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Abstract: This paper explores some applications of a two-moment inequality for the integral of the rth
power of a function, where 0 < r < 1. The first contribution is an upper bound on the Rényi entropy
of a random vector in terms of the two different moments. When one of the moments is the zeroth
moment, these bounds recover previous results based on maximum entropy distributions under a
single moment constraint. More generally, evaluation of the bound with two carefully chosen nonzero
moments can lead to significant improvements with a modest increase in complexity. The second
contribution is a method for upper bounding mutual information in terms of certain integrals with
respect to the variance of the conditional density. The bounds have a number of useful properties
arising from the connection with variance decompositions.
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1. Introduction

The interplay between inequalities and information theory has a rich history, with notable
examples including the relationship between the Brunn–Minkowski inequality and the entropy power
inequality as well as the matrix determinant inequalities obtained from differential entropy [1]. In this
paper, the focus is on a “two-moment” inequality that provides an upper bound on the integral of the
rth power of a function. Specifically, if f is a nonnegative function defined on Rn and p, q, r are real
numbers satisfying 0 < r < 1 and p < 1/r− 1 < q, then

(∫
f (x)r dx

) 1
r
≤ Cn,p,q,r

(∫
‖x‖np f (x)dx

) qr+r−1
(q−p)r

(∫
‖x‖nq f (x)dx

) 1−r−pr
(q−p)r

, (1)

where the best possible constant Cn,p,q,r is given exactly; see Propositions 2 and 3
ahead. The one-dimensional version of this inequality is a special case of the classical
Carlson–Levin inequality [2–4], and the multidimensional version is a special case of a result presented
by Barza et al. [5]. The particular formulation of the inequality used in this paper was derived
independently in [6], where the proof follows from a direct application of Hölder’s inequality and
Jensen’s inequality.

In the context of information theory and statistics, a useful property of the two-moment inequality
is that it provides a bound on a nonlinear functional, namely the r-quasi-norm ‖ · ‖r, in terms of
integrals that are linear in f . Consequently, this inequality is well suited to settings where f is a
mixture of simple functions whose moments can be evaluated. We note that this reliance on moments
to bound a nonlinear functional is closely related to bounds obtained from variational characterizations
such as the Donsker–Varadhan representation of Kullback divergence [7] and its generalizations to
Rényi divergence [8,9].
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The first application considered in this paper concerns the relationship between the entropy of a
probability measure and its moments. This relationship is fundamental to the principle of maximum
entropy, which originated in statistical physics and has since been applied to statistical inference
problems [10]. It also plays a prominent role in information theory and estimation theory where the fact
that the Gaussian distribution maximizes differential entropy under second moment constraints ([11],
[Theorem 8.6.5]) plays a prominent role. Moment–entropy inequalities for Rényi entropy were studied
in a series of works by Lutwak et al. [12–14], as well as related works by Costa et al. [15,16] and
Johonson and Vignat [17], in which it is shown that, under a single moment constraint, Rényi entropy
is maximized by a family of generalized Gaussian distributions. The connection between these
moment–entropy inequalities and the Carlson–Levin inequality was noted recently by Nguyen [18].

In this direction, one of the contributions of this paper is a new family of moment–entropy
inequalities. This family of inequalities follows from applying Inequality (1) in the setting where f
is a probability density function, and thus there is a one-to-one correspondence between the integral
of the rth power and the Rényi entropy of order r. In the special case where one of the moments is
the zeroth moment, this approach recovers the moment–entropy inequalities given in previous work.
More generally, the additional flexibility provided by considering two different moments can lead to
stronger results. For example, in Proposition 6, it is shown that if f is the standard Gaussian density
function defined on Rn, then the difference between the Rényi entropy and the upper bound given
by the two-moment inequality (equivalently, the ratio between the left- and right-hand sides of (1)) is
bounded uniformly with respect to n under the following specification of the moments:

pn =
1− r

r
− 1

r

√
2(1− r)

n + 1
, qn =

1− r
r

+
1
r

√
2(1− r)

n + 1
. (2)

Conversely, if one of the moments is restricted to be equal to zero, as is the case in the usual
moment–entropy inequalities, then the difference between the Rényi entropy and the upper bound
diverges with n.

The second application considered in this paper is the problem of bounding mutual information.
In conjunction with Fano’s inequality and its extensions, bounds on mutual information play
a prominent role in establishing minimax rates of statistical estimation [19] as well as the
information-theoretic limits of detection in high-dimensional settings [20]. In many cases, one of the
technical challenges is to provide conditions under which the dependence between the observations
and an underlying signal or model parameters converges to zero in the limit of high dimension.

This paper introduces a new method for bounding mutual information, which can be described
as follows. Let PX,Y be a probability measure on X × Y such that PY|X=x and PY have densities
f (y | x) and f (y) with respect to the Lebesgue measure on Rn. We begin by showing that the mutual
information between X and Y satisfies the upper bound

I(X; Y) ≤
∫ √

Var( f (y | X))dy, (3)

where Var(p(y | X)) =
∫
( f (y | x)− f (y))2 dPX(x) is the variance of f (y | X); see Proposition 8

ahead. In view of (3), an application of the two-moment Inequality (1) with r = 1/2 leads to an upper
bound with respect to the moments of the variance of the density:∫

‖y‖ns Var( f (y | X))dy (4)

where this expression is evaluated at s ∈ {p, q} with p < 1 < q. A useful property of this bound is
that the integrated variance is quadratic in PX , and thus Expression (4) can be evaluated by swapping
the integration over y and with the expectation of over two independent copies of X. For example,
when PX,Y is a Gaussian scale mixture, this approach provides closed-form upper bounds in terms of
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the moments of the Gaussian density. An early version of this technique is used to prove Gaussian
approximations for random projections [21] arising in the analysis of a random linear estimation
problem appearing in wireless communications and compressed sensing [22,23].

2. Moment Inequalities

Let Lp(S) be the space of Lebesgue measurable functions from S to R whose pth power is
absolutely integrable, and for p 6= 0, define

‖ f ‖p :=
(∫

S
| f (x)|p dx

)1/p
.

Recall that ‖ · ‖p is a norm for p ≥ 1 but only a quasi-norm for 0 < p < 1 because it does not satisfy
the triangle inequality. The sth moment of f is defined as

Ms( f ) :=
∫

S
‖x‖s | f (x)|dx,

where ‖ · ‖ denotes the standard Euclidean norm on vectors.
The two-moment Inequality (1) can be derived straightforwardly using the following argument.

For r ∈ (0, 1), the mapping f 7→ ‖ f ‖r is concave on the subset of nonnegative functions and admits
the variational representation

‖ f ‖r = inf
{
‖ f g‖1

‖g‖r∗
: g ∈ Lr∗

}
, (5)

where r∗ = r/(r − 1) ∈ (−∞, 0) is the Hölder conjugate of r. Consequently, each g ∈ Lr∗ leads to
an upper bound on ‖ f ‖r. For example, if f has bounded support S, choosing g to be the indicator
function of S leads to the basic inequality ‖ f ‖r ≤ (Vol(S))(1−r)/r‖ f ‖1. The upper bound on ‖ f ‖r

given in Inequality (1) can be obtained by restricting the minimum in Expression (5) to the parametric
class of functions of the form g(x) = ν1‖x‖np + ν2 ‖x‖nq with ν1, ν2 > 0 and then optimizing over the
parameters (ν1, ν2). Here, the constraints on p, q are necessary and sufficient to ensure that g ∈ Lr∗(Rn).

