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ABSTRACT: 

This paper aims to predict the trend of land use land cover (LULC) changes in Dak Nong province over time. Data from Landsat images 

captured in 2009, 2015, and 2018 was employed to analyze and predict the spatial distributions of LULC categories. The Random 

Forest (RF) was adopted to classify the images into ten different LULC classes. Besides, integration of Multi-Layer Perceptron Markov 

Neural Network (MLP-NN) with Markov Chain (MC) was applied to predict the future LULC changes in the region based on the 

change detection over the previous years. For all classified images, overall accuracy (OA) ranged from 77.35% to 84.55% with kappa 

(K) coefficient index ranging from 0.75 to 0.8. The results revealed that the annual population growth together with social-economic 
development was regarded as major drives for land conversion in the area. The predicted map showed a significant decrease trend in 
the forest classes by 2025, accounting for 23 thousand ha. However, residential areas, rubber, and agricultural land classes are predicted 
to rise to 460 ha, 3,000 ha, and 20,000 ha, respectively. The simulated model and calibrated area data may be a vital contribution to 
sustainable development efforts of the local based on the dynamics of LULC and future LULC change scenarios. Overall, ascertaining 
the complex interface related to changes in land use and its major drivers over time provides useful information predict to explore the 
future trend of LULC changes, establish alternative land-use schemes and serve as guidelines for urban planning policymakers.

1. INTRODUCTION

Changes in land use land cover (LULC) relevant to 

anthropogenic activities have significantly changed the 

biological and geochemical processes on earth contributing to 

global environmental concerns (Prakasam, 2010; Firozjaei et.al., 

2018). Information about LULC changes is applicable for natural 

resources management and recommendations for local socio-

economic growth in a specific area. Thus, monitoring, analyzing, 

and understanding the conversion of LULC changes are needed 

to provide precise and timely information on current land use 

characteristics and changes for local authorities regardless of 

sustainable development. 

Remote sensing (RS) and geographic information systems (GIS) 

have been popularly adopted as essential and useful tools in 

obtaining accurate spatial data of LULC and quantifying the 

alternations of spatial data. The application of the CA-Markov 

model in predicting LULC changes has conveniences due to its 

powerful replication, and it is used for mapping LULC changes 

providing good performance regardless of dynamic modeling 

efficiently; high productivity with data, simple analysis; and 

capacity to detect transitions between land use classes (Sang et 

al., 2011; Chan et al., 2018). A study on prediction of future 

LULC scenarios for urban growth modeling between the Multi-

layer Perceptron-Markov (MLP-MC) and the CA-Markov 

conducted in Atakum, Samsun, Turkey revealed that the MLP-

MC model produced results outperformed the CA-Markov 

regardless of LULC change simulation (Ozturk, 2015). Also, 

there is a study of replication on simulating the LULC map 

conducted in Dhaka region through three different models: 
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Stochastic Markov (St_Markov)”, CA-MC, and MLP-MC 

(Ahmed, Ahmed, 2012). The results illustrated that the MLP-

Markov model yielded the most performance in monitoring and 

predicting the land-use dynamics.  

Dak Nong province has a high diversity of natural forest 

resources in the Central Highlands of Vietnam. In recent years, 

Dak Nong has experienced a burst in population growth resulting 

in high demand for agricultural land and urban expansion causing 

natural forest degradation. Besides, the technical guidelines in 

natural resource management mechanism have exposed issues 

such as deforestation, encroachment led to forest cover declined 

in the province (Müller, 2004). Thus, there is a crucial need for 

analysis of LULC change over time and prediction on the future 

trend of land use transformation based on multi-temporal satellite 

imagery. In this study, integration of the MLP NN with the 

Markov model manipulated in the Land Change Modeler (LCM) 

tool through IDRISI TerrSet software was employed to detect 

temporal changes and model the future spatial distribution of 

different land uses. 

2. MATERIALS AND METHODS

2.1 Study Area 

Dak Nong province where is a part of the subtropical monsoon 

climate zone characterized by humid tropical highland climate 

and dry-hot southwest monsoon, located in the Central Highlands 

of Vietnam (Figure 1). The mean elevation is about 650 meters 

above the level of the sea with an annual average temperature of 
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24 Degree Celsius. The region consists of two distinct periods per 

year including the rainy and dry seasons. Its average annual 

rainfall is 2,500 mm (the rainy season represents over 90 percent 

of rainfall all year round). The study area covers approximately 

6.516 km2 including various types of LULC with substantial 

fragmentation. 

