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Abstract: Cycle rank is an important notion that is widely used to classify, understand, and discover
new chemical compounds. We propose a method to enumerate all non-isomorphic tree-like graphs of
a given cycle rank with self-loops and no multiple edges. To achieve this, we develop an algorithm to
enumerate all non-isomorphic rooted graphs with the required constraints. The idea of our method
is to define a canonical representation of rooted graphs and enumerate all non-isomorphic graphs
by generating the canonical representation of rooted graphs. An important feature of our method
is that for an integer n > 1, it generates all required graphs with n vertices in O(n) time per graph
and O(n) space in total, without generating invalid intermediate structures. We performed some
experiments to enumerate graphs with a given cycle rank from which it is evident that our method is
efficient. As an application of our method, we can generate tree-like polymer topologies of a given
cycle rank with self-loops and no multiple edges.

Keywords: chemical graph; polymer topology; cycle rank; enumeration; canonical representation

1. Introduction

The problem of enumerating discrete structures has several applications in applied fields such
as graph theory, chemoinformatics, bioinformatics, and material informatics [1-11]. In particular,
the enumeration of chemical compounds is widely used in the discovery of novel drugs [12-17]
and structural elucidation [18]. It is necessary for an enumeration method to generate all possible
required structures without duplication in low computational complexity, due to which designing an
enumeration method is not an easy task.

The problem of the enumeration of chemical compounds with given constraints is often modeled
as the problem of the enumeration of graphs. Several chemical compound generation methods have
been proposed [3-9], where some methods [3,4] focus on general chemical compounds, while the other
methods [5-8] deal with restricted chemical graphs. These methods are mainly based on the branching
algorithm paradigm; the required chemical compounds appear at the leaves of a computation tree.
However, these algorithms generate many invalid intermediate structures that appear at the non-leaf
nodes of the computation tree [9]. Due to this fact, these methods are inefficient to generate chemical
compounds with more than 20 non-hydrogen atoms. Thus, it is natural to explore and develop such
methods that can enumerate chemical compounds without generating invalid intermediate structures.
Jin et al. [9] proposed one such chemical compound generation method based on the junction tree and
the variational autoencoder.

For a chemical compound C, the polymer topology is a connected multi-graph where all vertices
have degree at least three obtained by iteratively removing all vertices of degree at most two from C [19].
For example, the polymer topologies of the chemical compounds remdesivir C7H35N¢0sP (Figure 1a)
and dexamethasone CyyHy9F0s5 (Figure 1b) are illustrated in Figure 1c,d, respectively. Observe that
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two different chemical compounds can have the same polymer topology, and the categorization
of polymer topologies can play an important role in understanding and studying the synthetic
pathways of macro-chemical compounds [20]. Polymer topologies P are often classified with respect
to their cycle rank, which is the number of edges that are necessary to remove to get a spanning tree
of P. Haruna et al. [19] developed an enumeration method to generate all polymer topologies with
a given rank by using frontier-based search and zero-suppressed decision diagrams. As a result,
they enumerated all polymer topologies with cycle rank at most 6. For a multi-graph G, we define
the skeleton to be the simple graph obtained by removing all self-loops and multiple edges from G.
Notice that the class of graphs with a tree skeleton, A > 0 self-loops, and no multiple edges contains all
tree-like polymer topologies with cycle rank A, and therefore, it is an interesting problem to enumerate
all such graphs. Figure 2 illustrates examples of chemical compounds that have tree-like polymer
topologies with self-loops and no multiple edges. Recently, Azam et al. [21] proposed a method
to count all trees with given numbers of vertices and self-loops by using dynamic programming.
As a result, they gave the upper bound and the lower bound on the number of tree-like mutually
non-isomorphic polymer topologies with a given rank.
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Figure 1. The chemical compounds remdesivir Cp7H35N50gP and dexamethasone CyHyoF05 and their
polymer topologies: (a) the chemical structure of remdesivir Cp7H35N50gP taken from PubChem; (b) the
chemical structure of dexamethasone CyHygF05 taken from PubChem; (c) the polymer topology of
remdesivir with cycle rank 4; and (d) the polymer topology of dexamethasone with cycle rank 4.
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Figure 2. Three chemical compounds with their tree-like polymer topologies containing self-loops:
(a—c) the chemical structures of C1pHp»011, C21H17F03, and CogHpoNP with CIDs5988, 137,321,354, 75,352,
respectively, obtained from the PubChem database; (d—f) the polymer topologies of the chemical
structures in (a—c) with cycle ranks 2—4, respectively.

This article aims to develop an efficient method to enumerate all mutually non-isomorphic
graphs with a tree skeleton, n vertices, A self-loops, and no multiple edges without generating invalid
intermediate structures. The idea of our method is to define a canonical representation of rooted graphs
with the said structures and then enumerate these graphs by generating their canonical representations.
As a consequence of our method, we can get all polymer topologies with a tree skeleton, a given
cycle rank, self-loops, and no multiple edges. We organize the paper as follows: In Section 2, we
discuss some preliminaries. In Section 3, we first prove the mathematical properties based on which
we develop our enumeration method. We discuss experimental results and an application of our
enumeration method to generate all polymer topologies with a tree skeleton and a given cycle rank in
Section 4. We conclude and discuss some future directions in Section 5.

2. Preliminaries

For a graph G, let V(G) denote the vertex set and E(G) denote the edge set. Let n(G) denote
|V(G)| and self(G) denote the number of self-loops in G. We define size s(G) of graph G to be the
sequence (n(G),self(G)). Let s(v) denote the number of self-loops on v € V(G). For v € V(G),
we denote by Ng (v) the set of neighbors of v other than v. The degree degg (v) of v € V(G) is defined
to be the size of Ng(v).

For a multi-graph G, we define the skeleton ¢(G) of G to be the simple graph obtained by
removing all self-loops and multiple edges from the graph G. For a rooted graph G with root rg, we
define the rooted skeleton v(G) of G to be the rooted simple graph obtained by removing all self-loops
from G with root rg.

Let n > 1 and A > 0 be two integers. We denote by H(n,A) a maximal set of mutually
non-isomorphic rooted graphs with a tree skeleton, n vertices, and A self-loops. Let H be a rooted
graphin #H(n,A). For a vertex v € V(H), let H, denote the subgraph of H rooted at v induced by v
and its descendants in the rooted skeleton y(H). For a vertex v € Ny (ry) of root ry of H, we call the
subgraph H, a root-subgraph of H.