In the following sections, we provide a more detailed derivation, starting with the problem of
maximizing ‖ f ‖r under multiple moment constraints and then specializing to the case of two moments.
For a detailed account of the history of the Carlson type inequalities as well as some further extensions,
see [4].

2.1. Multiple Moments

Consider the following optimization problem:

maximize ‖ f ‖r

subject to f (x) ≥ 0 for all x ∈ S

Msi ( f ) ≤ mi for 1 ≤ i ≤ k.

For r ∈ (0, 1), this is a convex optimization problem because ‖ · ‖r
r is concave and the moment

constraints are linear. By standard theory in convex optimization (e.g., [24]), it can be shown that if the
problem is feasible and the maximum is finite, then the maximizer has the form

f ∗(x) =
( k

∑
i=1

ν∗i ‖x‖si

) 1
r−1

, for all x ∈ S.
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The parameters ν∗1 , · · · , ν∗k are nonnegative and the ith moment constraint holds with equality for all i
such that ν∗i is strictly positive—that is, ν∗i > 0 =⇒ µsi ( f ∗) = mi. Consequently, the maximum can
be expressed in terms of a linear combination of the moments:

‖ f ∗‖r
r = ‖( f ∗)r‖1 = ‖ f ∗( f ∗)r−1‖1 =

k

∑
i=1

ν∗i mi.

For the purposes of this paper, it is useful to consider a relative inequality in terms of the moments
of the function itself. Given a number 0 < r < 1 and vectors s ∈ Rk and ν ∈ Rk

+, the function cr(ν, s) is
defined according to

cr(ν, s) =

(∫ ∞

0

( k

∑
i=1

νi xsi

)− r
1−r

dx

) 1−r
r

,

if the integral exists. Otherwise, cr(ν, s) is defined to be positive infinity. It can be verified that cr(ν, s)
is finite provided that there exists i, j such that νi and νj are strictly positive and si < (1− r)/r < sj.

The following result can be viewed as a consequence of the constrained optimization
problem described above. We provide a different and very simple proof that depends only on
Hölder’s inequality.

Proposition 1. Let f be a nonnegative Lebesgue measurable function defined on the positive reals R+. For any
number 0 < r < 1 and vectors s ∈ Rk and ν ∈ Rk

+, we have

‖ f ‖r ≤ cr(ν, s)
k

∑
i=1

νiMsi ( f ).

Proof. Let g(x) = ∑k
i=1 νi xsi . Then, we have

‖ f ‖r
r = ‖g−r( f g)r‖1 ≤ ‖g−r‖ 1

1−r
‖(g f )r‖ 1

r
= ‖g

−r
1−r ‖1−r

1 ‖g f ‖r
1 =

(
cr(ν, s)

k

∑
i=1

νiMsi ( f )
)r

,

where the second step is Hölder’s inequality with conjugate exponents 1/(1− r) and 1/r.

2.2. Two Moments

For a, b > 0, the beta function B(a, b) and gamma function Γ(a) are given by

B(a, b) =
∫ 1

0
ta−1(1− t)b−1 dt

Γ(a) =
∫ ∞

0
ta−1e−t dt,

and satisfy the relation B(a, b) = Γ(a)Γ(b)/Γ(a + b), a, b > 0. To lighten the notation, we define the
normalized beta function

B̃(a, b) = B(a, b)(a + b)a+ba−ab−b. (6)

Properties of these functions are provided in Appendix A.
The next result follows from Proposition 1 for the case of two moments.

Proposition 2. Let f be a nonnegative Lebesgue measurable function defined on [0, ∞). For any numbers
p, q, r with 0 < r < 1 and p < 1/r− 1 < q,

‖ f ‖r ≤ [ψr(p, q)]
1−r

r [Mp( f )]λ[Mq( f )]1−λ,
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where λ = (q + 1− 1/r)/(q− p) and

ψr(p, q) =
1

(q− p)
B̃
(

rλ

1− r
,

r(1− λ)

1− r

)
, (7)

where B̃(·, ·) is defined in Equation (6).

Proof. Letting s = (p, q) and ν = (γ1−λ, γ−λ) with λ > 0, we have

[cr(ν, s)]
r

1−r =
∫ ∞

0

(
γ1−λ xp + γ−λ xq

)− r
1−r dx.

Making the change of variable x 7→ (γu)
1

q−p leads to

[cr(ν, s)]
r

1−r =
1

q− p

∫ ∞

0

ub−1

(1 + u)a+b du =
B (a, b)
q− p

,

where a = r
1−r λ and b = r

1−r (1 − λ) and the second step follows from recognizing the integral
representation of the beta function given in Equation (A3). Therefore, by Proposition 1, the inequality

‖ f ‖r ≤
(

B (a, b)
q− p

) 1−r
r (

γ1−λMp( f ) + γ−λMq( f )
)

,

holds for all γ > 0. Evaluating this inequality with

γ =
λMq( f )

(1− λ)Mp( f )
,

leads to the stated result.

The special case r = 1/2 admits the simplified expression

ψ1/2(p, q) =
πλ−λ(1− λ)−(1−λ)

(q− p) sin(πλ)
, (8)

where we have used Euler’s reflection formula for the beta function ([25], [Theorem 1.2.1]).
Next, we consider an extension of Proposition 2 for functions defined on Rn. Given any

measurable subset S of Rn, we define

ω(S) = Vol(Bn ∩ cone(S)), (9)

where Bn = {u ∈ Rn : ‖u‖ ≤ 1} is the n-dimensional Euclidean ball of radius one and

cone(S) = {x ∈ Rn : tx ∈ S for some t > 0}.

The function ω(S) is proportional to the surface measure of the projection of S on the Euclidean sphere
and satisfies

ω(S) ≤ ω(Rn) =
π

n
2

Γ( n
2 + 1)

, (10)

for all S ⊆ Rn. Note that ω(R+) = 1 and ω(R) = 2.
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Proposition 3. Let f be a nonnegative Lebesgue measurable function defined on a subset S of Rn. For any
numbers p, q, r with 0 < r < 1 and p < 1/r− 1 < q,

‖ f ‖r ≤ [ω(S)ψr(p, q)]
1−r

r [Mnp( f )]λ[Mnq( f )]1−λ,

where λ = (q + 1− 1/r)/(q− p) and ψr(p, q) is given by Equation (7).

Proof. Let f be extended to Rn using the rule f (x) = 0 for all x outside of S and let g : R+ → R+ be
defined according to

g(y) =
1
n

∫
Sn−1

f (y1/nu)dσ(u),

where Sn−1 = {u ∈ Rn : ‖u‖ = 1} is the Euclidean sphere of radius one and σ(u) is the surface
measure of the sphere. In the following, we will show that

‖ f ‖r ≤ (ω(S))
1−r

r ‖g‖r (11)

Mns( f ) =Ms(g). (12)

Then, the stated inequality then follows from applying Proposition 2 to the function g.
To prove Inequality (11), we begin with a transformation into polar coordinates:

‖ f ‖r
r =

∫ ∞

0

∫
Sn−1
| f (tu)|r tn−1 dσ(u)dt. (13)

Letting 1cone(S)(x) denote the indicator function of the set cone(S), the integral over the sphere can be
bounded using:∫

Sn−1
| f (tu)|r dσ(u) =

∫
Sn−1

1cone(S)(u) | f (tu)|
r dσ(u)

(a)
≤
(∫

Sn−1
1cone(S)(u)dσ(u)

)1−r (∫
Sn−1
| f (tu)| dσ(u)

)r

(b)
= n (ω(S))1−r gr(tn), (14)

where: (a) follows from Hölder’s inequality with conjugate exponents 1
1−r and 1

r , and (b) follows from
the definition of g and the fact that

ω(S) =
∫ 1

0

∫
Sn−1

1cone(S)(u) tn−1 dσ(u)dt

=
1
n

∫
Sn−1

1cone(S)(u)dσ(u).