Figure 1. The study area of Dak Nong province 

2.2 Data Acquisition and Preparation 

The research used USGS Landsat 5, Landsat 8 SR (Surface 

Reflectance Tier 1), and remote sensing data collections available 

on Google Earth Engine (GEE). These satellite images were 

captured by the years 2009, 2015, and 2018. Landsat 5 and 

Landsat 8 SR atmospherically corrected surface reflectance from 

the sensors of Landsat 5 ETM and Landsat 8 OLI/TIRS, 

respectively. A resampling process of the thermal infrared (TIR) 

band was initially chosen at 120m/pixel resolution. Landsat 8 SR 

scenes contain four visible bands (B1, B2, B3, B4): ortho-

rectifications of surface directional reflectance was applied to one 

near-infrared (VNIR: B5) and two short-wave infrared (SWIR: 

B6, B7) bands, while two thermal infrared (TIR: B10, B11) bands 

were processed to brightness temperature ortho-rectifications 

(Google Developers: Earth Engine Data Catalog). Landsat 5 SR 

data was corrected using LEDAPS (Department of the Interior 

U.S. Geological Survey. 2019a); LaSRC (Department of the 

Interior U.S. Geological Survey, 2019b) was used to correct 

Landsat 8 SR, and both included a mask for clouding and 

shadowing, through CFMASK (Foga et al., 2017), as well as a 

saturation mask per-pixel. The multi-spectral bands of Landsat 5 

SR (included Blue (B1), Green (B2), Red (B3), NIR (B4), SWIR 

1 (B5), TIR (B6); SWIR 2 (B7)) and NDVI and the multi-spectral 

bands of Landsat 8 SR (Ultral Blue (B1), Blue (B2), Green (B3), 

Red (B4), NIR (B5), SWIR 1 (B6), SWIR 2 (B7), TIR 1 (B10), 

TIR 2 (B11)) and NDVI were employed in the current study.  

As three periods were considered in this study, including 2010, 

2015, and 2018, Landsat 5 and 8 SR data were used to ensure that 

the entire area was covered and the effects of clouds were 

eliminated. Accordingly, the Landsat image data sets were 

divided into four temporal periods including i) a collection of 

Landsat 5 SR scenes in 2009 and 2010; ii) a collection of Landsat 

8 SR scenes in 2014 and 2015, and iii) a collection of Landsat 8 

SR scenes in 2017 and 2018. The detailed data of the satellite 

images are shown in Table 1. 

Landsat 

data 
Year 

Acquisition 

date 

No 

images 

involved 

No. 

bands 

Landsat 5 

SR Tier 1 

2009-

2010 

01/01/2009-

12/31/2010 
84 08 

Landsat 8 

SR Tier 1 

2014-

2015 

01/01/2014 

12/31/2015 
143 10 

Landsat 8 

SR Tier 1 

2017-

2018 

01/01/2017

12/31/2018 
128 10 

Table 1. Information on Landsat satellite data used in the study 

On the other hand, the digital data including existing land 

use/forest maps (collected from relevant departments of Dak 

Nong), training field sample points; and Google Earth were used 

as training sites to classify the given satellite imageries into 

various LULC categories. 

2.3 Selection of Drivers 

The driver variables are understood as factors that are the main 

contributors to LULC change (Nguyen, Ngo, 2018). The selected 

factors were based on the reliable source of data and the 

explanatory capacity of the data that can display spatially explicit 

variables (Khoi, Murayama, 2010). Driver variables affecting 

LULC change include natural factors (e.g. topography, 

precipitation, and slope) and social factors (e.g. population 

density and policy schemes). However, due to the lack of 

available information relevant to policies occurring in the study 

area, we only collected data associated with the natural drivers 

including elevation, slope, and distance to rivers or streams. On 

the other hand, the group of social elements includes the length 

to road and residential areas elements required decentralization 

from the local forest management units since these factors have 

affected accessing and encroachment to forest resources. 

2.4 Training and Validation Data 

Within the study area, the ten different types of LULC were 

discriminated: (1) Evergreen broadleaved forest; (2) Semi-

evergreen forest (the forest that consists of a mixture of evergreen 

and deciduous dipterocarp tree species); (3) Dipterocarp forest; 

(4) Plantation forest; (5) Mature rubber (≥3 years old) (6)

Perennial industrial plants; (7) Cropland; (8) Residential area; (9)

Water surface; and (10) other types of land (including grassland,

shrubs, bare land, unplanned land, abandoned land, and so on).

