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ABSTRACT Lithium-ion batteries have become the most appropriate batteries to use in modern electric 

vehicles due to their high-power density, long lifecycle, and low self-discharge rate. The precise estimation 

of the state of charge (SOC) in lithium-ion batteries is essential to assure their safe use, increase the battery 

lifespan, and achieve better management. Various methods of SOC estimation for lithium-ion batteries have 

been used. Among these methods, the model-based estimation method is the most practical and reliable. 

The accuracy of the utilized model is a crucial factor in realizing better SOC estimation in the model-based 

method. In this paper, an enhanced battery model is proposed to estimate the SOC precisely via an 

optimized extended Kalman filter. The model considers the most influencing factors on the estimation 

accuracy, such as temperature, aging, and self-discharge. The parameterization of the model has defined the 

dependency of sensitive parameters on state estimation. As a fundamental step before estimating the SOC, 

the capacity degradation is evaluated using a straightforward approach. Later, a particle swarm optimization 

algorithm is utilized to optimize the vector of process noise covariance to enhance the state estimation. The 

performance of the proposed method is compared to recent techniques in the literature. The results indicate 

the effectiveness of the proposed approach in terms of both accuracy and computational simplicity. 

INDEX TERMS Lithium-ion battery, state of charge, capacity estimation, extended Kalman filter, PSO 

algorithm 

I. INTRODUCTION 

Batteries are the best energy storage systems for various 

essential applications such as smartphones, computers, 

electric vehicles (EVs), power system enhancements, 

medical applications, drones, and satellites. Batteries are 

diverse in characteristics and prices according to their 

applications. The most common rechargeable batteries are 

lead-acid, lithium-ion, and metal-nickel-hydride. Recently, 

lithium-ion batteries have become the preferred choice in 

modern EVs due to their high power density, long lifecycle, 

broad temperature operating range, fast charging ability, 

and low self-discharge [1]. Accordingly, a significant factor 

in improving EV performance is handling the management 

and estimation issues for the essential states of lithium-ion 

batteries. Estimating the state of charge (SOC) in lithium-

ion batteries is a crucial issue to satisfy safe use and better 

battery management. 

Numerous approaches have been used to estimate the 

SOC of lithium-ion batteries. The direct open-circuit 

voltage (OCV) based method is straightforward and cost-

effective. This approach works by assigning an SOC value 

for each value of the battery output voltage in the open-

circuit state [2-4]. The most appropriate manner of applying 

the OCV method is by using a 2D lookup table of SOC and 

OCV values [5]. Generally, the OCV-based method 

requires a few simple components to be implemented. 

However, obtaining an accurate OCV when the battery is 

under operation is not achievable for most batteries. 

Lithium-ion batteries need long relaxation time to obtain an 

accurate OCV after disconnecting the battery. Additionally, 

the OCV-based method is profoundly affected by the aging 
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process of the battery [6]. The current integrating (Coulomb 

counting) method can be used to calculate the descent or 

growth of an SOC based on the energy transferred from or 

to the battery [7, 8]. This method works efficiently for 

online SOC estimation. However, estimation errors can 

occur due to measurement noise and battery self-

discharging, especially during a long battery rest [9]. 

Furthermore, this approach requires knowing both the 

initial SOC at each operation and the state of health (SOH) 

to update the current capacity of the battery [10]. 

Estimating the SOC based on measuring the chemical 

impedance by means of applying an AC current through the 

battery at different frequencies is an efficient method that is 

more precise than both previous methods [11, 12]. 

However, this method is not universal and not easily used 

in online applications. Intelligent algorithm-based SOC 

estimation methods (i.e., artificial neural networks ANNs 

and neuro-fuzzy networks) have been proposed in [13-15]. 

These methods require intensive training offline to be 

appropriately used online. Indirect model comparison-based 

methods are considered the most practical methods to 

estimate an accurate SOC. These methods calculate and 

mitigate the error of SOC estimation by comparing the 

output parameters of the original battery to a designed 

battery model via a PI controller, Lagrange multiplier, or 

Kalman filter configuration [16-18]. The method 

complexity and the difficulty of obtaining a realistic model 

for the battery are two vulnerabilities of this method. 

Hence, finding a precise and straightforward model is a 

vital issue that demands the model-based method be 

utilized for estimating the SOC broadly [19-23]. A recent 

trend to estimate the correct SOC that utilizes the hybrid 

combination of two or more of the previous estimation 

methods was proposed in [6, 24]. This trend ensures high 

accuracy at different operating conditions; however, some 

restrictions arise in the use of this method, such as low 

reliability and high processing burden due to the 

simultaneous use of multiple estimation techniques [25]. In 

general, three main aspects must be considered to improve 

the SOC estimation of lithium-ion batteries, the precision of 

current and voltage sensors, the reality of the battery model 

to match the original battery under different operating 

conditions, and the accuracy of capacity estimation. 

Estimating the capacity is a fundamental step for the 

dynamic process of accurate SOC assessment. Additionally, 

knowing the degraded capacity aids in defining the SOH of 

the battery. The differential capacity rate (dQ/dV) has been 

used for detecting the aging process and assessing the 

degraded capacity in [26-28]. As this rate changes with the 

energy capability of the battery for a specific SOC range, this 

approach is considered one of the most effective techniques 

for capacity estimation. Such an approach uses curve fitting 

and regression techniques to define the peak of the dQ/dV 

curve, which is used to assess the current capacity. A 

shortcoming of this method is related to the need for the 

dQ/dV curve of the used battery, which may be attained via a 

supplemental and time-consuming analytical process such as 

cyclic voltammetry. Other studies have used the direct 

Coulomb counting method to estimate the capacity 

degradation with the aid of a Kalman filter, forming a model-

based estimating structure [29, 30]. First, the capacity is 

measured by integrating the discharging current for a specific 

period due to the corresponding change in SOC (∆SOC). 

Second, a Kalman filter is applied to extract the measurement 

noise and track the actual capacity. Regardless of increasing 

the complexity by adding an extra Kalman filter, these 

methods necessitate the availability of the correct ∆SOC or at 

least a ∆SOC with a tiny error that can be minimized due to 

the closed loop of two observers because the SOC itself 

relays primarily on the estimated capacity. Another approach 

has utilized the direct Coulomb counting technique supported 

by the recursive total least square (RTLS) method to 

calculate the battery capacity [31, 32]. This approach requires 

interaction with an algorithm to detect the capacity loss (e.g., 

observing the charging-time shortness). 

