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Abstract: Several secure image encryption systems have been researched and formed by chaotic
mechanisms in current decades. This work recommends an innovative quantum color image
encryption method focused on the Lucas series-based substitution box to enhance the competence
of encryption. The suggested encryption technique has more excellent key space and significant
confidentiality. The chaotic system, along with the substitution box, exhibits additional complicated
dynamical behavior, sufficient arbitrariness, and uncertainty than all others focused on just chaotic
models. Theoretical and simulation assessments show that the offered image encryption performs
admirably, its traditional equivalents in terms by efficiency in terms of statistical analysis.

Keywords: quantum logistic map; image encryption; Lucas series; substitution box; statistical analysis

1. Introduction

The advancement of computer networks directs to the extra efficient retrieval of digital images
over multimedia networks. Encryption is used to secure sensitive information being transmitted
across the web. A wide range of chaos behaviors is very hard to predict that are apparently random
and unpredictable. Chaos theory defines the randomness behavior that exists in the chaotic complex
system and it can be prescribed by utilizing mathematical models. Chaotic models are extensively
employed to secure data because of its desired properties, including ergodicity, unpredictability,
and sensitive dependence on initial conditions, the wrong initial condition will lead to non-chaotic
behavior. These properties, particularly in scientific and engineering disciplines, have attracted vast
attention, designing new cryptographic algorithms and cryptanalysis. A chaotic system’s dynamics
exhibit fascinating nonlinear effects, leading to complete security and key space in data encryption.
Chaos played a vital role in designing robust cryptosystems such as the construction of S-boxes,
image encryption algorithms, random number generators, and so on figure [1–7]. Quantum chaos-based
encrypted images will play an essential role in the future quantum computer era as a specific and
crucial quantum information type. Several representation schemes or models for quantum images
have been developed for various purposes. With the advent of time, concerns raised that if classical
chaotic systems become quantized. The subject has become quantum chaos. This study is based on
quantum versions of classical chaotic systems. The map-based on the chaotic quantum system gives
deep insight into the nature of quantum chaos [8]. The quantized version of the classical chaotic map
has better properties. The quantized version of the classical map (quantum map) may be thought
of transformation based on quantum equivalents of canonical transformations. However, there is
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no unique procedure of quantizing the classical map. Many researchers and cryptographers have
utilized quantum maps in the context of quantum chaos [9,10]. Classical chaotic systems can be
distinguished due to its high sensitivity towards the initial condition. At the same time, quantum
chaos depends upon the parameters and its sensitivity in the Hamiltonian in the subject of chaotic
dynamics [11,12]. The interesting properties of quantum chaos can be applied in cryptography for
the image encryption process—numerous works on designing cryptographic algorithms employing
quantum chaos [13]. The existing schemes of quantum chaos have utilized the physical process
of quantum chaos. We have developed a system merely based on equations that are widely used
chaotic quantum map. Quantum communication transmission is of immense significant interest to
research scientists, physicists, and mathematics. It is a methodology related to creating innovative
quantum techniques/protocols for encoding, retrieving, and visual processing information [14]. It is
expected to bring about a new era of scientific advances in computing, communication, machine
learning, and cryptography because quantum computing can resolve the mismanagement of classical
computers [15]. Quantum images will indeed perform a vital character in the quantum-based period,
as a particular and essential type of quantum theory. A series of available versions or prototypes with
quantum images have been developed for various purposes. Due to its prospective use in secure
communication, quantum encryption process and substitution often play a significant role in diverse
scientific and engineering fields. By using a chaotic quantum map, Lucas series with strong S-box
based hybrid dynamical models, this article provides new approaches for encryption. Since coupled
quantum logistic encryption, are itself ideal for quality encryption, the addition of Lucas series and
substitution box stipulates highly secure encryption programmed [16–21]. Liang et al. [22] suggested a
new quantum encryption technique dependent on affine transformation and logistic map controlled
XOR image operations. In 2017, a quantum-based encryption approach was applied in the work
of Zhou et al. [23] utilizing a hyper-chaotic method and reiterative Arnold transforms to manage
image cycle shift operations. Ten et al. [24] offer quantum encryption method depending upon Chen’s
hyper-chaotic system.

