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Abstract: Local vibration has shown promise in improving skin blood flow (SBF). However, there is
no consensus on the selection of the best vibration frequency. An important reason may be that
previous studies utilized time- and frequency-domain parameters to characterize vibration-induced
SBF responses. These parameters are unable to characterize the structural features of the SBF
response to local vibrations, thus contributing to the inconsistent findings seen in vibration research.
The objective of this study was to provide evidence that nonlinear dynamics of SBF responses would
be an important aspect for assessing the effect of local vibration on SBF. Local vibrations at 100 Hz,
35 Hz, and 0 Hz (sham vibration) with an amplitude of 1 mm were randomly applied to the right first
metatarsal head of 12 healthy participants for 10 min. SBF at the same site was measured for 10 min
before and after local vibration. The degree of regularity of SBF was quantified using a multiscale
sample entropy algorithm. The results showed that 100 Hz vibration significantly increased multiscale
regularity of SBF but 35 Hz and 0 Hz (sham vibration) did not. The significant increase of regularity
of SBF after 100 Hz vibration was mainly attributed to increased regularity of SBF oscillations within
the frequency interval at 0.0095–0.15 Hz. These findings support the use of multiscale regularity to
assess effectiveness of local vibration on improving skin blood flow.
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1. Introduction

Foot ulcerations is some of the most common complications in people with diabetes mellitus [1,2].
The recurrence rate of foot ulcers is estimated at about 40% within 1 year, 60% within 3 years,
and 65% within 5 years [1]. The etiology of diabetic foot ulcers involves a number of factors,
including peripheral neuropathy and peripheral arterial disease [3–5]. Peripheral neuropathy causes a
series of pathologic alterations in the foot, such as loss of protective sensation for perceiving mechanical
stresses, foot deformity, and skin dryness. Peripheral arterial disease causes an impaired vasodilatory
response to repetitive plantar pressure during walking. Therefore, interventions that can improve skin
blood flow (SBF) and reduce plantar ischemia are needed to prevent foot ulcers in at-risk patients [1,2,5].

Local vibration has shown promise in increasing SBF, reducing tissue ischemia and improving
wound healing [6–13]. However, there is no specific guideline on the selection of the appropriate
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vibration frequency due to conflicting results. Different studies have used different vibration frequencies
without any rationale for choosing the frequency. Corbiere and Koh [7] applied 90 Hz vibrations
to the feet of mice and observed improved healing of muscle injury. For human participants,
Maloney-Hinds et al. [8] applied both 30 Hz and 50 Hz vibrations to the forearm of healthy adults for
10 min, respectively. The results showed that both vibration frequencies caused significant increases
in SBF; and 50 Hz vibration was more effective than 30 Hz. Ren et al. [10] compared the effect of
different intermittent durations of local vibration on SBF at the middle metatarsal head of diabetic and
healthy adults using 50 Hz frequency. Zhu et al. [11] investigated the preconditioning effect of 100 Hz
vibration on plantar SBF response to walking and observed reduced walking-induced hyperemic
response. Zhu et al. [12] investigated plantar SBF responses induced by different vibration frequencies.
They applied three frequencies of vibration (i.e., 0 Hz (sham vibration), 35 Hz, and 100 Hz) at the first
metatarsal head of healthy adults. The results showed that 100 Hz vibration significantly increased
SBF compared to 35 Hz and 0 Hz vibrations. The lack of consensus on the effect of vibration frequency
on SBF could be due to an insufficient understanding of the SBF response to vibration. The use of
mean value of SBF responses to vibration may not fully characterize the effect of vibrations on the
microvascular system [14,15].

The regulation of the SBF response to mechanical stress is a dynamic process, involving changes
not only in blood flow values, but also in the structural properties (dynamics) of SBF [14–17]. In the
literature, the use of time- and frequency-domain based analyses cannot fully capture the effect
of local vibrations on SBF responses. Time-domain parameters provide intuitive features for SBF
regulation, for example, an increase or decrease in SBF after a stress. Spectral analyses in the
frequency domain provide methods to study SBF control mechanisms [18,19]. However, these time-
and frequency-domain analyses are unable to characterize the structural properties of SBF, e.g.,
complexity and self-similarity [20]. Our previous studies have demonstrated that altered non-linear
properties of SBF are associated with impaired microvascular function [16,17,20–22].