To this end, we believe that the mentioned methods for 

estimating both the SOC and capacity of lithium-ion 

batteries have involved a tradeoff between the estimation 

accuracy and complexities of both design and computation. 

This paper aims to address two of the aforementioned 

aspects to enhance the SOC estimation for the lithium-ion 

batteries potentially used in EVs, namely, the battery model 

precision and capacity estimation accuracy. A precise 

lithium-ion battery model is developed that considered the 

effects of operating temperature, aging process, and self-

discharge. The model takes into account the research gaps 

in the literature to enhance the estimation accuracy with 

avoiding design complexity and reducing the computational 

burden. The proposed model is supported by a new 

approach to estimate the capacity degradation that utilizes, 

in a closed-loop manner, both voltage decay and measured 

capacity via Columb counting. Later, a sensitivity analysis 

is conducted to determine which parameters of the 

proposed model have severe impacts on state estimation. 

The proposed model and capacity estimation can be used 

with different state observers (e.g., any of Kalman filters 

family or particle filter (PF)) to estimate the SOC 

accurately. However, the extended Kalman filter (EKF) is 

chosen among other types of filters because it deals 

effectively with slightly nonlinear systems compared to the 

basic Kalman filter. Additionally, the EKF obtains a better 

match to this problem compared to the PF and other types 

of nonlinear Kalman filters in considering both 

computational cost and simplicity aspects, as will be 

outlined in Section III. Two adjustable parameters affect the 

estimation performance of EKF; the measurement noise 

covariance (R) and the process noise covariance (Q). R can 

be set by attaining multiple measures from the sensor due to 

a constant input and then discounting the mean value so 

that the noise covariance can be acquired. Q can be set 
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intuitively or by the trial and error method, which is tedious 

and inaccurate; this can lead to filtering divergence over a 

long operating time, especially when R is set relatively 

small [33]. Thus, several optimization algorithms are 

applied to attain the optimal vector of Q that ensures 

precise estimation, such as the genetic algorithm (GA) [34], 

differential evolution (DE) [35], and biogeography-based 

optimization (BBO) [36]. However, none was applied to 

tune observers for battery states estimation. In this paper, 

particle swarm optimization (PSO) is used to optimize the 

Q vector and enhance the performance of the EKF because 

it is considered faster in convergence and relatively simple 

[37]. PSO is applied to determine the optimal Q through a 

fitness function that reduces the estimation error covariance 

(P) of the EKF. Finally, the effectiveness of the proposed 

approach is verified via simulation results in the 

MATLAB/Simulink environment. Taking into account the 

mentioned points, the main contributions of this paper are 

as follows: 

1) Propose an enhanced lithium-ion battery model to 

estimate the SOC that addresses the effects of 

operating temperature, aging process, and self-

discharge. 

2) Introduce a new and straightforward approach to 

estimate the degraded capacity of the battery, which 

supports the SOC estimation. 

3) Present a modification in the use of the extended 

Kalman filter by exploiting PSO to optimize the vector 

of process noise covariance. 

4) Conduct a sensitivity analysis to assign the sensitive 

model parameters that need to be tuned carefully to 

ensure model accuracy. 

The remaining of the paper has organized as follows: 

Section II describes the standard lithium-ion battery models 

along with detailing the proposed model. In Section III, the 

use of the EKF to estimate the SOC of lithium-ion batteries 

is presented along with clarifying the reason to consider the 

EKF a preferred choice for this problem. This section also 

comprises the optimization of the process noise covariance 

via PSO to support the precise SOC estimation. Section IV 

presents both the parameterization process to set the 

optimal model parameters and the sensitivity analysis to 

assign the sensitive parameters and their influence on state 

estimation. Section V covers case study scenarios, their 

results, study limitations, and performance discussion that 

involves the accuracy and computational complexity. 

Whereas the proposed work has concluded in Section VI. 

II.  ENHANCED BATTERY MODEL 

A.  MODEL STRUCTURE 

Researchers have proposed and employed several models for 

lithium-ion batteries that emulate the operational behavior. In 

general, the models fall into two types; the first uses the 

electrochemical characteristics of the lithium-ion cell [9, 38].  

TABLE I 

TYPES OF LITHIUM-ION BATTERY EQUIVALENT CIRCUIT-BASED MODELS 

Model name Model diagram References 

Basic RC model 

R1

C1

R0

Vcell

 

[6, 16, 22] 

2 RC ladder 
model 

R2

C2

R0

Vcell

R1

C1

 

[18, 39-41] 

Capacitor-based 
cell model 

Rp

Cp

R0

Vcell

Cb

 

[19, 23] 

This type uses equations to describe the electrochemical 

reactions in lithium-ion batteries, such as intercalations, 

diffusions, and migrations. The application complexity, the 

necessity for specialized experience in chemistry, and the 

need for particular modeling for each type of lithium-ion 

battery make utilizing this model inconvenient. The second 

type is equivalent circuit-based modeling. Table I shows the 

most common equivalent circuit models for SOC estimation 

and battery management systems (BMSs). The use of voltage 

sources in all presented models is associated with the open-

circuit potential. The series resistor is used to mimic the 

internal electrochemical resistivity and ionic conductivity of 

the battery, whereas the parallel set of resistor and capacitor 

is used to emulate the hysteresis effect or the delayed 

response of the OCV in both charging and discharging 

modes. Nevertheless, increasing the number of parallel 

capacitors will raise the computational challenge and 

increase the number of tuned parameters. Therefore, the basic 

resistance-capacitance (RC) model is used as the elementary 

model in this paper. The parameterization of the proposed 

RC model will be described in Section IV. The SOC can be 

formulated by its conventional definition as [19]: 

0 


actQ

idt
SOC SOC  (1) 

where SOC0, Qact, and i are the initial value of the SOC, the 

actual capacity of the battery, and the current of the battery, 

which is positive in the discharging mode and negative in the 

charging mode. The potential difference between the 

terminals of RC components in the proposed RC model can 

be clarified as: 

