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Abstract: Wireless sensors are becoming essential in machine-type communications and Internet of
Things. As the key performance metrics, the spectral efficiency as well as the energy efficiency have
been considered while determining the effectiveness of sensor networks. In this paper, we present
several power-splitting solutions to maximize the average harvested energy under a rate constraint
when both the information and power are transmitted through the same wireless channel to a sensor
(i.e., a receiver). More specifically, we first designed the optimal dynamic power-splitting policy,
which decides the optimal fractional power of the received signal used for energy harvesting at the
receiver. As effective solutions, we proposed two types of single-threshold-based power-splitting
policies, namely, Policies I and II, which decide to switch between energy harvesting and information
decoding by comparing the received signal power with some given thresholds. Additionally,
we performed asymptotic analysis for a large number of packets along with practical statistics-based
policies. Consequently, we demonstrated the effectiveness of the proposed power-splitting solutions
in terms of the rate–energy trade-off.

Keywords: energy efficiency; energy harvesting; information decoding; power-splitting; optimal policy

1. Introduction

Wireless sensors are becoming crucial in realizing machine-type communications and Internet
of Things (IoT). Such wireless sensors are expected to be energy-efficient to ensure a sufficiently
long lifetime of devices. Sensors can harvest the ambient energy and judiciously optimize the usage
of the harvested energy subjected to energy causality constraints (see in [1–4] and the references
therein); this can help in further improving the energy efficiency in devices without replacing
the batteries. Subsequent to this significant achievement related to energy harvesting (EH) in
wireless communication systems, more recent works studied the use of beamforming techniques
for multiple-input multiple-output (MIMO) systems to supply the harvested energy. This type of
energy beamforming can be simultaneously adopted with well-studied information beamforming
for wireless communications because the same wireless channel can be exploited for both EH and
information decoding (ID) [5]. However, the concurrent realization of EH and ID encounters a practical
challenge. This is because any electrical signal used to detect whether a modulated signal represents
a binary value of either zero or one for ID should have some (or all) of its current diverted from being
used for EH. To solve this practical issue, various attempts have been made in the literature [6–17] for
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multiplexing the two signals for EH and ID over the time domain via time sharing, frequency domain
via frequency division, or power domain via power-splitting.

Studies on simultaneous ID and EH have indeed received a great deal of attention. A trade-off
between the information rate and energy, namely, a rate–energy (R–E) trade-off, was investigated
in [5] for the case where a transmitter broadcasts the information and power simultaneously, and two
receivers perform ID and EH. In [6], two practical receiver architectures for simultaneous ID and EH,
referred to as separate and integrated receiver architectures, were designed, and the achievable R–E
trade-off was studied. Additionally, the separate receiver architecture was applied to various wireless
communication systems, such as ultra-wideband systems [8], cooperative relaying systems [9–14],
heterogeneous cellular network systems [15], and single- and multi-antenna systems in point-to-point
communications [16,17]. In [12,13], several EH schemes were suggested to support device-to-device
transmission in cooperative non-orthogonal multiple access systems and examined the outage
performance of each scheme. To enhance the performance of cooperative relay systems, multiple power
beacons were used to serve devices far away from the base station [14]. Moreover, the EH technique
was used in heterogeneous cellular networks where small-cell base station transfers an energy-bearing
signal to users in downlink phases [15]. More specifically, the fundamental R–E trade-off was examined
for multiple access and multi-hop channels in [9]. A greedy switching policy operating either on ID
or EH [10] was presented for an amplify-and-forward relaying system. Dynamic time sharing (DTS)
based on instantaneous channel gain and interference power, which enabled the receiver to perform ID
or EH over different symbols, was performed in [16] by exploiting interference signals as the EH source.
It should be noted that when the full channel state information (CSI) is available at the transmitter,
power control and scheduling can be performed at the transmitter. However, the implementation
of DTS involves practical challenges: (1) DTS requires accurate symbol-level synchronization and
(2) it consumes the overhead in switching time. In another point of view, several dynamic power
splitting (DPS) policies were discussed in [17–19]. In [17], an optimal DPS scheme, which has two
different paths for ID and EH, was presented to determine the power ratio of the split paths using full
CSI information. Because the power splitting scheme is not a time-based architecture, it can avoid
some of the aforementioned practical issues encountered by DTS. Additionally, it is known that DPS
usually outperforms the DTS scheme in terms of R–E trade-off [17]. Furthermore, another practical
issue in simultaneous wireless information and power transfer (SWIPT)-based wireless sensors can
be attributed to the low computational capability of devices. Several IoT devices, except high-end
devices, have poor computational capabilities owing to limited resources [20]. Unfortunately, numerous
decision processes are required to implement the optimal strategies in DTS or DPS using full CSI
information. Such a burden on low-end IoT devices leads to time delay in the decision-making
strategies, thereby directly causing performance degradation.