Plugging Inequality (14) back into Equation (13) and then making the change of variable t→ y
1
n yields

‖ f ‖r
r ≤ n (ω(S))1−r

∫ ∞

0
gr(tn)tn−1 dt = (ω(S))1−r ‖g‖r

r.

The proof of Equation (12) follows along similar lines. We have

Mns( f )
(a)
=
∫ ∞

0

∫
Sn−1

tns f (tu) tn−1 dσ(u)dt

(b)
=

1
n

∫ ∞

0

∫
Sn−1

ys f (y
1
n u)dσ(u)dy

=Ms(g)
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where (a) follows from a transformation into polar coordinates and (b) follows from the change of
variable t 7→ y

1
n .

Having established Inequality (11) and Equation (12), an application of Proposition 2 completes
the proof.

3. Rényi Entropy Bounds

Let X be a random vector that has a density f (x) with respect to the Lebesgue measure on Rn.
The differential Rényi entropy of order r ∈ (0, 1) ∪ (1, ∞) is defined according to [11]:

hr(X) =
1

1− r
log
(∫

Rn
f r(x)dx

)
.

Throughout this paper, it is assumed that the logarithm is defined with respect to the natural base and
entropy is measured in nats. The Rényi entropy is continuous and nonincreasing in r. If the support
set S = {x ∈ Rn : f (x) > 0} has finite measure, then the limit as r converges to zero is given by
h0(X) = log Vol(S). If the support does not have finite measure, then hr(X) increases to infinity as r
decreases to zero. The case r = 1 is given by the Shannon differential entropy:

h1(X) = −
∫

S
f (x) log f (x)dx.

Given a random variable X that is not identical to zero and numbers p, q, r with 0 < r < 1 and
p < 1/r− 1 < q, we define the function

Lr(X; p, q) =
rλ

1− r
logE [|X|p] + r(1− λ)

1− r
logE [|X|q] ,

where λ = (q + 1− 1/r)/(q− p).
The next result, which follows directly from Proposition 3, provides an upper bound on the

Rényi entropy.

Proposition 4. Let X be a random vector with a density on Rn. For any numbers p, q, r with 0 < r < 1 and
p < 1/r− 1 < q, the Rényi entropy satisfies

hr(X) ≤ log ω(S) + log ψr(p, q) + Lr(‖X‖n; p, q), (15)

where ω(S) is defined in Equation (9) and ψr(p, q) is defined in Equation (7).

Proof. This result follows immediately from Proposition 3 and the definition of Rényi entropy.

The relationship between Proposition 4 and previous results depends on whether the moment p
is equal to zero:

• One-moment inequalities: If p = 0, then there exists a distribution such that Inequality (15)
holds with equality. This is because the zero-moment constraint ensures that the function that
maximizes the Rényi entropy integrates to one. In this case, Proposition 4 is equivalent to previous
results that focused on distributions that maximize Rényi entropy subject to a single moment
constraint [12,13,15]. With some abuse of terminology, we refer to these bounds as one-moment
inequalities. (A more accurate name would be two-moment inequalities under the constraint that
one of the moments is the zeroth moment.)

• Two-moment inequalities: If p 6= 0, then the right-hand side of Inequality (15) corresponds to
the Rényi entropy of a nonnegative function that might not integrate to one. Nevertheless,
the expression provides an upper bound on the Rényi entropy for any density with the same
moments. We refer to the bounds obtained using a general pair (p, q) as two-moment inequalities.
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The contribution of two-moment inequalities is that they lead to tighter bounds. To quantify
the tightness, we define ∆r(X; p, q) to be the gap between the right-hand side and left-hand side of
Inequality (15) corresponding to the pair (p, q)—that is,

∆r(X; p, q) = log ω(S) + log ψr(p, q) + Lr(‖X‖n; p, q)− hr(X).

The gaps corresponding to the optimal two-moment and one-moment inequalities are defined
according to

∆r(X) = inf
p,q

∆r(X; p, q)

∆̃r(X) = inf
q

∆r(X; 0, q).

3.1. Some Consequences of These Bounds

By Lyapunov’s inequality, the mapping s 7→ 1
s logE [|X|s] is nondecreasing on [0, ∞), and thus

Lr(X; p, q) ≤ Lr(X; 0, q) =
1
q

logE [|X|q] , p ≥ 0. (16)

In other words, the case p = 0 provides an upper bound on Lr(X; p, q) for nonnegative p. Alternatively,
we also have the lower bound

Lr(X; p, q) ≥ r
1− r

logE
[
|X|

1−r
r

]
, (17)

which follows from the convexity of logE [|X|s].
A useful property of Lr(X; p, q) is that it is additive with respect to the product of independent

random variables. Specifically, if X and Y are independent, then

Lr(XY; p, q) = Lr(X; p, q) + Lr(Y; p, q). (18)

One consequence is that multiplication by a bounded random variable cannot increase the Rényi
entropy by an amount that exceeds the gap of the two-moment inequality with nonnegative moments.

Proposition 5. Let Y be a random vector on Rn with finite Rényi entropy of order 0 < r < 1, and let X be an
independent random variable that satisfies 0 < X ≤ t. Then,

hr(XY) ≤ hr(tY) + ∆r(Y; p, q),

for all 0 < p < 1/r− 1 < q.

Proof. Let Z = XY and let SZ and SY denote the support sets of Z and Y, respectively. The assumption
that X is nonnegative means that cone(SZ) = cone(SY). We have

hr(Z)
(a)
≤ log ω(SZ) + log ψr(p, q) + Lr(‖Z‖n; p, q)
(b)
= hr(Y) + Lr(|X|n; p; q) + ∆r(Y; p, q)
(c)
≤ hr(Y) + n log t + ∆r(Y; p, q),

where (a) follows from Proposition 4, (b) follows from Equation (18) and the definition of ∆r(Y; p, q),
and (c) follows from Inequality (16) and the assumption |X| ≤ t. Finally, recalling that hr(tY) =

hr(Y) + n log t completes the proof.
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3.2. Example with Log-Normal Distribution

If W ∼ N (µ, σ2), then the random variable X = exp(W) has a log-normal distribution with
parameters (µ, σ2). The Rényi entropy is given by

hr(X) = µ +
1
2

(
1− r

r

)
σ2 +

1
2

log(2πr
1

r−1 σ2),

and the logarithm of the sth moment is given by

logE [|X|s] = µs +
1
2

σ2 s2.