1

 
  
 

C
C

dV
V i C R

dt
 (2) 
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The dynamic equations of the battery model can be 

defined as: 

1

1 1
 C CV I V

C R C
 (3) 

1

3600
 

act

SOC
Q

I  (4) 

t   OC C intV V V R I  (5) 

The temperature influence is added to the battery model, 

as shown in Fig. 1-b. The thermal model in Fig. 1-b refers to 

a heat exchange block that generates the temperature 

supposed to achieve from the thermal sensor, which relies 

primarily on ambient temperature (Tambient) and wasted power 

in the internal resistance (Ploss), where Ploss= Rint I2. The 

output temperature (T) can be given by solving the heat 

equilibrium equation [42]: 

 


P loss

ambient

T

P
dT T T

C
dt R

 (6) 

where CP and RT are the specific heat capacity and thermal 

resistance, respectively. Taking the Laplace transform for (6) 

gives 

1






T loss ambient

P T

R P T
T

C R s
 (7) 

The self-discharge is mainly dependent on the off-period 

during the rest time and the internal temperature. Thus, the 

self-discharge is considered by means of inserting a large 

resistor (Rself) in parallel with the battery cell, and thus a 

minimal current will pass through it at the resting stage. 

(a)

(b)

a

R1

C

Rint

VOC

Rself

bc

Vt

I

T, SOC

R

Ra

QestQinit

R0

T

I

Ploss

Tambient

Thermal Model

SOC

 

 

FIGURE 1.  Lithium-ion battery: (a) Proposed battery model, (b) 
Proposed internal resistance model. 

The proposed model thus considers the aging effect of the 

lithium-ion battery. Different reasons lie behind the aging 

process, such as the active mass loss, cyclable lithium 

consumption, and size increment of the surface layer. All 

these reasons contribute in one way or another to the 

proportional growth of electrochemical resistance [31]. Thus, 

to compile the aging effect, a slight increment in the internal 

resistance needs to be added correspondingly. This increment 

is determined based on the difference between the 

manufacturing capacity and the estimated capacity at each 

operating cycle. Therefore, a simple loop of a proportional 

controller is added to the initial internal resistance with a 

relatively small proportional gain (Ra) as: 

0int a init estR R R (Q Q )    (8) 

where Qinit, Qest, and R0 are the manufacturing capacity, the 

estimated capacity, and the initial internal resistance of the 

battery, respectively. R0 is built as a function of the battery 

temperature and SOC and formed via a lookup table. Ra can 

be tuned when other variables in (8) are known for particular 

temperatures and SOCs. For specific temperature and SOC, 

the actual Rint is considered the ohmic internal resistance of 

the battery, which can be measured via the AC current 

injection method.  

B.  DEGRADED CAPACITY MODEL 

Currently, there are several methods used to recharge 

lithium-ion batteries. Among these methods, constant 

current–constant voltage (CCCV) and multistage constant 

current (MSCC) are the most common, and they are 

considered references for further modifications [43]. Fig. 2 

describes the typical voltage-current profiles of both 

methods. In this work, the MSCC method is employed 

because it requires a shorter charging time, and it can reach 

full capacity even at low temperatures [1]. In MSCC 

charging, a large constant current (e.g., 1 C-rate) is applied at 

the beginning to charge more than half of the capacity. When 

the voltage reaches a maximum limit, the constant current 

moves to a lower level according to the number of stages. 

CCCV Voltage

CCCV Current

MSCC Voltage

MSCC Current

MSCC

      Stage   1 2 3 4

5

CCCV

CC Mode CV Mode

Vmax(manf)

Vmax

t

(V, I)

 

FIGURE 2.  Voltage-current profiles during the charging mode of 
Lithium-ion batteries. 
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Each stage ends when the voltage reaches the same 

maximum limit to avoid cell damage. In general, considering 

both the MSCC and CCCV methods, the charging current 

decreases gradually when the battery is nearly fully charged. 

At the same time, the maximum voltage of the battery for the 

current cycle can be attained. 

The basic concept of modeling the current capacity in this 

paper is straightforward as it relies on the available 

information from the charging mode at each cycle. Given 

that a slight decay in the battery maximum voltage (Vmax) 

occurs during the natural degradation of capacity due to the 

increment in internal resistance, which results in reducing the 

power density [44]. Therefore, if Vmax can be measured 

accurately at the end of the charging mode, the rate of 

degradation in the capacity can be modeled. Taking into 

account five stages of MSCC with currents of 1, 0.5, 0.4, 0.3, 

and 0.2 of the nominal charging current (Inom), respectively. 

At the beginning of stage 5, when the charging current 

becomes 0.2 of Inom, Vmax can be measured (see Fig. 2). At 

stage 5, dV/dt is the smallest, and even if it is not zero, the 

voltage growth at this stage is temporary due to the charging 

current, and it will fade when the charging current is cut off 

at the full charge. The acquired Vmax in stage 5, after noise 

extraction via a low-pass filter (LPF), is considered as the 

current Vmax of the particular cycle. The modeled degraded 

capacity (Qmodel) of the battery can be defined as a function of 

the current Vmax at each cycle in (9). To ensure that the 

modeled capacity is converging to the actual capacity, a 

recalibration is needed based on the measured capacity by 

charging-current integration in stage 4. The measured 

capacity between the beginning SOC (SOCb) and ending 

SOC (SOCe) at stage 4 is defined in (11). Eventually, both 

modeled and measured capacities participate in estimating 

the current capacity of the battery via a PI-based closed-loop 

compensator, as given in (12). Because a very slight capacity 

loss occurs during each cycle, when the charging process 

ends before stage 5, Vmax can be considered the same as the 

previous cycle. 

 mod el init m max(manf)Q Q V V  (9) 

c

m max

c

V V
s







 (10) 




meas

e b

Q
I

s( SOC SOC )
 (11) 

 
 

   
 

est mod el mod el me
i

p asQ Q Q Q
K

K
s

 (12) 

where Vmax(manf), Vm, ωc, Kp, and Ki are the manufacturing 

value of the maximum battery voltage, the maximum voltage 

of the current cycle after passing through an LPF, the cutoff 

frequency of LPF (i.e., 10 rad/s), the PI proportional gain 

(i.e., 0.43×10-3), and the PI integral gain (i.e., 0.08×10-3), 

respectively.  