The objective of this study was to investigate the structural properties of SBF in response to local
vibrations at different frequencies. Specifically, a modified sample entropy algorithm [21] was used to
quantify the multiscale regularity of SBF. We hypothesized that different frequencies of local vibration
would cause different changes in the multiscale regularity of SBF. To the best of our knowledge, this is
the first study investigating the effect of local vibration on the multiscale regularity of SBF.

2. Methods

A repeated measures study design was used to compare the effect of three frequencies of local
vibration on SBF responses. This study was part of a large study [12]. The data of this study have not
been reported before.

2.1. Participants

Twelve healthy subjects were enrolled in this study. The inclusion criteria were healthy
adults aged between 18 and 35 years. The exclusion criteria included cardiovascular diseases,
diabetes mellitus, skin diseases, and neurological diseases as well as taking any medication that
may affect microvascular function. This study was approved by the University of Illinois at
Urbana-Champaign, Institutional Review Board (#20322). All participants signed the informed
consent forms before any tests. Their demographic data were: were (mean ± standard deviation):
age 25.4 ± 5.5 years, height 1.65 ± 0.5 m, weight 60.3 ± 7.6 kg, body mass index (BMI) 22.0 ± 2.4 kg/m2,
diastolic blood pressure 68.5 ± 7.4 mmHg, systolic blood pressure 105.1 ± 14.4 mmHg, and heart rate
67.9 ± 6.4 bpm.

2.2. Experimental Procedures

The experiments were conducted in a laboratory where the temperature was maintained at
24 ± 2 ◦C. Prior to the tests, the subject rested in the lab for at least 30 min to achieve a stable level of
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SBF. During the experiment, the subject lay in the supine position on a table with the right leg and
foot being supported by a custom-designed frame to avoid possible movement as well as fatigue.
An assembled vibrator was used to apply local vibration at three frequencies of 0 Hz (sham vibration),
35 Hz, and 100 Hz with the amplitude of 1 mm to the right first metatarsal head in a random order [12].
This device consisted of a voice coil motor (YLM40-20, JDStek, Los Angeles, CA, USA), a controller (MS
15 TTLx20, RSF Elektronik, Tarsdorf, Austria), and a power supply, with capacity to generate vibrations
at adjustable frequency and amplitude. The vibrator head was custom designed, made of thermoplastic
elastomer materials, in a cylinder shape with a diameter of 20 mm. The selection of 100 Hz vibration
was based on the sensing frequencies of mechanoreceptors, the Meissner Corpuscle and Pacinian
Corpuscle. The Meissner Corpuscle can detect vibration ranged between 30 and 60 Hz. The Pacinian
Corpuscle can detect vibration ranged between 60 and 300 Hz [11,12]. Also, research studies showed
that a frequency higher than 125 Hz may cause vibration injury [12,23]. Thus, we chose one frequency
(i.e., 35 Hz) for activating the Meissner Corpuscle and one frequency (i.e., 100 Hz) for activating the
Pacinian Corpuscle. A laser Doppler flowmetry (PeriFlux 5000, Perimed, Las Vegas, NV, USA) was used
to measure SBF at the first metatarsal head with a sampling rate of 32 Hz. Each experimental protocol
consisted of a 10-min baseline measurement of SBF, 10-min vibration, and 10-min measurement of SBF
immediately after vibration. Two successive protocols were separated by a washout period of 30 min
to allow SBF recover to the baseline level. Example of skin blood flow signals in response to three
frequencies of local vibrations (i.e., 0, 35, and 100 Hz) are shown in Figure 1.
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Figure 1. Skin blood flow signals and their wavelet spectra of a subject before and after local vibration
at 0 Hz (A,B), 35 Hz (C,D), and 100 Hz (E,F).

