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Abstract: Artificial intelligence (AI) has emerged as a powerful set of tools for engineering 
innovative materials. However, the AI-aided design of materials textures has not yet been 
researched in depth. In order to explore the potentials of AI for discovering innovative biointerfaces 
and engineering materials surfaces, especially for biomedical applications, this study focuses on the 
control of wettability through design-controlled hierarchical surfaces, whose design is supported 
and its performance predicted thanks to adequately structured and trained artificial neural 
networks (ANN). The authors explain the creation of a comprehensive library of microtextured 
surfaces with well-known wettability properties. Such a library is processed and employed for the 
generation and training of artificial neural networks, which can predict the actual wetting 
performance of new design biointerfaces. The present research demonstrates that AI can 
importantly support the engineering of innovative hierarchical or multiscale surfaces when 
complex-to-model properties and phenomena, such as wettability and wetting, are involved. 

Keywords: microtextured surfaces; biointerfaces; artificial intelligence; surface wettability; 
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1. Introduction 

Materials science and engineering are living through tumultuous and extremely exciting 
decades, through which the materials discovery and industrial application process have been 
accelerated, in parallel to relevant improvements in human well-being and to the steady growth of 
varied scientific-technological fields, like tissue engineering and biofabrication, metamaterials and 
metasurfaces engineering, design of smart devices and structures, to cite a few. Among recent 
initiatives to further progress in materials discovery supported by computational methods, the 
Materials Genome Initiative [1–3] stands out for proposing the integration of theory, computation 
and experimentation and the use of accessible and interchangeable data and formats to support 
researchers and technicians in developing new materials for industrial applications [4,5]. In Europe, 
the European Materials Modeling Council presents a “Vision Beyond 2020”, in which data integration 
and machine learning, together with the establishment of online multi-stakeholder innovation hubs, 
play a fundamental role in new materials development [6]. In any case, it is clear that materials 
discovery and design supported by computational tools and AI constitutes a new revolution in 
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materials science and engineering with already highly interesting results, especially as regards the 
prediction of final properties and performance from the chemical composition [7–9]. 

Considering the state-of-the-art, is it important to note that, in spite of the giant potential of the 
materials genome initiative and of artificial intelligence applied to materials design and discovery, 
some fundamental issues linked to materials development have not yet been considered or 
researched in depth. Questions linked to the AI-aided engineering of materials surfaces and to the 
optimization of related contact properties and tribological performance, in connection to several 
mechanical and biomedical engineering challenges, remain unexplored. In fact, materials surface 
features have a direct influence on properties including friction coefficient [10], wear resistance [11], 
self-cleaning ability [12,13], biocompatible response [14–16], ergonomic performance and esthetic 
aspect [17], among other fundamental characteristics linked to advanced product development in 
mechanical and biomedical engineering fields. Therefore, they also play determinant roles in 
materials selection when pursuing innovative functionalities, which can be based on bioinspired 
design strategies for promoting biological and biomedical applications. 

The authors hypothesize that the previously introduced holistic approaches to accelerated 
materials development, relying on the intensive use of AI if adequately researched and developed 
focusing on materials surfaces, can prove highly transformative towards high performing devices in 
several industries. The biomedical industry can greatly benefit from innovative hierarchical surfaces 
and biointerfaces capable of controlling cell-material interactions, improving biodevices 
compatibility and incorporating innovative sensing and mechanotransduction functionalities 
through AI-aided bioinspired design strategies. 

In order to explore and better understand the potentials of AI applied to the discovery of 
innovative biointerfaces and to the engineering of materials surfaces, especially for biomedical 
applications, this study focuses on the control of wettability through design-controlled hierarchical 
surfaces (or microtextured biointerfaces), whose design is supported and its performance predicted 
thanks to adequately structured and trained artificial neural networks (ANN). Wettability is chosen 
due to its relevance for functional biomedical (micro-)devices, as further explained. 

Surface wettability is an interesting property related to surface free energy and to surface 
topography or geometric micro-/nanostructure [18,19]. Usually, surface wettability is measured 
through the water contact angle (CA), which helps to classify surfaces as hydrophobic (CA > 90°) or 
hydrophilic (CA < 90°). Values of CA close to 0° are representative of superhydrophilic surfaces, 
while values close to 180° are characteristic of superhydrophobic surfaces. There are two main routes 
for adjusting the wettability of surfaces: the first focuses on chemical functionalization anchoring 
appropriate molecules upon flat substrates, the second aims at modifying the shapes or topographies 
of surfaces. These routes may also be synergically combined. Regarding chemical approaches, the 
wettability of flat surfaces can be fine-tuned by the formation of a monolayer with appropriate 
hydrophilic or lipophilic functional groups. For instance, gold surfaces can be modified using thiol 
[20] or carbene [21] anchors, while hydroxylated surfaces such as silicon oxide, glass, mica, etc. can 
be modified by conventional siloxane chemistry [22]. Both hydrophilic and hydrophobic biointerfaces 
are interesting: the former for being usually very adequate for interacting with cells and tissues, hence 
leading more easily to biocompatible medical devices [23]; the latter for their singular self-cleaning 
properties and ability to stay dry, which can be applied to the development of easy to clean and 
sterilize surgical instruments [24], to cite some examples. 

