
ROBOTICS IN MANUFACTURING (JN PIRES, SECTION EDITOR)

A Survey on Learning-Based Robotic Grasping

Kilian Kleeberger1 & Richard Bormann1
& Werner Kraus1 & Marco F. Huber1,2

# The Author(s) 2020, corrected publication 2020

Abstract
Purpose of Review This review provides a comprehensive overview of machine learning approaches for vision-based robotic
grasping and manipulation. Current trends and developments as well as various criteria for categorization of approaches are
provided.
Recent Findings Model-free approaches are attractive due to their generalization capabilities to novel objects, but are mostly
limited to top-down grasps and do not allow a precise object placement which can limit their applicability. In contrast, model-
based methods allow a precise placement and aim for an automatic configuration without any human intervention to enable a fast
and easy deployment.
Summary Both approaches to robotic grasping and manipulation with and without object-specific knowledge are discussed. Due
to the large amount of data required to train AI-based approaches, simulations are an attractive choice for robot learning. This
article also gives an overview of techniques and achievements in transfers from simulations to the real world.

Keywords Robotic grasping andmanipulation . Artificial intelligence . Deep learning . Simulations . Sim-to-real transfer

Introduction

Humans see novel objects and can almost immediately deter-
mine how to pick them. The capabilities of robots lag far
behind. Robotic grasping and manipulation is a critical chal-
lenge [1]. Creating cognitive robots that can operate at the
same level of dexterity as humans has been approached for
many decades. Despite the interest in research and industry, it
remains an unsolved problem [2] [3].

Shorter product lifecycles and the steadily rising demand
for customization require more flexible and changeable pro-
duction systems leading to the need for an automatic config-
uration (Plug & Produce) of robot systems [4]. Developing
robots that can operate in dynamic and unstructured environ-
ments (i.e., bin-picking, household or everyday environments,
professional services) is of great interest. Approaches to ro-
botic grasping utilize learning-basedmethods to automatically
configure for the given task without any human intervention
which allows to significantly reduce programming efforts [5].
Machine learning in particular is a promising approach to
robotic grasping due to the generalization ability to novel
objects.

This article aims to provide a comprehensive overview of
different approaches to robotic grasping. A categorization of
different methods is proposed as well as various techniques
for grasping and sim-to-real transfer—motivated by the lack
of real-world data—are introduced.

Categorization of Methods

Approaches to vision-based robotic grasping can be catego-
rized along multiple different criteria. Generally speaking, ap-
proaches can be divided into analytic or data-driven methods

This article is part of the Topical Collection on Robotics in
Manufacturing

* Kilian Kleeberger
kilian.kleeberger@ipa.fraunhofer.de

Richard Bormann
richard.bormann@ipa.fraunhofer.de

Werner Kraus
werner.kraus@ipa.fraunhofer.de

Marco F. Huber
marco.huber@ieee.org

1 Fraunhofer IPA, Stuttgart, Germany
2 IFF, University of Stuttgart, Stuttgart, Germany

Current Robotics Reports
https://doi.org/10.1007/s43154-020-00021-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s43154-020-00021-6&domain=pdf
http://orcid.org/0000-0002-0711-0785
mailto:kilian.kleeberger@ipa.fraunhofer.de


[6, 7]. Analytic (or sometime called geometric) approaches
typically analyze the shape of a target object to identify a
suitable grasp pose. Data-driven (or sometimes called empir-
ical) approaches are based on machine learning and have
gained popularity in recent years. They have made significant
progress due to increased data availability, better computa-
tional resources, and algorithmic improvements. This review
article focuses on learning-based approaches to robotic grasp-
ing and manipulation. For analytic grasping approaches, we
refer the readers to [7–9].

Furthermore, approaches can be categorized as model-
based or model-free, depending on whether or not specific
knowledge about the object (e.g., CAD model or previously
scanned model [10]) is used to solve the considered task. They
can further be differentiated on whether they are focused on
grasping and manipulating rigid, articulated, or flexible/
deformable objects and whether the method is able to handle
known, familiar, or unknown objects [6]. Figure 1 gives an
overview of typical pipelines to robotic grasping. Model-
based approaches for known rigid objects typically include a
pose estimation step and allow a precise placement of the
object. Model-free approaches directly propose grasp candi-
dates and typically aim for a generalization to novel objects.