With a bit of work, it can be shown that the gap of the optimal two-moment inequality does not depend
on the parameters (µ, σ2) and is given by

∆r(X) = log
(

B̃
(

r
2(1− r)

,
r

2(1− r)

)√
r

4(1− r)

)
+

1
2
− 1

2
log(2πr

1
r−1 ). (19)

The details of this derivation are given in Appendix B.1. Meanwhile, the gap of the optimal one-moment
inequality is given by

∆̃r(X) = inf
q

[
log
(

B̃
(

r
1− r

− 1
q

,
1
q

)
1
q

)
+

1
2

qσ2
]
− 1

2

(
1− r

r

)
σ2 − 1

2
log(2πr

1
r−1 σ2). (20)

The functions ∆r(X) and ∆̃r(X) are illustrated in Figure 1 as a function of r for various σ2.
The function ∆r(X) is bounded uniformly with respect to r and converges to zero as r increases to one.
The tightness of the two-moment inequality in this regime follows from the fact that the log-normal
distribution maximizes Shannon entropy subject to a constraint on E [log X]. By contrast, the function
∆̃r(X) varies with the parameter σ2. For any fixed r ∈ (0, 1), it can be shown that ∆̃r(X) increases to
infinity if σ2 converges to zero or infinity.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

∆r(X)

∆̃r(X)

σ2 = 10σ2 = 1 σ2 = 0.1

r

Figure 1. Comparison of upper bounds on Rényi entropy in nats for the log-normal distribution as a
function of the order r for various σ2.
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3.3. Example with Multivariate Gaussian Distribution

Next, we consider the case where Y ∼ N (0, In) is an n-dimensional Gaussian vector with mean
zero and identity covariance. The Rényi entropy is given by

hr(Y) =
n
2

log(2πr
1

r−1 ),

and the sth moment of the magnitude ‖Y‖ is given by

E [‖Y‖s] =
2

s
2 Γ( n+s

2 )

Γ( n
2 )

.

The next result shows that as the dimension n increases, the gap of the optimal two-moment
inequality converges to the gap for the log-normal distribution. Moreover, for each r ∈ (0, 1),
the following choice of moments is optimal in the large-n limit:

pn =
1− r

r
− 1

r

√
2(1− r)

n + 1
, qn =

1− r
r

+
1
r

√
2(1− r)

n + 1
. (21)

The proof is given in Appendix B.3.

Proposition 6. If Y ∼ N (0, In), then, for each r ∈ (0, 1),

lim
n→∞

∆r(Y) = lim
n→∞

∆r(Y; pn, qn) = ∆r(X),

where X has a log-normal distribution and (pn, qn) are given by (21).

Figure 2 provides a comparison of ∆r(Y), ∆r(Y; pn, qn), and ∆̃r(Y) as a function of n for r = 0.1.
Here, we see that both ∆r(Y) and ∆r(Y; pn, qn) converge rapidly to the asymptotic limit given by the
gap of the log-normal distribution. By contrast, the gap of the optimal one-moment inequality ∆̃r(Y)
increases without bound.

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

n

∆̃r(Y)
∆r(Y; pn,qn)

∆r(Y)
∆r(X)

Figure 2. Comparison of upper bounds on Rényi entropy in nats for the multivariate Gaussian
distribution N (0, In) as a function of the dimension n with r = 0.1. The solid black line is the gap of
the optimal two-moment inequality for the log-normal distribution.
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3.4. Inequalities for Differential Entropy

Proposition 4 can also be used to recover some known inequalities for differential entropy by
considering the limiting behavior as r converges to one. For example, it is well known that the
differential entropy of an n-dimensional random vector X with finite second moment satisfies

h(X) ≤ 1
2

log
(

2πeE
[

1
n‖X‖

2
])

, (22)

with equality if and only if the entries of X are i.i.d. zero-mean Gaussian. A generalization of this result
in terms of an arbitrary positive moment is given by

h(X) ≤ log
Γ
( n

s + 1
)

Γ
( n

2 + 1
) + n

2
log π +

n
s

log
(

esE
[

1
n‖X‖

s
])

, (23)

for all s > 0. Note that Inequality (22) corresponds to the case s = 2.
Inequality (23) can be proved as an immediate consequence of Proposition 4 and the fact that hr(X)

is nonincreasing in r. Using properties of the beta function given in Appendix A, it is straightforward
to verify that

lim
r→1

ψr(0, q) = (e q)
1
q Γ
(

1
q
+ 1
)

, for all q > 0.

Combining this result with Proposition 4 and Inequality (16) leads to

h(X) ≤ log ω(S) + log Γ
(

1
q
+ 1
)
+

1
q

log (eqE [‖X‖nq]) .

Using Inequality (10) and making the substitution s = nq leads to Inequality (23).
Another example follows from the fact that the log-normal distribution maximizes the differential

entropy of a positive random variable X subject to constraints on the mean and variance of log(X),
and hence

h(X) ≤ E [log(X)] +
1
2

log (2πeVar(log(X))) , (24)

with equality if and only if X is log-normal. In Appendix B.4, it is shown how this inequality can be
proved using our two-moment inequalities by studying the behavior as both p and q converge to zero
as r increases to one.

4. Bounds on Mutual Information

4.1. Relative Entropy and Chi-Squared Divergence

Let P and Q be distributions defined on a common probability space that have densities p and
q with respect to a dominating measure µ. The relative entropy (or Kullback–Leibler divergence) is
defined according to

D (P ‖Q) =
∫

p log
(

p
q

)
dµ,

and the chi-squared divergence is defined as

χ2(P ‖Q) =
∫

(p− q)2

q
dµ.

Both of these divergences can be seen as special cases of the general class of f -divergence measures and
there exists a rich literature on comparisons between different divergences [8,26–32]. The chi-squared
divergence can also be viewed as the squared L2 distance between p/

√
q and

√
q. The chi-square can
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also be interpreted as the first non-zero term in the power series expansion of the relative entropy ([26],
[Lemma 4]). More generally, the chi-squared divergence provides an upper bound on the relative
entropy via

D (P ‖Q) ≤ log(1 + χ2(P‖Q)). (25)

The proof of this inequality follows straightforwardly from Jensen’s inequality and the concavity of
the logarithm; see [27,31,32] for further refinements.

Given a random pair (X, Y), the mutual information between X and Y is defined according to

I(X; Y) = D (PX,Y ‖ PXPY) .

From Inequality (25), we see that the mutual information can always be upper bounded using

I(X; Y) ≤ log(1 + χ2(PX,Y‖PXPY)). (26)

The next section provides bounds on the mutual information that can improve upon this inequality.

4.2. Mutual Information and Variance of Conditional Density

Let (X, Y) be a random pair such that the conditional distribution of Y given X has a density
fY|X(y|x) with respect to the Lebesgue measure on Rn. Note that the marginal density of Y is given by

fY(y) = E
[

fY|X(y|X)
]
. To simplify notation, we will write f (y|x) and f (y) where the subscripts are

implicit. The support set of Y is denoted by SY.
The measure of the dependence between X and Y that is used in our bounds can be understood in

terms of the variance of the conditional density. For each y, the conditional density f (y|X) evaluated
with a random realization of X is a random variable. The variance of this random variable is given by

Var( f (y|X)) = E
[
( f (y|X)− f (y))2

]
, (27)

where we have used the fact that the marginal density f (y) is the expectation of f (y|X). The sth
moment of the variance of the conditional density is defined according to

Vs(Y|X) =
∫

SY

‖y‖s Var( f (y|X))dy. (28)

The variance moment Vs(Y|X) is nonnegative and equal to zero if and only if X and Y are independent.
The function κ(t) is defined according to

κ(t) = sup
u∈(0,∞)

log(1 + u)
ut , t ∈ (0, 1]. (29)

The proof of the following result is given in Appendix C. The behavior of κ(t) is illustrated in
Figure 3.
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Figure 3. Graphs of κ(t) and tκ(t) as a function of t.