Recent research has put forward the potentials of creating hydrophobic and hydrophilic 
transitions upon the surfaces of biomedical microfluidic systems, capable of controlling fluids upon 
biointerfaces and hence achieving highly multiplexed systems for a wide set of screening and 
diagnostic purposes [25,26]. While significant advances in the monolayer stabilization have been 
achieved, topology modification results in more robust and highly applicable surfaces. The 
possibility of controlling cell behavior and fate through modifications of surface topography, in 
connection with wettability properties, has also been studied in detail [27]. These advances would 
not have been possible without parallel progress in micro- and nanomanufacturing technologies and 
combinations thereof, which enable the straightforward, rapid prototyping and even mass-
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production of biomedical (micro-) devices with three-dimensional design-controlled surface 
topographies, as previous studies from our team have shown [28–30]. 

Although the Cassie–Baxter and Wenzel models can model contact angle under different 
wetting regimes, it is complex to model the actual performance of a surface a priori. The authors 
hypothesize that AI can help with predicting the actual behavior of fluids upon biointerfaces. In this 
study, the authors explain the creation of a comprehensive library of microtextured surfaces with 
well-known wettability properties. Such a library is processed and employed for the generation and 
training of artificial neural networks, which can predict the wetting performance of new design 
biointerfaces. The authors demonstrate that AI can importantly support the engineering of innovative 
hierarchical or multiscale surfaces when complex-to-model properties and phenomena, such as 
wettability and wetting, are involved. 

2. Materials and Methods 

2.1. Creating a Library of Microtextured Surfaces with Known Wettability Properties 

Several studies have dealt with the design and manufacture of microtextured surfaces for 
controlling the wettability and contact angle of materials surfaces. Both subtractive processes 
(computer numerical control machining, laser ablation, micro-drilling, etc.) and additive methods 
(laser stereolithography, digital light processing, powder-based laser fusion, lithography-based 
ceramic manufacture, etc.) have been applied to the creation of such surface topographies in a wide 
set of materials. Consequently, there is a plethora of scientific publications, including experiences 
from our team, describing the wettability properties of different synthetic surfaces. In addition, the 
epidermis of many living organisms from the animal and vegetal realms have shown very interesting 
wetting performances, which have also been widely reported. For the research purpose, in order to 
create a comprehensive library of microtextured surfaces with well-known wettability properties, 
which will subsequently serve as input for generating and training the artificial neural networks 
capable of predicting surface contact angle, a selection of publications is gathered. The selection 
includes relevant research works, in which microtextures are designed and manufactured or directly 
obtained from nature, with enough information about the surface topographies studied so that they 
can be replicated and with details about water contact angle obtained through systematic testing [30–
35]. After selecting the publications, NX 10® (Siemens PLM Software Solutions, Plano, TX, USA) is 
employed as computer-aided design (CAD) software for modeling the selected microtextured 
surfaces and completing the CAD library with well-known wettability properties. The CAD models 
are designed following the descriptions and measurement details included in the consulted 
references [30–35]. In most cases, starting from a planar surface of 1 × 1 mm2, the combined use of 
simple solid-based design tools, like extrusions and revolutions of 2D profiles, and Boolean or 
pattern-based operations leads to the desired CAD models, as shown in Figure 1 (left). Only for 1 
specific case of the collection, which mimics the feature of the lotus plant leaves, Brownian-like 
microtextures are added to the CAD model in order to achieve truly multiscale or hierarchical 
surfaces, following previous processes published by our team [30]. In addition, in 4 cases of the 
collection, due to the extremely fine multiscale details of the CAD model, the starting planar surface 
measures 0.5 × 0.5 mm2 to avoid final CAD files with extremely large sizes (i.e., more than 1 Gb). This 
does not affect the study, as training of the ANNs is performed with adimensional parameters (see 
Section 2.3). The CAD files are stored in .stl (standard tessellation language) files for processing. 

2.2. From 3D CAD Files to Surface Matrices for Further Mathematical Processing 

The extraction of relevant parameters from the microtextured surfaces is performed with the 
support of matrix-based operations using MATLAB R2020a (The Mathworks, Inc., Natick, MA, USA). 
The process for straightforwardly transforming the CAD files into MATLAB surface matrices, which 
store the information of the surfaces, is schematically presented in Figures 1 and 2. An intermediate 
software is employed for the transformation: Blender, an open-source tool capable of processing and 
rendering .stl files. Using Blender, each CAD file is viewed using a zenith perspective and stored as 
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grayscale.png images or heightmaps, as shown in Figure 1 (right). Lighter regions correspond to 
higher values of z, and darker regions correspond to lower values of z. 

 

Figure 1. Examples of CAD models of microtextured surfaces (designed with NX), which can be 
converted into grayscale height maps used for linking the CAD files with matrix-based programming 
software (MATLAB). 

  

   

  

 

Figure 2. Examples of “MATLAB” microtextured surfaces generated by processing different grayscale 
height maps. 
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The .png files are then directly imported with MATLAB, and linear scaling is applied for each 
of the height matrices obtained so that the absolute height of the microfeatures correspond to the 
actual dimensions described in the original references. By means of example, Figure 2 presents some 
of the MATLAB surfaces generated by processing different grayscale height maps, which replicate 
the features of the original CAD files designed according to references [30–35]. Having the surfaces 
stored in the form of height matrices proves more versatile and direct to process than when 
employing other CAD import features available in MATLAB, which typically work with .stl files and 
with their inefficient information storage structures. 