Measured

Capacity

-

+

SOC

Modeled

Capacity

SOC Estimation

Process

PI

+

+

Qest

Qmeas

Qmodel

I

LPFVmeas

Charging-

stage signal

 

 

FIGURE 3.  Schematic diagram of the capacity estimation procedure. 

Note that the PI proportional and integral gains are tuned 

via the trial and error method with several iterations since the 

capacity convergence can be easily observed during gains 

tuning. The newly estimated capacity will be set during the 

transition between charging and discharging modes. A 

schematic diagram to clarify the procedure of capacity 

estimation is depicted in Fig. 3. The estimated capacity will 

be used to determine Rint and replace Qact in (1) in order to 

estimate the SOC. The suggested battery model ensures that 

the internal resistance, terminal voltage, and capacity will be 

influenced in accordance with temperature change, which 

emulates battery performance under a real-world scenario. 

III.  IMPLEMENTING THE OPTIMIZED EXTENDED 
KALMAN FILTER 

Fig. 4 clarifies the typical structure for SOC estimation in 

model-based methods. In general, all model-based methods 

are feedback-based state observers where the SOC represents 

the deduced state of the system based on the available 

knowledge of measurements and the known dynamics of the 

system. One of the suggested observers for this issue is the PI 

observer, which is applied in [20, 21]. Regardless of the 

simplicity of PI structure and the low cost of implementation, 

the PI observer estimates the state of a linear system. For a 

nonlinear system, an additional technique may need to be 

implemented to decompose the nonlinear system to several 

linear subsystems, and that may require adaptive PI gains. 

Given that the battery model has some randomness, including 

the process and measurement noises, the system state of the 

battery can be considered stochastic. A Kalman filter is 

primarily designed for stochastic systems, and thus it is more 

applicable for such estimation issues [45, 46]. However, the 

basic Kalman filter assumes a Gaussian distribution that 

should come from a linear function. In a lithium-ion battery, 

the relation between the output terminal voltage and the SOC 

is nonlinear, and thus the distribution may not be Gaussian. 

In this case, the basic Kalman filter may not appropriately 

estimate the system state. Development in the application of 

the linear Kalman filter has been proposed by locally 

linearizing the battery model using a piecewise linearization 

method [17, 18]. This approach necessitates the number of 

breaking intervals for piecewise linearization to be small in 

order to avoid a heavy computational burden. As a result, 
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FIGURE 4.  Typical structure for model-based SOC estimation 
approach. 

with a minor error in the initial state, the combination of 

locally linearized Kalman filter (LLKF) works perfectly. 

Considering a significant error in the initial state, the LLKF 

takes a longer time to minimize the error and reach the actual 

state estimate, which will be proved in the Results section. 

The EKF and unscented Kalman filter (UKF) are the 

developed versions of the Kalman filter, these can be used 

for nonlinear systems [22, 23, 39]. The UKF creates a new 

distribution for the nonlinear function based on weighted 

points called sigma points (ơ). The new sigma points form a 

new mean that makes a new Gaussian distribution. The main 

drawback of using the UKF is the need to accurately 

propagate a large number of sigma points with their weights, 

which is a costly procedure. In contrast, the advantages of the 

EKF are the relative ease of implementation and low 

computational cost. Both filters are implemented on 

embedded systems with limited computational resources. For 

many systems, the Jacobian matrix can be easily derived 

analytically, which makes the EKF implementation 

straightforward. Another area of potential advantage is the 

relative ease of tuning. The UKF has at least three tuning 

parameters: a sigma point spread, measurement noise, and 

process noise. Whereas the EKF has only two tuning 

parameters (measurement noise and process noise), these are 

well known from the universal Kalman filter.  

The PF has been less used in SOC estimation until 

recently. A PF is primarily designed for nonlinear systems 

and non-Gaussian noise distribution [47]. A PF is a Monte 

Carlo-based estimation algorithm that uses a set of weighted 

particles (samples) to assess the posterior distributions of a 

stochastic-system state. Estimation via a PF includes four 

steps: initializing random particles, sampling the particles 

according to the new observations, resampling the particles 

based on assigned weight (negligible weight particles is 

replaced by higher weight particles), and normalization of  

TABLE II 

COMMON MODEL-BASED OBSERVING METHODS FOR SOC 

Observing 

method 
Reference 

Processing 

complexity 

Estimate 

accuracy 

Response 

time 

Parameter 

tuning 

complexity 

PI/ Luen-

berger 
[20, 21] V. Low Low Low V. Low 

Linear KF [45, 46] Low Low Low Low 

LLKF [17, 18] Medium Medium Low Low 

EKF 
[22, 39, 

41] 
Medium High High Low 

UKF [23, 29] High V. High High High 

PF [47, 48] V. High High V. High High 

weights to unity. A PF has four tuned parameters, namely, 

the number of particles, the initial particle location, the 

measurement noise covariance, and possibly process noise 

covariance.  A PF offers the highest accuracy and fastest 

response (state update) when there are large initial state 

errors. However, with a correct initial state when the 

estimated state totally converges to the actual state, the 

accuracy of a PF is same or even lower than both the EKF 

and UKF, especially in the range of SOC when SOC-VOC 

curve is almost flat because the weight of all samples is 

almost the same [48]. In terms of processing complexity, a 

PF is more complex than a UKF and requires a high-

performance microcontroller to be applied because the 

Monte Carlo method employs a large number of weighted 

samples to form the distribution. Considering the above 

comparisons and given that the nonlinearity of SOC-VSOC 

relationship is slight, the use of the EKF is the perfect choice 

for this state estimation issue because it works perfectly for 

quasilinear (slight nonlinear) systems [49]. Table II shows a 

comparison between the aforementioned model-based 

methods of SOC estimation, which is reached according to 

the above discussion and previous reviews [9]. According to 

Table II, the LLKF shares the same merits as the EKF in 

terms of the low computational cost and dealing with slight 

nonlinearities, except for the slow response of the LLKF 

associated with a large initial state error. To depict the 

superiority of the EKF over the LLKF, the performance of 

both filters under different operating conditions is compared 

in Section V. 