Considerable work has been carried out in recent years to prevent unauthorized users from
accessing digital files. Zhi et al. [25] suggested an image confidentiality algorithm by merging a
cat map along with Chen’s chaotic technique to scramble the image data. New hyper-chaos-based
image data encryption techniques have been suggested by diffusing and scrambling images with
hyper-chaos sequences [26–29]. Partial authentication is indicated in [30], which decreases the
encipher and decipher time of video, image processing and data transmission. Even then, it is only
appropriate for a partial compression procedure and is therefore not considered as a global standard.
The diffusion and permutation features of the cellular automation (CA)-based image confidentiality
system [31,32] is satisfactory to several strengths. A symmetrical data encryption technique focused on
a two-dimensional conventional baker map is shown in [33]. An optimal image data encryption method
dependent on permutation—diffusion and skew tent map structure has lately been proposed in [34].
In [35], Eslami and Bakhshandeh review the security vulnerabilities of [34] toward known-plaintext
and chosen-plaintext attacks and reveal that the susceptibility of plain text, as observed by the authors,
is not sufficient. It is recommended that the technique be emphasized more than twice to tolerate
differential attacks.

The articles presented in the literature section, depending on the quantum or non-quantum
mechanism requires a high computational cost and time. To reduce cost and time, we have offered a
new approach to quantum image encryption. The suggested algorithm works as a hybrid model utilizing
quantum chaotic logistic map at its initial stage for an image encryption process. This system possesses
high randomness comparative to traditional techniques and classical chaotic maps. The increased
complexity of quantum chaos generating random sequencing all depends upon the initial state and
parameters that control the encryption process. Moreover, we employed the Lucas series to add
more randomness to the previous sequences generated by quantum chaos phase. Finally, each pixel
is substituted to add more diffusion to the scheme. The proposed algorithm is tested over several
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standard statistical tests. Performance analysis stage depicted that the proposed method is reliable and
highly robust.

The provided algorithm comprises two algorithms: The first algorithm is for diffusion by the
implementation of a chaotic quantum system, and the second algorithm is to add confusion by the
application of the substitution box generated by the Lucas series and pseudo-random number generator.
Experimental outcomes, depending on different categories of data protection and pace performance,
demonstrates that the suggested encryption system can manage trade-offs among security requirements
and speed performance.

The remaining article is structured as follows. Section 2 delivers some fundamental knowledge
of the suggested technique. In Sections 3 and 4, we have presented the design of encryption and
decryption techniques, respectively. Security review and discussion involving contrasts with other
methods are delivered in Section 5. Finally, in last section we have included some conclusion remarks.

2. Fundamental Knowledge

2.1. Chaotic Logistic Classical Map

The classical logistic map gained much attention using the idea of chaos due to its simple
representation and operation [36]. A chaotic logistic map possesses better dynamic characteristics as
well as a uniform feature of invariant density. A simple interpretation of the chaos is that unpredictable
systems are highly sensitive to its initial conditions. The main reason of such sensitivity to initial
conditions is the repetitive recapitulation and lengthening of the given space described by the map.
Mathematically the system is illustrated as [37]:

xn = r(xn)(1− xn) (1)

where in the equation xn is the initial condition and r is the control parameter. The value of xn must
befall in the range of 0 and 1, i.e., xn ∈ (0, 1) whilst the value of r must be in the specified range of 3 and
4. The chaos region will emerged in the interval r ∈ (3.54, 1). If control parameter or initial conditions
are changed from its specified range the system will show completely different attractor. The initial
key must be correct for proper encryption and decryption process.

2.2. Pseudo-Quantum Chaotic System

In 1990, Goggin et al. [38] derived a dissipative logistic map with quantum corrections method
by coupling the quantum kicked to the bath of harmonic oscillators. The quasicontinuum model is
introduced to describe the dissipation from the bath, and then analyzed the resulting expectation-value
map by taking a truncated of expectation value. In order to study the quantum correlation effects they
wrote α̂ = 〈α̂〉+ δα̂where δα̂ depicts quantum fluctuations about the operator 〈α̂〉 and has the property:
δα̂→ 0 . They initiate a period-doubling route to the classical behavior as a dissipation parameter is
enhanced and other fascinating aspects at transitional values of this parameter. In this way, they study
what effects correlations of the form

〈
δα̂†δα̂

〉
, and, 〈δα̂δα̂〉, etc., have the coupling to the bath is varied.

Considering the one-dimensional like classical logistic equation as:〈
α̂i+1

〉
= r

(
〈α̂i〉 −

〈
α̂i
†α̂i

〉)
, (2)

In the above Equation (2) r is a chaotic parameter that is adjustable where α̂i, and
〈
α̂i
†
〉

are the
two annihilation and creation operators of the boson system of the bath. Now using the assumption
for the aforementioned α̂ = 〈α̂〉+ δα̂ where δα̂ shows quantum fluctuations about 〈α̂〉 and has the
property: δα̂→ 0 . By taking a truncated system of expectation value and correlation in the manner of
Goggin et al. can be written as: 〈