Letn > 1and A > 0 be two integers and H be a rooted graph in # (1, A). An ordered graph (H, 77)
of H is defined to be the rooted graph H with a left-to-right ordering 7 on the children of each vertex of
the rooted skeleton y(H). Let K = (H, 71) be an ordered graph of H. For a vertex v € V(K), we define
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the ordered subgraph K, of K to be a subgraph of K rooted at v induced by v and its descendants in
the rooted skeleton y(K) with preserving the ordering 7t on the children of each vertex in (K, ). For a
vertex v € Nk (rg), we call the ordered subgraph K, an ordered root-subgraph of K.

For an ordered tree, we discuss two vertex orderings: depth first search (DFS) ordering [22] and
sibling-depth first search (SDFS) ordering. In DFS ordering, we index the vertices of a given ordered
tree starting from the root and visiting them from left to right. Masui et al. [23] introduced the SDFS
ordering for simple ordered trees. For an ordered tree T = (L, 7r) with n vertices and a left-to-right
ordering 7, the SDFS ordering is defined to be a vertex ordering obtained by indexing the vertices
from the set {1,2,...,n} such that:

(i) the root has index one;

(ii) all siblings are indexed consecutively according to the left-to-right ordering 77; and

(iii) all descendants of a vertex v are indexed consecutively with indices larger than that of v and
smaller than the indices of the descendants of any vertex u, which is not a descendant of v with
index larger than .

Examples of an ordered tree and its vertex indexing in DFS and SDFS ordering are
illustrated in Figure 3.

%1 'L
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Figure 3. Examples of an ordered tree and vertex indexing: (a) an ordered tree T = (L, ) with
left-to-right ordering 7 indicated by the dashed arrow; (b) ordered tree T = (L, 77) from (a) with
vertices indexed in depth first search (DFS) order; and (c) ordered tree T = (L, ) from (a) with vertices
indexed in sibling-depth first search (SDFS) order.

Let A = (ay,ay,...,a,) and B = (by, by, ..., by) be two sequences over integers. We say that
the sequence A is lexicographically smaller A < B than the sequence B if there exists an integer /,
1 < ¢ < min{n, m}, such that for each integer i, 1 < i < ¢, it holds that a; = b; and:

(i) either £ =nwithn < mor
(i) ¢ < min{n,m}withay,1 <byq.

In such a case, we say that the sequence B is lexicographically greater B = A than the sequence A.
We define the concatenation A & B of the sequences A and B to be the sequence (ay,...,a,,b1,...,bm).
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3. Enumeration of Graphs with a Tree Skeleton and a Given Number of Vertices and Self-Loops

For two integers n > 1 and A > 0, the aim of this section is to present a method to generate
all rooted graphs in H(n,A). The idea of our enumeration method is to generate a rooted graph
H € H(n, A) by generating a canonical ordered graph of H. To achieve this, we define a canonical
graph of a rooted graph H € #(n, A) and represent the canonical ordered graph with a sequence by
using its ordered subgraphs. Finally, generate the canonical ordered graph of a rooted graph by using
the sequence representation of the canonical ordered graph.

We next present a canonical representation of rooted graphs in (1, A) based on a generalization
of the canonical representation of simple rooted trees with n vertices introduced by Masui et al. [23].
Recall that 7 (n,0) denote a maximal set of all mutually rooted non-isomorphic simple rooted trees
with n vertices. Further, note that for A > 1, it is necessary for a canonical representation of a rooted
graph H € H(n,A) to contain the information of vertices and self-loops in H.

Let H be a rooted graph in #(n,A) and ry denote its root. Further, let K = (H, ) be an
ordered graph of H with a left-to-right ordering 7. For an integer i € [1, n] and i-th vertex v; of K
following the SDFS ordering on the rooted skeleton y(K), let K(;) denote the ordered subgraph Ky, of
K for convenience.

We introduce a canonical representation of K by using the information of the number of vertices
and self-loops in the ordered subgraphs of K. For the vertices {v1, vy, ..., v, } of K indexed by SDFS
ordering on the rooted skeleton (K), we define the sequence representation SR(K) of K to be a
sequence of the size of each ordered subgraph K(;), integer i € (2, 1], of K:

SR(K) = (s(K(2)),(K(3)),---,5(Ki)))-

Examples of a rooted graph H € (11, 3), an ordered graph K = (H, i) of H with a left-to-right
ordering 7, and vertices indexed in SDFS ordering and canonical representation SR(K) of K are
illustrated in Figure 4a—c.

The next lemma states that the sequence representation of an ordered graph K is a concatenation of:

(i) asequence of the size of the root-subgraphs of K in the left-to-right ordering and
(ii) the sequence representation of all root-subgraphs of K following the left-to-right ordering.

Lemma 1. Let K be an ordered graph with n > 1 vertices and A > 0 self-loops. For integers d = degy (rk)
and i € [1,d], let K; denote the i-th root-subgraph of K in the left-to-right ordering. Then, it holds that:

SR(K) = (s(Ky),...,5(Ky)) & SR(Ky) @ - - - @ SR(Ky).

Proof. We know that in SDFS ordering, the root vertex is indexed by one, and the siblings of a vertex
are indexed consecutively. This implies that the subsequence of the first d entries of SR(K) is equal
to (s(Ky),...,s(Ky;)). Furthermore, for an integer i = 2 (resp., i € [3,d + 1]), the SDFS ordering
assigns the index to the descendants of the i-th vertex consecutively and greater than the indices of
the children (resp., descendants) of the (i — 1)-th vertex. From this, it follows that for an integer i = 2
(resp., i € [3,d + 1]), the entries of SR(K(;)) appear consecutively after the entries of the sequence
s(K1),...,8(Kyg) (resp., SR(K(;_1))) in SR(K). This implies that for an integer i € [1,d], the subsequence
of SR(K) consisting of n(K;) — 1 consecutive entries starting from d + Y1 <<;_1n(Kp) — (i —1) + 1is
actually SR(K;). Hence, it follows that SR(K) = (s(Ky),...,s(K;)) @SR(K7) & --- @SR(Ky). O

For the ordered graph K in Figure 4c, SR(K) = ((4,1),(2,0),(42),(1,0),(1,1),(1,0),
(1,0),(2,0),(1,1),(1,0)) and degk (k) = 3. This implies that K has three root-subgraphs Ki, Km and K3
following the left-to-right ordering. From Figure 4c, we have (s(K7),s(Kz),s(K3)) = ((4,1),(2,0), (4,2)),
SR(K7) = ((1,0),(1,1),(1,0)),SR(Kz2) = ((1,0)), and SR(K3) = ((2,0),(1,1),(1,0)). Thus, we see that
SR(K) = (s(K1),s(Kz),s(K3)) ® SR(Ky) & SR(K2) & SR(K3).
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V11
SR(K)=((4,1),(2,0),(4,2),(1,0),(1,1),(1,0), SR(L)=((4,2),(4,1),(2,0),(1,1),(2,0),
(1,0),(2,0),(1,1),(1,0)) (1,0),(1,1),(1,0),(1,0),(1,0))

() (d)

Figure 4. (a) A rooted graph H € #(11,3); (b) an ordered graph K of H with left-to-right ordering 7t
on siblings; (c) the ordered graph K of H with SDFS vertex indexing and SR(K); and (d) the canonical
representation of H and the ordered graph with sequence representation equal to the canonical
representation of H.