Few studies have been published on the effectiveness of using

collected samples from the integration of sources including the

ground truth data, Landsat images with a high spatial resolution

derived from Google Earth (GE), and reference maps (Sothe et

al., 2017; Teluguntla et al., 2018). These authors both achieved

excellent outputs and proved the importance of the sampling

process in evaluating the classification accuracy results.

The dataset used in the classification and validation process was 

collected from different sources such as i) ground truth points 

collected in the field; ii) fine resolution and very fine resolution 

images obtained from GE and iii) the existing Dak Nong Forest 

Inventory/LULC Maps. Besides, the sample areas were directly 

collected according to the given Landsat satellite images where 

the samples are discriminated against others based on the user’s 

experience.  

2.5 Methods 

2.5.1 Image Classification: The Random Forest (RF) 

algorithm proposed by Breiman (2001) was adopted to categorize 

Landsat images into LULC maps. Optimal values of the 

algorithm such as mtry, ntree, and variable importance were 

selected as described in previous studies (Nguyen et al., 2018, 

2020). As regards the accuracy assessment, the matrix is 

considered the most effective method for evaluating 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-3/W1-2020, 2020 
Gi4DM 2020 – 13th GeoInformation for Disaster Management conference, 30 November–4 December 2020, Sydney, Australia (online)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-3-W1-2020-99-2020 | © Authors 2020. CC BY 4.0 License. 100



classification accuracy (Congalton, Green, 2019). Accordingly, 

the matrix confusion was computed statically, and this method 

was used to evaluate the accuracy of the classified images based 

on parameters: Overall Accuracy (OA), Kappa coefficient (K), 

Producer Accuracy (PA), and User Accuracy (UA). 

Classification accuracy assessment was implemented using the 

method of randomly dividing the sample data set into two 

independent parts, with 60% of the data used for the classification 

and the remaining 40% of the sample employed to evaluate the 

accuracy of the model. 

2.5.2 LULC Change Detection Analysis: Employing LCM 

acquires different temporal maps, and LULC maps of the year 

2009, 2015, and 2018 were used to detect the changes of LULC 

classes. This allowed us to comprehend the transitional trend and 

contribution between LULC classes over time. 

2.5.3 LULC Change Prediction: The study used the 

integration of MLP with the MC to forecast the future LULCC in 

2018 and 2025.  

The MLP-MC model displayed in the LCM tool includes the 

following steps: a) change detection, b) transition model and c) 

change anticipation (Eastman, 2012; Losiri et al., 2016).  

i. Change analysis: Two LULC maps were used to examine the

primary transformations which are modeled independently as

sub-model in the following stage.

ii. Modeling a transition probability: To clarify the driver

variables, Cramer’s V, a prominent quantitative measurement

which indicates a number ranged from 0 to 1 implying how

strongly relevant factors are associated with two categorical maps

(Ahmed, Ahmed, 2012; Nouri et al., 2014). As noted from the

literature, if the variable has a Cramer’s V value of 0.15 or

greater, it implies that the correlation is reliable. In the case of a

value reaching above 0.4, the combination is good. Once the

explanation of components was investigated in individual land

conversion, the LCM accepted MLP to create the transitions of

LULC maps. The MLP algorithm iteratively alters the associated

weights among the nodes following different layers in a way that

the error between the calculated data and their expected outcomes

is diminished to improve accuracy (Dadhich, Hanaoka, 2010).

As performed in each sub-model of land transition, the MLP 

randomly develops a dataset of samples that have not shown the 

transition. Accordingly, each sub-model includes one transition 

and two samples of classes being provided. The MLP generates 

a neural network based on samples and driver variables 

corresponding with a connected network consisting of associated 

weights. The collected cells then are disjoined into two clusters 

including a sample set of 50 percent using for training and the 

remaining proportion for validation (Mozumder, Tripathi, 2014; 

Mishra et al., 2014; Mozumder et al., 2016). This process aims to 

generate the correlation between transition probability and 

driving forces. Therefore, the calculated weight helps to 

minimize the mistake to increase accuracy. Once the accuracy is 

above 80% or achieves the maximum repetition, the probability 

of transitional maps of each sub-model obtains the 

appropriateness of LULC categories over the predicted time. 

iii. LULC change prediction: The process of forecasting change

is implemented in the LCM to examine the quantity of the future

LULC in a given temporal period simulated by MC. The first

output is a hard prediction model resulted from a projected LULC

map according to the process of land allocation. A soft prediction

is the second output in which a comprehensive vulnerability map

is conducted corresponding with the set of transitions. Overall, 

the default values ranged from 0 to 1 are the outputs of the soft 

prediction (Megahed et al., 2015).  