2.3. Structuring and Training Artificial Neural Networks for Predicting the Wettability of Surfaces 

Counting with the surfaces stored in the form of MATLAB surfaces, MATLAB’s neural network 
Toolbox is employed, as an interesting resource for the direct generation of artificial neural networks, 
in order to develop a computational model capable of predicting contact angle upon microtextured 
surfaces. 

Two fundamental ratios are used as inputs for training, validating and testing the artificial 
neural networks. Both are established based on the literature and share some interesting singularities: 
first, the ratios enable the use of different surfaces without considering the global size, as they are 
nondimensional; second, both ratios are calculated in a very direct manner, as they only depend on 
surfaces geometries; and, finally, in a way, they capture the complete essence of the surfaces. 

The first ratio employed as input is the “roughness ratio” (R.R), which is used in the Wenzel and 
Cassie–Baxter models, and it is expressed by the following equation: 𝑅.𝑅 =  𝑟𝑒𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒ᇱ𝑠 𝑎𝑟𝑒𝑎𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝑜𝑟 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒ᇱ𝑠 𝑎𝑟𝑒𝑎 = 𝑆଴𝑆   

The second input ratio is the “filled volume ratio” (V.R), which determines the volume filled by 
the rough surface in a hypothetical prism, which contains the real surface. The prism is defined by 
the length, height and width of the surface: 𝑉.𝑅 =  𝑣𝑜𝑙𝑢𝑚𝑒 𝑓𝑖𝑙𝑙𝑒𝑑 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 ℎ𝑖𝑝𝑜𝑡ℎ𝑒𝑡𝑖𝑐𝑎𝑙 𝑐𝑖𝑟𝑐𝑢𝑚𝑠𝑐𝑟𝑖𝑏𝑒𝑑 𝑝𝑟𝑖𝑠𝑚 = 𝑉଴𝑉   

The filled volume ratio is somehow related to the solid’s area fraction of the Cassie–Baxter’s 
model, although it is easier to obtain, as it does not depend on the liquid and is only influenced by 
the topography of the surface. It is linked to the importance of air trapped, within the microtextures, 
in a heterogeneous wetting state. 

The only output used for training, validating, and testing the artificial neural networks is the 
contact angle. Considering that the library of microtextured surfaces with known wettability 
properties is developed using the information from a wide set of available studies, which focused on 
different materials, it is important to minimize the effect of the different materials on wettability and 
to focus mainly on the microtexture impact on contact angle. Consequently, an incremental contact 
angle, “ΔCA” (°), is used. It can be defined as: “the contact angle measured upon a microtextured 
surface minus the contact angle measured upon a planar reference surface of the same material”. 

Table 1 presents a summary of the surfaces from the generated library in the form of heightmaps 
(see Sections 2.1 and 2.2) and includes, for each surface, the parameters used for training, validating, 
and testing the ANNs. Enlarged views of the images from Table 1 are included in the “Supplementary 
Materials 1” section (Table S1), for providing and additional level of detail. Considering that the same 
topographies applied to planar CAD files of different thicknesses provide the same contact angle 
values, the library is expanded in a direct way, just by applying the collection of topographies upon 
planar CAD surfaces with thicknesses of 10 and 20 microns. Therefore, instead of the 23 samples of 
Table 1, we use a duplicated set of 46 samples for the training, validation, and testing.  

Typical ranges of percentages used for data allocation to the training, validation and testing 
phases are 70–90%, 20–25% and 10–15%, respectively. As no golden rule helps to establish the correct 
number of neurons and percentages for training, testing and validation, an iterative control process 
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is applied, using the aforementioned ranges and testing combinations of structures between 2 and 20 
neurons for the hidden layer.  

The structure of the employed ANNs is based on the two described inputs (surface and volume 
ratios), the hidden layer with 2 to 20 neurons, an output layer, and the final output value (incremental 
contact angle). The toolbox automatically splits the values, and the Levenberg–Marquardt method is 
employed for the training, with the mean square error (MSE) as a loss function. In short, the 
Levenberg–Marquardt algorithm uses an alternative form of the square descend gradient (SGD) 
process to optimize the time consumption, as it is possible to perform it without computing the 
Hessian matrix. Additional details can be found in the MATLAB neuronal networks user guide [36] 
and a selection of implemented ANNs is to be found in the “Supplementary Materials 2” section for 
repeatability purposes. 

The interest of using AI methods for supporting the engineering of innovative surfaces with 
desired wettability can be better understood and discussed after a detailed inspection of the data 
from Table 1. Figure 3 presents graphical representations of the roughness ratios and filled volume 
ratios of the surfaces from the obtained library. These representations show highly nonlinear 
relationships between these ratios and the contact angles, both in absolute and incremental forms. In 
consequence, finding a trend for estimating the wettability of new design surfaces is challenging and 
can benefit from the use of well-trained artificial neural networks. It is also important to note that 
existing analytical models do not provide a perfect description for predicting the wettability of 
innovative biointerfaces directly from design inspection. 

Among the many parameters that could have been chosen for describing the surfaces, authors 
opt for the mentioned roughness and filled volume ratios for different reasons: Firstly, both ratios are 
deeply connected to Wenzel and Caxie–Baxter seminal works in the field of surface wetting and 
tribology. Secondly, they are easily computable and are univocally defined, as compared with other 
possible interesting surface descriptors, like roughness or fractal dimension, which can be defined in 
different ways and may be affected by the computational process employed to calculate them (i.e., 
measurement or calculation directions, dimensional range considered).  