An additional criterion is the type of machine learning, i.e.
whether the system is trained using supervised learning (SL) or
reinforcement learning (RL) [11]. Annotations can be provided
by humans or obtained in a self-supervised manner, i.e., the
labels are generated automatically. Approaches typically either
sample grasp candidates and rank them using a neural network
(discriminative approaches) [12, 13] or directly generate suitable
grasp poses (generative approaches) [14, 15]. Furthermore, ap-
proaches differ on whether they are trained in a simulation en-
vironment, in the real world, or both and utilize various kinds of
sensor data (RGB image, depth image, RGB-D image, point
cloud, potentially multiple sensors,…). Moreover, methods ei-
ther operate in an open- (i.e., without any feedback) or closed-
loop fashion [3, 16, 17]. Using continuous feedback based on
visual features is commonly referred to as visual servoing [17].
Besides the robot hardware, the gripper type (two-finger gripper,

suction gripper, …) and gripper freedom (4D, 6D, …) also
differentiate approaches. Moreover, some approaches focus on
grasping of single separated objects only, while others target
grasping in dense clutter. Furthermore, some methods are able
to perform pre-grasp manipulations in order to move the object
in a better configuration for grasping. Table 1 provides an over-
view of the discussed approaches and shows a small and exem-
plary selection from the variety of methods available in the
literature. In addition to the abovementioned criteria, the report-
ed grasp success rate is indicated, although being determined on
different benchmarks.

Object Pose Estimation for Robotic Grasping

Model-based robotic grasping can be considered as a three-
stage process where first object poses are estimated, then a
grasp pose is determined, and finally a collision-free and ki-
nematically feasible path is planned towards the object to pick
it [34, 35]. This chapter focuses on the first part, which has the
goal to estimate the translation and rotation relative to a given
reference frame (usually the camera) of potentially multiple
objects in the scene. This task is challenging because of sensor
noise, varying lighting conditions, clutter and occlusions, and
the variety of objects in the real world. Furthermore, object
symmetries result in pose ambiguities which have to be ad-
dressed because with symmetries different annotations for
identical observations are available [36–39]. For learning-
based approaches on the second part, we refer the readers to
[40].

When utilizing object-specific knowledge, approaches typ-
ically require an object-specific configuration (high amount of
manual tuning) until a satisfactory system performance is
reached which limits the scalability to novel objects [5].
More specifically, parameters for the template or feature
matchingmethod for pose estimation [41, 42] or the definition
of robust grasp poses together with (static) priorities are re-
quired [35] and have to be tuned in real-world experiments.
Therefore, model-based approaches aim for an automatic

Fig. 1 Typical pipelines to robotic
grasping: Model-based approaches
(top row) typically estimate the
object pose, determine a suitable
grasp pose on the object, plan a
path, and finally execute the grasp.
Model-free approaches (bottom
row) directly determine grasp poses
based on the observations given
from the sensor. When being
trained in simulation, sim-to-real
techniques are needed for a robust
transfer. This review article
discusses the green elements of the
figure
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configuration with minimal user input and without any tuning
that has to be done by experts to allow a fast and easy transfer
to novel objects.

Utilizing the strength of supervised learning for 6D object
pose estimation requires large amounts of labeled data for
training. Creating and annotating datasets with 6D poses is
very tedious, time-consuming, and does not scale [43]. Thus,
it is a trend to train models on synthetic data because simula-
tions are an abundant source of data and flawless ground truth
annotations are automatically available (see also
“Simulations” section). Transfer techniques are used for de-
ployment to the real world (see also “Techniques for Sim-to-
Real Transfer” section). [18, 20•]

