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Featured Application: Spatial variability has always been a hot topic in soil science. Through
an example of calculation, we compare and analyse the results of four methods: classical statistics,
geostatistics, fractal and multifractal. Given this research scale, different methods have different
conclusions. Considering that classical statistics, geostatistics and the fractal method have different
disadvantages in application, we think that the multifractal method has broad prospects in the
quantitative evaluation of spatial variability.

Abstract: The spatial variability of soil properties has always been a significant research field in
geoscience. The types of soil properties cover a wide range, but most studies have focused on the
spatial variability of soil physicochemical properties over the past decades. Studies on soil hydraulic
characteristics are limited, and most of them are limited to the farmland scale. However, the spatial
variability of regional soil properties (soil texture and hydraulic properties) is valuable for the study
of sedimentation processes and soil water transport. Therefore, here, the spatial variation of six soil
properties (sand, silt, clay content, bulk density, saturated water content and saturated hydraulic
conductivity) in the typical alluvial plain area of the lower Yellow River is quantitatively studied,
by using classical statistics, geostatistics and single fractal and multifractal methods. This study
mainly quantitatively analysed the spatial variability of different soil properties and compared
four research methods. Although the coefficient of variation, nugget coefficient, single fractal
dimension and multifractal spectral width can reflect spatial variability, diverse conclusions are
drawn (on variability) if different methods are used, and the different soil properties show large
disparities. These four methods show a different variation order of soil properties, but there are some
common conclusions based on analysis and judgment. In general, the silt content in the study area is
stable, mainly originating from loess transported by Yellow River erosion, which is also reflected in
the Kriging interpolation maps under the geostatistical models. The variation in bulk density and
saturated water content is weak, and the spatial variability of sand and clay content is moderate.
In addition, the saturated hydraulic conductivity fluctuates violently. This may be related to the
differences in local topography, human activity and the content of sand and clay, each of which
significantly affects the saturated hydraulic conductivity. Classical statistics has a limitation because
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it fails to corelate with spatial location. Due to the small sample capacity and calculation error of lag
distance, the accuracy of geostatistics and single fractal dimensions needs to be improved. Multifractal
spectral analysis does not need to consider the normality of data and can quantitatively represent
local characteristics; therefore, its results have high reliability.

Keywords: Yellow River; alluvial plain; soil properties; spatial variation; multifractal; geostatistics

1. Introduction

The characteristics of soil particle distribution and hydraulic properties (hereafter “soil properties”)
are the basis for the study of soil moisture and solute transport [1]. However, due to soil heterogeneity,
soil properties vary spatially. The determination of distribution characteristics of the soil properties at
a certain scale is significant for reasonable sampling and parameter prediction.

Formerly, classical statistics and geostatistics were the main methods used to study spatial variation.
Geostatistics establishes the relationship between lag distance and variables through the semivariance
function, which is the main means of quantitative analysis of spatial variability and the basis of Kriging
interpolation. However, geostatistics is frequently limited by the sample capacity, distribution and
anisotropy, which always leads to errors in practical application. With the advancement of fractal theory,
the validity and potential of applying fractals to analyse soil spatial variability have been verified by
early research over the past decades; they are thus an important tool with which to quantify the spatial
variability and scale transformation of soil properties [2]. The combination of fractals and geostatistics
can realise the quantitative characterisation of soil property spatial variation [3]; that is, the fractal
dimension increases with the distribution uniformity. Researchers all over the world have calculated
the fractal dimension values of various soil properties and environmental variables of different
soil types. Among them, the representative studies include soil organic matter [4,5], total nitrogen [6],
pH value [7], iron manganese nodules [8], and so forth. Due to different soil types, research scales
and sample capacity, the fractal dimension values are also varied, but they are all in the range of
1.7~1.96. A single fractal dimension is simple and convenient, but it can only represent the holistic
spatial variability of soil properties [9]. With the development of multifractal theory, the multifractal
spectrum is used to quantitatively evaluate the spatial variability of soil properties. Multifractal
parameters can not only reflect the spatial variation of the soil properties, but also reveal the small-scale
or partial characteristics embedded in the holistic space [10]. Zeleke and Si [11], Caniego et al. [2],
Eghball et al. [12] and Liu et al. [13] have analysed the spatial variability of soil properties, such as
electrical conductivity, organic matter content, soil pH value, soil nitrate, soil water and salt, according
to multifractal theory and obtained good results.