Being true that supplementary inputs could have been selected and used for training the 
artificial neural networks, authors decide to start with a simple artificial neural network structure, 
also considering the limited number of data available, which in the end proves an adequate decision 
for this initial study, according to the obtained results (please see Section 3).  

Future updates to the library of materials surfaces will help to increase the number of data and 
to include additional inputs or outputs, to reach a sort of “super surface classifier”. Even the whole 
geometry of the surfaces (i.e., the actual.png images) could be used as inputs if other more complex 
structures like convolutional neural networks were employed, although, in computational terms, this 
would be much more demanding. 

Table 1. Summary of surfaces from the generated library and parameters used for training ANNs. 

Surface View Surface CA (°) ΔCA (°) V0/V S0/S Ref. 

 
1 ≈60 0 0.996004 (1.0) 0.996004 (1.0) Present 

study 

 
2 ≈70 0 0.996004 (1.0) 0.996004 (1.0) [27] 

 
3 96 32 0.681005 1.385686 [28] 

 
4 97 33 0.581493 1.332758 [28] 

 
5 103 39 0.050000 1.520136 [28] 

 
6 104 40 0.06869 1.433589 [28] 
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7 115 51 0.196086 1.219188 [28] 

 
8 117 53 0.297979 1.196545 [28] 

 
9 118 18 0.874239 1.102110 [29] 

 
10 118 38 0.787298 1.470737 [30] 

 
11 127 64 0.117611 1.529714 [28] 

 
12 136 56 0.677470 1.364492 [30] 

 
13 145 45 0.072338 1.293813 [29] 

 
14 154.9 54.9 0.167083 1.645769 [31] 

 
15 155 23 0.222987 1.08823 [29] 

 
16 155.8 55.8 0.166315 2.317966 [31] 

 
17 156 56 0.069969 1.305968 [29] 

18 156.2 56.2 0.166411 2.987631 [31] 

 
19 156 76 0.624982 1.349546 [30] 

 
20 162 62 0.057735 1.261909 [32] 

 
21 169 89 0.554934 3.748147 [30] 

 
22 170 67 0.415654 1.707897 [27] 

 
23 171 59 0.069264 1.366480 [29] 
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Figure 3. Graphical representations of the roughness ratios (S0/S) and filled volume ratios (V0/V) of 
the surfaces from the obtained library, summarized in Table 1, showing highly nonlinear relationships 
with contact angle (upper image) and incremental contact angle (lower image). 

2.4. Applying Artificial Intelligence to the Design of Surfaces with Controlled Wettability 

2.4.1. Design of Innovative Microtextured Surfaces for Validating the Global Strategy 

To evaluate the actual performance and potential real-life applications of the artificial neural 
networks, as a computational resource for supporting the artificial intelligence-aided design of 
microtextured surfaces with desired wettability properties, it is necessary to (1) design novel 
topographies different from those already available in the training library; (2) obtain their 
characteristic parameters and use them as input for the artificial neural networks, so as to predict a 
contact angle linked to their wettability; (3) manufacture such novel topographies and assess their 
actual contact angle values and (4) compare the virtual predictions with the physical measurements. 

In consequence, 5 different innovative microtextured surfaces, with potential applications as 
biointerfaces for several medical devices and bio-MEMS (as detailed in Section 4), are designed 
following the processes described in Subsections 2.1 and 2.2 with some modifications. In short, we 
opt for hybridizations and linear combinations among surfaces from the CAD library, towards truly 
multiscale hierarchical surfaces, whose designs are presented in the results section. 

2.4.2. Manufacturing Prototypes of Innovative Microtextured Surfaces for Physical Testing 

The manufacturing of the innovative microtextured surfaces prototypes for wettability testing 
is done using 3D direct laser writing (3D-DLW), also called 3D laser lithography, a high precision 
AMT based on two-photon polymerization with ultrashort laser pulses, employing the Photonic 
Professional System from Nanoscribe GmbH (Karlsruhe, Germany). 

MATLAB (MathWorks, Inc., Natick, MA, United States) is again employed to generate both the 
layout data and the data input files (in.stl format) that could be read directly by the Nanoscribe 
conversion software Describe from Nanoscribe. The Nanoscribe system uses a laser from Toptica 
(Femto Fiber pro NIR) with a wavelength of 780 nm. The setup includes a laser combined with an 
inverted microscope, which was synchronized and controlled by a PC. The beam is guided through 
an oil-immersion microscope objective (Zeiss, 63X, NA 1.4, Carl Zeiss AG, Oberkochen, Germany) 
and focuses on a resist (acrylate-based Ip-DIP, Nanoscribe), previously placed upon a glass substrate 
rinsed with 2-propanol. For better adhesion of the written geometries, the substrate is usually heated 
to 120 °C for 10 min. The mounted glass substrate is moved by motor stages (Physics Instruments 
M511.HD1, Physik Instrumente GmbH and Co. KG, Karlsruhe Germany), and a piezoelectric driver 
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(Physics Instruments P-562.3CD, Physik Instrumente GmbH and Co. KG, Karlsruhe Germany) is 
used for z-travel. 