To quantify the changes occurring on the future land use types, 

the MC simulation was modeled (Eastman, 2016). It uses the 

knowledge based on the transitional possibility between the first 

time point and the last one to identify the dynamic trend among 

various LULC categories. The simulated model process 

randomly generates a land-use conversion matrix and a matrix 

transformation table to forecast the future land use modification. 

Therefore, the MC in LCM was employed to create a transition 

probability matrix for 2018 until 2025 (Muller, Middleton, 1994; 

Dadhich, Hanaoka, 2010; Chen et al., 2018)  

By using MLP-NN analysis, the weights of the transition were 

determined according to the matrix of transition probabilities in 

MC for the forecasting of future LULC changes (Ahmed, 

Ahmed, 2012; Eastman, 2016). The final land cover maps of 

2018 and 2025 were simulated through the Markov chain module 

integrated with IDRISI corresponding information from the 

MLP-NN. 

2.5.4. Model Validation: The model validation process was 

implemented through an accurate comparison between predicted 

LULC maps and classified images in 2009, 2015, and 2018. The 

study employed the cross-tabulation in IDRISI regarding 

performance evaluation of the model to calculate OA from each 

predicted LULC category. Also, the K index was considered to 

measure the success of the simulation. Once the kappa index is 

acceptable, the LULC in 2025 will be predicted (Nasiri et al., 

2019).  

3. RESULTS AND DISCUSSIONS

3.1 Accuracy Assessment 

Overall, OA for all classified images from three temporal periods 

(2009, 2015, and 2018) ranged from 77.35% to 84.55%, with K 

indices ranging from 0.75 to 0.81.  It is noticeable that the 2015 

LULC map had the highest accuracy of OA (84.55%) with K 

reaching at 0.81. While the lowest OA of 77.35% was achieved 

for the 2009 LULC corresponding K of 0.75. The figure for PA 

and UA among LULC types also presented above 60%. 

3.2 LULC Change Detection 

This study compared three maps (2009-2015-2018) and produced 

a statistic analysis of LULC changes in hectares and percentages 

over time presented in Table 2. 

It is seen from Figure 2. that dramatic changes and 

transformations were found between ten LULC classes over the 

years from 2009 to 2018. The dominant variations and transitions 

figured out mainly among evergreen, dipterocarp forests, rubber, 

and industrial plants.  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-3/W1-2020, 2020 
Gi4DM 2020 – 13th GeoInformation for Disaster Management conference, 30 November–4 December 2020, Sydney, Australia (online)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-3-W1-2020-99-2020 | © Authors 2020. CC BY 4.0 License. 101



LULC classes 
2009 2015 2018 

Area (ha) % Area (ha) % Area (ha) % 

EverGreen 221,708.61 34.00 189,227.34 29.02 178,062.03 27.30 

Semi-EverGreen 17,856.90 2.74 22,467.87 3.45 23,781.87 3.65 

Dipterocarp 32,057.28 4.92 21,374.82 3.28 16,035.21 2.46 

Plantation 6,533.28 1.00 6,974.46 1.07 8,037.00 1.23 

Rubber 3,601.08 0.55 18,740.07 2.87 22,750.47 3.49 

Industrial Plants 270,950.31 41.55 314,437.14 48.21 320,168.70 49.09 

Crop Land 24,607.08 3.77 26,953.11 4.13 29,530.80 4.53 

Residential 4,478.22 0.69 6,163.83 0.95 6,320.34 0.97 

Water Surface 2,897.19 0.44 9,244.71 1.42 10,332.09 1.58 

Others 67,473.09 10.35 36,579.69 5.61 37,144.53 5.70 

Total 652,163.04 100.00 652,163.04 100.00 652,163.04 100.00 

Table 2. Area of LULC categories over years (ha) 

  
Figure 2. Land Use/Land Cover Net Changes in hectares from 

2009 to 2018 

 

To sum up, for forest cover classes, the area of natural evergreen 

forest and dipterocarp forest decreased over the years. In contrast, 

the area of semi-evergreen and planted forests gradually 

increased over periods. For non-forest cover categories, the area 

of industrial plants, cropland, residential area, and water surface 

are classes with the increasing area over the years due to 

economic, social development, and population growth, while 

other types of land are volatile but the trend decreases over 

periods. 