We rephrase the recursion in Lemma 1 for a sequence of pairs in the following paragraph and claim
that this recursion is a sufficient condition for a sequence of pairs to be the sequence representation of
some ordered graph. We prove this claim in Theorem 1.

Letn > 1and A > 0 be two integers and M = ((ay,b1), (a2,b2),...,(a,_1,b,_1)) be a sequence
of pairs of integers with a; > 1 and b; > 0, integer i € [1,n — 2]. We say that the sequence M is
(n, A)-admissible if either n = 1 or:

(i) there exists anintegerd € [1,n — 1] such thatn —1 = Y1 ;<ya; with A > Y3 ;- ; b; and
(ii) for each integer i € [1,d], the subsequence of M consisting of a; — 1 consecutive entries starting
fromd + Y <p<jqap — (i —1) 4 11is (a;, b;)-admissible.

Theorem 1. Let n > 1 and A > 0 be two integers and M = ((ay,b1), (a2, b2),...,(ap—1,by—1)) be a
sequence of pairs of integers with a; > 1 and b; > 0, integer i € [1,n — 2].

(1) Sequence M is the sequence representation SR(K) of some ordered graph K with n vertices and A
self-loops if and only if M is (n, A)-admissible.

(ii) Whether M is admissible or not can be tested in O(n) time.

(iii) When M is (n, A)-admissible, the ordered graph K with SR(K) = M can be constructed in O(n) time.
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Proof. For sequence M with an integerd € [1,n — 1] suchthatn —1 =Y 1<;cya;and A > Y 1,4 b;,
let M; denote the subsequence of M consisting of 4; — 1 consecutive entries starting from
d+Yi<p<i—1ay — (i —1) 4+ 1. For an ordered graph K and integer i € [1,degy(rk)], let K; denote
the i-th root-subgraph of K in the left-to-right ordering.

(i) The if-part: Suppose that M = SR(K) for some ordered graph K with n vertices and A self-loops. If
n =1, then M is (1, A)-admissible by the definition of admissibility. Let us assume that n > 2. Then, for
d = degy (rk), itholds thatn — 1 = Yy ;<yn(K;) and A > Y1 ;4 5(K;). Further, by Lemma 1 for each
integer i € [1,d], the subsequence M; of M is equal to SR(K;). Thus, by recursively using Lemma 1 for
SR(K;), i € [1,d], we see that the sequence representation SR(K;) is (n(K;), s(K;))-admissible. Hence,
it follows that the sequence representation SR(K) is (1, A)-admissible.

The only-if part: We prove the converse of (i) by induction on 7.

Forn = 1, M is (1, A)-admissible by the definition of admissibility. Note that M is an empty
sequence in this case. Let K be an ordered graph with n = 1 vertices and A self-loops. Then, SR(K) is
an empty sequence, and hence, M = SR(K).

Suppose that the converse of (i) holds for any positive integer £. We show that the converse holds
for the integer ¢ + 1. Let M be (¢ + 1, A)-admissible. Then, by the definition of admissibility, there
exists an integer d € [1,/] such that £ = Y1 ;<5a; and A > Yy ;<4 b;. This implies that for an integer
i € [1,d], we have a; < (. Further, for each integer i € [1,d], the subsequence M,; is (a;, b;)-admissible
by the admissibility of M. This and the inductive hypothesis that the converse of (i) holds for any
integer £ > 1 imply that for each integer i € [1,d], there exists an ordered graph H with a; vertices and
b; self-loops such that M; = SR(H). Let K denote the ordered graph with ¢ + 1 vertices, A self-loops,
degk(rx) = d, A — Y1 <j<4 b; self-loops on the root rg, and the i-th root subgraph K; of K be the ordered
subgraph H such that M; = SR(H). Then, it immediately follows that:

SR(K) = (S(Kl),.. .,S(Kd)) EMiEMB...H M,

This means that M = SR(K) holds, since ((a1,b1),...,(a4,b5)) = (s(Ky),...,s(Ky)), showing
that the converse holds for the integer ¢ + 1.
Hence, by mathematical induction, the converse of (i) holds for any integer n > 1.

(if) We prove this result by induction on 7.

For n = 1, the sequence M is an empty sequence and is (1, A)-admissible by the definition of
admissibility. Therefore, it takes constant O(1) time to test admissibility in this case.

Suppose that for n = ¢, ¢ > 1, the admissibility of sequence M can be tested in O(¢) time.
We show that the statement (ii) holds for n = £ + 1. To show if M is (£ + 1, A)-admissible, we need to
find an integer d € [1,¢] such that { =} ;;<;a;and A > }°; ;< b;. Such an integer d can be identified
in O(d) time. Suppose that such an integer d exists for M. Then, for each integer i € [1,d], we next
need to test if the subsequence M; is (4;, b;)-admissible. Note that the size of the sequence M; is a; — 1,
i€ [l,d]. By { =Y 1<i<ga, itholds thata; < ¢, i € [1,d]. This and the inductive hypothesis imply that
for an integer i € [1,d], the admissibility of the sequence M; can be tested in O(a;) time. Thus, the time
testing admissibility of M is O(d 4+ ¥L1<j<ga;) = O(d+ 1) = O(L +1),sinced < /.

Hence, by mathematical induction, the admissibility of a sequence M of sizen — 1, n > 1 can be
tested in O(n) time.

(iif) We prove the claim in (iii) by induction on n.

Forn =1, M is (1, A)-admissible and is the sequence representation of the ordered graph K with
only one vertex and A self-loops. This implies that K can be constructed in O(1) time.

Suppose that for n = ¢, £ > 1, the statement (iii) holds. We show that the statement (iii) holds for
n=/{+1. Let M be an (¢ + 1, A)-admissible sequence. Then, there exists an integer d € [1, /], such
that £ =} 1<j<ya; and A > Y1 ;< b;. By (i), there exists an ordered graph K with n vertices and A
self-loops such that SR(K) = M. Thus, it holds that degy (rx) = d. Further, by Lemma 1, for each
integer i € [1,d], the i-th root-subgraph K; of K has a; vertices and b; self-loops. Observe that such an
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integer d exists uniquely due to the admissibility of M. This implies that deg (k) can be obtained in
O(d) time.