In recent years, research in 6D object pose estimation has
been dominated by approaches based on convolutional neural
networks (CNNs). Approaches typically either discretize the
pose space in bins and predict a class [44, 45] or solve pose
estimation in terms of a regression task [19, 20•, 46]. DOPE
[18] uses a deep neural network to process an RGB image,
outputs the 2D image coordinates of the 3D bounding box of
the objects, and uses a PnP algorithm [47] to estimate the 6D
pose of each instance. The model is trained entirely on syn-
thetic data while for the transfer from simulation to the real
world, DOPE employs a combination of domain randomiza-
tion [48••] and photorealistic rendering. The authors further
demonstrate that the pose estimator trained on synthetic data
can operate in real-world grasping systems with sufficient
accuracy.

Pose estimation challenges [49, 50] and standard
benchmarking systems [51] for pose estimation allow advanc-
ing the state of the art and enable a transparent and fair com-
parison of different approaches. Especially, the robust pose
estimation of multiple objects in bulk is a great challenge
and of major importance. These scenarios, which are often
present in industrial bin-picking scenarios, are challenging
due to a high amount of clutter and occlusion as visualized
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Fig. 2 Cluttered scene for bin-picking

Curr Robot Rep



in Fig. 2. A challenge focusing on 6D object pose estimation
for bin-picking [49] has been organized at IROS 2019 and
utilized a large-scale dataset [43] comprising fully 6D pose-
annotated synthetic and real-world scenes. For evaluation, the
metric from Brégier et al. [36, 37] was used which properly
accounts for object symmetries and considers objects with
visibility of more than 50%.

In general, learning-based approaches have proven to be
robust to occlusions due to learning plausible object pose con-
figurations [49]. PPR-Net [19], the winning method of the
aforementioned challenge, operates on point clouds and uti-
lizes PointNet++ [52] to estimate a 6D pose for each point of
the point cloud and applies clustering in 6D space to compute
the final pose hypotheses by averaging each identified cluster.
The approach is outperformed by OP-Net [20•] in terms of
average precision on the noisy Siléane dataset [36].
Furthermore, OP-Net is much faster than PPR-Net because it
provides a much more compact parameterization of the output
and does not require post processing. The approach discretizes
the 3D space of the scene and regresses a pose and confidence
for each resulting volume element.

Amajor advantage of learning-based object pose estimators is
that they do not require a manual parameter tuning for the con-
figuration of new objects [41, 42]. Furthermore, they can be
entirely trained on synthetic data, which can easily be obtained
using a physics simulation by dropping objects in a random
position and orientation above a bin in the case of bin-picking
[43] or by placing (household) objects in virtual scenes [18].

Model-Free Robotic Grasping

Model-free approaches are attractive due to their ability to
generalize to unseen objects [53] and pose a dominant direc-
tion in robotic grasping research. They do not use prior knowl-
edge about the objects and therefore work without a pose
estimation step, which is in contrast to the approaches
discussed in the “Object Pose Estimation for Robotic
Grasping” section. Approaches often show promising results
in terms of generalization ability to novel objects, and models
are usually trained in an end-to-end fashion. A placement of
the objects after picking is mainly not considered and the type
of object being picked is unknown.

Supervised Learning for Robotic Grasping

Supervised learning is concerned with learning a (non-linear)
mapping based on labeled training data. In this chapter, we
categorize the approaches as discriminative or generative de-
pending on whether the grasp configuration is the input or
output.

Discriminative Approaches

Discriminative approaches sample grasp candidates (e.g.,
using CEM [54]) and rank them using a neural network. For
grasp execution, the robot chooses the grasp with the highest
score. These approaches typically have a high runtime be-
cause they require multiple forward passes of the neural net-
work to get high-quality grasps. Nonetheless, these ap-
proaches come with the advantage that arbitrarily many grasp
pose can be evaluated and these methods are not limited by
discretization of the grasping primitives/output space.
Furthermore, a gradient-based refinement process can be
applied/employed to improve the grasp success rate [32•].