2.3. Sample Entropy and Multiscale Entropy

The regularity degree of a time series has been commonly quantified by sample entropy [24]
(Es), which is an improved version of approximate entropy (As) [25]. Es is defined as the negative
natural logarithm of the conditional probability that two sequences within a tolerance r for m points
remain within the tolerance at the next point [24]. A smaller value of Es indicates a higher degree of
regularity. Although As and Es are frequently referred to as complexity measures of time series, they are
actually measures of regularity. For instance, the Es algorithm assigns the largest value to white noise,
which is totally unpredictable but possess no structural complexity. Also, it has been found that Es

may yield lower values for physiological time series under healthy conditions compared to pathologic
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time series [26]. This observation does not agree with the concept that impaired systems generally
lose their ability for adjustment, and thus their outputs exhibit less complexity [26]. In this context,
several multiscale entropy (MSE) methods were introduced [27–29]. In the first MSE method proposed
by Cost et al. [27], a set of coarse-grained time series are constructed by dividing the original time
series into non-overlapping windows of length τ and taking the average of the data points inside each
window as an element of the coarse-grained time series. Then, Es is calculated for each coarse-grained
time series, which can be viewed as a function of τ. This method has several limitations. First,
the procedure for constructing coarse-grained time series is similar to applying a low-pass filter to the
original time series followed by a downsampling operation. Since the cutoff frequency is determined
by τ, there may be situations in which the frequency components of the original time series attributed
to a certain underlying mechanism are partially filtered out. On the other hand, this procedure has
been found to produce artifacts [29]. Second, this method adopts a constant tolerance for all scales,
while the standard deviation of the coarse-grained time series likely decreases with increasing scales,
contributing to a decrease in the resultant entropy values at larger scales. Additionally, the length of
the coarse-grained time series rapidly decreases with increasing scales, leading to unreliable entropy
estimations at large scales, especially for short time series. For details of the limitations of the MSE
method and several improved methods, see [16,17,30].

2.4. Modified Sample Entropy

In our previous study [21], a modified sample entropy algorithm was developed. Its procedures are
presented briefly as follows. For a time series, {x(i), i = 1, . . . , N}, its m-point sequences are defined as:

xτm(i) =
{
x(i + kτ), 0 ≤ k ≤ m− 1

}
, 1 ≤ i ≤ N −mτ (1)

where τ is a delay. The distance between two sequences xτm(i) and xτm( j) is defined as:

d[xτm(i), xτm( j)] = max
{∣∣∣x(i + kτ) − x( j + kτ)

∣∣∣, 0 ≤ k ≤ m− 1
}
,

1 ≤ i, j ≤ N −mτ ,
∣∣∣ j− i

∣∣∣> τ. (2)

For a given sequence xτm(i), suppose the number of xτm( j), where
∣∣∣ j− i

∣∣∣> τ , is ni and the number of
xτm( j) that matches xτm(i), i.e., d[xτm(i), xτm( j)] < r and

∣∣∣ j− i
∣∣∣> τ , is nm

i (r), where r is a selected tolerance,
usually being proportional to the standard deviation of the time series. Therefore, Cm

i (r) = nm
i (r)/ni

is the probability that any sequence xτm( j) matches xτm(i); and Cm(r) =
∑N−mτ

i = 1 Cm
i /(N −mτ) is

the probability that any two sequences xτm(i) and xτm( j) are matched. Likewise; and Cm+1(r) is the
probability that any two sequences xτm+1(i) and xτm+1( j) are matched. The modified sample entropy is
defined as:

Ems(m, r, τ) = limN→∞ − ln
Cm+1(r)

Cm(r)
(3)

which is estimated by the statistic:

Ems(m, r, τ, N) = − ln
Cm+1(r)

Cm(r)
(4)