Proposition 7. The function κ(t) defined in Equation (29) can be expressed as

κ(t) =
log(1 + u)

ut , t ∈ (0, 1]

where
u = exp

(
W
(
− 1

t exp
(
− 1

t

))
+ 1

t

)
− 1,

and W(·) denotes Lambert’s W- function, i.e., W(z) is the unique solution to the equation z = w exp(w) on the
interval [−1, ∞). Furthermore, the function g(t) = tκ(t) is strictly increasing on (0, 1] with limt→0 g(t) =
1/e and g(1) = 1, and thus

1
et
≤ κ(t) ≤ 1

t
, t ∈ (0, 1],

where the lower bound 1/(et) is tight for small values of t ∈ (0, 1) and the upper bound 1/t is tight for values
of t close to 1.

We are now ready to give the main results of this section, which are bounds on the mutual
information. We begin with a general upper bound in terms of the variance of the conditional density.

Proposition 8. For any 0 < t ≤ 1, the mutual information satisfies

I(X; Y) ≤ κ(t)
∫

SY

[ f (y)]1−2t [Var( f (y | X))]t dy.

Proof. We use the following series of inequalities:

I(X; Y)
(a)
=
∫

f (y) D
(

PX|Y=y

∥∥∥ PX

)
dy

(b)
≤
∫

f (y) log
(

1 + χ2(PX|Y=y‖PX)
)

dy

(c)
=
∫

f (y) log
(

1 +
Var( f (y | X))

f 2(y)

)
dy

(d)
≤ κ(t)

∫
f (y)

(
Var( f (y | X))

f 2(y)

)t
dy,
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where (a) follows from the definition of mutual information, (b) follows from Inequality (25),
and (c) follows from Bayes’ rule, which allows us to write the chi-square in terms of the variance of the
conditional density:

χ2(PX|Y=y‖PX) = E
[(

f (y|X)

f (y)
− 1
)2
]
=

Var( f (y|X))

f 2(y)
.

Inequality (d) follows from the nonnegativity of the variance and the definition of κ(t).

Evaluating Proposition 8 with t = 1 recovers the well-known inequality I(X; Y) ≤ χ2(PX,Y‖PXPY).
The next two results follow from the cases 0 < t < 1

2 and t = 1
2 , respectively.

Proposition 9. For any 0 < r < 1, the mutual information satisfies

I(X; Y) ≤ κ(t)
(

ehr(Y) V0(Y|X)
)t

,

where t = (1− r)/(2− r).

Proof. Starting with Proposition 8 and applying Hölder’s inequality with conjugate exponents
1/(1− t) and 1/t leads to

I(X; Y) ≤ κ(t)
(∫

f r(y)dy
)1−t (∫

Var( f (y | X))dy
)t

= κ(t) et hr(Y)Vt
0(Y|X),

where we have used the fact that r = (1− 2t)/(1− t).

Proposition 10. For any p < 1 < q, the mutual information satisfies

I(X; Y) ≤ C(λ)

√
ω(SY)Vλ

np(Y|X)V1−λ
nq (Y|X)

(q− p)
,

where λ = (q− 1)/(q− p) and

C(λ) = κ( 1
2 )

√
πλ−λ(1− λ)−(1−λ)

sin(πλ)
,

with κ( 1
2 ) = 0.80477 . . . .

Proof. Evaluating Proposition 8 with t = 1/2 gives

I(X; Y) ≤ κ( 1
2 )
∫

SY

√
Var( f (y | X))dy.

Evaluating Proposition 3 with r = 1
2 leads to(∫

SY

√
Var( f (y | X))dy

)2
≤ ω(SY)ψ1/2(p, q)Vλ

np(Y|X)V1−λ
nq (Y|X).

Combining these inequalities with the expression for ψ1/2(p, q) given in Equation (8) completes
the proof.

The contribution of Propositions 9 and 10 is that they provide bounds on the mutual information
in terms of quantities that can be easy to characterize. One application of these bounds is to establish
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conditions under which the mutual information corresponding to a sequence of random pairs (Xk, Yk)

converges to zero. In this case, Proposition 9 provides a sufficient condition in terms of the Rényi
entropy of Yn and the function V0(Yn|Xn), while Proposition 10 provides a sufficient condition in
terms of Vs(Yn|Xn) evaluated with two difference values of s. These conditions are summarized in the
following result.

Proposition 11. Let (Xk, Yk) be a sequence of random pairs such that the conditional distribution of Yk given
Xk has a density on Rn. The following are sufficient conditions under which the mutual information of I(Xk; Yk)

converges to zero as k increases to infinity:

1. There exists 0 < r < 1 such that

lim
k→∞

ehr(Yk)V0(Yk|Xk) = 0.

2. There exists p < 1 < q such that

lim
k→∞

Vq−1
np (Yk|Xk)V

1−p
nq (Yk|Xk) = 0.

4.3. Properties of the Bounds

The variance moment Vs(Y|X) has a number of interesting properties. The variance of the
conditional density can be expressed in terms of an expectation with respect to two independent
random variables X1 and X2 with the same distribution as X via the decomposition:

Var( f (y|X)) = E [ f (y|X) f (y|X)− f (y|X1) f (y|X2)] .

Consequently, by swapping the order of the integration and expectation, we obtain

Vs(Y|X) = E [Ks(X, X)− Ks(X1, X2)] , (30)

where
Ks(x1, x2) =

∫
‖y‖s f (y|x1) f (y|x2)dy.

The function Ks(x1, x2) is a positive definite kernel that does not depend on the distribution of X.
For s = 0, this kernel has been studied previously in the machine learning literature [33], where it is
referred to as the expected likelihood kernel.

The variance of the conditional density also satisfies a data processing inequality. Suppose that
U → X → Y forms a Markov chain. Then, the square of the conditional density of Y given U can be
expressed as

f 2
Y|U(y|u) = E

[
fY|X(y|X′1) fY|X(y|X′2) | U = u

]
,

where (U, X′1, X′2) ∼ PU PX1|U PX2|U . Combining this expression with Equation (30) yields

Vs(Y|U) = E
[
Ks(X′1, X′2)− Ks(X1, X2)

]
, (31)

where we recall that (X1, X2) are independent copies of X.
Finally, it is easy to verify that the function Vs(Y) satisfies

Vs(aY|X) = |a|s−nVs(Y|X), for all a 6= 0.

Using this scaling relationship, we see that the sufficient conditions in Proposition 11 are invariant to
scaling of Y.
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4.4. Example with Additive Gaussian Noise

We now provide a specific example of our bounds on the mutual information. Let X ∈ Rn be a
random vector with distribution PX and let Y be the output of a Gaussian noise channel

Y = X + W, (32)

where W ∼ N (0, In) is independent of X. If ‖X‖ has finite second moment, then the mutual
information satisfies

I(X; Y) ≤ n
2

log
(

1 +
1
n
E
[
‖X‖2

])
, (33)

where equality is attained if and only if X has zero-mean isotropic Gaussian distribution.
This inequality follows straightforwardly from the fact that the Gaussian distribution maximizes
differential entropy subject to a second moment constraint [11]. One of the limitations of this bound
is that it can be loose when the second moment is dominated by events that have small probability.
In fact, it is easy to construct examples for which ‖X‖ does not have a finite second moment, and yet
I(X; Y) is arbitrarily close to zero.