By SR(K) = M and Lemma 1, for each integer i € [1,d], it holds that SR(K;) = M;. Recall that
the size of SR(K;) is n(K;) — 1, which is equal to a; — 1, i € [1,d]. Further, by £ = Y1 ;4 a;, it follows
thata; < ¢,i € [1,d]. Thus, by the inductive hypothesis for an integer i € [1, d|, the subgraph K; can
be constructed from M; in O(a;) time. Since d + Y1 <;<44; = d + { and d < /, K can be constructed in
O(£+1) time from M.

Hence, by mathematical induction, for integers n > 1 and A > 0 and an (1, A)-admissible
sequence M, the ordered graph K with SR(K) = M can be constructed by M in O(n) time. [J

Let M = ((a1,b1), (a2, b2),...,(ay,-1,b,—1)) be an (n, A)-admissible sequence. Then, there exists
an integer d € [1,n — 1] such that n — 1 = };-;<; a;. Furthermore, by Theorem 1(i), there exists an
ordered graph K with n vertices and A self-loops such that degk (rx) = d and SR(K) = M. Note that
such an integer d and ordered graph K are unique. We call the integer d the root-degree of M and
denote it by d(M). Moreover, for each integer i € [1,d(M)], the subsequence of M consisting of
a; — 1 consecutive entries starting from d(M) + Y1 <;<;_1 4, — (i — 1) + 1 is equal to the sequence
representation of the i-th root-subgraph of M. For an integer i € [1,d(M)], we call such a subsequence
of M the i-th root-subsequence of M and denote it by M(i).

By Theorem 1(i), it follows that an ordered graph K with n > 1 vertices and A > 0 self-loops can
be completely determined by SR(K). Thus, we define a canonical representation of a rooted graph H €
H(n,A) as follows. For a rooted graph H € (1, A), we define the canonical representation to be an
(n, A)-admissible sequence M such that M is lexicographically maximum among all (1, A)-admissible
sequences that are the sequence representation of ordered graphs of H.

In Figure 4d, we show the canonical representation M of the rooted graph H € H (11, 3) illustrated
in Figure 4a. Further, we show the ordered graph L such that SR(L) = M.

To generate all rooted graphs in #(n, A), it is enough to generate the canonical representation
of each rooted graph H € #(n, A) by Theorem 1(i). For two integers n > 1 and A > 0, let M(n,A)
denote the set of all (1, A)-admissible sequences that are canonical representation of graphs in H(n, A).
Note that the empty sequence is the only sequence in M(1,A). In the next lemma, we give a
characterization of sequences in M (1, A).

Lemma 2. Let n > 2 and A > 0 be two integers. Let M = ((ay,b1),(az,b2),...,(ay_1,b,_1)) be a
sequence of integer pairs with an integer d € [1,n — 1] such that n —1 = Y ;.,4a;. For an integer
i € [1,d], let M(i) denote the subsequence of M consisting of a; — 1 consecutive entries starting from
d+Yi<p<i—gap — (i —1) 4+ 1. Then, M € M(n, A) if and only if the following hold:

@) a; > 1L,Vie [1,d], Cicicgai=n—landa; > a; 1, Vi € [1,d - 1];
(ii) b; >0,Vi € [1,d], Yy<j<qbi < Aand for each integer i € [1,d — 1] such that a; = a; 4, it holds that
bi > bi+1; and

(iii) M(i) € M(a;, b;),Yi € [1,d], and for each integer i € [1,d — 1] such that a; = a; 1 and b; = b; 4,
it holds that M(i) = M(i+1).

Proof. The if part: Let M € M(n, A). Then, by the definition of admissibility, it holds that d = d(M).
Let H denote the ordered graph with n vertices and A self-loops such that SR(H) = M.

(i) By the admissibility of M, we have a;>1,Vi€[l,d(M)], Yicicaqmyai=n—1
Furthermore, M is the canonical representation of H, and therefore, for the sequence
representation ((s1,s]),(s2,55), ..., (Sp—1,5),_1)) of any ordered graph of H, it holds that
(a1, ag4(py) = (S1,---,84(m))- This eventually implies that a; > a; 1, Vi € [1,d —1].

(ii) By the admissibility of M, it holds that b; > 0,Vi € [1,d(M)], Yi<i<d(m) bi < A. Moreover, for the
sequence representation ((s1,57), (52,55),- -, (Sp—1,5),_;)) of any ordered graph of H such that

s; = a;, Vi € [1,d(M)], it holds that (by, ..., bgm)) = (si,...,sé(ND) since M is the canonical
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representation of H. This implies that for each integer i € [1,d(M) — 1] such that a; = a;1,
it holds that b; > bi—i—l'
(iii) We first prove that for each integer i € [1,d(M)], it holds that M(i) € M (a;, b;).

For an integer i € [1,d(M)], let H; denote the i-th root-subgraph of H following the left-to-right
ordering. Then, by Lemma 1 for each integer i € [1,d(M)], it holds that SR(H;) = M(i).

Suppose on the contrary that there exists an integer i € [1,d(M)] such M(i) ¢ M(a;, b;).
This means that there exists an ordered graph L that is rooted isomorphic to H;, and SR(L) > M(i)
holds. Let M’ denote the sequence obtained from M by replacing the subsequence M; with SR(L).
Clearly, M’ is (n, A)-admissible, and M’ > M holds by the construction of M’. Let H' denote the
ordered graph obtained by replacing H; with L in H and preserving the ordering of the children of each
vertex in L. Then, we see that H’ is rooted isomorphic to H, and SR(H’) = M'. This contradicts the fact
that M is a sequence in M (n, A). Hence, for each integer i € [1,d(M)], it holds that M(i) € M(a;, b;).

Recall that M is the canonical representation of H. This implies that for the sequence representation
((s1,81),(52,85),---,(5n-1,5},_1)) of any ordered graph of H such that (s;,s}) = (a;,b;),Vi € [1,d(M)],
it holds that ((agq(my+1,ba(my+1)s -+ (@n-1,bu-1)) = ((Sd(M)Hrsa(M)H)r“'/(Snflfsilq))' This
implies that for each integer i € [1,d(M) — 1] such that a; = a;,1 and b; = b;;1, we have
M(i) = M(i+1).

The only-if part: Let M satisfy (i), (ii), and (iii). We show that M € M (n, A). To prove this, we show
that M is a canonical representation of some graph in H (1, A).