α̂i+1
〉
= r

(
〈α̂i〉 − |〈α̂i〉|

2
)
− r

〈
δα̂i
†δα̂i

〉
, (3)
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From the Heisenberg equation of motion δα̂i, we can derive the equation for
〈
δα̂†δα̂

〉
which

gives the appearance of third-order quantum corrections. Now for higher-order correlations
〈
δα̂†δα̂

〉
,

〈δα̂δα̂〉 and their Hermitian conjugates are ignored, which results in the following set of equations:

xi+1(1) = r(xi(1) − |xi(1)|2) − rxi(2), (4a)

xi+1(2) = −xi(2)e−2β + 2re−β[−xi(1)xi(2) − xi(1)xi(3) + xi(2)], (4b)

xi+1(3) = −xi(3)e−2β + 2re−β[−xi(1)xi(2) − xi(1)xi(3) + xi(3)], (4c)

From Equations (4a)–(4c) we can see that x(1) = 〈α̂〉, x(2) = 〈α̂〉+ δα̂, and x(3) = 〈δα̂δα̂〉 and β is a
bifurcation parameter. If xi+1(2), xi+1(3)→ 0 or β→∞ then the system (4) leads to the classical
logistic map. When we iterate the system (4) with some specific initial values x0(1), x0(2) and x0(3)
then we get highly random real values as the output of the chaotic map.

2.2.1. Bifurcation Plots

The effect of dissipation can be observed by plotting a bifurcation diagram. In Figure 1 we
have depicted β-bifurcation diagram by fixing the value of r as r = 3.65, r = 3.74 and r = 3.90 and
ranging β from 2.5 to 6. For small values of the dissipation parameter, the map is on a fixed point,
and we get a stable behavior, but with the increase in β we get a period-doubling conversion to chaos.
From the bifurcation diagram, we can examine that the strength of quantum correlations is decreased
by increasing the value of the dissipation parameter β in the chaotic system and if β approaches to∞,
the system (4) give a classical logistic map.
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2.2.2. Data Randomness Plot

The time series plot can observe randomness in a chaotic map. This graph plots the output of a
chaotic map with respect to time. Figure 2 presents first 1000 output values of the quantum chaotic
map. Irregularity in data shows that the chaotic quantum system exhibits highly random output.

Entropy 2020, 22, x FOR PEER REVIEW 5 of 23 

 

 

2.2.2. Data Randomness Plot 

The time series plot can observe randomness in a chaotic map. This graph plots the output of a 
chaotic map with respect to time. Figure 2 presents first 1000 output values of the quantum chaotic 
map. Irregularity in data shows that the chaotic quantum system exhibits highly random output. 

   
(a) (b) (c) 

Figure 2. Quantum chaotic map output plot along (a) x and t; (b) y and t; (c) z and t. 

  

Figure 2. Quantum chaotic map output plot along (a) x and t; (b) y and t; (c) z and t.



Entropy 2020, 22, 1276 5 of 20

2.3. Fibonacci and Lucas Sequence

Fibonacci numbers, usually represented by Fn, formed a sequence named Fibonacci sequence and
characterized as each number is a sum of two previous numbers, beginning values between 0 and 255,
from values 0 and 1 as shown in Figure 3. Mathematically it can be stated as:

Fn = Fn−1 + Fn−2, with n ≥ 2

for
F0 = 0, F1 = 1

The initial few terms of the Fibonacci sequence are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 . . . .
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3. Design of Quantum Image Encryption Scheme

Here, we introduced a new data encryption approach that utilized quantum image method.
The system has two layers: a diffusion layer using chaotic quantum map and a confusion layer using
an s-box (as substitution operation). A quantum chaotic system is utilized to randomize the input data
highly. The application of the s-box increases confusion in cipher image, which breaks the relationship
between plain and cipher data. The designed encryption algorithm comprises the two sub-algorithms.
Algorithm 1 involves the implementation of a quantum chaotic map on image layers. In Algorithm 2,
we have generated S-box using the Lucas series and implemented it on the image layers obtained after
the application of the quantum map. The flow chart of the offered encryption technique is depicted in
Figure 5.Entropy 2020, 22, x FOR PEER REVIEW 8 of 23 
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Algorithm 1 Execution of Quantum Chaotic Map

Firstly, we set diffusion key parameters that are initial conditions and chaotic parameters for quantum chaotic
map.
1. Select x(1) = 0.4634, x(2) = 0.0004, x(3) = 0.0002 as initial conditions for system (4).
2. Set the chaotic parameters as r ∈ [3.6, 4] and β ∈ [2.5, 6].
3. Select image of size m× n and separate layers of the image.
4. Iterate chaotic map by using selected initial conditions and chaotic parameters up to m× n.
5. Arrange the output obtained from the chaotic system in an array.
6. Sort the image elements according to the array obtained from the chaotic map.
7. Combine the data obtained from step 6 and pass it to Algorithm 2.