Levine et al. [24] proposed a learning-based approach to
hand-eye coordination for robotic grasping based on RGB
images. In their work, they used up to 14 robots to collect
success labels for 800,000 grasps in 2 months. The trained
convolutional neural network can predict the grasp success
for a given candidate based on an RGB image of the bin and
is used to servo the gripper towards successful grasps. While
this approach demonstrates the potential of learning-based
approaches to robotic grasping, changes in the hardware setup
require the collection of new data for retraining the system.

Dex-Net [12, 26] uses a physics simulation to grasp objects
in randomized poses on a plane. The outcome of the grasp is
logged together with an aligned crop of a depth image where
the grasp is located forming one sample to the dataset. Their
Grasp Quality Convolutional Neural Network (GQ-CNN) is
trained by using that dataset. The trainedmodel can predict the
grasp success for given grasp candidates and depth images
and generalizes to different rigid, articulated, or flexible ob-
jects unseen during training. The Dex-Net framework has
been extended to suction grippers [13] and a dual-arm robot
[27] where the policy infers whether to use a parallel jaw or
suction gripper for emptying a cluttered bin. Furthermore, a
fully convolutional network architecture generating grasps has
been proposed to avoid an expensive sampling and ranking of
grasp candidates [28].

Generative Approaches

Generative approaches output a grasp configuration. One ap-
proach to this—called robotic grasp detection—is to detect
oriented rectangles [55] in the image plane, which represent
promising grasp candidates for parallel jaw grippers. This pa-
rameterization comprises the position, orientation, and open-
ing width of the gripper as visualized in Fig. 3. The problem of
robotic grasp detection is analogous to object detection
[56–58] in computer vision with the only difference being
an added term for the gripper orientation.

For the scenario where a single object is placed on a plane
surface, Redmon et al. [14] proposed a system called
SingleGrasp which can predict an oriented rectangle and

Curr Robot Rep



simultaneously classify the object for a given RGB-D image
using a neural network. Since an object can be grasped in
multiple different ways, they also introduced MultiGrasp,
which can predict multiple grasp poses per image. This ap-
proach led to the You Only Look Once (YOLO) [56, 57]
approach for object detection. Lenz et al. [21] proposed a
learning-based two-stage system that samples candidates and
ranks them using a second neural network. In their work, they
demonstrated that their approach can be used for real-world
robotic grasping tasks. An increased performance is obtained
by utilizing more sophisticated network architectures [3].

A public dataset for robotic grasp detection is the Cornell
grasping dataset [59] which comprises 1035 images from 280
objects with human annotated grasps. Due to the low number
of samples, the dataset has been heavily augmented for good
performance [14]. The Jacquard dataset [60] comprises over
50,000 synthetic samples of more than 11,000 objects with
grasps obtained from grasping trials in simulation and enables
better generalization due to the increased diversity.

Utilizing these public datasets, GG-CNN [15, 22] outputs a
grasp configuration together with a quality estimate for each
pixel in the image using a small fully convolutional architec-
ture. Due to its low computational demands, the approach can
be used for closed-loop grasping in dynamic/non-static envi-
ronments. Furthermore, this approach can grasp in clutter,
although the model is trained on single isolated images only,
which is due to the convolution being a local operation.

TossingBot [30] learns to throw arbitrary objects to given
target locations which allows to increase the physical

reachability of a robot arm. The authors propose an end-to-
end formulation that jointly learns to infer control parameters
for grasping and throwing from images of objects in a bin by
trial and error. As a result, the system learns to select grasps
that lead to predictable throws through self-supervision. The
problem of throwing is simplified to predict the release veloc-
ity only. The release velocity is estimated using a physics-
based controller and adjusted based on the residual estimate
of the neural network.

Generative approaches are fast because they require one
forward pass only. They usually provide multiple grasp can-
didates simultaneously and the highest quality grasp is exe-
cuted by the robot.

Reinforcement Learning for Robotic Grasping and
Manipulation

Deep reinforcement learning has emerged as a promising and
powerful technique to automatically acquire control policies
by trial and error. By processing raw sensory inputs, such as
images, complex behaviors can be performed.