In recent years, the aforementioned methods have been used to study the spatial variation of
soil properties such as soil particle distribution [14–16], bulk density [17,18], saturated hydraulic
conductivity [19–22] and unsaturated hydraulic conductivity [23,24], allowing researchers to make a
series of achievements. However, multifractal research is mostly limited to the farmland scale [13,25–28].
The study of multifractals when the scale increases gradually (with a sampling interval of approximately
several hundred metres) are rarely reported in the literature. In addition, there is a less joint application
of multiple methods and a lack of comparative study [29,30].

Yanlou township in Lankao county is in a former old channel of the Yellow River and the Yellow
River flood area. Owing to the frequent sedimentary processes and human activities, the soil structure
is complex and strongly changes spatially, which is typical of the alluvial plain area in the lower Yellow
River area. Therefore, this study focuses on Yanlou township and comprehensively analyses the spatial
variation characteristics of six soil properties in the research area by classical statistics, geostatistics
and single fractal and multifractal methods. Meanwhile, the causes of the spatial distribution of soil
properties were analysed according to the spatial variability. It is found that different research methods
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show different results and precision. We think that the multifractal method has advantages in the
quantitative evaluation of spatial variability. This research can provide a reference for the study of
spatial variation, whose scale extends from the field to the regional level.

2. Materials and Methods

2.1. Site Description

2.1.1. Geographical Location

This study was conducted in Yanlou township, Lankao county, Henan province
(114◦57′23” E~115◦00′02” E, 34◦54′27” N~34◦52′31” N), which is adjacent to the Yellow River in
the northeast and is part of the lower Yellow River alluvial plain. The Quaternary Holocene strata in
the study area are well-developed. Due to the repeated diversion and flooding of the Yellow River,
deposits repeatedly appear, forming a large-scale alluvial fan comprising mainly loess mixed with silty
fine sand and silty clay.

The study area was roughly square, with a side length of 4 km and a total area of 16 km2.
The terrain was relatively flat, with a maximum gradient of no more than 1.25% and a maximum
height difference of 6.9 m. Most of the research areas were farmlands and villages, and the planting
mode was winter wheat rotation with summer maize. The study area was divided into 64 grids with
a grid cell size of 500 × 500 m.

2.1.2. Sampling and Indoor Experiment

The centre point of each grid was the coordinate of the sampling point. After the grid of
the study area is surveyed and determined, a real-time kinematic (RTK) instrument is used to
determine the coordinates and elevation of each grid centre. The RTK precision of this instrument is
±(8 + 1 × 10−6

× D) mm (plane precision) and ±(15 + 1 × 10−6
×D) mm (elevation precision). To ensure

that the sampling point was in the grid and avoided houses and streets, the actual sampling point
deviated from the centre point (Figure 1). Soil samples were taken from 20–25 cm below the surface to
avoid wrapping plant roots.
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Several surface soil samples were taken by ring knives, and the samples were transported to
the laboratory for air drying. The division of soil particle size, the symbols and the test methods
of soil properties are shown in Table 1. The test methods in Table 1 are strictly in accordance with
the Standards for Geotechnical Testing Method (CN), GB/T50123-2019 [31]. Based on the test results,
the soil texture distribution of 64 samples is shown in Figure 1. The classification of soil texture refers
to the Code for Investigation of Geotechnical Engineering (CN), GB50021-2001 [32]. The coordinates of
sampling points and test results can be seen in Table S1.

Table 1. Test methods of soil properties.

Soil Property Symbol Particle Size Test Method

Sand \ 0.075~2mm Sieve analysis
Silt \ 0.005~0.075mm Densimeter method

Clay \ <0.005mm Densimeter method
Bulk density γ \ Ring knife method

Saturated water content θs \ Drying method
Saturated hydraulic

conductivity Ks \
Variable head test

method

2.1.3. Mesh Generation

To study spatial variation by multifractal theory, it is necessary to divide the grid into different
scales [13]. The study area was divided into three scales, corresponding to grids of 64, 16 and 4
(Figure 2). When the grid grew larger, the arithmetic mean value of the soil property index of the points
in the cell grid was taken as the soil property index of the large grid measuring points.
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2.2. Research Methods

2.2.1. Geostatistics and Fractal Method

Geostatistics is an effective method to study the spatial distribution structure characteristics
of regional variables. Its basic tool is a semivariate function that can be estimated by the following
formula [33]:

γ(h) =
1

2N(h)

N(h)∑
i=1

[Z(xi) −Z(xi + h)]2 (1)

where γ(h) is the variation function, Z(x) is the value of the regionalised variable at sampling point
x, N(h) is the number of pairs with interval h and h is the interval, which is called the lag distance.
Variograms can reflect and describe many properties of regionalised variables, and it is an important
tool to analyse their spatial variation.