Algorithm 2 S-box Generation and Implementation

The main purpose of Algorithm 2 is to create confusion in data obtained from the algorithm. To add confusion
in data we apply the substitution box constructed by using the Lucas series.
1. Use the pseudo-random number to generate random integer arrays.
2. XOR each array with different Lucas series output.
3. Select unique 256 (ranging from 0 to 255) elements from array obtained from step 2.
4. Compile the elements obtained from step into 16×16 S-box.
5. Pass the output obtained from Algorithm 1 through the proposed S-box.
6. Compose the resulted data as an encrypted image.

Substitution box generated by proposed method is listed in Table 1.
The proposed substitution box by using the Lucas series is presented in Table 1.

Table 1. Proposed substitution box.

242 189 222 111 3 100 253 206 78 24 15 226 219 88 93 137
215 37 194 79 114 87 84 156 254 163 134 234 58 245 155 169
120 43 132 220 136 62 145 17 230 191 21 33 209 77 67 178
68 36 32 249 29 246 188 117 142 85 202 240 57 25 0 89
251 97 95 71 41 200 247 227 54 60 133 203 161 146 182 45
198 231 116 1 125 158 72 42 40 5 208 103 180 190 236 210
218 170 147 47 129 192 207 46 76 73 153 52 106 59 99 185
20 11 159 107 187 80 123 10 151 101 13 165 105 141 48 233
91 232 8 183 109 239 7 118 157 6 138 44 238 56 213 104
96 121 199 171 144 23 241 201 179 154 205 214 94 9 162 135
244 38 63 143 2 108 166 167 212 75 14 98 30 110 216 148
174 186 16 90 217 221 150 49 181 235 255 83 228 119 177 4
172 252 224 164 53 61 175 74 26 51 82 39 193 86 19 126
140 195 197 225 237 248 35 211 92 65 112 223 31 69 131 55
196 173 127 70 152 124 66 184 128 122 34 64 28 115 50 22
18 204 139 130 250 176 168 12 102 229 149 243 27 160 81 113

Experimental Results

This part of the article presents the visual results of the proposed encryption system. We have
presented experimental results of Peppers 512 × 512 × 3 image. Figure 6a–d are original layers and
Figure 6e–h are their respective cipher layers. We can observe perfect randomness in data visually.
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4. Design of Proposed Image Decryption Scheme

The decryption procedure is the similar as encryption but in a reversal manner. The input of the
decryption algorithm is encrypted image received from the encryption algorithm. The decryption
process also comprises of two steps. Firstly, we apply inverse substitution box and then inverse chaotic
system. The image decryption process is as follows:

Decryption Algorithm 1: Inverse Substitution Box

In this algorithm, we put the encrypted image as input and apply the inverse substitution box on
each layer of image. After the implementation of inverted S-box, the image layers are passed to the
decryption algorithm 2.

Decryption Algorithm 2: Inverse Chaotic Map

After the inverse S-box, we apply the inverse chaotic map on the image obtained from decryption
algorithm 1. We apply the inverse sorting arrangement of the encryption chaotic map to get the
original image.

5. Performance Analysis

Mathematical simulations are executed on the MATLAB 2019 platform to validate the efficiency
and reliability of the offered quantum-based encryption model. We utilized test color images are
Baboon, Peppers, Lena, Fruits, Airplane, House of size 512× 512. The robustness of proposed S-box,
histogram analysis, correlation coefficient, information entropy, image similarity, randomness and key
space analyses are performed in this section.

5.1. Robustness of Proposed S-Box

Multiple S-box tests are applied to analyze the reliability as well as the robustness of the designed
S-box. The designed S-box is used in our encryption model. Four necessary S-box tests are applied
to designed S-box to check effectiveness and validity. The assessments here include non-linearity
test analysis (NL), strict avalanche criterion (SAC), bit Independence criterion (BIC), and differential
approximation probability (DP). The result obtained using the proposed S-box is compared to the
existing S-boxes. Each test result depicts that constructed S-box for encryption model has a better
ability to resist any attack.

Non-linearity is an essential criterion for finding the strength of encrypted information by the
process of substitution. From Ref. [41] non-linearity (Ng) is elaborated in more detailed. The value Ng
should be higher for the validation of the robustness of the model. The minimum calculated value of
Ng for the designed S-box is 104 while the maximum computed value is 108, with an average value is
approximately 105.225. As shown in Table 2, the designed S-box value is higher compared to existing
S-box non-linearity values.