Our results provide bounds on I(X; Y) that are less sensitive to the effects of rare events.
Let φn(x) = (2π)−n/2 exp(−‖x‖2/2) denote the density of the standard Gaussian distribution on Rn.
The product of the conditional densities can be factored according to

f (y | x1) f (y | x2) = φ2n

([
y− x1

y− x2

])
= φ2n

([√
2y− (x1 + x2)/

√
2

(x1 − x2)/
√

2

])

= φn

(√
2 y− x1 + x2√

2

)
φn

(
x1 − x2√

2

)
,

where the second step follows because φ2n(·) is invariant to orthogonal transformations.
Integrating with respect to y leads to

Ks(x1, x2) = 2−
n+s

2 E
[∥∥∥∥W +

x1 + x2√
2

∥∥∥∥s]
φn

(
x1 − x2√

2

)
,

where we recall that W ∼ N (0, In). For the case s = 0, we see that K0(x1, x2) is a Gaussian kernel, thus

V0(Y|X) = (4π)−
n
2

[
1−E

[
e−

1
4 ‖X1−X2‖2]]

. (34)

A useful property of V0(Y|X) is that the conditions under which it converges to zero are weaker
than the conditions needed for other measures of dependence. Observe that the expectation in
Equation (34) is bounded uniformly with respect to (X1, X2). In particular, for every ε > 0 and x ∈ R,
we have

1−E
[
e−

1
4 (X1−X2)

2]
≤ ε2 + 2P [|X− x| ≥ ε] ,

where we have used the inequality 1− e−x ≤ x and the fact that P [|X1 − X2| ≥ 2ε] ≤ 2P [|X− x| ≥ ε].
Consequently, V0(Y|X) converges to zero whenever X converges to a constant value x in probability.

To study some further properties of these bounds, we now focus on the case where X is a Gaussian
scalar mixture generated according to

X = A
√

U, A ∼ N (0, 1), U ≥ 0, (35)
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with A and U independent. In this case, the expectations with respect to the kernel Ks(x1, x2) can be
computed explicitly, leading to

Vs(Y|X) =
Γ( 1+s

2 )

2π
E
[
(1 + 2U)

s
2 − (1 + U1)

s
2 (1 + U2)

s
2

(1 + 1
2 (U1 + U2))

s+1
2

]
, (36)

where (U1, U2) are independent copies of U. It can be shown that this expression depends primarily
on the magnitude of U. This is not surprising given that X converges to a constant if and only if U
converges to zero.

Our results can also be used to bound the mutual information I(U; Y) by noting that U → X → Y
forms a Markov chain, and taking advantage of the characterization provided in Equation (31).
Letting X′1 = A1

√
U and X′2 = A2

√
U with (A1, A2, U) be mutually independent leads to

Vs(Y|U) =
Γ( 1+s

2 )

2π
E
[
(1 + U)

s−1
2 − (1 + U1)

s
2 (1 + U2)

s
2

(1 + 1
2 (U1 + U2))

s+1
2

]
, (37)

In this case, Vs(Y|U) is a measure of the variation in U. To study its behavior, we consider the simple
upper bound

Vs(Y|U) ≤
Γ( 1+s

2 )

2π
P [U1 6= U2]E

[
(1 + U)

s−1
2
]

, (38)

which follows from noting that the term inside the expectation in Equation (37) is zero on the event
U1 = U2. This bound shows that if s ≤ 1 then Vs(Y|U) is bounded uniformly with respect to
distributions on U, and if s > 1, then Vs(Y|U) is bounded in terms of the ( s−1

2 )th moment of U.
In conjunction with Propositions 9 and 10, the function Vs(Y|U) provides bounds on the mutual

information I(U; Y) that can be expressed in terms of simple expectations involving two independent
copies of U. Figure 4 provides an illustration of the upper bound in Proposition 10 for the case where
U is a discrete random variable supported on two points, and X and Y are generated according to
Equations (32) and (35). This example shows that there exist sequences of distributions for which our
upper bounds on the mutual information converge to zero while the chi-squared divergence between
PXY and PXPY is bounded away from zero.

0 0.1 0.2 0.3 0.4 0.5

ǫ

0

0.2

0.4

0.6

0.8

1

Proposition 10
chi-square divergence

upper bound (26)

I(X; Y)

Figure 4. Bounds on the mutual information I(U; Y) in nats when U ∼ (1 − ε)δ1 + εδa(ε),
with a(ε) = 1 + 1/

√
ε, and X and Y are generated according to Equations (32) and (35). The bound

from Proposition 10 is evaluated with p = 0 and q = 2.
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5. Conclusions

This paper provides bounds on Rényi entropy and mutual information that are based on a
relatively simple two-moment inequality. Extensions to inequalities with more moments are worth
exploring. Another potential application is to provide a refined characterization of the “all-or-nothing”
behavior seen in a sparse linear regression problem [34,35], where the current methods of analysis
depend on a complicated conditional second moment method.
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Appendix A. The Gamma and Beta Functions

This section reviews some properties of the gamma and beta functions. For x > 0, the gamma
function is defined according to Γ(x) =

∫ ∞
0 tx−1e−t dt. Binet’s formula for the logarithm for the gamma

function ([25], [Theorem 1.6.3]) gives

log Γ(x) =
(

x− 1
2

)
log x− x +

1
2

log(2π) + θ(x), (A1)

where the remainder term θ(x) is convex and nonincreasing with limx→0 θ(x) = ∞ and limx→∞ θ(x) = 0.
Euler’s reflection formula ([25], [Theorem 1.2.1]) gives

Γ(x)Γ(1− x) =
π

sin(πx)
, 0 < x < 1. (A2)

For x, y > 0, the beta function can be expressed as follows

B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

=
∫ 1

0
tx−1(1− t)y−1 dt =

∫ ∞

0

ua−1

(1 + u)a+b du, (A3)

where the second integral expression follows from the change of variables t 7→ u/(1 + u). Recall that
B̃(x, y) = B(x, y)(x + y)x+yx−xy−y. Using Equation (A1) leads to

log
(

B̃(x, y)
√

x y
2π(x+y)

)
= θ(x) + θ(y)− θ(x + y). (A4)

It can also be shown that ([36], [Equation (2), pg. 2])

B̃(x, y) ≥ x + y
xy

. (A5)

Appendix B. Details for Rényi Entropy Examples

This appendix studies properties of the two-moment inequalities for Rényi entropy described in
Section 3.
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Appendix B.1. Log-Normal Distribution

Let X be a log-normal random variable with parameters (µ, σ2) and consider the parametrization

p =
1− r

r
− (1− λ)

√
(1− r) u

rλ(1− λ)

q =
1− r

r
+ λ

√
(1− r) u

rλ(1− λ)
.

where λ ∈ (0, 1) and u ∈ (0, ∞). Then, we have

ψr(p, q) = B̃
(

rλ

1− r
,

r(1− λ)

1− r

)√
rλ(1− λ)

(1− r) u

Lr(X; p, q) = µ +
1
2

(
1− r

r

)
σ2 +

1
2

uσ2.