By (i) and (ii), we have a; > 1,b; > 0,Vi € [L,d], n —1 = Y < cga;and A > Y <4b;.
Furthermore, for each integer i € [1,d], the sequence M; is (a;, b;)-admissible, since M(i) € M (a;, b;)
by (iii). This implies that M is (1, A)-admissible.

By Theorem 1(i), there exists a unique ordered graph K = (H, r) such that SR(K) = M for some
H € H(n,A). This implies that degk (rx) = d, and for each integer i € [1,d], the i-th root subgraph of
K has a; vertices and b; self-loops. This implies that any ordered graph L that is rooted isomorphic to
K has x vertices and y self-loops such that (x,y) = (a;,b;) for some i € [1,4d].

The condition a; > a;;1,Vi € [1,d — 1] in (i) implies that for the sequence representation
S = ((s1,5),(52,85), -, (Sn—1,5],_1)) of any ordered graph that is rooted isomorphic to K, it holds
that M > S since (ay,...,a5) > (s1,...,54). For the condition for each integer i € [1,d — 1]
such that a; = a;;4, it holds that b; > b;;; in (ii) implies that for the sequence representation
S = ((s1,57),(s2,8%),...,(su—1,5,,_1)) of any ordered graph that is rooted isomorphic to K such
thats; = a;,Vi € [1,d], it holds that M > S since (by,...,bz) = (s},...,s,). Finally, for the condition
for each integer i € [1,d — 1] such that a; = 4,1 and b; = b;;4, it holds that M(i) = M(i +1) in
(iii) implies that for the sequence representation S = ((s1,s}), (52,55), -, (Sp—1,5},_1)) of any ordered
graph that is rooted isomorphic to K and (s;,s}) = (a;,b;),Vi € [1,d], it holds that M > S since
((@a41,0a41), -+, (@n—1,b4-1)) = ((8441,541), -+, (Su—1,5),_1)). This eventually implies that M is the
canonical representation of H from which it follows that M € M(n,A). O

We next give the structure of the sequences that are lexicographically minimum and maximum
among all sequences in M (n, A).

Lemma 3. Let n > 2 and A > 0 be two integers.

(i)  The sequences N = ((1,0),(1,0),...,(1,0)) and M = ((n—1,A),(n —2,A),...,(1,47))
each of length n — 1 are lexicographically minimum and maximum among all sequences in
M((n, A), respectively.

(i)  Whether a sequence in M (n, A) is lexicographically minimum or maximum among all sequences in
M(n, A) can be tested in O (n).

Proof. (i) It is easy to observe that the sequence N is (1, A)-admissible. Furthermore, for two integers
i >2and j > 0, the ranges of the first and the second entries in any sequence in M (i, j) are [1,i — 1]
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and [0, j], respectively. This implies that the sequence N is lexicographically minimum among all the
sequences in M (1, A). Moreover, the sequence ((1,A)) is admissible and lexicographically maximum
among all the sequences in M (2, A). From this, it follows that the sequence ((2,A), (1, A)) is admissible
and lexicographically maximum among all the sequences in M (3, A). Thus, by using this inductive
argument, we can conclude that the sequence M is admissible and lexicographically maximum among
all the sequences in M (1, A).

(ii) We know that a sequence S in M (n, A) is of length n — 1, and therefore, by using a for-loop of
size n — 1 and (i), we can test if S is lexicographically minimum or maximum among all sequences in
M(n,A)in O(n) time. O

Let S(n,A) and L(n, A) denote the lexicographically minimum and maximum sequences among
all sequences in M (1, A), respectively.

For a sequence M € M(n,A) such that M # S(n, A), we define the predecessor P(M) of M to be
the sequence that is lexicographically maximum among all sequences that are lexicographically smaller
than M, i.e., there does not exist a sequence N € M(n,A) \ {P(M)} such that M > N > P(M) holds.

For a sequence M € M(n,A), we next give the structure of the predecessor P(M), if it exists,
of M.

Theorem 2. Let n > 2 and A > 0 be two integers and M = ((a1,b1), (a2, b2),...,(ay_1,by-1))
be a sequence in M(n,A). Let d denote the root-degree of M.  Then, for the predecessor
P(M) = ((x1,y1), (x2,¥2), - - -, (Xn—1,Yn—1)), if it exists, we have:

(@) Ifa;=1andb; =0, Vi € [1,d], then P(M) does not exist.

(b) Ifa; # 1forsomei € [1,d], bj = 0and M(j) = S(aj,b;), Vj € [1,d]. Then, for the largest integer
k € [1,d] such that ay # 1, it holds that dP(M)) = k—1+ [(ap +d —k)/(ar —1)], y1 = A,
Yi = 0,Vi e [Z,d(P(M))], x; =a;, Vi € [1,]( — 1], X;j = ay — 1,Vi e [k,d(P(M)) — 1}, X4(p(M)) =
a+d —k—[(ax +d —k)/(a — 1) ] (a — 1), and P(M) (i) = L(x;, y:), Vi € [1,d(P(M))].

(c)  Ifb; # 0 forsomei € [1,d], M(j) = S(aj, b;), Vj € [1,d]. For the largest integer k € [1,d] such that
b # 0, let p = max{i <d | ay = ari}, g = p+1ifby =1, and q = | (A — Ercick1 bi)/ (b —
1) if b > 2and t = min{q,p + 1}. Then, it holds that dP(M)) = d, x; = a;,Vi € [1,d],
yi = b, Vi€ [1L,k—1], yx = by — 1, for k # d, we have yy,; = by —1,¥i € [1,t — 1], ypoy =
(A= Yacick1bi) — t(be — 1), y; = 0,Vi € [k+ t+1,d], and P(M)(i) = L(x;,y;), Vi € [1,d].

(d)  Otherwise if a; # 1,bj # 0, M({) # S(ay, by), for some i, j, £ € [1,d]. For the largest integer k € [1,d]
such that M(k) # S(ay, by), let p & max{i < d | a = ay,; and by = by, }. Then, it holds that
d(P(M)) = d, (xi,yi) = (a;,b;),Vi € [1,d], P(M)(i) = M(i), Vi € [1,k—1], P(M)(k+1) =
P(M(k)),Vi € [0, p], and P(M) (i) = L(a;, b;), Vi € [k+ p+1,d].

Proof. (a)If a; = 1and b; = 0, Vi € [1,d], then it holds that d = n — 1. Thus, by Lemma 3(i), it holds
that M = S(n, A), and therefore, P(M) does not exist.