Assuming that the state vector is [VC SOC]T, the system 

output is Vt, the process noise is w, and the measurement 

noise is v, the discretized dynamics of the nonlinear system 

can be expressed in the following equations. Note that both w 

and v are vectors, independent, Gaussian, and having 

covariance matrices Q and R, respectively. 

1k k k kx f ( x ,u ) w    (13) 

k k k kg( )y x ,u v   (14) 

The EKF linearizes both state function and output function 

around the mean of the current state estimate (x̂) using a first-

order Taylor series. The Taylor expansion for (13) and (14) 
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evaluated at the current state estimate (x̂) can be expressed 

as: 

 1k k k k k k k
ˆ ˆx f ( x ,u ) A x x w      (15) 

 k k k k k k kg( )ˆ ˆy x ,u C x x v     (16) 

where Ak and Ck are the partial derivatives (Jacobian 

matrices) of f (xk, uk) and g (xk, uk) with respect to xk and 

evaluated at x̂k as: 

k

k k

k k

k ˆx x

A
f ( x ,u )

x






 (17) 

k

k k

k k

k ˆx x

C
g( , )x u

x






 (18) 

The EKF uses the system model along with the error 

between the measurement and the prediction to acquire the 

next state estimate. At each time step, the operation of the 

EKF can be summarized in two stages: initializing and 

updating. In the initializing stage, the state estimate and the 

estimation-error covariance of the previous time step can be 

attained as in (19) and (20), where the notation “ ̄ ” indicates 

that the variable is considered priorly. In the updating stage, 

the Kalman gain (K) is calculated in a way that minimizes P, 

and then it is applied to find the final state estimate and to 

update the current P as in (21)-(23) [22]. 

1 1k kk
ˆf ( x ,u )x̂  

   (19) 

1 1 1
T

k k k kAP P A Q
     (20) 

 
T

k

T

k k

k
k

k

P C

C P C R
K







 (21) 

k k k kk k
ˆK y g( x ,u )ˆ ˆx x       (22) 

  k k k kP I K C P
   (23) 

Fig. 5 clarifies the mechanism of Kalman gain to reduce 

the P in a loop structure. Note that R and Q are the only 

adjustable terms in the loop, and they play a vital role in the 

state convergence. Practically, R can be set based on multiple 

measures from the sensor after applying constant inputs from 

a precise power supply and taking out the mean values so 

that the noise covariance can be acquired. In the simulation 

scenario, R is set relatively small because only a slight sensor 

noise has been added. Q can be set intuitively; however, this 

may lead to filtering divergence over a long operation time, 

especially when R is set relatively small [33]. Therefore, in 

this paper, Q is set to be elected via a PSO algorithm from a 

preset searching range. PSO is a stochastic-based 

optimization algorithm that emulates the swarming and 

searching behavior of birds [50]. 

Delay

 k k k k
P I K C P
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FIGURE 5.  The dynamic mechanism of computing Kk and Pk of the 
EKF. 

PSO has been used for a long time and been proven 

effective at searching for solutions in stochastic domains and 

finding optimums for both offline and online problems. PSO 

is initialized with a population of particles at random 

positions in the search space to look for the best position in 

the same space. The search space in our problem is supposed 

to have the best vector of the process noise covariance that 

satisfies the minimum state error covariance of the EKF for a 

comprehensive scenario of battery charging and discharging. 

The PSO is set to initialize with 50 random particles and to 

update particle positions at each iteration, where the iteration 

takes an undefined number of time samples. The PSO 

algorithm has to be applied offline because it requires a 

number of iterations to attain the optimal solution. 

Accordingly, the EKF has to execute once at each iteration. 

At each iteration, each particle updates its position and 

travels toward the best particle position (Pbest) and the best 

global position (Gbest). Thus, the next PSO iteration will be 

initialized based on the best positions. After completing the 

specified number of iterations, the vector of process noise 

covariance [Q1, Q2] will be set to the final Gbest vector. The 

performance evaluation is determined based on the fitness 

function, which uses the summation of absolute errors (SAE) 

formula. As the estimation-error covariance is a 2×2 matrix, 

the fitness function will only consider the diagonal terms in 

the matrix, as these are related to the main error not the 

mutual error of both states (VC and SOC). The fitness 

function can be formed as a definite integration for the 

summation of the P diagonal terms, between the beginning 

time (t1) and ending time (t2) of an iteration, as: 

2

1

11 22

t

t

p pfitness    (24) 

The entire PSO operation to optimize the vector of the 

process noise covariance [Q1, Q2] can be illustrated in the 

following steps:  

Step1: Initialize random particles for the population 

Step2: Evaluate the initial fitness for Q1 and Q2 
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Step3: Compare the evaluated fitness to the overall Pbest to 

obtain the Gbest 

Step4: Save the Pbest and the Gbest at each iteration 

Step5: Update repeatedly particle position and velocity 

according to Pbest and Gbest 

Step6: Stop the algorithm after completing the specified 

number of iterations 

Step7: Set the Gbest vector to Q1 and Q2 of the EKF 

Step8: End. 

IV.  MODEL PARAMETRIZATION AND SENSITIVITY 
ANALYSIS 

The proposed battery model has five adjustable parameters—

VOC, R0, R1, Rself, and C—as shown in Fig. 1. Each parameter 

is supposed to be configured as a lookup table with four 

breakpoints for temperature (0°C, 15°C, 25°C, and 40°C) and 

nine breakpoints for SOC (0, 10, 25, 35, 50, 65, 75, 90, 100). 

The optimal parameters of the battery model have to be 

assigned via the parameterization process. The 

parameterization process is supposed to be repeated four 

times, according to the considered temperatures. First, a fully 

charged LiFePO4 lithium-ion battery is experimentally 

exposed to a pulse discharge current of 15 A under the four 

temperatures. Table III lists the manufacturing parameters of 

the utilized LiFePO4 lithium-ion battery. Considering the 

25°C temperature as an example, the corresponding drop in 

the battery output voltage and the time-dependent recovery 

due to the discharge current is depicted in Fig. 6 in red. The 

parametrization process sets the optimal parameters for the 

battery model that can achieve a similar voltage profile to the 

experimental voltage profile when applying the same pulse 

current. Some studies have employed different optimization 

methods, such as PSO and GA, to define the optimal 

parameters of a lithium-ion battery model [40, 41]. This 

study uses a ready library in MATLAB, known as the 

Simulink design optimization that utilizes multiple 

optimization algorithms to assign the optimal parameters of a 

model. Simulink design optimization requires a reference 

profile that is mostly derived from experimental data. The 

experimental voltage profile is imported into MATLAB/ 

Simulink and used as the reference profile.  