The fractal dimension, D, is a measure of complexity. Due to the complexity of soil structure
and the local micro differences of internal soil factors, the soil property parameters are irregular and
random, like random fractional Brownian motion [34]. The semivariate function in one dimension is:
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2γ(h) = E
{
[Z(x) −Z(x + h)]2

}
= h2H (2)

where Z(x) and Z(x + h) are the measured values at x and x + h, respectively; h is the interval (lag);
and H is the power index.

For Brownian motion, the power index H is 0.5, while for the variation in soil properties, the H
value ranges from 0 to 1.0. With the increase in H, the variation in soil properties gradually weaken.
The fractal dimensions of these Brownian motions are given by the formula D = 2 − H.

γ(h) and h are drawn in double logarithmic space according to Formula (2). The fractal dimension
D is calculated from the slope m of the regression line.

D = (4 − m)/2 (3)

The fractal dimension, D, represents the structure between samples. The smaller the value of D,
the greater the difference in soil properties between samples; that is, the worse the degree of uniformity;
on the contrary, the larger the value of D, the smaller the difference in soil properties between samples,
and the better the degree of uniformity.

2.2.2. Multifractal Method

To further understand the role of local conditions in the formation of fractal bodies, researchers
have proposed the multifractal theory that mainly discusses the probability distribution of a certain
parameter. For the multifractal method, previous studies include Renyi [35] and Chhabra and Jensen [36].
The following is the calculation formula of multifractal parameters:

µi(ε) =
Mi(ε)

N(ε)∑
i=1

Mi(ε)

(4)


D(q) = lim

ε→0
1

q−1

lg

N(ε)∑
i=1

µi(ε)
q


lgε (q , 1)

D(q) = lim
ε→0

N(ε)∑
i=1

µi(ε)lgµi(ε)

lgε (q = 1)

(5)

where µi(ε) is the mass probability, Mi(ε) is the variable, ε is the scale, N(ε) is the number of variables
under the scale, D(q) is the generalized fractal dimension and q is the order of statistical moment.

µi(q, ε) =
µi(ε)

q

N(ε)∑
i=1

µi(ε)
q

(6)


α(q) = lim

ε→0

N(ε)∑
i=1

µi(q,ε)lgµi(ε)

lgε

f [α(q)] = lim
ε→0

N(ε)∑
i=1

µi(q,ε)lgµi(q,ε)

lgε

(7)

where µi(q, ε) is the q-order mass probability, α(q) is the singularity index and f (α) is the
singularity spectrum.
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q–D(q) and α–f (α) are two sets of parameters for describing multifractals. In practical application,
we often use the partition function method and Legendre transformation [37] to establish the relationship
between two sets of parameters:

χq(ε) =

N(ε)∑
i=1

[µi(ε)]
q
∝ ετ(q) (8)

where χq(ε) is the partition function and τ(q) is the q-order mass index.
The quality index corresponding to each q value can be obtained by calculating the slope of the

fitting line between log(ε) and log[χq(ε)] by the least-squares method. Additionally, D(q) and τ(q) have
the following relationship:

D(q) = τ(q)/q − 1 q , 1) (9)

The relationship between α(q) and f [α(q)] and τ(q) is as follows:

α(q) = dτ(q)/dq (10)

f [α(q)] = qα(q) − τ(q) (11)

The value of q can range from negative to positive infinity. When q > 0 and D(q) decreases with
q, the variable has multifractal characteristics [12]. When q >> 1, the large part of χq(ε) is dominant,
while when q << −1, the small part of χq(ε) is dominant. The higher-order statistical moments can
extract extreme values and enlarge their contribution. The relationship between α and f (α) can be
used to analyse the local characteristics of multiple fractal bodies. The value of ∆α reflects the overall
heterogeneity of variable distribution; the larger the value of ∆α, the greater the variability of the
variable distribution. The asymmetry of the α-f (α) curve reflects the dominant power of the uneven
variable distribution. If the curve is shaped like a “left hook”, the spatial variation of the variable is
dominated by smaller values; on the contrary, if the curve is shaped like a “right hook”, it is dominated
by the larger values.