(b) If a; # 1 for some i € [1,d], bj = 0 and M(j) = S(aj,b;), Vj € [1,d], then M is lexicographically
minimum among all those sequences ((c1,¢}),...,(cy—1,¢),_1)) € M(n,A) for which it holds that
¢; = a;,Vi € [1,d]. Further, a; # 1 for some i € [1,d] implies that P(M) exists. By the definition
of a predecessor, observe that P(M) is lexicographically maximum among all those sequences S =
((s1,81), -, (su—1,5,,_1)) € M(n,A) for which it holds thats; = x;,Vi € [1,d(P(M))]. This implies
that for each such sequence S, it holds that either (y1,y2,--.,Yapmy)) = (51,85, .,sé(P(M))) or
yi = s and P(M)(i) = S(i),Vi € [1,d(P(M))]. The former implies that y; = A, y; = 0,Vi €
[2,d(P(M))], while the latter implies that P(M) (i) = L(x;,y;), Vi € [1,d(P(M))]. Further, the sequence
(x1, .-, xq(p(m))) satisfies Lemma 2(i), and there does not exist a sequence L that satisfies Lemma 2(i)
such that (x1,...,xqp(m))) < L < (a1,...,44) holds by the definition of P(M). This and the definition
of k imply that x; = a;,Vi € [1,k —1]; the sequence (xi, Xt11,- .., Xq(p(m))) IS @ non-decreasing
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sequence, and there there does not exist a sequence Z = (z1,...,z:) such that z; € [1,a, —1],Vi €
[1,t] and Y1<j<4zi = Yy<j<aaj for which it holds that (xt, ..., xqp(m)) < Z < (a,...,a;) holds.
This eventually implies that d(P(M)) =k — 1+ [Yy<ij<qai/(ar —1)], x; = ax — 1,Vi € [k, d(P(M)) —
1], and xq(p(m)) = Lk<i<d 8 — [Lk<i<a 8i/ (ax — 1)](ax — 1). Thus, by the definition of k, we have
Y k<i<d @i = ax +d — k, and therefore, we have the required result.

(c) If b; # 0 for some i € [1,d] and M(j) = S(a;, bj), Vj € [1,d], then M is lexicographically minimum
among all those sequences ((c1,c}), ..., (cp—1,¢),_1)) € M(n,A) for which it holds that (c;,c}) =
(a;, b;),Vi € [1,d]. Since b; # 0 for some i € [1,d], therefore P(M) exists and is lexicographically
maximum among all those sequences ((s1,s}),...,(su—1,5),_1)) € M(n,A) for which it holds that
(si,st) = (aj,yi), Vi € [1,d(P(M))]. This implies that x; = a;,Vi € [1,d(P(M))], and therefore, we
have d(P(M)) = d. Furthermore, (y1,Y2,...,Y4) > (5},55,...,55) and P(M)(i) = S(i),Vi € [1,d].
This implies that for each integer i € [1,d], it holds that P(M)(i) = L(a;,y;), and the sequence
(y1,Y2, - .,Y4) is lexicographically minimum among all those sequences that satisfy Lemma 2(ii) and
are lexicographically smaller than (by, by, ..., b;). This and the definition of k imply that y; = b;, Vi €
[1,k — 1]; by Lemma 2(ii), the sequence (yk, Yx11,- - -, Yk+p) is @ non-decreasing sequence, and there
does not exist a sequence Z = (zj, zx 11, - - -, Zx+p) such that z; € [0, by — 1] and Y x<j<yp zi = min{(p +
Dby —1),A— Yi<i<k—1 b;} for which it holds that (vk, yxi1 - - - ,xkﬂ,) < Z =< (bg, bes,---, bk+p)- This
eventually implies that y; = by — 1 and for k # d yy,; = by — 1,Vi € [1,t — 1]. This and the minimality
of (y1,Y2,...,yq) imply that s = (A — Yq<jck1bi) —t(by—1)and y; =0,Vi € [k+t+1,d].

(d) The conditions of this case imply that M is not the lexicographically minimum among all those
sequences ((c1,¢}),...,(cp-1,€,_71)) € M(n,A) for which it holds that (c;, ¢}) = (a;,b;),Vi € [1,d].
This implies that for P(M), it holds that d(P(M)) = d and (x;,y;) = (a;,b;),Vi € [1,d], and there
does not exist a sequence S = ((s1,5),...,(sp—1,5,,_1)) € M(n, A) for which it holds that (s;, s}) =
(a;,b;),Vi € [1,d] and ((x1,¥1),---, (Xn—1,Yn-1)) <= S < M. This implies that for each such sequence S,
itholds that P(M)(1) ®P(M)(2) & --- ®P(M)(d) > S(1) ©S(2) & - - - @ S(d). This and the definition
of k imply that P(M)(i) = M(i), Vi € [1,k — 1]. Furthermore, by Lemma 2(iii) and the definition
of p, it holds that P(M)(i) = P(M)(i+ 1), Vi € [k, k+ p — 1], and there does not exist a sequence
S = ((s1,81),---,(5n-1,5,,_1)) € M(n,A) such that (s;,s!) = (a;,b;),Vi € [1,d] and S(i) > S(i+1),
Vi € [k, k + p — 1] for which it holds that P(M)(k) # P(M)(k+1) & --- & P(M)(K+1) < S(k) &
Sk+1) @ @Sk+p+1) < MK) @ M(k+1)& - & M(k+p—+1). Since M(k) # S(ag, by),
therefore P(M) (k) is a lexicographically minimum sequence in M (ay, bx) for which it holds that
P(M)(k) < M(k). This implies that P(M)(k + i) = P(M(k)), Vi € [0, p]. Further, by the minimality of
P(M),P(M)(i) = L(a;, b;), Vi€ [k+p+1,4d].

Finally, one can easily verify that the sequence ((x1,¥1),..., (xy—1,¥,—1)) obtained in each of
the above cases satisfies Lemma 2(i)—(iii) by construction, and hence, ((x1,y1),..., (x4,—1,Yn—1)) is an
element of M (n, A) that is P(M), which completes the proof. [

Lemma 4. Let n > 2 and A > 0 be two integers and M be a sequence in M (n, A). Then, the predecessor
P(M), if it exits, can be computed in O(n) time and O(n) space.

The proof of Lemma 4 follows from Algorithm 1 and Lemma 5.

We next present Algorithm 1 to compute the predecessor based on Theorem 2. In this algorithm,
for a sequence M € M(n, A) with root-degree d and integer i € [1,d], the variable M[i] stores the i-th
root-subsequence M(i) of M, and the variable P[M] stores the predecessor, if it exists, of M.
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Algorithm 1 Computing the predecessor of an admissible sequence.