Pre-grasp manipulations such as pushing or shifting [61,
62] are also of major importance to rearrange cluttered objects
and ensure that the objects can be grasped at all or more
robustly. Using reinforcement learning, the trained policies
also demonstrate generalization to novel objects [61, 62].

A comparison of a variety of methods based on deep rein-
forcement learning on grasping tasks is provided in [63]. QT-
Opt [29••] demonstrates a rich set of manipulation strategies
and responds dynamically to disturbances and perturbations.
The robot observes a reward of 1 for successfully lifting an
object and 0 for a failed grasp. Their closed-loop vision-based
control framework operates in a similar setup as in [24, 25•,
64•] and reports a grasp success rate of 96% on unseen objects
by optimizing long-horizon grasp success with a total of about
800 robot hours collected within 4months and across 7 robots.

“Grasping in the Wild” [33••] allows a closed-loop 6D
grasping of novel objects based on human demonstrations
and can operate in dynamics scenes with moving objects, up
to some speed constraint.

Simulations and Sim-to-Real Transfer

Despite all advantages w.r.t. performance and robustness,
deep learning has the disadvantage of requiring large amounts
of data for training. This is especially problematic in robotics,
where the generation of training data on real-world systems
can be expensive and time-consuming. For instance, Pinto
et al. [23] trained a robot to grasp novel objects by collecting
50,000 trials in more than 700 h, Levine et al. [24, 25•] re-
quired 800,000 grasps parallelized over 14 robots in 2 months
for robust grasping performance, and QT-Opt [29••] collected

Fig. 3 Parameterization for robotic grasp detection: Two values for the
position, two for the size, and one for the orientation of the oriented
rectangle. Red sides indicate the jaws of the gripper and blue the
opening width
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over 560,000 grasps within the course of several weeks across
7 robots. Additionally, these systems are not invariant to
changes in the hardware setup such as changing the gripper,
table height, or moving the camera. To avoid the need to setup
“arm farms” for learning robust robotic grasping and manip-
ulation policies, using simulations is an attractive alternative.

Simulations

Commonly used physics simulations are V-REP/CoppeliaSim
[65], PyRep [66], MoJuCo [67], Blender [68], and Gazebo
[69], to name only a few. To overcome these aforementioned
limitations, simulations can be employed because they pro-
vide an abundant source of data with flawless annotations.
Furthermore, simulations are fast and can be parallelized
across multiple machines for rapid learning or data generation.
Physics simulations allow training the robots without wear
and tear of the components and no interruption of production
in the field. Apart from these advantages, simulations require
the explicit programming of the desired application, potential-
ly require license costs, and do not perfectly capture the prop-
erties of the real world.

Techniques for Sim-to-Real Transfer

Generally, models trained in simulations do not tend to directly
transfer well to the real world due to the “reality gap” [64•, 70,
71]. This section discusses different approaches to allow bridg-
ing the simulation-to-reality gap. Models can be transferred to
the real world by providing better simulations, domain random-
ization [48••], or domain adaptation [64•, 70, 72, 73].

Domain Randomization

The technique domain randomization [48••] applies various
randomizations on the observations (vision randomization) or
system dynamics (dynamics randomization) such that the real
world appears to the model as just another variation.
Randomizing various visual aspects of the simulator such as
textures and colors of the objects and the background, light-
ing, object placement including camera placement, and type
and amount of noise added to the image forces the network to
learn to focus on the essential features of the image (vision
randomization). Randomizations can also be applied to the
dynamics of the system or environment [71] including gravity,
mass of each link in the robot’s body, damping of each joint,
pose of the robot base as well as mass, friction, and damping
of the manipulated objects (dynamics randomization) for a
robust transfer from simulation to the real world.

This technique has been successfully used for object local-
ization [48••], segmentation [74], robot control for pick-and-
place [75], swing-peg-in-hole [76], opening a cabinet drawer
[76], in-hand manipulation [77], one-handed Rubik’s Cube

solving [78], precise 6D pose regression in highly cluttered
environments [20•], etc. Modifications propose an automatic
scheduling of the intensity of the randomization based on the
current performance of the system [78] or adapting simulation
randomizations by using real-world data to identify distribu-
tions that are particularly suited for a successful transfer [76].
Synthesizing millions of random object shapes for training
[79] indicates further potentials of this technique for robotic
grasping.