Strict avalanche criterion (SAC) is a ratio of change in bits to the number of bits in the ciphertext.
The test is more detailed in Ref. [41]. Depicting from Table 3 values of SAC is spread over the maximum
to a minimum. The optimal value of SAC is 0.5. The values are near to 0.5, as shown in Tables 3 and 4,
which shows that the designed S-box is robust for any linear and differential attacks.

Bit independent criterion non-linearity (BIC-NL) and bit independent criterion strict avalanche
criterion (BIC-SAC) is used to find the strength of designed S-box. The computed values must be higher
to existing S-boxes BIC-NL and BIC-sac values. The test is more detailed in Ref. [41]. Results and
comparison of both tests are shown in Tables 5 and 6, respectively. The achieved results are quite
exceptional as compared to presented S-box results.

The differential approximation is another essential criterion that is widely used to find the
reliability of S-box. The lower the value of DPg indicates greater resistivity to differential attacks.
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The computed value of 12 (see Table 7) shows that the S-box designed for encryption model is highly
secure. The test is more detailed in [41].

Nonlinearity test (NL) = Ng = 2k−1(1− 2kmaxϕ∈GF(2k)|S(g)(ϕ)|), (5a)

S(g)(ϕ) =
∑

ϕ∈GF(2k)

(−1)x.ϕ⊕g(x), (5b)

Strict avalanche criterion = S(g) =
1
k2

∑
1<r≤k

∑
1≤ω≤k

∣∣∣∣∣12 −Qr,ω(g)
∣∣∣∣∣, (6a)

Qr,ω(g) = 2−k
∑

x∈Bk gω(x)⊕gω(x⊕ er), (6b)

where er = [θr,1θr,2 . . . θr,k]
T and

θr,ω = {0 , r , ω}

θr,ω = {1, r = ω}

DPg(∂k→∂l) =

#{k ∈ X
S(k) ⊕ S(k⊕ ∂k) = ∂l }

2m

 (7)

Table 2. Nonlinearity test for constructed S-box and comparison.

S-Box Max Min Mean

Constructed S-box 108 104 105.25
Existing S-box [42] 108 100 103.25
Existing S-box [43] 109 103 104.88
Existing S-box [44] 106 100 103
Existing S-box [45] 106 100 103.25
Existing S-box [46] 108 102 104.75
Existing S-box [47] 108 98 103

Table 3. SAC dependence matrix of designed S-box.

0.5469 0.5000 0.5000 0.5000 0.5000 0.5000 0.5156 0.5469
0.4531 0.5391 0.5234 0.4531 0.5000 0.5000 0.5156 0.5000
0.5469 0.4609 0.5234 0.4531 0.5313 0.4844 0.5156 0.5469
0.5000 0.4609 0.5000 0.5000 0.5313 0.5156 0.5000 0.4531
0.5000 0.5000 0.4766 0.4531 0.5000 0.4844 0.4844 0.5469
0.5000 0.4609 0.4766 0.4531 0.5313 0.5156 0.5156 0.5000
0.5000 0.5000 0.5000 0.5000 0.4688 0.5156 0.4844 0.4531
0.5000 0.4609 0.5000 0.5000 0.5000 0.5000 0.5156 0.5000

Table 4. Analysis of strict avalanche criterions (SAC) for different S-boxes.

S-Boxes Max Min Mean

The obtained S-box 0.5469 0.4531 0.4987
Existing S-box [42] 0.5938 0.3750 0.5059
Existing S-box [43] 0.5703 0.3984 0.4966
Existing S-box [44] 0.6094 0.4219 0.5000
Existing S-box [45] 0.5938 0.4219 0.5049
Existing S-box [46] 0.5938 0.3906 0.5056
Existing S-box [47] 0.5938 0.4063 0.5012
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Table 5. Bit independent criterion (BIC)-Nonlinearity (NL) for designed S-box.

0 118 116 108 110 116 114 114
118 0 116 110 106 110 114 104
116 116 0 108 116 110 116 114
108 110 108 0 110 114 118 116
110 106 116 110 0 118 118 110
116 110 110 114 118 0 108 108
114 114 116 118 118 108 0 114
114 104 114 116 110 108 114 0

Table 6. Comparison of Bit independent criterion (BIC)-nonlinearity (NL) with different S-boxes.

S-Box BIC-SAC BIC-Nonlinearity

Constructed S-box 0.4990 112.64
Existing S-box [42] 0.5031 104.29
Existing S-box [43] 0.5044 102.96
Existing S-box [44] 0.5024 103.14
Existing S-box [45] 0.5010 103.71
Existing S-box [46] 0.5022 104.07
Existing S-box [47] 0.4989 104.07

Table 7. Differential approximation for constructed S-box.