Input: Two integers n > 2 and A > 0 and an (n,A)-admissible sequence

M= ((a1,b1), -, (an-1,bp—1))-

Output: The predecessor M if it exists; The predecessor of M does not exist otherwise.
: d := The root-degree of M;
iflfg; =1and b; =0, Vi € [1,d] then

Output The predecessor of M does not exist /* Theorem 2(a)*/
else/* The predecessor of M exists by Theorem 2*/

PIM] := ((x1,v1), -, (Xn—1,Yn—1))

ifa; # 1 for somei € [1,d], and b; = 0 and M[j] = S(a;,b;), Vj € [1,d] then

/* Theorem 2(b) */

k:=max{i|a; #1};h:=k—1+ [(ax +d —k)/(ar —1)]; /* The root-degree

d(P(M)) of P(M) */
8 y1:=0y;:=0,Vie€[2h;x;:=a;,Vie€[Lk=1;x;:=a,—1,Vie [k,h—1];

Xy = ag+d—k— (e +d —k)/(ax — 1) [ (ax = 1); PIM][i] = L(x;, ), Vi € [1, h].
else if b; # 0 for some i € [1,d] and M[j] = S(a;, b;), Vj € [1,d] then
/* Theorem 2(c) */
10:  k:=max{i|b; #0}; p:=max{i <d|ar=ar;};q:=p+1ifb=1;

q:=[(A=Yi<ick-1bi)/ (b —1) ] if by > 2; ¢ := min{q, p +1};
1: xj:=a;,Vie[l,d;y;:=b,Vie[Lk—1],y :=b—1;
12:  if k # d then
13 Yeri=be—LVi€ [Lt =1 ypre == (A — Licick1 bi) — tH(bx — 1);

yi=0Vi€[k+t+1,d
14: endif;
15 P[M][i] := L(x;,;), Vi € [1,d]
16: else/*If a; # 1,b; # 0and M[{] # S(a,, by), for some i, j, £ € [1,d] */
/* Theorem 2(d) */
17: k= max{i | M[i] # S(a;,b;)};
18 p:=max{i <d|a =ar;and by = by, };

(xi,yi) = (LIZ‘, bl’),Vi S [1, d], P[M] [l} = M[i], Vi e [1,]{ — 1];
19:  P[M][k] := Algorithm 1(ay, by, M[k]);

20:  P[M]|[k+i] := P[M][k],Vi € [1,p]; P[M][i] := L(a;, b;), Vi € [k+ p+1,d]
21: end if

22:  Output P[M] as the predecessor of M;

23: end if.

S

N

°

Lemma 5. For two integers n > 2 and A > 0 and an (n, A)-admissible sequence M, Algorithm 1 outputs the
predecessor P(M), if it exits, in O(n) time and O(n) space.

Proof. Correctness: The correctness of Algorithm 1 immediately follows from Theorem 2.
Complexity analysis: By the definition of the root-degree, we can compute d at Line 1 in O(#n) time.

We can test if 4; # 1 and b; # 0 hold for some i,j € [1,d] in O(n) time. Similarly, we can
test if M(j) = S(aj, b;), for some j € [1,d] in O(n) time, since the length of M(j) is a; — 1, and
Y1<i<qa; = n — 1. Hence, we can test the conditions at Lines 2, 6,9, and 16 in O(n +n) = O(n) time.
This implies that we can check if the predecessor of M exists in O(n) time. We next discuss the time
complexity of computing the predecessor in each of the cases at Lines 6, 9, and 16.

When the conditions at Line 6 hold, then k and & can be computed in O(n) time, since k < d and
h < d+ 1. This implies that ((x1,¥1),-.., (x4, y;,)) can be computed in O(n) time. Furthermore, we can
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compute L(x;,y;), Vi € [1,h]in O(x;) time by Lemma 3(i). Recall that for P[M], it holds that }; ;< x; =
n — 1. Thus, P[M] can be computed in O(n) time.

When the conditions at Line 9 hold, then k, p, g, and t can be computed in O(n) time by there
definitions. Thus, ((x1,¥1),.-.,(x4,1y4)) can be computed from Line 11 to Line 14 in O(n) time.
Furthermore, L(x;,y;),Vi € [1,d] can be computed at Line 15 in O(n) time, as discussed above.
This implies that P[M] can be computed in O(#n) time in this case.

Finally, when the conditions at Line 16 hold, then once again, we can compute k in O(n)
time, since Y 1<;<4a; = n — 1. Further, p can be computed in O(n) time by the definition of p.
However, P[M][k| can be obtained by recursively running Algorithm 1 on ay, by and M[k|. Note that
this operation is repeated at most the length of the sequence P[M[k]], which is a; — 1 in this case, and
hence, P[M][k] can be computed in O(n) time. Once again, the computation at Line 20 can be done in
O(n) time since it holds that }_; ;<5 4; = n — 1. Hence, P[M] can be computed in O(n) time .

Note that the O(n) space is sufficient to store P[M], if it exists, which completes the proof. [

Note that we can generate all rooted graphs in #(n,A) by generating their canonical
representation by repeatedly using Algorithm 1 starting from the lexicographically maximum sequence
L(n,A)in M(n,A) in O(n) time per graph and O(n) space in total.

Theorem 3. Let n > 2 and A > 0 be two integers. Then, all mutually non-isomorphic graphs with n vertices,
A self-loops, and a tree skeleton can be generated in O(n) time per graph and O(n) space in total.

Proof. A tree can be viewed as a rooted tree by considering its centroid as the root [24]. We know that
when 7 is odd, then there are only trees with unicentroids; however, when # is even, then there are
trees with unicentroids.

By the definition of a unicentroid, all mutually non-isomorphic graphs with n vertices, A self-loops,
and a tree skeleton with a unicentroid can be enumerated by generating all graphs H in H(n, A)
such that each root subgraph of H has at most | (n — 1) /2] number of vertices, i.e., by generating
all sequences M = ((ay,b1),...,(ay_1,by-1)) € M(n,A) such that a; € [1,[(n—1)/2]], Vi €
[1,d(P(M))]. Let S denote the sequence that is lexicographically maximum among all those
sequences in M (n,A) that represent a tree with a unicentroid. When n is even, then it holds
that S = ((|(n —1)/2],A),([(n—-1)/2],0),(1,0)) ®L([(n —1)/2|,A) ®L(|(n —1)/2],0) ®L(1,0).
Recall that L(1,0) is an empty sequence, and therefore, we have S = ((|(n —1)/2],A),(|(n —
1)/2],0),(1,0)) ® L(|(n — 1)/2],A) @ L(|(n — 1)/2],0). However, when 7 is odd, then it holds
thatS = (([(n —1)/2],A),(|(n—=1)/2],0))®L(|(n —1)/2],A) ®L(|(n —1)/2],0). Hence, we can
generate all sequences in M (1, A) that represent a graph H € #(n, A) such that the skeleton of H has
a unicentroid by repeatedly using Theorem 2 starting from the sequence S. This implies that we can
generate all such sequences in O(n) time per sequence and O(n) space by using Algorithm 1.