Combining these expressions with Equation (A4) leads to

∆r(X; p, q) = θ
( rλ

1−r

)
+ θ
( r(1−λ)

1− r

)
− θ
( r

1−r

)
+

1
2

uσ2 − 1
2

log
(

uσ2
)
− 1

2
log(r

1
r−1 ). (A6)

We now characterize the minimum with respect to the parameters (λ, u). Note that the mapping
λ 7→ θ( rλ

1−r ) + θ( r(1−λ)
1−r ) is convex and symmetric about the point λ = 1/2. Therefore, the minimum

with respect to λ is attained at λ = 1/2. Meanwhile, mapping u 7→ uσ2 − log(uσ2) is convex and
attains its minimum at u = 1/σ2. Evaluating Equation (A6) with these values, we see that the optimal
two-moment inequality can be expressed as

∆r(X) = 2θ

(
r

2(1− r)

)
− θ

(
r

1− r

)
+

1
2

log
(

e r
1

1−r

)
.

By Equation (A4), this expression is equivalent to Equation (A1). Moreover, the fact that ∆r(X)

decreases to zero as r increases to one follows from the fact that θ(x) decreases to zero and x increases
to infinity.

Next, we express the gap in terms of the pair (p, q). Comparing the difference between ∆r(X; p, q)
and ∆r(X) leads to

∆r(X; p, q) = ∆r(X) +
1
2

ϕ

(
rλ(1− λ)

1− r
(q− p)2σ2

)
+ θ
( rλ

1−r

)
+ θ
( r(1−λ)

1− r

)
− 2θ

( r
2(1−r)

)
,

where ϕ(x) = x− log(x)− 1. In particular, if p = 0, then we obtain the simplified expression

∆r(X; 0, q) = ∆r(X) +
1
2

ϕ

((
q− 1− r

r

)
σ2
)
+ θ
( r

1− r
− 1

q

)
+ θ
(1

q

)
− 2θ

( r
2(1−r)

)
.

This characterization shows that the gap of the optimal one-moment inequality ∆̃r(X) increases to
infinity in the limit as either σ2 → 0 or σ2 → ∞.
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Appendix B.2. Multivariate Gaussian Distribution

Let Y ∼ N (0, In) be an n-dimensional Gaussian vector and consider the parametrization

p =
1− r

r
− 1− λ

r

√
2(1− r) z
λ(1− λ) n

q =
1− r

r
+

λ

r

√
2(1− r) z
λ(1− λ) n

.

where λ ∈ (0, 1) and z ∈ (0, ∞). We can write

log ω(SY) =
n
2

log π − log
(n

2

)
− log Γ

(n
2

)
ψr(p, q) = B̃

(
rλ

1− r
,

r(1− λ)

1− r

)√
rλ(1− λ)

(1− r)

√
nr
2z

.

Furthermore, if

(1− λ)

√
2(1− r)z
λ(1− λ)n

< 1, (A7)

then Lr(‖Y‖n; p, q) is finite and is given by

Lr(‖Y‖n; p, q) = Qr,n(λ, z) +
n
2

log 2 +
r

1− r

[
log Γ

( n
2r

)
− log Γ

(n
2

)]
,

where

Qr,n(λ, z) =
rλ

1− r
log Γ

(
n
2r
− 1− λ

r

√
(1− r)nz
2λ(1− λ)

)
+

r(1− λ)

1− r
log Γ

(
n
2r

+
λ

r

√
(1− r)nz
2λ(1− λ)

)
− r

1− r
log Γ

( n
2r

)
. (A8)

Here, we note that the scaling in Equation (21) corresponds to λ = 1/2 and z = n/(n + 1), and thus
the condition Inequality (A7) is satisfied for all n ≥ 1. Combining the above expressions and then
using Equations (A1) and (A4) leads to

∆r(Y; p, q) = θ
( rλ

1−r

)
+ θ
( r(1−λ)

1− r

)
− θ
( r

1−r

)
+ Qr,n(z, λ)− 1

2
log z− 1

2
log
(

r
1

r−1

)
+

r
1− r

θ
( n

2r

)
− 1

1− r
θ
(n

2

)
. (A9)

Next, we study some properties of Qr,n(λ, z). By Equation (A1), the logarithm of the gamma
function can be expressed as the sum of convex functions:

log Γ(x) = ϕ(x) +
1
2

log
(

1
x

)
+

1
2

log(2π)− 1 + θ(x),
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where ϕ(x) = x log x + 1 − x. Starting with the definition of Q(λ, z) and then using Jensen’s
inequality yields

Qr,n(z, λ) ≥ rλ

1− r
ϕ

(
n
2r
− 1− λ

r

√
(1− r)nz
2λ(1− λ)

)

+
r(1− λ)

1− r
ϕ

(
n
2r

+
λ

r

√
(1− r)nz
2λ(1− λ)

)
− r

1− r
ϕ
( n

2r

)
=

λ

a
ϕ

(
1−

√(
1−λ

λ

)
az

)
+

(1−λ)

a
ϕ

(
1 +

√(
λ

1−λ

)
az
)

,

where a = 2(1− r)/n. Using the inequality ϕ(x) ≥ (3/2)(x− 1)2/(x + 2) leads to

Qr,n(λ, z) ≥ z
2

[(
1−

√(
1−λ

λ

)
bz

)(
1 +

√(
λ

1−λ

)
bz
)]−1

≥ z
2

(
1 +

√(
λ

1−λ

)
b z
)−1

, (A10)

where b = 2(1− r)/(9n).
Observe that the right-hand side of Inequality (A10) converges to z/2 as n increases to infinity.

It turns out this limiting behavior is tight. Using Equation (A1), it is straightforward to show that
Qn(λ, z) converges pointwise to z/2 as n increases to infinity—that is,

lim
n→∞

Qr,n(λ, z) =
1
2

z, (A11)

for any fixed pair (λ, z) ∈ (0, 1)× (0, ∞).

Appendix B.3. Proof of Proposition 6

Let D = (0, 1)× (0, ∞). For fixed r ∈ (0, 1), we use Qn(λ, z) to denote the function Qr,n(λ, z)
defined in Equation (A8) and we use Gn(λ, z) to denote the right-hand side of Equation (A9).
These functions are defined to be equal to positive infinity for any pair (λ, z) ∈ D such that
Inequality (A7) does not hold.

Note that the terms θ(n/(2r)) and θ(n/2) converge to zero in the limit as n increases to infinity.
In conjunction with Equation (A11), this shows that Gn(λ, z) converges pointwise to a limit G(λ, z)
given by

G(λ, z) = θ
( rλ

1−r

)
+ θ
( r(1−λ)

1− r

)
− θ
( r

1−r

)
+

1
2

z− 1
2

log (z)− 1
2

log(r
1

r−1 ).

At this point, the correspondence with the log-normal distribution can be seen from the fact that G(λ, z)
is equal to the right-hand side of Equation (A6) evaluated with uσ2 = z.

To show that the gap corresponding to the log-normal distribution provides an upper bound on
the limit, we use

lim sup
n→∞

∆r(Y) = lim sup
n→∞

inf
(λ,z)∈D

Gn(λ, z)

≤ inf
(λ,z)∈D

lim sup
n→∞

Gn(λ, z)

= inf
(λ,z)∈D

G(λ, z)

= ∆r(X). (A12)
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Here, the last equality follows from the analysis in Appendix B.1, which shows that the minimum of
G(λ, z) is a attained at λ = 1/2 and z = 1.