3. Results

3.1. Classical Statistical Features

Classical statistics can directly reflect the volatility of variables. In general, the coefficient
of variation (Cv) (Cv = standard deviation/mean) is used to measure the degree of variation.
When 0 ≤ Cv ≤ 30%, it can be called weak variation; 30% < Cv ≤ 100% can be called medium
variation; and Cv > 100% can be called strong variation. It can be seen from Table 2 that the content of
silt, bulk density and saturated water content have weak variation; clay content has medium variation;
and sand content and saturated hydraulic conductivity have strong variation. However, classical
statistics cannot establish the relationship between variables and spatial location; therefore, geostatistics
and the fractal dimension are used for further analysis.

Table 2. Basic statistical characteristic values of soil properties.

Soil Property Minimum Maximum Mean Standard Deviation Cv (%)

Sand (%) 0.10 66.70 7.05 10.54 149.58
Silt (%) 33.20 95.70 81.42 10.50 12.89

Clay (%) 0.10 42.90 11.40 9.16 80.32
γ 1 (N·m−3) 12,055.20 16,056.00 14,049.35 948.95 6.75

θs
2 (cm3

·cm−3) 34.47 53.24 42.53 4.00 9.41
Ks

3 (10−4cm·s−1) 0.01 28.31 4.70 5.76 122.63
1 γ—Bulk density; 2 θs—Saturated water content; 3 Ks—Saturated hydraulic conductivity; Cv—coefficient
of variation.
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3.2. Geostatistical Analysis

According to the Kolmogorov—Simirnov normal distribution test, the indexes of sand content,
clay content and saturated hydraulic conductivity in the study area do not conform to the normal
distribution, but all the six indexes follow a lognormal distribution (Table S2). To facilitate
comparison, all six indexes were transformed into logarithms, which were imported into the software
GS+9.0 for geostatistical analysis. GS9.0+ software allocates point pairs by establishing the lag
class. When the active lag distance and lag distance interval were determined, the number of pairs
was equal to the number of lag classes. Generally, the active lag distance was 80% of the maximum
interval distance, 3120.86 m. Considering the distribution of sampling points, the minimum interval of
361.31 m was taken as the lag interval, and uniform distribution was selected for lag class. According
to the parameter setting, there were eight pairs of points in this study. The results of isotropic analysis
are shown in Table 3.

Table 3. Logarithmic variogram model of soil properties in the study area.

Soil Property
Geostatistical Analysis (Isotropy)

Model C0
1 C0 + C 2 C0/C0 + C 3 Range(m) R2

Sand Gaussian 0.24450 0.49500 0.494 4094.57 0.886
Silt Exponential 0.00001 0.00401 0.002 1119.00 0.713

Clay Gaussian 0.10870 0.24340 0.447 5097.43 0.969
γ Gaussian 0.00045 0.00095 0.468 1913.92 0.759
θs Linear 0.00119 0.00185 0.402 3051.46 0.661
Ks Spherical 0.27110 0.54320 0.499 2173.00 0.504
1 C0—Nugget; 2 C0+C—Sill; 3 C0/C0 + C—Nugget coefficient; R2—Determination coefficient.

The nugget is caused by random factors such as sample experimental error [38], which reflects the
variation of regional variables on a small sampling scale; the sill is the half square difference of the
variation function when the variable is stationary, which is the overall characteristic of the variable.
The larger the sill, the stronger the spatial heterogeneity; the smaller the nugget coefficient, the stronger
the spatial autocorrelation of the system; otherwise, the change between samples is closely related to
random factors. The range reflects the maximum autocorrelation distance of the variable.

Table 3 reveals that there are four kinds of statistical models for the six soil properties: Gaussian,
exponential, linear and spherical. The small nugget coefficient of the silt content indicates that the silt
content in the study area has a strong spatial autocorrelation. Additionally, its range is the smallest,
which shows that the scale range of its spatial continuity is the smallest [18]. The nugget coefficients of
the other five soil properties were between 0.4 and 0.5, which can be considered to have moderate
spatial autocorrelation. The order from the largest to the smallest is: Ks > sand > γ > clay > θs.
The range values of the other five soil properties range from 1913.92 m to 5097.43 m. The sequence of
the range values from the largest to the smallest is: clay > sand > θs > Ks > γ.