 

Human activities directly impact natural forests such as logging, 

agricultural expansion, or infrastructure, hydroelectricity and 

road development. However, the main driver of deforestation was 

the conversion of forests to commercial agriculture products such 

as coffee, pepper, rubber, cassava (Kissinger, 2020). According 

to a report from the Ministry of Natural Resources and 

Environment (2014), poor forest transformation into rubber 

plantations has considerably resulted in a reduction of 

dipterocarp forests including a semi-deciduous forest in the 

Central Highlands and other natural forests. The Central 

Highlands and the southeast of Vietnam are regarded with the 

highest area of natural forests, and spontaneous population 

movement from different places of the country. It is noticeable 

that free migration to the region reduced significantly by 2006 

compared to 2005. However, it showed an upward again in the 

two following years, and this trend has continuously increased 

until the present. Population movement at the national scale 

arising with forest degradation worthy considered in the 

Highland region. For many domestic migrants, particularly the 

northern ethnic minorities, their livings highly depend on 

exploited products such as timbers, firewood, herbs, and orchards 

from natural forests. Hence, population growth has led to an 

increase in land-use for cultivating, and grazing contributed to 

deforestation at an alarming rate. Besides, economic 

development has caused overexploitation of natural resources 

leading to biodiversity degradation and declined ecological 

functions of native forests. Though there have been regulations 

of forest protection and management introduced to the 

communities to limit illegal forest operations by the government, 

the current issues of illegal logging are increasingly occurring in 

the whole region in general (Ministry of Natural Resources and 

Environment, 2014).  

 

3.3 LULCC Prediction with CA-Markov and Validation 

The MLP - NN and MC were used to simulate the LULC 

modifications pattern in Dak Nong for 2018 based on information 

from driver variables, transition potential maps, and transition 

probability matrix. A comparison was implemented between the 

reference and simulated LULC map to validate the LULC 

prediction in 2018 by K variations. The model validation was 

presented in Figure 3. The results show how similarity between 

predicted and actual LULC maps of 2018 based on 4 parameters 

including Kno (kappa for no ability), Klocation (Kappa for 

location) and Kstandard (Kappa index). 

Figure 3. Agreement between classified LULC and predicted 

LULC map in 2018 

 

As illustrated above, the MLP-MC prediction model achieved a 

K value >0.80. K coefficients usually range from 0 to 1 

(Cicchetti, Feinstein, 1990). If K ranging from 0.60 to 0.80 means 

moderate agreement, while a K value between 0.80 and 1 implies 

a good agreement. Here, the K index is more than 0.80 which 

illustrates a significant agreement between the simulated map and 

the classified map of 2018. This value is a very high degree of 

discrimination and similarities between the two LULC maps 

implying that the results are satisfactory (Landis, Koch, 1977). 
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LULC ccategory 
              Classified map           Predicted map        Difference 

             Area (ha)        Area (ha)           Area (ha) Percent (%) 

EverGreen 178,062.03 176,208.12 1,853.91 1.04 

Semi-EverGreen 23,781.87 21,451.32 2,330.55 9.80 

Dipterocarp 16,035.21 17,629.74 -1,594.53 -9.94 

Plantation 8,037.00 6,783.84 1,253.16 15.59 

Rubber 22,750.47 21,818.70 931.77 4.10 

Industrial Plants 320,168.70 329,285.97 -9,117.27 -2.85 

Crop Land 29,530.80 27,521.10 2,009.70 6.81 

Residential 6,320.34 6,986.34 -666.00 -10.54 

Water Surface 10,332.09 10,566.63 -234.54 -2.27 

Others 37,144.53 33,911.28 3,233.25 8.70 

Total 652,163.04 652,163.04   

Table 3. Comparison of classified and simulated LULC maps in 2018

The Disagree Grid cell and Disagree Quantity indices have  

significance in predicting the LULC changes (Wang et al., 2016). 

Our findings indicated that the Disagree Grid cell = 0.1250 is 

greater than Disagree Quantity = 0.0098, this means that the 

precision for the correct prediction of the model is relatively high. 

Therefore, it is more likely to forecast the variations of LULC for 

quantifying than considering the location. Besides, the Kno index 

is regarded as the most important parameter which is used for 

evaluating the overall of a model (Pontius, 2000). As shown in 

Figure 3, the value of Kno is approximately 0.85, which means 

that the results of the MLP_Markov forecasting model are 

acceptable and continuous the prediction LULCC until 2025 for 

Dak Nong province.  