The technology had been used in previous research by our team [28–30]. Here, we applied it to 
write larger fields with high precision and create prototypes of innovative “AI-aided” designs, which 
enabled performing the wettability tests needed for analyzing the prediction potential of the 
generated and trained artificial neural networks. 

For this study, the structures are created by writing tiles (300 µm × 300 µm) with feature sizes of 
1 µm. To resolve the feature sizes, the structures are converted for writing with a resolution of 0.35 
µm in the z-direction (slicing) and 0.25 µm in the x–y direction (hatching). To archive this resolution, 
the small configuration set (SF-set) from Nanoscribe is employed. This setting contains the usage of 
a 63x objective (Zeiss, 63X, NA 1.4, Carl Zeiss AG, Oberkochen, Germany), IP-Dip as photoresist (IP-
Di, Nanoscribe GmbH) and fused silica (25 mm × 25 mm × 0.7 mm) as substrate. Since the specified 
writing field of this configuration is 140 µm × 140 µm, the design is split into tiles of that size. To 
archive larger areas, the tiles are stitched together. In this case, stitching is applied to a size of 1.8 mm 
× 1.8 mm. Before the DLW process, the fused silica substrate is rinsed with 2-propanol and acetone, 
followed by a dehydration step for better adhesion. This is done on a hotplate at 120 °C for 10 min. 
For drying the DL-written samples, a critical point dryer (Automegasamdri®-915b, Tousimis) is 
employed. 

Once the prototypes of the microtextures surfaces are manufactured, scanning electron 
microscopy (SEM) imaging is also used for visualization purposes. An SEM system by Carl Zeiss AG 
(Oberkochen, Germany) is employed. 

2.4.3. Wettability Testing and Imaging Procedures and Resources 

Wettability testing of the microtextured surface prototypes is necessary to understand and verify 
the predictive potential of the generated and trained artificial neural networks when applied to 
forecasting the contact angle upon innovative textures. For such purpose, an experimental setup with 
a micro-droplet generator, a precision measuring stage, and a high-resolution optical camera with 
extra lighting is used. Initial tests are performed upon a planar surface manufactured using IP-Dip 
for obtaining a reference value for a contact angle of 60 ± 1º. Subsequently, two measurements are 
carried out upon each of the 1.8 × 1.8 mm2 manufactured microtextured surfaces. Water droplets of 2 
µL are employed. A laboratory with a monitored environment is used: a temperature of 21.5 ± 0.5 °C 
and relative humidity of 37 ± 2% are monitored as working conditions during measurements. 

3. Results and Discussion 

3.1. CAD Models, Prototypes and Wetting Response of the Innovative Microtextured Surfaces 

The gathered collection of microtextured surfaces is a starting point aimed at creating a most 
comprehensive library of surface topographies with information about their wetting response, which 
can be continuously updated. Such updates can be used for further training the ANNs, once 
additional testing results upon physical surfaces are available. The library already includes several 
CAD files in .prt and .stl formats, as well as their equivalent topographic maps stored in the form of 
matrices and is available for researchers in the field wishing to collaborate or test alternative 
approaches linked to the AI-aided design of textured biointerfaces. 

Regarding the five newly designed microtextured surfaces or biointerfaces, envisioned for being 
manufactured and tested, in order to analyze the prediction quality of the ANNs developed, Figure 
4 presents the design results (designs, a, b, c, d, e) and Figure 5 show their prototyping by direct laser 
writing. The different designs include hybridizations or combinations among existing surfaces from 
the collection, after performing scaling in the different x, y, z directions and focusing on the creation 
of truly hierarchical or multiscale topographies.  

To this end, four designs (Figure 4a–d) are achieved by adding biomimetic microtextured bumps 
to periodic arrays of different types of pyramids, prisms and cylinders, following a design process 
developed by our team and previously explained [30]. While the periodic pyramids, prisms and 
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cylinders are features in the 30–100 µm height range, the microtextured bumps include wavy features 
with an amplitude of nearly 5 µm and additional random features with an amplitude of around 1 
µm, all of which leads to very representative multiscale hierarchical topographies.  

Such hierarchical surfaces are well-known for their potential hydrophobicity and are 
characteristic of the epidermis of several plants. An additional design is achieved by combining two 
biomimetic surfaces from the library (Figure 4e), one with the topography of the lotus plant leaves, 
one with the topography of the viola flower leaves, both hydrophobic. The rationale behind is trying 
to combine two already hydrophobic biointerfaces from the natural realm and analyzing if the final 
multiscale combination leads to an improved result in terms of self-cleaning properties., Authors 
expected a very hydrophobic response from such a nature-inspired design, as also happened with 
the prediction performed by the ANNs, as discussed in Section 3.2. 

To our knowledge, the presented designs provide new examples of hierarchical biointerfaces, 
counting with simple periodic features combined with wavy and random functions, at least one order 
of magnitude smaller than the simple periodic features and almost reaching the nanometric range. In 
a way, they enter the realm of metasurfaces and, apart from the proposed application, linked to 
controlled wettability, similar hierarchical surfaces may have varied applications, both as 
biointerfaces for interacting at cellular level, but also in connection to basic research studies in 
acoustics and electromagnetism, among other fields. 