Based on the model fitted in Table 3, simple Kriging interpolation maps of soil properties
(logarithm) were drawn (Figure 3), which can directly reflect the spatial distribution of soil properties.
The spatial distribution of the six soil properties is varied, and there is no obvious regularity in the
spatial distribution of bulk density, saturated water content and saturated hydraulic conductivity.
However, two conclusions can be drawn from Figure 3: One is that the sand content gradually increases
from north to south, while the clay content shows the opposite. Secondly, the colour of the silt content
changes slightly, which is consistent with the extremely weak nugget coefficient of silt content, although
in classical statistics, the coefficient of variation of silt content is not the lowest.
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3.3. Single Fractals

The “Fractal” module (isotropy) in GS+9.0, with the same geostatistical parameter settings as
the previous section, was used to calculate the fractal dimension, D, and determination coefficient,
R2, of six soil properties in the study area (Table 4).
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Table 4. Fractal dimension values of soil properties (isotropy).

Sand Silt Clay γ θs Ks

D R2 D R2 D R2 D R2 D R2 D R2

1.832 0.817 1.932 0.590 1.786 0.972 1.838 0.767 1.899 0.572 1.944 0.478

According to Table 4, the fractal dimension order D is: Ks > silt > θs > γ > sand > clay. The fractal
dimension, D, is different from the coefficient of variation, indicating that it is related to the spatial
position. However, the determination coefficients of silt content, saturated water content and saturated
hydraulic conductivity are less than 0.6, which led to the low accuracy.

3.4. Multifractal Analysis

To determine whether the six soil properties indexes in the study area have multifractal
characteristics, it was necessary to construct a q–D(q) curve for analysis (Figure 4). After debugging,
q was set to −1.4 < q < 1.4, and the step size was set to 0.2. The calculation results of the multifractal
parameters can be seen in Table S3.
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It can be seen from Figure 4 that the D(q) of the six soil properties in the study area gradually
decreases with q, and it can be determined that the six soil properties have roughly multifractal
characteristics. However, the variation in D(q), that is, the generalised fractal dimension of the six soil
properties, is different. The order of ∆D(q) is sand > Ks > clay > silt > θs > γ, which is consistent with
the variation coefficient. Further analysis of the multifractal characteristics requires the multifractal
spectrum, represented by the α–f (α) curve (Figure 5).
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The shape of the multifractal spectrum curve can reflect the spatial distribution characteristics of
the soil properties [25]. The spectral width, ∆α, of the multifractal spectrum can reflect the heterogeneity
of variables (Table 5). The magnitude order of ∆α of the six soil properties in the study area is Ks > clay >

sand > silt > θs > γ. The research results of ∆α, the variation coefficient and the single fractal dimension
are not consistent and show that the principles of the multifractal method and geostatistics are different.
The symmetry of the multifractal spectrum curve can reflect the distribution dominance of variables.
According to Figure 5, the multifractal spectrum of sand, silt, clay content and saturated hydraulic
conductivity is obviously “left hook”. In the process of reducing the sampling scale of these four soil
properties, the large data set tends to stabilise gradually, so the spatial variation is mainly dominated
by the small value data. When |q| is small, the symmetry of the multifractal spectrum curve of bulk
density and saturated water content is weak, so it is necessary to define ∆f [∆f = f (αmin) − f (αmax)]
to determine its symmetry. The results show that the multifractal spectrum is “right hook” and the
variability is dominated by large-value data (Table 5).



Appl. Sci. 2020, 10, 5796 12 of 15

Table 5. Multifractal spectral parameters of soil properties in the study area.

Soil Properties αmin
1 f (αmin) 2 αmax

3 f (αmax) 4 ∆α 5 ∆f 6

Sand 1.4385 1.3878 3.9716 1.1239 2.5331 0.2639
Silt 1.9888 1.9878 2.0410 1.9745 0.0522 0.0133

Clay 1.7514 1.7318 4.6308 0.0439 2.8749 1.6879
γ 1.9973 1.9970 2.0053 1.9974 0.0080 −0.0004
θs 1.9956 1.9951 2.0086 1.9958 0.0130 −0.0007
Ks 1.4648 1.4271 5.7296 0.0438 4.2648 1.3833

1 αmin—minimum value of α; 2 f (αmin)—value of f (α), when α= αmin. 3 αmax—maximum value of α; 4 f (αmax)—value
of f (α), when α = αmax. 5 ∆α = αmax − αmin; 6 ∆f = f (αmin) − f (αmax).

4. Discussion

4.1. Influencing Factors of Variability

Geostatistics shows that the distribution of silt content is stable, but the fluctuation of sand and
clay content is obvious. From the perspective of structural factors, the study area is in the historical
Yellow River floodplain. Its soil parent material mainly comes from fourth-century Holocene alluvial
deposits, predominantly composed of silty sand. However, as the Yellow River flows through the study
area, the local topographical differences result in different sedimentary separation. From the point of
view of random factors, the content of clay in soil may be affected by human factors, such as farming
and engineering construction, which cause variation in soil structural components.