When n is even, then all mutually non-isomorphic graphs with n vertices, A self-loops,
and a tree skeleton with a bicentroid can be enumerated by generating all sequences M =
((a1,01),...,(ap—1,by—1)) € M(n,A) such that the root-degree d(M) = 2, a; = a, = n/2 and
by + by = Awith by > by. Insuch a case, the sequences ((1/2,A),(n/2,0)) &L(n/2,A) &L(n/2,0) and
((n/2,10/2]),(n/2,|A/2]))®L(n/2,[A/2]) ®L(n/2,|A/2]) are lexicographically maximum and
minimum, respectively, among all those sequences in M (1, A) that represent a graph with a bicentroid.
Let M = ((a1,b1),...,(ay-1,by_1)) € M(n,A) be a sequence that represents a graph H € H(n,A)
such that the skeleton of H has a bicentroid and M # ((n/2,[A/2]), (n/2,|A/2])) ®L(n/2,[A/2]) &
L(n/2,[A/2]). When M(i) = S(aj, b;), Vi € {1,2}, then it holds that P(M) = ((a1,b1 — 1), (a2, b2 +
1)) @ L(ay, by — 1) @ (az, ba + 1). However, in the case otherwise, i.e., when M(i) # S(aj, b;), for some
i € {1,2}, then P(M) can be generated by using Theorem 2(d). Clearly, in both of these cases,
P(M) can be generated in O(n) time and O(n) space. This eventually implies that all sequences
that represent a graph in #(n,A) with a bicentroid can be generated in O(n) time per sequence
and O(n) space by repeatedly computing the predecessor of sequences M as described above
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starting from ((n/2,A),(n/2,0)) ®L(n/2,A) ®L(n/2,0) until M = ((n/2,[A/2]),(n/2,|A/2])) ®
L(n/2,[A/2]) ©L(n/2,|A/2)).

Hence, we can generate all non-isomorphic graphs with n vertices, A self-loops, and a tree skeleton
with a unicentroid or bicentroid in O(n) time per graph and O(n) space in total, which completes that
proof. O

4. Results and Discussion

We computed all graphs with n vertices, A self-loops, and a tree skeleton for different values of n
and A to test the efficiency of our algorithm, and the results are listed in Table 1. These experiments
were performed on a PC with an Intel Core i7-500 processor, running at 2.70 GHz, 16 GB of
memory, and Windows 10. From the experimental results, it is evident that the proposed method is
computationally efficient.

Table 1. Experimental results of the enumeration method.

(n,A)  #of Generated Graphs Time (s)

(,9) 856 0.278
(5, 10) 1186 0213
(5, 30) 50,596 4354

6,9) 4270 0.992
(6, 10) 6333 1.571
(6, 30) 619,431 141.334

(7,9) 20,548 5.084
(7, 10) 32,337 7.047

(8,9) 95,357 17.444
(8, 10) 159,058 31.755
9, 9) 429,496 88.899
©, 10) 756,045 185.823
(10, 9) 1,882,764 528.286

(10, 10) 3,488,567 914.806
17, 2) 25,939,679 3911.33
(18, 0) 123,867 34.189
(20, 0) 823,065 334.357
(22, 0) 5,623,756 1807.53
(24, 0) 39,299,897 8042.88

An application to the generation of polymer topologies with a tree skeleton: Observe that a graph
with a tree skeleton, A self-loops, and no multiple edges has cycle rank A. Therefore, the class of such
graphs contains all polymer topologies of cycle rank A with a tree skeleton. However, it is a natural
question to search for a relationship between the number # of vertices and the number A of self-loops
such that there exists a polymer topology with a tree skeleton, n vertices, and cycle rank A. Clearly,
forn = 1 and A > 2, there exists exactly one polymer topology with a tree skeleton, # vertices, and A
self-loops. Let P(n, A) denote a maximal set of mutually non-isomorphic polymer topologies with a
tree skeleton, n vertices, A self-loops, and no multiple edges. Azam et al. [21] proved the following
necessary condition on A to have a polymer topology with a tree skeleton and n vertices.

Lemma 6 ([21]). Ifn > 1and A > [5] + 1, then it holds that P(n, A) # @.

Let G(n,A) denote a maximal set of mutually non-isomorphic graphs with a tree skeleton,

n vertices, and A self-loops. For an integer r > 1, let P(r) denote a maximal set of mutually

non-isomorphic polymer topologies with a tree skeleton, n vertices, and r self-loops. By Lemma 6, it
holds that:

P(r) = U P(n,r) C U G(n,r) (1)

neZt:[ 4] +1<r n€Zt:[§]+1<r
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Thus, by using Equation (1) and identifying the degree of each vertex in the graphs in G(n,r)
from their canonical representations, we can compute all polymer topologies in P(r). We applied
our method to generate all polymer topologies in P(r) for rank r = 2,3,...,9, and the results are
listed in Table 2.

Table 2. The number of polymer topologies with a tree skeleton,  self-loops, and no multiple edges.

Rank r

n 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1
2 1 1 2 2 3 3 4 4
3 - 1 2 4 6 9 12 16
4 -1 3 6 13 21 35 51
5 - - 2 7 18 40 77 136
6 - - 1 6 23 61 147 300
7 - - - 3 20 76 223 559
8 - - - 1 14 74 288 868
9 - - - - 5 54 291 1128
10 - - - - 2 29 241 1212
11 - - - - - 10 145 1057
12 - - - - - 2 68 733
13 - - - - - - 19 390
14 - - - - - - 4 151
15 - - - - - - - 38
16 - - - - - - - 6

Total 2 4 11 30 105 308 1555 6650

5. Conclusions

We proposed an efficient method to enumerate all mutually non-isomorphic graphs with a tree
skeleton, a given number of vertices, and the number of self-loops. The idea of this method is to
generate rooted graphs with n vertices and A self-loops by generating their canonical representation.
We defined the canonical representation of a rooted graphs H with n vertices and A self-loops based
on the ordered graphs of H. The proposed method generates all graphs with a tree skeleton, n vertices,
and A self-loops in O(n) time per tree and O(n) space in total. As an application, we can generate all
polymer topologies with a tree skeleton, self-loops, no multiple edges, and a given cycle rank.

An interesting future research direction is to design a method that can directly count and
enumerate all mutually non-isomorphic polymer topologies with a given cycle rank.
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