Again, it is important to point out the interest of counting with a collection of microtextured 
interfaces, stored in the form of matrices: the near direct application of linear transformations and 
combinations among the surfaces from the collection can help to rapidly increase the number of 
samples in the library, even in an automated way and bridging the gap across different scales (nano-
micro-meso-macro). Counting with AI tools capable of analyzing the new designs may prove a 
powerful tool for the AI-assisted discovery of biointerfaces with interesting features and responses 
for many different fields of study and potential industrial application, even beyond those linked to 
the biomedical field. 

 
(a) (b) 

 
(c) (d) 
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(e) 

Figure 4. (a–e): Different microtextured, multiscale or hierarchical biointerfaces designed for being 
manufactured and tested to analyze the prediction quality of the ANNs developed and validate the 
global strategy. Dimensions shown in axes in μm. 

Taking manufacturing results into account, which are shown in Figure 5, it is relevant to 
highlight the outstanding accuracy of the additive manufacturing technology employed and the 
almost perfect replication of the designed microtextured biointerfaces. The stitching between periodic 
regions, performed for achieving larger structured regions, as required for wettability testing, works 
adequately. 

Although in a first attempt, some detachments between the processed resins and the glass 
substrates appear, these are importantly minimized in a second attempt by applying gentler 
postprocessing and drying conditions. Still, some minor detachments between resin and glass are 
present in the outer borders, but authors consider the structured geometries adequate for wettability 
testing. Figure 5(a2) provides an enlarged view of the microtextured surface of Figure 5(a1) and helps 
to put forward the precision and quality of the direct laser writing procedure and shows perfectly 
closed and solid microtextured biointerfaces. 

Once the prototypes are obtained by DLW, wettability testing is performed using the setup 
described in Section 2.4.3 and shown in Figure 6a. By means of example, two results of the different 
tests are presented in Figure 6b,c, which respectively provide information about the contact angle for 
designs presented in Figure 4c,d. These experimental results are fundamental for validation purposes 
and for analyzing the potentials of AI for supporting the optimization of surface textures when 
complex phenomena like wettability are involved, as discussed in the following subsection. 
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Figure 5. (a–e): Scanning electron microscopy images from the different direct laser written 
microtextured biointerfaces, obtained in photopolymerizable resin after the multiscale or hierarchical 
designs presented in Figure 4. Images a–e from Figure 5 correspond to the designs a–e from Figure 4. 

b) c) 

a1) a2) 

d) e) 
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Figure 6. (a) Experimental setup for wettability testing. (b) Wettability testing result example: droplet 
upon the design shown in Figure 4b. (c) Wettability testing result example: droplet upon the design 
shown in Figure 4c. 

3.2. Performance of the Structured and Trained Artificial Neural Networks: Predictions vs. Real Performance 

In general, the training method uses the back-propagation algorithm, and the loss function is the 
mean square error. Considering the essentials of the back-propagation algorithm and the network’s 
code, it is possible for the network to prioritize one of the features, in this case, one of the ratios. In 
addition, these types of algorithms may be affected by the scale of the input. Summarizing, if the two 
ratios are not on the same scale or are not standardized, the training process may perform worse 
because they may prioritize the input with larger values. Therefore, it is important to further explain 
and discuss MATLAB’s neuronal network code: The toolbox includes an algorithm to rescale the 
dataset between −1 and 1 by applying the “mapminmax” function to the inputs and outputs by 
default, which helps to improve the training process in a preprocessing stage. This option is applied 
in the study as well, both for inputs and outputs or targets. 

Once preprocessing is performed, the real neuronal network starts to train, seeking the 
minimization of the loss function. The type of net function in the hidden layer is the hyperbolic 
tangent sigmoid function (“tansig”), which proves adequate for this type of problem and for the 
selected algorithm. Finally, the ANN code includes an output layer with one neuron and a 
postprocessing step to bring back the targets to the real scale by using the gain and offset to do an 
inverse rescaled process. The above explanation helps to understand how the artificial neuronal 
networks work, why they can predict the contact angles in this study and the reason for differences 

b) c) 

a) 
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between varied artificial neural networks generated and studied, which differ in the number of 
neurons and in the splitting between the training, testing and validation datasets. 

After the generation process of 267 artificial neuronal networks, with neurons between 2 and 20 
and many combinations of sample percentages, for the training, testing and validating phases, the 
team checks the predictions for the newly designed surfaces and their real wetting performance. 
Table 2 presents the absolute errors (AE measured in °) between the contact angle predictions 
provided by three selected neural networks and the real measurements performed for the five 
designed, prototyped, and tested surfaces. These absolute errors, shown in Table 2, follow the same 
sorted list of the samples from Figures 4–6, as also detailed in Table 3, which summarizes the 
wettability testing results. In other words, AE1, AE2, AE3… are sorted according to the design, 
manufacturing and wettability testing sequences shown in Figures 4–6. The three selected artificial 
neural networks’ source codes are presented, as MATLAB .m files, in the “Supplementary Materials 
2” section, for replicability purposes. 

About the quality of the predictions, it is important to remark that in four out of five surfaces, 
the absolute errors are below 5°, which is remarkable in the opinion of the authors. It is necessary to 
note that for the 4th surface (shown in Figures 4d and 5d), the wettability test provided an unexpected 
result, with an incremental contact angle close to 0, possibly due to a design or manufacturing defect, 
like a problem with the stitching between periodic regions or a detachment between printed material 
and substrate. Nevertheless, it is important to present a complete overview of the whole experiment. 
According to the results, neural network 2 from Table 2 provides the most interesting results. The 
obtained absolute errors are also included in Table 3, together with the images from the designed and 
manufactured surfaces, with the results from wettability testing and with the surface and volume 
ratios that characterize such surfaces. 