The spatial variability of six surface soil properties in the study area is quite different,
which indicates that soil properties show different development trends under the sampling interval.
The soil particle distribution (sand, silt and clay content) and bulk density, as the basic physical properties
of soil, largely determine the hydraulic properties of soil. The saturated hydraulic conductivity fluctuates
as sharply as the content of sand and clay, which also reflects the strong effect of sand and clay on
the saturated hydraulic conductivity. The variation in bulk density and saturated water content is
small, and its multifractal characteristics are also weak. This is consistent with the results of Zeleke
and Si [39], Guo et al. [20] and Guan et al. [25].

4.2. Comparison of Research Methods

Classical statistics can directly reflect the degree of variation of six soil properties, but it has
significant limitations in analysing spatial variation. The spatial position and local characteristics
of variable distribution are not considered in classical statistics, which leads to the inconsistency
between the research results of the variation coefficient and geostatistics, and single and multifractal
analyses. Geostatistics establishes the relationship between variable variance and lag distance,
which is a powerful tool for analysing spatial autocorrelation and interpolation. The fractal dimension,
D, is another important parameter in geostatistical analysis, which can quantitatively describe the
exponential relationship between γ(h) and h. However, geostatistics has a large error due to the
small sample capacity and lag distance calculation. For example, the geostatistical model of saturated
hydraulic conductivity and the determination coefficient of the fractal value fitting line are small in this
study, which led to the insufficient accuracy of the geostatistical analysis. Furthermore, the multifractal
analysis considers spatial variation from another perspective, i.e., the geological process of multiple
activities often produces self-similar fields, which refer to the geometric similarity maintained by the site
when changing the measurement scale [40]. It establishes the relationship between the distribution of
variables and the scale ε (sampling interval). It does not need the data to satisfy the normal distribution,
which is a significant advantage of the multifractal analysis of spatial variation. Compared with the
single fractal method, the multifractal spectrum parameters can quantitatively represent the degree of
variation and help to screen the extreme value spatial distribution, which is an important indicator for
local features in the region.
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5. Conclusions

1. The results of classical statistics show that the silt content, bulk density and saturated water
content in the study area have weak variation; the clay content has medium variation; and the
sand content and saturated hydraulic conductivity have strong variation. The variability of the
six soil properties is quite different. The order of variability is sand > Ks > clay > silt > θs > γ,
and the variation coefficient is consistent with the result of the generalised fractal dimension,
∆D(q) (q > 0).

2. The geostatistical results (isotropy) after logarithmic transformation show that the nugget
coefficient of the silt content in the study area is 0.002, so the silt content has a strong spatial
autocorrelation. Its range is also the smallest, which indicates that the scale range of its spatial
continuity is the smallest. The nugget coefficients of the other five kinds of soil properties are
all between 0.4 and 0.5, which can be considered moderate spatial autocorrelation. The nugget
coefficient can also reflect the spatial variability of soil properties to some degree, and the order
from the largest to the smallest is Ks > sand > γ > clay > θs > silt.

3. The single fractal (isotropy) shows that the relationship of the fractal dimension, D, is Ks > silt >θs

> γ > sand > clay. According to the meaning of D, the larger the fractal dimension value,
the smaller the variability, which shows that the variables after considering the spatial position
factor (lag distance) have different statistical characteristics from the variables themselves.
The fractal dimension, D, can be used as a simple and direct parameter to measure the relationship
between the lag and variogram. However, due to the small sample capacity and lag distance
calculation, the low accuracy leads to substantial limitations in practical application.

4. The six soil properties in the study area have multifractal characteristics to different degrees.
According to the multifractal spectrum curve, the relationship between the spectrum width,
∆α, and the soil properties shows that different soil properties have different variability.
The relationship order of ∆α is Ks > clay > sand > silt > θs > γ. The symmetry of the multifractal
spectrum curve can reflect the distribution dominance of variables. The content of sand, silt, clay
and saturated hydraulic conductivity are obviously “left hook”, and the spatial variation is mainly
dominated by small-value data. ∆f values of bulk density and saturated water content are less
than zero, which shows that the multifractal spectrum is “right hook”, and its variability is mainly
dominated by large-value data. The multifractal method does not need to consider the normality
of the data. It has higher accuracy than geostatistics and single fractal analysis and has obvious
advantages in the quantitative characterisation of local characteristics and extreme values.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/17/5796/s1,
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