By using the Simulink design optimization, the simulated 

model is run many times to reduce any mismatch between 

the simulated and experimental voltage profiles and find the 

optimal parameters of the model from a prespecified range. 

The initial and final voltage profiles are shown in Fig. 6 with 

green and blue colors, respectively. Table IV (column: 

Reference values) lists a sample of the model optimal 

parameters for SOC = 50% at 25°C. 

Second, a sensitivity analysis is conducted to investigate 

the effect of parameter variation on state estimation. 

Conducting a sensitivity analysis contributes in focusing on 

the key parameters during the tuning and preventing wasting 

time with the nonsensitive parameters. Also, assigning the 

TABLE III 

PARAMETERS OF THE UTILIZED LITHIUM-ION BATTERY 

Parameter Value 

Rated capacity 20 Ah 

Rated voltage 3.3 V 

Maximum manufacturing voltage 3.7 V 

Maximum charging current 20 A 

Discharge capability (continuous/transient) 20 A/100 A 

sensitivity opens up prospects for finding correlations 

between sensitive parameters and external factors in the 

battery, such as battery capacity, thereby increasing the 

flexibility of the battery model to be used for different types 

or sizes of lithium-ion batteries. A common approach for 

sensitivity analysis, the one factor at a time (OFAT) method, 

is used. This approach tests the influence of varying each 

parameter individually when the other parameters remain 

fixed. The variation range comprises 21 cases, including a 

case for the reference value, ten above it, and ten below it. 

Therefore, the simulation is run 21 times for each of the four 

parameters. The variation step of each parameter is 2.5% of 

its reference value. The particular sensitivity (Si) at each case 

can be derived in (25) when Ts is the number of time samples 

during the entire execution, and SOCref is the estimated SOC 

at the reference value of the parameter. The overall 

sensitivity of each parameter (SP) can be defined in (26) with 

N equal to 21. 

1
i ref iS SOC SOC

Ts
   (25) 

1

N

P i

i

S S


  (26) 

Table IV describes the final parameter sensitivity results at 

25°C. The results denote a sensitivity gradient from very 

high to very low. VOC primarily relies on SOC and does not 

have a tangible effect due to temperature change, so it is not 

counted in the sensitivity analysis. The initial internal resistor 

(R0), followed by the hysteresis capacitor (C), exhibits the 

highest sensitivity among the parameters. Hence, the values 
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FIGURE 6.  Voltage profiles during the parameterization process for the 
temperature of 25°C. 
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TABLE IV 

PARAMETER SENSITIVITY OF BATTERY MODEL 

Parameter 
Reference 

value 
Variation 

range 
Parameter 
sensitivity 

R0 0.0085 ±25% 9.16 (V. high) 

C 20300 ±25% 6.45 (High) 

R1 0.0016 ±25% 2.30 (Low) 

Rself 83000 ±25% 0.97 (V. low) 

of these two parameters attained in the parameterization 

process are depicted in Fig. 7 to show their reliance on 

variations of temperature and SOC. According to Fig. 7, R0 

has a high dependency and inverse proportionality to the 

temperature change. In contrast, C has relatively less 

dependence on temperature and more dependence on the 

SOC change. Nonetheless, both sensitive parameters need to 

be assigned carefully to ensure model accuracy.  

R
0

(a)
 

C

(b)
 

FIGURE 7.  Parameter reliance on the variation of temperature and 
SOC: (a) Initial internal resistance (R0), (b) Hysteresis capacitor (C). 

Note that the sensitivity of the self-discharge resistor (Rself) 

is very low. Therefore, there is no need to design Rself as a 

lookup table since the slight change due to the variation of 

temperature or SOC will not affect the model accuracy. 

V.  RESULTS, DISCUSSION, AND LIMITATIONS 

The original battery, the battery model, and the optimized 

EKF have been simulated in the Simulink and Simscape 

environments of MATLAB R2019b on an Intel core i7 

CPU running 64-bit Windows 10 with 8 GB of RAM. 

A. VERIFICATION RESULTS 

Four major scenarios are considered to show the 

effectiveness of the proposed work. 

1) SOC ESTIMATION WITH THE PROPOSED BATTERY 
MODEL 

This case study presents a short-term SOC estimation using 

the proposed battery model. The battery model is applied to 

estimate the SOC using both the EKF and LLKF at 

temperatures of 0°C, 20°C, and 40°C. The LLKF approach 

applies the linear Kalman filter along with the battery model 

for SOC estimation. The SOC-VOC relation can be 

represented as VOC = λ SOC + b [17]. To address the model 

nonlinearity, the LLKF approach considers only the slope (λ) 

in the SOC-VOC relation changes online at each local point, 

while the intercept (b) is constant. Except for λ, which is 

multiplied by the SOC to map the VOC, the state space 

matrices are derived normally from the dynamics of the 

battery model in (3)–(5). Two initial SOCs (50% and 100%) 

are considered for both the LLKF and EKF, whereas the 

actual initial SOC of the battery was 90%. The case study 

comprises discharging and charging scenarios between SOC 

= 90% and SOC = 30%. To emulate a realistic scenario in 

both charging and discharging modes, the discharging 

current is generated randomly for the range between 0.3 and 

3 of the rated discharge current, whereas the charging current 

is assigned to be a typical MSCC current profile. Fig. 8 

depicts the battery current under charging and discharging 

modes for the verification scenario.  

Setting an initial SOC of 50%, the results identify a 

significant estimation error at the beginning when using the 

LLKF, as shown in Figs. 9, 10, and 11.   
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FIGURE 8.  Charge-discharge current during verification scenarios.  
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FIGURE 9.  SOC estimation for the proposed model via EKF and LLKF for temperature = 0°C: (a) One-cycle SOC for initial SOC = 50%; (b) One-

cycle SOC for initial SOC = 100%, (c) Average estimation error for initial SOC = 50%, (d) Simulink execution time for initial SOC = 50%, (e) Average 

estimation error for initial SOC = 100%, (f) Simulink execution time for initial SOC = 100%. 