The performance of Ems has been evaluated in our previous studies using both simulated time
series and SBF data [16,17,21]. The results showed that Ems is insensitive to m and relative consistent
for varying values of r [21]. Here, we further demonstrate that Ems is largely independent of the
length of time series. As shown in Figure 2A, for sinusoidal signals of length N, when N exceeds a
certain threshold, Ems yields almost identical values with the other parameters m, r, and τ being fixed.
On the other hand, as shown in Figure 2B, although Ems decreases monotonically with increasing
tolerance r, it always yields a lower value for the SBF signal after vibration compared to the SBF signal
before vibration.
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Figure 2. (A) Modified sample entropy Ems(m, r, τ, N) of 0.1 and 0.3 Hz sinusoidal signals with different
time durations from 0.5 to 10 min (corresponding to 960 to 19,200 points sampled at 32 Hz), where m = 2
and r = 0.2. (B) Ems(m, r, τ, N) of the SBF signals shown in Figure 1E for different r values from 0.1 to
0.25, where m = 2 and N = 19,200.

When introducing multiple lags between successive data points of the original time series, i.e.,
multiple values of τ, Ems is actually a multiscale entropy measure [16,17]. As a supplement, here we
further test the robustness of Ems and the MSE algorithm proposed by Costa et al. [27], denoted as
Ems(m,r,τ,N), using 0.1 and 0.3 Hz sinusoidal signals. The motivations arise from the fact that the
myogenic and neurogenic frequencies of SBF center approximately at 0.1 and 0.3 Hz, respectively,
and that sinusoidal signals should yield the same entropy value no matter their frequencies as well as
the parameters involved in the entropy measure. As shown in Figure 3, Ems gives almost identical
values for 0.1 and 0.3 Hz sinusoidal signals for τ values from 4 to 10 (Figure 3B), whereas Es values of
0.3 Hz sinusoidal signal are unstable and can even be zero at larger scales due to the rapidly decreased
signal length (Figure 3A). Note that when quantifying the regularity degree of a time series at a single
scale using Ems, the optimal lag can be estimated by the first minimum of the mutual information
function of the time series [21] (Figure 3C). If τ is significant lagging the optimal value, Ems may
distinctly deviate from the expected value (Figure 3B). This observation suggests that when Ems is
serving as a multiscale entropy, the lag should not be a significant lag from the optimal value.
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2.5. Application of Ems to SBF Data

We applied the Ems algorithm to SBF signals collected from 12 subjects before and after vibration
at 0 Hz, 35 Hz, and 100 Hz. As noted earlier, SBF contains six characteristic frequencies between 0.005
and 2 Hz, including 0.005–0.0095, 0.0095–0.02, 0.02–0.05, 0.05–0.15, 0.15–0.4, and 0.4–2 Hz. Because the
time duration of the SBF signal (10 min) may not be long enough to explore the lowest frequency
(0.005–0.0095 Hz), we only considered five characteristic frequencies between 0.0095 and 2 Hz. Hence,
each original SBF signal was filtered by decomposing it into a set of intrinsic mode functions using
the ensemble empirical mode decomposition method [31] and accumulating the mode functions
with frequency intervals between 0.0095 and 2 Hz. In order to choose a reasonable range of τ for all
SBF signals, the optimal τ value for each signal was obtained from the first minimum of the mutual
information function of the signal [21]. As shown in Figure 4, since these optimal values did not exceed
20, the range of τ was chosen as 1–20 data points. Therefore, we computed Ems for each filtered signal
using the parameters m = 2, r = 0.2 × SD and τ = 1–20.

In order to further investigate how different frequencies of local vibration affect the regulatory
mechanisms of SBF, we performed the following analyses. First, the SBF signals were filtered to
remove the cardiac (0.4–2 Hz) and respiratory (0.15–0.4 Hz) oscillations while preserving metabolic
(0.0095–0.02 Hz), neurogenic (0.02–0.05 Hz), and myogenic (0.05–0.15 Hz) oscillations through a similar
procedure as described above. Then, we examined the mutual information function of each filtered
signal aiming to choose a reasonable range of τ.