To prove the lower bound requires a bit more work. Fix any ε ∈ (0, 1) and let Dε = (0, 1− ε]×
(0, ∞). Using the lower bound on Qn(λ, z) given in Inequality (A10), it can be verified that

lim inf
n→∞

inf
(λ,z)∈Dε

[
Qr,n(z, λ)− 1

2
log z

]
≥ 1

2
.

Consequently, we have

lim inf
n→∞

inf
(λ,z)∈Dε

Gn(λ, z) = inf
(λ,z)∈Dε

G(λ, z) ≥ ∆r(X). (A13)

To complete the proof we will show that for any sequence λn that converges to one as n increases to
infinity, we have

lim inf
n→∞

inf
z∈(0,∞)

Gn(λn, z) = ∞. (A14)

To see why this is the case, note that by Equation (A4) and Inequality (A5),

θ
( rλ

1−r
)
+ θ
( r(1−λ)

1−r
)
− θ
( r

1−r
)
≥ 1

2
log
( 1− r

2πrλ(1−λ)

)
.

Therefore, we can write

Gn (λ, z) ≥ Qn(λ, z)− 1
2

log (λ(1− λ)z) + cn, (A15)

where cn is bounded uniformly for all n. Making the substitution u = λ(1− λ)z, we obtain

inf
z>0

Gn (λ, z) ≥ inf
u>0

[
Qn

(
λ,

u
λ(1− λ)

)
− 1

2
log u

]
+ cn.

Next, let bn = 2(1− r)/(9n). The lower bound in Inequality (A10) leads to

inf
u>0

[
Qn

(
λ,

u
λ(1− λ)

)
− 1

2
log u

]
≥ inf

u>0

[
u

2λ

(
1

1− λ +
√

bnu

)
− 1

2
log u

]
. (A16)

The limiting behavior in Equation (A14) can now be seen as a consequence of Inequality (A15) and
the fact that, for any sequence λn converging to one, the right-hand side of Inequality (A16) increases
without bound as n increases. Combining Inequality (A12), Inequality (A13), and Equation (A14)
establishes that the large n limit of ∆r(Y) exists and is equal to ∆r(X). This concludes the proof of
Proposition 6.

Appendix B.4. Proof of Inequality (24)

Given any λ ∈ (0, 1) and u ∈ (0, ∞) let

p(r) =
1− r

r
−

√
1− r

r

(
1− λ

λ

)
u

q(r) =
1− r

r
+

√
1− r

r

(
λ

1− λ

)
u.

We need the following results, which characterize the terms in Proposition 4 in the limit as r increases
to one.
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Lemma A1. The function ψr(p(r), q(r)) satisfies

lim
r→1

ψr(p(r), q(r)) =

√
2π

u
.

Proof. Starting with Equation (A4), we can write

ψr(p, q) =
1

q− p

√
2π(1− r)
rλ(1− λ

exp
(

θ
( rλ

1−r

)
+ θ
( r(1−λ)

1− r

)
− θ
( r

1−r

))
.

As r converges to one, the terms in the exponent converge to zero. Note that q(r) − p(r) =√
rλ(1− λ)/(1− r) completes the proof.

Lemma A2. If X is a random variable such that s 7→ E [|X|s] is finite in a neighborhood of zero, then E [log(X)]

and Var(log(X)) are finite, and

lim
r→1

Lr(X; p(r), q(r)) = E [log |X|] + u
2
Var(log |X|).

Proof. Let Λ(s) = log(E [|X|s]). The assumption that E [|X|s] is finite in a neighborhood of zero means
that E [(log |X|)m] is finite for all positive integers m, and thus Λ(s) is real analytic in a neighborhood
of zero. Hence, there exist constants δ > 0 and C < ∞, depending on the distribution of X, such that∣∣∣Λ(s)− as + bs2

∣∣∣ ≤ C |s|3, for all |s| ≤ δ,

where a = E [log |X|] and b = 1
2 Var(|X|). Consequently, for all r such that 1− δ < p(r) < (1− r)/r <

q(r) < 1 + δ, it follows that∣∣∣Lr(X; p(r), q(r))− a−
(

1−r
r + u

)
b
∣∣∣ ≤ C

r
1− r

(
λ|p(r)|3 + (1− λ)|q(r)|3

)
.

Taking the limit as r increases to one completes the proof.

We are now ready to prove Inequality (24). Combining Proposition 4 with Lemma A1 and
Lemma A2 yields

lim sup
r→∞

hr(X) ≤ 1
2

log
(

2π

u

)
+E [log X] +

u
2
Var(log X).

The stated inequality follows from evaluating the right-hand side with u = 1/Var(log X), recalling that
h(X) corresponds to the limit of hr(X) as r increases to one.

Appendix C. Proof of Proposition 7

The function κ : (0, 1]→ R+ can be expressed as

κ(t) = sup
u∈(0,∞)

ρt(u), (A17)

where ρt(u) = log(1 + u)/ut. For t = 1, the bound log(1 + u) ≤ u implies that ρ1(u) ≤ 1. Noting that
limu→0 ρ1(u) = 1, we conclude that κ(1) = 1.

Next, we consider the case t ∈ (0, 1). The function ρt is continuously differentiable on (0, ∞) with

sgn(ρ′t(u)) = sgn (u− t(1 + u) log(1 + u)) . (A18)
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Under the assumption t ∈ (0, 1), we see that ρt(u) is increasing for all u sufficiently close to zero and
decreasing for all u sufficiently large, and thus the supremum is attained at a stationary point of ρt(u)
on (0, ∞). Making the substitution w = log(1 + u)− 1/t leads to

ρ′t(u) = 0 ⇐⇒ wew = −1
t

e−
1
t .

For t ∈ (0, 1), it follows that− 1
t e−

1
t ∈ (−e−1, 0), and thus ρ′t(u) has a unique root that can be expressed

as
u∗t = exp

(
W
(
− 1

t exp
(
− 1

t

))
+ 1

t

)
− 1,

where Lambert’s function W(z) is the solution to the equation z = wew on the interval on [−1, ∞).

Lemma A3. The function g(t) = tκ(t) is strictly increasing on (0, 1] with limt→0 g(t) = 1/e and g(1) = 1.

Proof. The fact that g(1) = 1 follows from κ(1) = 1. By the envelope theorem [37], the derivative of
g(t) can be expressed as

g′(t) =
d
dt

tρt(u)
∣∣∣
u=u∗t

=
log(1 + u∗t )

(u∗t )t − t log(u∗t )
log(1 + u∗t )

(u∗t )t

In view of Equation (A18), it follows that ρ′t(u
∗
t ) = 0 can be expressed equivalently as

u∗t
(1 + u∗t ) log(1 + u∗t )

= t, (A19)

and thus

sgn(g′(t)) = sgn
(

1− u∗t log u∗t
(1 + u∗t ) log(1 + u∗t )

)
. (A20)

Noting that u log u < (1 + u) log(1 + u) for all u ∈ (0, ∞), it follows that g′(t) > 0 is strictly positive,
and thus g(t) is strictly increasing.

To prove the small t limit, we use Equation (A19) to write

log(g(t)) = log
(

u∗t
1 + u∗t

)
− u∗t log u∗t

(1 + u∗t ) log(1 + u∗t )
. (A21)

Now, as t decreases to zero, Equation (A19) shows that u∗t increases to infinity. By Equation (A21), it
then follows that log(g(t)) converges to negative one, which proves the desired limit.
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