 

Additionally, the LLKF requires more execution time to 

compensate the error and reach the original SOC because its 

procedure comprises two phases of linearization and 

estimation at each breaking interval. Although the error is 

reduced by reducing the initial SOC error, a large initial SOC 

error can be expected in any real scenario. By using the EKF 

with the proposed method of capacity estimation, the average 

estimation error under all temperatures is minimized by 

approximately 6.4% when the initial SOC is 50% and by 

approximately 1.9% when the initial SOC is 100%. 

Moreover, by running each approach individually, the 

simulation of the EKF with the proposed battery model and 

capacity estimation method requires less execution time 

compared to the execution time needed for the LLKF (see 

Figs 9-d, 9-f, 10-d, 10-f, 11-d, and 11-f). This means that the 

computational cost of the proposed approach is more 

acceptable than that of the LLKF. 

 

FIGURE 10.  SOC estimation for the proposed model via EKF and LLKF for temperature = 20°C: (a) One-cycle SOC for initial SOC = 50%, (b) One-

cycle SOC for initial SOC = 100%, (c) Average estimation error for initial SOC = 50%, (d) Simulink execution time for initial SOC = 50%, (e) Average 

estimation error for initial SOC = 100%, (f) Simulink execution time for initial SOC = 100%. 
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FIGURE 11.  SOC estimation for the proposed model via EKF and LLKF for temperature = 40°C: (a) One-cycle SOC for initial SOC = 50%, (b) One-

cycle SOC for initial SOC = 100%, (c) Average estimation error for initial SOC = 50%, (d) Simulink execution time for initial SOC = 50%, (e) Average 

estimation error for initial SOC = 100%, (f) Simulink execution time for initial SOC = 100%. 

 

FIGURE 12.  Capacity estimation by the proposed method and the method using extra Kalman filter: (a) Capacity via both methods for 100% aging 

condition, (b) Capacity via both methods for 90% aging condition, (c) Absolute estimation error for 100% aging condition, (d) Absolute estimation 

error for 90% aging condition, (e) Average estimation error during 18 cycles for 100% aging condition, (f) Execution time for the first cycle 

considering 100% aging condition, (g) Average estimation error during 12 cycles for 90% aging condition, (h) Execution time for the first cycle 

considering 90% aging condition.
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2) BATTERY CAPACITY ESTIMATION 

The proposed estimation technique of battery capacity 

degradation is applied and compared to the method of using 

an extra Kalman filter to track the actual capacity [29, 30]. 

The extra Kalman filter is used to eliminate the measurement 

noise and estimate the actual capacity from the measured 

capacity via the Coulomb counting approach when both 

initial and final SOCs for all cycles are known. Two aging 

conditions are considered: 90% and 100% of the initial 

capacity. The comparison comprises 18 charge-discharge 

cycles. Along with the obvious simplicity, the proposed 

technique shows its effectiveness in estimating the current 

capacity of the battery accurately. The absolute error between 

the capacity values estimated by both methods is shown in 

Figs. 12-c and 12-d. Considering the 100% aging condition, 

the error between the real capacity and the estimated capacity 

is mitigated with the proposed approach.  According to Fig. 

12-e, the average absolute error of the capacity estimation 

during 18 cycles is reduced to half compared to the method 

using the extra Kalman filter. Considering the 90% aging 

condition, Fig. 12-g reflects an increment in the average 

absolute error via the proposed method, which primarily 

relates to the first cycle. The reason behind this error 

increment comes from setting the new capacity at the end of 

the charging mode in the proposed approach. In contrast, this 

is set at the end of discharging mode in the approach using 

the extra Kalman filter. By running each approach 

individually and considering only the first cycle, the 

execution time of the proposed estimation technique of 

battery capacity is reduced by approximately 1.25s compared 

to the method using the extra Kalman filter during both aging 

conditions (see Fig. 12-f and Fig. 12-h). This corroborates 

that the implementation of the proposed approach requires 

comparatively less processing resources (time and memory).  

3) OUTPUT VOLTAGE ESTIMATION ERROR  

In this subsection, a comparison between the measured 

output voltage and the estimated output voltage via the 

optimized EKF is conducted and shown in Fig. 13. The 

effective estimation of the optimized EKF and the proposed 

model can be measured through the capability of matching 

both output voltages and minimizing the voltage-estimation 

error towards zero. Fig. 13-b demonstrates the voltage 

estimation error that increases during the discharging mode 

due to the irregular discharge current. Even with the irregular 

discharge current, the voltage estimation error lies between -

0.1 V and 0.09 V in the worst cases. Therefore, an estimation 

divergence is not expected to occur during different 

operating conditions. 

4) SOC ESTIMATION VIA EKF WITH UTILIZING PSO 
ALGORITHM 

The reference SOC of the battery is acquired by using the 

Coulomb counting method with the accurate values for both 

initial SOC and capacity degradation rate, and compared with 
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FIGURE 13.  Verifying the output voltage estimation: (a) Measured 
voltage and estimated voltage via the EKF, (b) Voltage estimation error. 
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FIGURE 14.  Verifying the long-term SOC estimation: (a) Estimated SOC 
by the optimized EKF and the real SOC, (b) SOC estimation error. 

the estimated SOC via the EKF along with the proposed 

battery model. The comparison includes 12 repeated charge-

discharge cycles, as shown in Fig. 14-a. Fig. 14-b depicts a 

slight estimation error for the SOC, within 0.7%, which 

verifies the excellent performance of the entire system (EKF 

and battery model). However, this estimation error was 

acquired when using the optimal vector of the process noise 

covariance [Q1, Q2] after completing 60 iterations. The PSO 

algorithm was applied offline to optimize the vector of the 

process noise covariance, and it was initialized with 50 

random particles in the searching space. The algorithm 

required less than 30 minutes to reach the optimal vector of 

the process noise covariance. Fig. 15-a and Fig. 15-b show 

the optimal values of the process noise covariance Q1 and Q2 

at each iteration, respectively.  
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FIGURE 15.  Application of PSO Algorithm to Optimize Q1 and Q2: (a) 
Optimal values of Q1 at each iteration, (b) Optimal values of Q2 at each 
iteration, (c) The fitness function development, (d) The accumulated 
absolute error of SOC at each iteration. 