Table 2. Absolute errors, measured in degrees (°), between the contact angle predictions provided by 
3 selected artificial neural networks and the real measurements performed for the 5 surfaces designed, 
prototyped, and tested. 

Neuronal Network Neurons AE1 (°) AE2 (°) AE3 (°) AE4 (°) AE5 (°) 
1 8 3.713 3.074 1.288 36.671 0.268 
2 7 0.235 2.295 3.9059 31.927 0.763 
3 13 3.207 0.061 1.138 39.448 0.183 

Table 3. Manufactured surfaces, measurement results (CAm and ΔCAm), predictions (CAp and ΔCAp), 
sample ratios and absolute prediction errors for the best performing artificial neural network (ANN2 
from Table 2). 

Surface View 
(CAD and Prototype) 

CAm 
(°) 

ΔCAm 
(°) 

CAp (°) ΔCAp (°) V0/V S0/S AE (°) 

  
96.7 36.7 96.9352 36.9352 0.1819 1.2823 0.235 

  
130 70 129.9391 69.9391 0.1290 4.4183 2.295 

  
107.3 47.3 106.1618 46.1618 0.1147 1.4630 3.9059 

  
68 8 99.9270 39.9270 0.0856 1.3471 31.927 

  
86.5 26.5 86.3132 26.3132 0.4977 5.5729 0.763 

Taking apart the case of design 3d, whose performance is highly hydrophilic, in contrast with 
the expectable behavior considering related microtextures from the CAD library and available 
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references, the ANNs are able to predict the performance of the innovative biointerfaces quite 
remarkably. The case of design 3d should be further analyzed, as probably a flaw in the design, 
manufacturing or testing method, perhaps a lack of polymerization of the whole surface or an inner 
detachment from the glass substrate, lead to the improbable result. Moreover, apart from the artificial 
neural networks shown in Table 2, 21 additional ANNs from the collection can estimate the contact 
angle of the new designs with an absolute error of less than 10° for 4 out of 5 samples. 

This performance is even better than that of experienced researchers devoted to the engineering 
of surfaces for controlling wettability. In fact, the ANNs are able to predict the contact angle values 
in a much more precise way than the team of authors, after having studied several references and 
classified the biointerfaces that constitute the CAD and matrices collections used for training. The 
generalization potential of the ANNs, based on just two input parameters for each sample, is quite 
noteworthy, considering that the information used as input for the ANNs is extremely synthetic when 
compared to the whole information of each sample stored as .stl CAD file or as.jpg or.png 
microtopographic map. 

An extremely interesting example that helps to understand the generalization degree achievable 
by the ANNs is the case of design 3e, which hybridizes the macrobumps of the viola flower petals 
with the hierarchical microstructures of the lotus plant leaves. The initially expected behavior for this 
bioinspired example is that of a highly hydrophobic surface. Probably an underlaying human bias 
leads to the argument that, if two superhydrophobic surfaces are hybridized or combined, the result 
should be even more hydrophobic or at least highly hydrophobic. However, the generated ANNs, 
working just with surface and volume ratios, can predict that the combination leading to design 3e is 
not as hydrophobic as the designers expected. The ANNs generalize that intricate and hierarchical 
surfaces, characterized by large surface ratios, and that microtextures with large aspect ratios, leading 
to low volume ratios, combinedly provide the highest contact angles. 

In a way, this helps to clearly illustrate the interest of counting with AI supporting tools for the 
design and in silico evaluation of innovative biointerfaces designs, especially when complex 
phenomena, such as wetting and tribological issues, are involved. Well trained ANNs may help to 
evaluate, in a very automated way, thousands of microtextured surfaces for screening purposes 
before performing a reduced selection of potentially adequate solutions for further manufacturing 
and testing, hence helping to work more efficiently, sustainably and cost-effectively. 

4. Challenges and Future Proposals 

4.1. Potentials, Limitations and Challenges of the Study 

AI has intrinsic limits, including the need for large data for achieving desired results, the “black 
box” problem, issues with overfitting, which may lead to the failure of some of the planned learning 
strategies. The use of progressive neural networks for multitasking, of multitask learning using 
uncertainty, of evolution and learning and of generative models, as main alternatives to classical 
neural networks, towards the generation of surfaces with desired properties, may be strategies to 
explore in the near future, so as to minimize failure. Some options are proposed below, when dealing 
with future research directions, to overcome common limitations and challenges usual in the artificial 
intelligence field. Ideally, the developed AI tools will lead, not just to predicting and classifying, but 
also a better understanding of the behavior of natural and synthetic surfaces and to more adequate 
AI-aided processes for the engineering of innovative surfaces. This study has dealt with the 
prediction of contact angle upon microtextured biointerfaces, which allows classifying into 
hydrophobic and hydrophilic surfaces, and demonstrated the remarkable interest of ANNs for 
reaching reliable predictions, at least more reliable than those based on human experience when 
applied to envisaging the performance of new textures. Potentially, these processes can be applied to 
the automated discovery of surfaces with desired contact phenomena, especially if some current 
limitations are solved and if the future research proposals discussed below are considered. 