For most of the filtered signals, the mutual information function monotonously decreases very
slowly in a wide range. Consequently, the value of τ corresponding to the first minimum can be very
large, e.g., larger than 150 data points. We did not compute Ems for very large values of τ, because we
observed that 100 Hz vibration induced a significant decrease in Ems at any scale, but 0 Hz and 35 Hz
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vibrations did not. Thus, we chose τ = 1–80 as the range of lags. Finally, we computed Ems for each
filtered signal using the parameters m = 2, r = 0.2 × SD and τ = 1–80.

For each vibration frequency, changes in Ems of SBF signals in response to vibration were examined
using Wilcoxon signed-rank tests performed in SPSS 26 (SPSS, Chicago, IL, USA). The significance
level was set at 0.05.
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3. Results

Figure 5 shows multiscale entropy, Ems, of SBF signals before and after local vibration at three
frequencies. The 100 Hz vibration induced significant decreases in Ems at all scales (Figure 5C),
indicating more regular SBF after vibration. In contrast, 0 Hz or 35 Hz vibration did not lead to
significant changes in Ems of SBF.
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Figure 5. Multiscale entropy (Ems) of SBF signals before and after local vibration at 0 Hz (A), 35 Hz (B),
and 100 Hz (C). Data are represented as mean ± standard errors. Ems showed little changes after 0 Hz
or 35 Hz vibration (A,B) but a significant decrease after 100 Hz vibration (C). For 100 Hz vibration,
p < 0.01 for τ from 1 to 11 and from 17 to 20, while p < 0.05 for τ from 12 to 16. ** p < 0.01; * p < 0.05.

Figure 6 shows Ems of SBF containing only metabolic, neurogenic, and myogenic components
before and after local vibration at three frequencies. Compared with the above case, Ems underwent
more significant decreases at larger scales after 100 Hz vibration (Figure 6A), whereas Ems still did not
show significant changes after 0 Hz or 35 Hz vibration (Figure 6A,B).
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Figure 6. Multiscale entropy (Ems) of the filtered SBF signals (0.0095–0.15 Hz) before and after local
vibration at 0 Hz (A), 35 Hz (B), and 100 Hz (C). Data are represented as mean ± standard errors.
Ems shows little changes after 0 Hz or 35 Hz vibration (A,B) but a significant decrease after 100 Hz
vibration (C). p < 0.05 for τ from 1 to 22 and p < 0.01 for τ from 23 to 79.

4. Discussion

The main findings of the present study are that a local vibration at 100 Hz significantly
increased structural regularity of SBF at the first metatarsal head of healthy adults, but 0 Hz (sham
vibration) and 35 Hz vibration did not. This is a significant finding because both 100 and 35 Hz
vibrations can significantly increase SBF. Our result supports our hypothesis that local vibrations
at different frequencies can cause different responses in SBF dynamics (e.g., multiscale regularity).
Also, the significant enhancement of regularity of SBF was mainly attributed to enhanced regularity of
the three frequency components of SBF, including 0.0095–0.02 Hz (metabolic control), 0.02–0.05 Hz
(neurogenic control), and 0.05–0.15 Hz (myogenic control). These findings support the concept that the
effect of local vibration on SBF depends on vibration frequency and that nonlinear properties of SBF
should be considered when assessing the effectiveness of vibration on SBF.

A modified sample entropy algorithm [21] was used to quantify the regularity of SBF in response
to local vibration at multiple scales for the first time in this study. This was achieved by, for a
SBF signal, introducing varying lags between successive data points of the sequences that are
compared in the traditional sample entropy algorithm [24]. To understand how the lag τ affects
Ems(m,r,τ,N), we performed the following experiment. Since computing Ems(m,r,τ,N) of a time series,{
x(i), i = 1, . . . , N

}
, is equivalent to constructing a new time series, y(τ), and then computing the

traditional sample entropy [24] of y(τ), we examined the effect of τ on wavelet-based spectrum of
y(τ). In detail, y(τ) = {b1, . . . , bτ}, where bi =