Fig. 15-c shows the development of the fitness function at 

each iteration, which clarifies the gradual decrement of P. 

Finally, Fig. 15-d illustrates the accumulated absolute error 

of the SOC during the entire time of iterations. Giving that 

the algorithm is initialized with a random vector of the 

process noise covariance, the fitness function, which 

comprises the vector of the accumulated absolute error 

covariance, was minimized to the lowest possible vector. 

Moreover, the accumulated SOC error at the last iteration 

was reduced by almost 20% compared to the first iteration. 

B. PERFORMANCE DISCUSSION 

1) ESTIMATION ACCURACY 

According to Figs. 9, 10, and 11, the SOC estimation error 

for the proposed combination of the battery model and the 

optimized EKF lies between 0.5% and 1.25% for all tested 

temperatures. This verifies that the proposed model has 

enabled its state estimator to capture the dynamics of the real 

battery even when essential parameters change due to altered 

temperature. This is crucial because without careful handling 

of the temperature effect, the temperature change can 

influence the internal resistance directly and thereby affect 

the model accuracy. In addition to the estimation accuracy, 

the optimized EKF ensures a fast response for state updating 

when starting with a significant initial error. The reason 

behind the fast convergence is that the optimized EKF uses a 

ready-made system in which its dynamics are linearized at 

each time sample. Hence, the state update changes 

correspondingly at each time sample. Whereas the LLKF 

uses a piecewise or another linearization approach, the model 

trajectory itself is divided into several linear pieces priorly. 

The slow convergence when starting with a significant error 

in the initial state occurs due to the inability of the Kalman 

gain to compensate for the error, especially at the end of each 

piece or interval. Moreover, the results of the optimization 

process depict two facts. The first fact is that the slight 

change in the vector of estimation error covariance away 

from its optimal values can significantly affect the estimation 

accuracy. Therefore, such optimization is necessary to assign 

the P vector for each particular sensor with a specific R. The 

second fact is that the suggested fitness function has a strong 

correlation and direct proportion with the accumulated 

estimation error. Thus, the fitness function can ensure 

reaching the lowest possible estimation error for the given 

parameters. 

2) COMPUTATIONAL COMPLEXITY 

Improvements in estimation algorithms for battery states 

should avoid increasing the computational burden or even 

reduce it. The SOC estimation approach is compared to the 

LLKF approach, which shares many attributes with the EKF, 

especially considering the computational burden, as shown in 

Table II. This shared property is verified via the results, 

which can also be elucidated by considering the complexity 

order of both approaches. The EKF has almost the same 

typical complexity as the basic Kalman filter, which is 

O(n2.376) [51]. Nonetheless, additional complexity may come 

from the observation equations and process update. The 

complexity of the linearized process update is O(n), while the 

complexity of the observation function is nearly constant 

[51]. The additional complexity for the EKF with discounting 

the complexity of the Kalman filter can be defined as max 

(O(n), O(1)), which is O(n). For the LLKF, the complexity of 

piecewise linearization should be taken into account. Thus, 

the additional complexity for using the LLKF with 

discounting the complexity of the Kalman filter is no less 

than O(mn), where m is the breakpoints of the pieces [52]. 

The number of breakpoints needs to be assigned carefully to 

maintain reasonable performance by balancing between 

accuracy and complexity. Figs. 9, 10, and 11 interpret this 

tradeoff between accuracy and computational complexity of 

the LLKF in which the number of breakpoints is suitable for 

a small initial error. For a significant initial error, the number 

of breakpoints should be increased, which will increase the 

processing time as well. Based on Figs. 9-d, 9-f, 10-d, 10-f, 

11-d, and 11-f, the use of the optimized EKF reduces the 

execution time for all temperatures by approximately 2 s on 

average when the initial SOC is 50% and by approximately 

1.3 s on average when the initial SOC is 100% compared to 

the use of the LLKF. For the entire system, the 

computational complexity is minimized via both the state 

observer and the battery model structure, including the 
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capacity model. The utilized RC model requires the lowest 

computational complexity in terms of model structure. For 

the capacity assessment, replacing the linear model and the 

Kalman filter by a comparator and PI compensator interprets 

reducing the execution time by approximately 1.25 s for 

100% initial aging and by approximately 1.4 s for 90% initial 

aging, as shown in Fig. 12. 

C. STUDY LIMITATIONS 

This study encountered some limitations that can be 

addressed in the future: 

1) The experimental data are achieved for a specific type 

of lithium-ion battery (i.e., LiFePO4). More types may 

be examined to generalize the approach further. 

2) The self-discharge resistance (Rself), which is set during 

the overall parametrization procedure, needs to be 

more specified and parameterized individually through 

a time-consuming procedure to obtain the precise 

value. 

VI. CONCLUSION 

This paper proposed an enhanced model for lithium-ion 

batteries used in the precise estimation of battery SOC and 

capacity. The proposed model involved several factors, such 

as addressing the issue of nonlinearity introduced by the 

influence of the operating temperature and adopting a simple 

technique to emulate the aging process. The use of the EKF 

is verified to be the perfect choice for the SOC estimation of 

lithium-ion batteries since it copes with the slight 

nonlinearity of SOC-VSOC and requires less computational 

cost compared to other linear and nonlinear versions of the 

Kalman filter. This paper proposed a modification in the use 

of the EKF that exploits the PSO algorithm to optimize the 

vector of process noise covariance and avoid any estimation 

divergence that may occur due to accumulated errors during 

longtime operation. The performance of the proposed 

approach for SOC estimation is verified under different 

temperatures and compared to the LLKF approach. The 

simulation results have shown significant enhancement in 

state estimation compared to the LLKF, especially for large 

errors in the initial SOC. Concerning the degraded capacity 

estimation, the proposed approach has shown its 

effectiveness for different aging conditions. The proposed 

approach was also verified to be computationally efficient 

compared to the method that uses an additional Kalman filter 

for capacity estimation. 
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