6 6 8 6 8 8 8 6 6 6 6 8 6 12 8 6
8 8 6 6 6 6 6 6 6 8 8 6 6 8 6 6
8 6 6 8 8 10 8 6 8 6 6 6 8 6 8 10
6 6 8 4 6 6 6 6 6 6 6 6 8 6 6 6
6 8 4 6 6 6 6 6 6 6 8 6 6 10 8 6
8 8 6 8 6 6 8 8 6 6 6 6 8 8 6 6
6 6 6 8 6 6 6 8 6 6 8 8 6 8 6 8
8 6 6 8 6 6 6 6 6 8 6 6 6 6 8 4
10 4 6 6 6 6 8 6 8 6 6 6 6 6 8 6
6 6 6 8 6 4 8 6 6 6 6 8 6 6 8 8
6 8 8 6 6 6 6 8 6 6 6 6 8 6 6 8
6 6 8 6 6 6 8 8 6 8 8 6 6 6 8 6
6 10 8 6 6 6 6 6 6 8 6 8 6 8 6 6
6 6 6 6 6 8 6 8 6 6 6 6 8 6 6 6
6 6 10 8 6 6 6 6 6 6 6 6 6 8 6 6
8 8 8 6 6 6 6 6 8 10 6 8 6 6 6 -

5.2. The Histogram Analysis

It is one of the crucial measures to evaluate the working of encryption technique. The analysis
reveals the pixels frequency distribution of an image. An ideal encryption algorithm always produces
ciphers which create a uniform histogram for any original data. Figure 7 presents simulation results of
the histogram for original and encrypted image layers of Peppers. It can be noticed that the histogram
of the encipher images is drastically dissimilar from the original ones. According to the depicted
results in Figure 7, the offered encryption scheme is perfect for opposing all histogram related attacks.
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5.3. Correlation Coefficient Analysis

Pixels of original images having significant visual content are highly correlated to each other in
horizontal, diagonal and, vertical way. Correlation coefficient value is 1 for original images. A perfect
encryption algorithm must reduce this correlation value in each direction. Therefore, it is evident
that after the implementation of the robust encryption scheme, the correlation reduces to 0. We have
performed the correlation analysis for some standard images. We have chosen 10,000 pairs of pixels
from initial and encipher images, and we have computed the correlation coefficient among neighboring
pixel values as follows:

γxy =

∣∣∣ 1
M

∑M
i=1(xi −mean(x))(yi −mean(y))

∣∣∣√
1
M

∑M
i=1(xi −mean(x))2

√
1
M

∑M
i=1(xi −mean(x))2

, (8)

where x and y are grey-level pixels of two neighboring pixels, M is the overall number of adjacent
pixels in original and cipher image. Results of correlation analysis are listed in Table 8, also we have
performed some comparative analysis with some existing algorithms.

Depicted results in Table 8 claims that the neighboring pixels of original and cipher images
are uncorrelated by the implementation of the suggested scheme as comparative to other
existing algorithms.

The visual analysis of correlation can be performed by marking the distribution of neighboring
pixels of original and its respective cipher image using graph. The correlation distribution of each
direction is given in Figures 8–10 for different layers of Peppers image. From the Figures, it can
be visualized that there is a clear alteration among the plain and enciphered correlation diagram,
which shows the robustness of the offered encryption model.
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Table 8. Correlation coefficient for proposed scheme and some existing algorithms.

Proposed Scheme Ref. [48] Ref. [49]

Image Direction Plain Image Cipher Image

Baboon
Horizontal 0.9231 0.0009 0.003984 −0.0038
Diagonal 0.8543 0.0013 0.003949 0.0003
Vertical 0.8660 −0.0016 −0.004631 0.0007

Peppers
Horizontal 0.9635 0.0013 −0.000116 −0.0009
Diagonal 0.9564 0.0007 −0.002276 0.0033
Vertical 0.9663 −0.0015 −0.000307 0.0008

Airplane
Horizontal 0.9726 0.0016 −0.001662 0.0006
Diagonal 0.9343 −0.0030 0.003358 −0.0011
Vertical 0.9568 −0.0008 0.000894 0.0029

House
Horizontal 0.9671 −0.0010 −0.002882 -
Diagonal 0.9126 0.0005 0.004594 -
Vertical 0.9353 0.0002 −0.004121 -

5.4. Information Entropy

Randomness based on information entropy is one of the crucial properties to evaluate the
uncertainty of data. Entropy can be computed by:

H(x) = −
2n
−1∑

i=0

P(xi) log2 P(xi), (9)

where P(xi) is the probability distribution of each x. The ideal value of entropy for cipher image with
256 gray level is 8. Therefore, an encryption scheme must be idyllic if it yields cipher with entropy value
close to 8. The entropy results for some standard images are presented in Table 9. Stated calculations
in Table 9 shows that entropy of our proposed encryption method is almost close to 8, which indicates
that the output data is highly randomized.
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Table 9. Information entropy results for some standard images.