 

It is evident from Table 3 that there is an insignificant difference 

in the area between the simulated and the observed LULC maps 

in 2018. The best agreement with a different rate is less than 5% 

including evergreen forest, water surface, industrial plants, and 

rubber. Whereas the worst agreement is the plantation class with 

a different percentage from actual LULC reaching 15.59%, the 

following classes were semi-evergreen, others, and cropland. 

 

The LULC map for the year 2025 presented in Figure 4 was 

modeled based on the LULC maps in 2015 and 2018. The results 

of land-use change prediction are summarized in Table 4.    

 

 
Figure 4. MLP_Markov model projected the LULC scenario of 

Dak Nong 2025. 

 

Yirsaw et al., (2017) suggested that the trend of LULC in a region 

shows the changes happening in the past years being more likely 

to occur in the following years. As illustrated in Figure 5, the 

predictive results show that the natural forest categories represent 

a decrease continuously in the future. Of the area that changes 

from 2018 to 2025, the major changes concern the natural forest 

areas, with a predicted decrease of more than 23,000 ha, 

equivalent to about 10.28% of the total forested area. Particularly, 

the evergreen forest is more likely to reduce more than 15,500 

ha. Concerning semi-evergreen and dipterocarp forests, there is a 

clear tendency to reduce more than 7,600 ha. In contrast, 

agricultural land types consisting of cropland and rubber will see 

its importance continue to increase by about 20,000 ha. The 

remaining LULC types will expand continuously until 2025, 

where the plantation type is predicted to rise approximately 530 

ha (6.61%), and residential will increase by about 460 ha (7.3%). 

It is recognizable that the decline in the natural forests may be 

due to population growth, the expansion of residential areas, and 

the demand for agricultural land increases. Moreover, the 

transition of a natural forest area into other land-use types such 

as grasslands, bare land, shrubs (3,000 ha) is also the reason for 

the decrease of forest area. 
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  LULC category 
2018 2025 Predicted change 

Area (ha) Area (ha) Area (ha) Percent (%) 

EverGreen 178,062.03 162,527.76 -15,534.27 -8.72 

Semi-EverGreen 23,781.87 20,979.63 -2,802.24 -11.78 

Dipterocarp 16,035.21 11,152.08 -4,883.13 -30.45 

Plantation 8,037.00 8,568.36 531.36 6.61 

Rubber 22,750.47 25,759.89 3,009.42 13.23 

Industrial Plants 320,168.70 336,322.44 16,153.74 5.05 

Crop Land 29,530.80 33,366.51 3,835.71 12.99 

Residential 6,320.34 6,780.60 460.26 7.28 

Water Surface 10,332.09 10,093.32 -238.77 -2.31 

Others 37,144.53 36,612.45 -532.08 -1.43 

Total 652,163.04 652,163.04   

Table 4. Predicting area change of LULC in the period of 2018-2025 

 

 
Figure 5. The change prediction in hectares of LULC classes 

from 2018 to 2025 

 

 

4. CONCLUSIONS 

 

Based on the LULC analysis obtained for the year 2009, 2015, 

and 2018 in Dak Nong, the classification results showed that the 

OA of LULC maps achieved from 77.35to 84.55% with kappa 

varying from 0.75 to 0.81. From this study, the findings revealed 

that the majority of land conversion in Dak Nong is natural 

forests to residential areas and agricultural land since the 

province experienced an increase in population as well as social-

economic growth.  

 

The simulation of LULCC in the year 2018 and 2025 using an 

integration of the MLP-MC resulted in high accuracy. The 

findings revealed that in 2018 the predicted LULC maps show 

reliable results with a significant agreement compared to the 

actual LULC maps. The simulation illustrates that the 2025 

projected map indicates the trend observed from 2009 to 2018, 

revealing that the natural forest area will continue to decrease by 

more than 23 thousand ha. By contrast, rubber, residential area, 

and agricultural land are predicted to increase by approximately 

460 ha, 3000 ha, and 20,000 ha, respectively. The findings from 

this study suggested that the observed continuous decrease in the 

natural forest area calls for concern which has caused pressures 

on the natural forest resources contributing to the high risk of 

global climate change. The modeled results also indicate that the 

current forest protection and management mechanisms did not 

very effectively work in the province. Therefore, findings may be 

useful and significant information for the local government to 

promote more effective policies regarding sustainable 

development and management of natural resources. 
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