Although a huge number of research studies deal with micro/nanomanufacturing strategies for 
the production of highly hydrophobic materials, surfaces and biointerfaces, due to their interesting 
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self-cleaning antifouling properties, the number of publications that detail methods based just on 
surface topography modifications, without the application of chemical functionalizations or thin 
films, is not so large. In many cases, the information available about the topographies is not enough 
for performing a CAD model or for obtaining a heightmap. In consequence, a limitation of the 
presented study is linked to the reduced number of samples within the collection of designs (the 23 
interfaces of Table 1), which is developed based on a handful of highly selected references with the 
information presented in a very clear and systematic way [30–35]. Even though the materials and 
methods from such references are varied, the fact that these studies presented wettability tests upon 
the materials of interest, both before and after microtexturing, enables working with incremental 
values of contact angle for constructing the collection, which proves adequate for minimizing the 
variability of inputs and focusing mainly on the topographical effects. Counting with a larger set of 
samples for training and increasing the library of microtextured surfaces, with information from 
additional wetting tests, all of them performed using the same materials and methods, is important 
for future studies. However, it is important to understand the relevance of the results obtained and 
the promising generalization power and prediction ability of the ANNs, which have provided 
accurate predictions about the wetting performance of innovative microtextured interfaces, even 
outperforming human estimates based on experience. 

4.2. Future Research Proposals 

Considering future research directions and proposals, it is important to put forward the interest 
of further exploring the applicability of artificial intelligence to predicting the properties of 
engineered surfaces and to supporting the discovery and design of innovative materials. Interesting 
alternatives to the use of ANNs with surface and volume ratios as inputs include the employment of 
convolutional neural networks, using the topographic maps or even microscopic images of the 
microtextured surfaces as inputs, as well as the utilization of strategies for expanding the available 
dataset based on teacher-student algorithms. Comparing the overall precision attainable with 
different approaches, and pondering the computational resources needed, is essential to achieve an 
optimal method. Better prediction accuracy will also require from the design, manufacture, and 
evaluation of tens or even hundreds of additional innovative topographies, with which the artificial 
neural networks will further learn for increased versatility.  

Once an extremely comprehensive collection of surfaces and properties is used for the creation 
of an AI-based “super-predictor or classifier” of microtexture performance, the automated discovery 
of innovative surfaces with desired properties will be enabled: surface topographies will be generated 
in a loop by using mathematical functions, and such topographies will be screened by the predictor 
or classifier. All this applies to the wetting performance of polymeric biointerfaces attainable by direct 
laser writing but can be expanded to other materials and properties just by enlarging the set of 
samples, modifying the inputs and rearranging the training, validation and testing processes. 

Apart from the intrinsic interest of the described processes and proposed trends, in connection 
with the application of AI to materials science and engineering, a wide set of industrial applications 
based on the AI-assisted design of microtextured interfaces can already be discussed here. Among 
plans for future research, an outstanding direction is linked to applying these AI-assisted design and 
manufacturing processes for defining biomimetic transitions of topography and wettability upon 
biointerfaces in order to control cell behaviors and fate within microfluidic systems for diagnostic 
and labs-/organs-on-chips for modeling diseases. Studying the effect of AI-designed microtextures 
on the biocompatibility and long-term integration of implants constitutes another remarkable field 
of application, especially if the library is further completed with several additional microtextures 
from biomaterials and biological tissues and if the networks learn from such information. The 
potential manufacture of AI-based biointerfaces using smart materials, like shape-memory polymer 
foils, can open new horizons in the area of smart materials and structures; for devices in which the 
wetting performance may be selectively modified along the life cycle. 
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5. Conclusions 

Curiously, the ancient Greek term for “surface”, “επιφάνεια” or “epifáneia”, is polysemic and 
refers to the visible surface of an object, to arising from something unexpected and to a manifestation, 
typically a “eureka” moment, corresponding to a new beginning, among other possibilities [37]. In a 
parallel way, authors consider that the application of artificial intelligence to the design of innovative 
hierarchical surfaces and micro-/nano-textured biointerfaces may also constitute a sort of daybreak 
in surface engineering, which can help to rethink several scientific and technological fields, including 
tribology, ergonomics, esthetics, optics and design, to cite some examples. Further studies linked to 
the progressive implementation and tuning of computational methods presented and discussed in 
this study may promote the straightforward, geometrically trustworthy, structurally reliable, 
resource-efficient design and automated “intelligent” development of synthetic materials surfaces 
and, hence, accelerate their impact as smart biointerfaces for advanced product design in the 
biomedical engineering field. Considering the presented results and the analyzed potentials, the AI-
aided discovery of biointerfaces can undoubtedly constitute an excellent complement to ongoing 
research directions and available methods in the area of AI applied to materials sciences and 
engineering, especially as regards the development of functional engineering materials. 

Supplementary Materials: The following are available online at www.mdpi.com/2079-4991/10/11/2287/s1, 
Supplementary Materials 1: Table S1. Enlarged views, in the form of topographic maps, of the microtextured 
surfaces from the collection (after Table 1); Supplementary Materials 2: Source code (MATLAB’s .m files) for 
artificial neural networks 1, 2 and 3, whose results of contact angle prediction are shown in Tables 2 and 3.  
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