{
x(i), x(i + τ), . . . , x(i + kτ)

}
, i = 1, . . . , τ, and k is the

maximal integer satisfying i + kτ ≤ N. When τ = 1, y(τ) retrieves the original time series. Considering
two SBF signals shown in Figure 1E, for each signal, we constructed y(5), y(10), and y(15) according to
the above approach. As shown in Figure 7A,B, the wavelet amplitude spectrum of each SBF signal
exhibits a few prominent peaks, while the spectra of y(5) and y(10) exhibit more but lower peaks.
Correspondingly, Ems(m,r,τ,N) of each SBF signal monotonously increases with increasing τ from 1 to 5
(Figure 7C). However, for each SBF signal, although the spectrum of y(10) is more homogeneous than
that of y(5) (Figure 7A,B), Ems yields almost equal values for them (Figure 7C). Moreover, for the SBF
signal before vibration, despite the spectrum of y(15) is more homogeneous than that of y(5) (Figure 7A),
Ems of y(15) is distinctly lower than that of y(5) (Figure 7C). These observations indicate that when
τ varies from 1 to a small value, a larger value of τ leads to a more homogeneous combination of
the frequency components of SBF, which contributes to a lager value of Ems (Figure 7C). When τ
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exceeds a certain range, larger values of τ do not necessarily lead to larger values of Ems. The possible
reasons may be that larger lags do not necessarily lead to more homogeneous combinations of the
frequency components of SBF and the homogeneity degree of SBF cannot be fully depicted by the
wavelet-based spectrum.
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the SBF signals before and after vibration.

The choice of an appropriate scale range is an important issue for any multiscale entropy methods,
which depends not only on the algorithm itself but also on the processed data. Our previous work
suggested that when Ems serves as a single-scale entropy measure, the optimal lag could be determined
by the first minimum of the mutual information function of the time series [21]. When Ems serves as a
multiscale entropy measure applying to SBF signals, it usually rises with increasing scales in the initial
stage and then reaches a plateau followed by a decrease. For most data sets used in the present study,
Ems also shows such a trend (Figure 5). Typically, the optimal lag is around the end of the plateau stage
of the Ems curve. For example, for the SBF singles shown in Figure 1E, the optimal lags are 10 (before
vibration) and 11 (after vibration), respectively. From Figure 7C, it can be clearly seen that τ = 10 is
close to the end of the plateau stage (before vibration), while τ = 11 (after vibration) is at the decreasing
stage. Accordingly, we suggest that it would be reasonable to take the optimal lag as the upper limit of
the scale range for computing Ems. Therefore, the scale range τ = 1–20 is large enough for computing
Ems of the SBF signals.

Our results showed that local vibration at 100 Hz caused a significant increase in the regularity
of SBF (Figure 5C), and 0 Hz or 35 Hz vibrations did not affect the regularity of SBF (Figure 5A,B).
Because there are no previous studies investigating the nonlinear properties of SBF in response to
local vibrations, we were unable to directly compare our results with other studies [10–12]. Zhu et al.
showed that SBF ratio, defined as the ratio of SBF after vibration to that before vibration, at the first
metatarsal head of healthy adults was significant higher after 100 Hz vibration compared to that after
0 Hz or 35 Hz vibration [12]. Although the present study adopted the same experimental protocols,
we focused on the changes in regularity of SBF in response to vibration at different frequencies rather
than changes in magnitude of SBF. Nevertheless, our results support the use of a higher vibration
frequency for improving SBF. However, there was a discrepancy between our observations and those
reported by Zhu et al. [12] who observed a slight decrease and a mild increase in SBF ratio induced by
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0 Hz and 35 Hz vibrations, respectively. This means that 0 Hz and 35 Hz vibrations induced changes
in SBF ratio but not in regularity of SBF.