Image Name Plain Image Encipher Image

R G B R G B

Baboon 7.7067 7.4744 7.7522 7.9992 7.9994 7.993
Lena 7.5889 7.1060 6.8147 7.9993 7.9993 7.9993

Peppers 7.3388 7.4963 7.0583 7.9992 7.9993 7.9992
Fruits 7.0556 7.3527 7.7134 7.9993 7.9993 7.9993

Airplane 6.7178 6.7990 6.2138 7.9993 7.9993 79993
House 7.4156 7.2295 7.4354 7.9993 7.9993 7.9994

Moreover, we have presented a brief comparison offered scheme with some existing work in
the literature (see Table 10). Comparative outcomes reveal the overall performance of the offered
encryption method.

Table 10. Comparative information entropy analysis.

Image Name Suggested Scheme Ref. [48]

R G B R G B

Baboon 7.9992 7.9994 7.993 7.99930 7.99934 7.99929
Peppers 7.9992 7.9993 7.9992 7.99923 7.99922 7.99937
Airplane 7.9993 7.9993 79993 7.99930 7.99937 7.99931

House 7.9993 7.9993 7.9994 7.99932 7.99932 7.99937

5.5. Plaintext Sensitivity Analysis

When we alter one pixel of the original image, then ciphertext must be 50% changed to ensure
the offered scheme’s privacy. To observe the plaintext sensitivity in the suggested technique, we have
calculated the number of pixels changing rate (NPCR) and the unified average changing intensity
(UACI). These analyses are performed on two images, the first one is the enciphered image of
the original image, and the second one is the cipher image of one-pixel change original image.
Mathematically NPCR and UACI are demonstrated as:

NPCR =

∑M
i=1

∑N
j=1 D(i, j)

M×N
× 100, (10)

D(i, j) =
{

1, C(i, j) , C′(i, j),
0, C(i, j) = C′(i, j),

(11)

UACI =
1

M×N

 M∑
i=1

N∑
j=1

∣∣∣C(i, j) −C′(i, j)
∣∣∣

255

× 100, (12)

where M×N is the size of cipher images. We have listed calculated test results of NPCR and UACI
of some standard images in Table 11. The standard result values of NPCR and UACI statistical test
are 99.61 and 33.44 for a secure encryption scheme. The average values of NPCR and UACI of the
suggested scheme are much better than existing schemes. Comparative results indicate that our offered
scheme is robust against chosen-plaintext attack.
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Table 11. NPCR and UACI results for offered scheme and comparison with existing technique.

Offered Scheme Ref. [50]

Image NPCR UACI NPCR UACI

Baboon 99.60 33.49 99.12 33.11
Lena 99.61 33.51 99.22 33.12

Peppers 99.61 33.50 99.15 33.14
Airplane 99.61 33.48 99.18 33.11

House 99.61 33.48 98.87 32.16

5.6. Image Quality Measures

In the progress of image processing algorithms, image quality measurement (IQM) plays a
vital role. An extensive set of analyses are conducted to ensure the quality of the encrypted image.
The mathematical formulation for quality evaluations are as follows:

MSE =
1

M×N

∑
i, j

(P(i, j) − P′(i, j))2, (13)

PSNR = 10 log
(2n
− 1)2

MSE
, (14)

NCC =

∑
i, j P(i, j)→ P′(i, j)∑

i, j P(i, j)2 , (15)

AD =

∑
i, j(P(i, j) − P′(i, j))

M×N
, (16)

SC =

∑
i, j P(i, j)2∑
i, j P′(i, j)2 , (17)

MD = Max(P(i, j) − P′(i, j)), (18)

NAE =

∑
i, j(P(i, j) − P′(i, j))2∑

i, j

∣∣∣P(i, j)
∣∣∣ , (19)

where M ×N is the total dimension of plain and cipher image, P(i, j) denotes the plain image and
P′(i, j) represents its corresponding cipher image. Image quality measures for some standard color
images are depicted in Table 12. The proposed scheme image quality values are furthered compared to
Younas et al. [51] mean values taken from each layer as shown in Table 12.

Table 12. Image quality measures of proposed scheme for some standard images.