Domain Adaptation

Domain adaptation is a process that allows a machine learning
model, trained with samples from a source domain to gener-
alize to a target domain, which can be achieved by utilizing
unlabeled data from the target domain. In sim-to-real transfer,
the source domain is (usually) the simulation and the target
domain is the real world. Prior work can be grouped into
feature-level domain adaptation [80, 81], which focuses on
learning domain-invariant features, and pixel-level domain
adaptation [70], which focuses on restyling of images to
bridge the domain gap [16, 64•].

Domain adaptation techniques are usually based on gener-
ative adversarial networks (GANs) [82]. With some unlabeled
real-world data, those approaches allow a drastic reduction in
the number of real-world samples needed. Using a similar
system for hand-eye coordination as in [24, 25•], GraspGAN
[64•] allows reducing the number of real-world samples need-
ed to approximately 2% for similar system performance. This
is a drastic reduction of the required real-world samples need-
ed and allows a faster deployment of the solution in different
setups.

Still, these approaches require data from the target domain
(i.e., some samples from the real world are needed) which
negatively affects scalability. Apart from being hard to train
and often yielding fragile training results, the output images
from the generator network (refiner) are not perfectly realistic
and may include inaccuracies and artifacts.

RCAN [16] translates randomized simulation images to a
canonical simulation version which are then used for policy
training. The trained system can be used to translate real-
world images to canonical images and consequently allows a
sim-to-real transfer of the grasping policy, which is demon-
strated by using QT-Opt [29••].

Benchmarking

As there are often many new approaches to pose estimation
which are evaluated on a small number of datasets only, the
Benchmark for 6D Object Pose Estimation BOP [51] aims for
standardizing datasets to allow a better comparability. Apart
from challenges such as “Occluded Object Challenge” [83],
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SIXD [50], and “Object Pose Estimation Challenge for Bin-
Picking” [49], BOP also organizes challenges for pose
estimation.

Challenges focusing on robotic grasping and manipulation
[84, 85] are of great value to the research community because
of capturing and advancing the current state of the art in the
field. The Amazon Picking/Robotics Challenge [2, 86–91]
focused on autonomous picking in warehouse scenarios.
Still, a participation can be challenging due to the required
participation on site and hardware costs. Introducing detailed
instructions on how to place the objects for picking [92] al-
lows a comparison of different approaches. Especially, simu-
lation environments allow a benchmarking of grasping and
manipulation approaches under reproducible scenarios with-
out hardware costs and are of high importance to measure
scientific progress [93].

Conclusions

Learning-based approaches to robotic grasping enable picking
of diverse sets of objects and are able to demonstrate high
grasping success rates even in cluttered scenes and non-
static environments. Machine learning and simulation allow
fast and easy deployment due to the automatic configuration
of model-based solutions and generalization abilities to novel
objects of model-free approaches.

Despite impressive results, robotic grasping and manipula-
tion is not solved. All discussed model-free approaches exe-
cute top-down grasps and have a limited flexibility in the
gripper orientation. There is only a limited number of works
focusing on learning-based approaches to robotic grasping in
6D for single objects [32•, 94–96] or in clutter [31, 33••, 34,
97]. While getting an increased focus in research, model-free
grasping in 6D is especially relevant for picking objects from a
cluttered bin [35], from a shelf [10], or for more robust grasps
in general.

Usually, the task of the robot is to “grasp anything.” Some
works focus on a directed grasping to pick a specific object
from a cluttered scene [63, 73, 98]. Model-free approaches do
not allow a precise placement of the objects. Instead of simply
dropping the picked object, many practical applications re-
quire an at least semi-precise or gentle placement of the com-
ponents, which has been addressed less. While solutions for
avoiding the entanglement of objects exist [99, 100], no gen-
eral solution has been proposed to unhook complex object
geometries.
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