the information signal, as shown in Figure 15. The 
transmission signal was a combination of state variables and information signals of the master 
system. For some signals with larger amplitude, the b value could be appropriately reduced to ensure 
the shielding effect of chaotic signals on information signals. The recovered signal is shown in Figure 
16. Compared with Figure 14, it can be seen that the original signal was recovered well. 

 
Figure 14. Schematic diagram of "Traveling" original waveform (b = 300). 

 
Figure 15. Schematic diagram of transmission encryption speech. 
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Figure 16. Schematic diagram of speech recovery after chaos masking. 

It can be seen, from Figure 17, that the error rapidly tended to zero; furthermore, it can be seen 
from the other pictures that the effect of speech encryption communication based on chaotic 
concealment was very good. The figures also show that the self-delay synchronization controller 
could achieve speech transmission relatively well. Moreover, it is easily implemented in the actual 
process. 

 
Figure 17. Speech transmission error analysis diagram (b = 300). 

5.3. Effect of the Parameter b 

In order to verify the effect of the parameter b, many simulation tests were carried out. It can be 
seen, from Figure 18, that the recovery effect was not very good when b was relatively small. When 
the value of b gradually increased, the error became smaller and, when b = 300, the error tended to 
zero. Finally, when the value of b continued to increase, the error essentially did not change; that is, 
it had reached a steady state. Therefore, the best decryption effect can be obtained by changing the 
value of b. 

 

Figure 18. Speech transmission error analysis diagram (b = 20). 

6. Conclusions 

In this investigation, the time-delay complex Lü system was first studied—its chaotic 
characteristics were analyzed by Poincare and Lyapunov analysis methods, and the chaotic attractor 
and Poincare cross-section were given. Then, a synchronous controller was designed to establish the 
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STDS of the time-delay complex Lü system and strict mathematical proof was given. Next, by 
applying the previously designed controller, speech communications were encrypted in the form of 
linear equations of state variables. Finally, a simulation experiment was conducted using MATLAB 
simulation. The simulation results were consistent with the theoretical analysis, thus verifying the 
effectiveness of the controller. It was shown that the controller can restore the original voice signal 
well, in terms of secure speech communications. 
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