The specific mechanisms responsible for our observations are unclear. One possible explanation is
that different frequencies of vibration may activate different channels associated with mechanoreceptors
in the plantar skin. It is known that the glabrous skin contains a large number of Pacinian corpuscles,
which are more sensitive to higher vibration frequencies [23]. Thus, a higher frequency of vibration
may be easier to induce SBF response [8]. Additionally, a higher vibration frequency may activate more
mechanoreceptors, including Pacinian corpuscles and Messinian corpuscles [32], thereby contributing
a more intense SBF response.

Our results also showed that when the SBF signal was filtered to preserve only metabolic
(0.0095–0.02 Hz), neurogenic (0.02–0.05 Hz), and myogenic (0.05–0.15 Hz) components, Ems underwent
a more prominent decrease after 100 Hz vibration compared to the original signals (Figure 6C),
while 35 Hz and 0 Hz vibrations had no or little effect on Ems of the filtered SBF signals (Figure 6A,B).
This observation implies that the enhancement of regularity of SBF induced by 100 Hz vibration
was mainly attributed to enhanced regularity of the oscillatory components associated with the local
control mechanisms. Our results were roughly consistent with the literature viewpoint that two
main mechanisms, including the nitric oxide production and nerve axon reflex, are responsible for
the increase in SBF in response to vibration [6]. Maloney-Hinds et al. reported that 50 Hz vibration
delivered from a vibrating platform to the forearm of healthy adults and adults with type 2 diabetes
induced increases in SBF and nitric oxide production [9]. Strzalkowski et al. showed that 150 Hz
vibration applied to the hand palm and foot sole of healthy subjects produced reductions in burst
occurrence of muscle sympathetic nerve activity [32]. Zhu et al. demonstrated that under 100 Hz
vibration, ratios of wavelet amplitude of metabolic and neurogenic components of SBF, defined as
the ratio of mean absolute wavelet coefficient over the frequency band and over time after vibration
to that before vibration, were significantly higher compared to 0 Hz vibration [12]. The authors thus
suggested that the increase in SBF induced by 100 Hz vibration was associated with metabolic and
neurogenic controls. On the other hand, our results revealed distinctive features of SBF in response
to vibration that cannot be depicted by linear approaches such as wavelet analysis. For instance,
our results showed that under 100 Hz vibration, the decrease in Ems of the filtered SBF signals was
more prominent compared to that of the original SBF signals (Figures 5C and 6C). On the contrary,
in the study by Zhu et al. [12], the difference in the ratio of wavelet amplitude for either the metabolic
or neurogenic oscillation between 100 Hz and 0 Hz vibrations was less significant than the difference
in the SBF ratio between two vibration frequencies. Therefore, structural properties of SBF in response
to vibration should be considered when assessing the efficacy of vibration on SBF.

This study has several limitations. First, we recruited only 12 participants. The small sample size
might impede a reliable statistical analysis. However, the main purpose of this study was to investigate
whether regularity of SBF can be used to characterize SBF response to vibration. Our results showed
that this measure underwent distinctively different changes after vibration at different frequencies,
suggesting it could play an important role in selecting vibration parameters. Second, only three
vibration frequencies, i.e., 100 Hz, 35 Hz, and 0 Hz (sham vibration) were tested in this study. It is
unclear whether vibration at a mild frequency, e.g., 50 Hz, could induce a significant change in
regularity of SBF. Third, previous studies suggested that other parameters of vibration, such as the
intensity of vibration (e.g., amplitude of vibration) also influence SBF response [6], which were not
considered in this study. Their influences of vibration intensity on SBF response need to be examined
in future studies.

5. Conclusions

The main findings of the present study are that local vibration at 100 Hz significantly increased
structural regularity of SBF at the first metatarsal head of healthy adults, but 0 Hz (sham vibration)
and 35 Hz vibration did not. This is a significant finding because both 100 and 35 Hz vibrations
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can significantly increase SBF. Our result supports our hypothesis that local vibrations at different
frequencies can cause different responses in SBF dynamics (e.g., multiscale regularity). These findings
support the concept that the effect of local vibration on SBF should be assessed using both traditional
time- and frequency-domain and multiscale regularity methods.
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