MSE PSNR NCC AD SC MD NAE

Baboon 0.00042 11.8481 0.8878 2.2558 0.9958 203 0.4084
Lena 0.00053 10.8339 1.0999 −31.7019 0.5938 200 0.6232

Peppers 0.00054 10.7852 0.8839 −7.4623 0.9256 211 0.4970
Fruits 0.00063 10.1128 0.7082 37.3536 1.5872 244 0.3951

Airplane 0.00072 9.5193 0.6670 51.6376 1.8315 217 0.3984
House 0.00058 10.4310 0.7263 33.8372 1.5148 223 0.3898

Comparison of image quality measure with the average calculated values of Younas et al. [51]

Lena - 8.6290 0.9145 2.3396 0.8333 242 0.6456
Baboon - 8.7486 0.8813 −8.6360 0.7333 243 0.6527

Airplane - 7.9353 0.6614 54.2964 1.5666 249 0.4600
Pepper - 8.1351 0.9639 −16.6711 0.7566 243 0.8420
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5.7. Key Space Assessment

The private key applied to encrypt the image data would neither be too wide nor too small.
Too wide private key limits the pace of encryption and is not suitable for real-time data communication,
whereas a shorter private key lead in a brute force attack. The length of the key space must not be less
than 2100 to include a high degree of protection from the perspective of cryptography. In the proposed
scheme we are using five private keys in Quantum map from which three are initial conditions and the
other two are chaotic parameters. Each key provides the accuracy level of 225 and hence the key space
for this algorithm is 2125. Moreover, the substitution box generated from the Lucas series provides
confusion in the ciphertext. Our offered encryption scheme presents an idea with a greater key space
which enhances the convolution of the system. In addition, we have presented key sensitivity analysis
in Table 13.

Table 13. Key sensitivity test.

Original Encryption Key Wrong Decryption Key Decryption

x(1) = 0.4634, x(2) = 0.0004,
x(3) = 0.0002, r = 3.74, β = 2.6

x(1) = 1.4634, x(2) = 0.0004,
x(3) = 0.0002, r = 3.74, β = 2.6 Fail

x(1) = 0.4634, x(2) = 0.0004,
x(3) = 0.0002, r = 3.74, β = 2.9 Fail

x(1) = 0.4634, x(2) = 0.0004,
x(3) = 0.0002, r = 3.84, β = 2.6 Fail

5.8. Time Complexity Analysis

Minimum computational cost and resources should be used for an efficient encryption algorithm.
We have computed the time taken to encrypt each image by using MATLAB 19. We have also listed
some comparative analyses in Table 13. As decryption of the algorithm is the reverse of encryption
therefore time utilized for decryption is the same. In comparison with existing schemes, it is seen from
Table 14 that the proposed scheme has less computational complexity.

Table 14. Time (Sec) taken for encryption.

Image Proposed Ref. [52] Ref. [53]

Baboon 1.06 3.53 11.45
Lena 1.13 3.23 11.12

Peppers 1.02 3.68 12.13
Fruits 1.26 - -

Airplane 1.25 - -
House 1.09 - -

5.9. Randomness Test

The security of encryption algorithm can be guaranteed by some features as efficiency,
fair distribution, and complexity. To check all these properties, we have performed NIST SP800-22 test
suit [54] on the encipher image generated by using the suggested encryption technique. It is by far,
one of the most comprehensive assessment criteria. It is conventional that NIST SP 800-22 assessments
are used for 0–1 sequences so that the cipher image can be viewed as a binary data stream format.
In Table 15 we have listed the NIST results for Peppers image layers.
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Table 15. NIST SP800-22 test suit results for proposed encryption scheme.

Test Name
p Values

Red Layer Green Layer Blue Layer

Frequency 0.59086 0.22949 0.92442
Block-frequency 0.847 0.57168 0.43369

Runs (M = 10,000) 0.61607 0.1394 0.97489
Long runs of ones 0.035752 0.035752 0.035752

Rank 0.29191 0.29191 0.29191
DFT 0.38399 0.66336 0.99881

No overlapping
templates 098566 0.98566 0.98566

Overlapping templates 0.85988 0.85988 0.85988
Universal 0.9931 0.99908 0.99659

Approximate entropy 0.95452 0.72847 0.93672
Cumulative sums (1) 0.24299 0.23783 0.27354
Cumulative sums (2) 0.94041 0.5349 0.85465

6. Conclusions

An innovative image encryption model focused on a chaotic quantum map is described in this
work. Before the implementation of the chaotic map, a new design of substitution-box technique based
on the Lucas sequence is offered. The mixture of the chaotic quantum map and the substitution-box
provides perfect security level for data transmission. The proposed scheme is passed through some
standard security performance assessment to examine the competence of the offered encryption
technique. The experiments result, and statistical analyzes demonstrate that the offered method has
increased reliability and effectiveness toward multiple statistical and differential attacks.
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