Many studies have attempted to adopt SWIPT in each antenna configuration. Investigations on the
R–E trade-off in SWIPT were generally described in single-input single-output (SISO) systems [6,16].
Addition to the SISO systems, the R-E region with single-input multiple-output (SIMO) and MIMO
systems was also studied in [21,22]. The R-E region considering multi-user interference was analyzed
in [23]. Considering the aspects of a multi-user interference channel, the authors of [24] studied the
case where a SIMO system was applied. Similar work on multiple-input single-output (MISO) systems
was suggested in [25]. Several studies proposed SWIPT transceiver design for multi-user interference
scenarios in MIMO systems [26–28]. For the secrecy problems, the authors of [29,30] evaluated the
secrecy rates in SIMO, and the works in [31,32] also examined it in MISO systems. Other advanced
works examined the beamforming techniques in several MISO [33–35] and MIMO systems [36–38].

In this paper, we present several power-splitting solutions for a sensor network scenario
where the information and power are transmitted through the same wireless channel to a sensor
(i.e., a receiver end). Accordingly, we first formulated a constrained optimization problem to maximize
the average harvested energy under a minimum average rate constraint. (In a preliminary version [39]
of this work, we defined the same problem and proposed its solutions. This study subsumes the work
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in [39] while making new non-trivial contributions analytically and numerically.) To optimally solve
the problem, we designed the optimal DPS policy, which decides the optimal fractional power of the
received signal used for EH and the remaining fraction used for ID under the assumption that full CSI
is available. Our DPS solution indicates that if the target rate R increases, the receiver makes suitable
adjustment by increasing the fractional power used for ID, implying that the remaining fraction used
for EH is decreased accordingly. In addition, the practical challenge encountered by the optimal
DPS solution in terms of realization motivates us to present simple threshold-based power-splitting
(TPS) policies for each implementation. Specifically, under the same objective function as that of the
DPS case, we restricted the DPS variables to be binary, i.e., they takes two options either ID or EH.
We then determined an asymptotically optimal solution to the TPS problem for a large number of
packets when only the causal CSI is available by proposing two classes of single-threshold TPS policies,
namely, Policies I and II. Furthermore, to alleviate the impractical channel conditions, we introduced
statistics-based policies to ensure that our EH–ID receiver operates based on the statistics of channel
gains without instantaneous CSI. Through numerical evaluation, we demonstrated the effectiveness
of our power-splitting policies by empirically characterizing a fundamental trade-off between the
information rate and harvested energy. Our numerical findings elucidate that (i) the optimal DPS policy
is always dominant in terms of the R–E trade-off for all simulation settings, such as the distribution
types of the channel gain, and (ii) the performance of the TPS policy with the optimal threshold
is consistently superior to that of another TPS policy with the threshold designed according to the
channel gain statistics. Our methodology explains how an EH–ID receiver can be effectively designed
for ease of implementation while guaranteeing the (asymptotic) optimality of the performance.

The remainder of this paper is organized as follows. In Section 2, the system and signal models
are described. The optimal DPS solution and several TPS policies are presented in Sections 3 and 4,
respectively. Numerical results are discussed in Section 5. Finally, we summarize the paper with
concluding remarks in Section 6.

2. System and Signal Models

We consider a slotted wireless communication system consisting of a single-antenna transmitter
(e.g., an access point), which transmits both the data and energy, and a single-antenna receiver
(e.g., a sensor) for EH and ID, as shown in Figure 1. Transmissions take place over N slots, where,
in each time slot, a packet of L symbols is transmitted. The baseband received signal for the lth transmit
symbol in the nth packet is given by

y[n, l] = h[n]
√

Px[n, l] + v[n, l] (1)

for l = 1, · · · , L and n = 1, · · · , N. Here, h[n] is a complex-valued channel coefficient for the nth packet
that remains invariant in each packet but can change over packets; P > 0 is the fixed average transmit
power over all packets; v[n, l] is an additive white Gaussian noise with zero mean and variance, i.e.,
v[n, l] ∼ CN (0, σ2

v ), ∀n; x[n, l] is the transmitted symbol that is independent over n and l, and conforms
to the Gaussian distribution to maximize the mutual information, i.e., x[n, l] ∼ CN (0, 1), ∀n, and ∀l.

N packets

ID
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bits

Watt

switch

policy

}1,0{)( =
n
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PÎ)(
n
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v

Figure 1. Energy harvesting (EH) and information decoding (ID) receiver structure with
a threshold-based controller and packet-by-packet switch.
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We denote the received signal power for each symbol in the nth packet by the energy detector as

gn = P |h[n]|2 . (2)

If the receiver performs ID with the full knowledge of the channels, then it can achieve the information
rate expressed as the mutual information [40]

I(gn) = log
(

1 +
gn

σ2
v

)
b/s/Hz, (3)

where the logarithm takes the base of two, unless otherwise specified. If the receiver performs EH,
it can obtain the power given by [6]

en = ηgn J/s, (4)

where 0 < η ≤ 1 is the energy conversion efficiency when converting the wireless power to the
harvested energy that is stored in energy storage devices such as a battery or supercapacitor. Typically,
it follows that 0 < η � 1 owing to the dissipation of energy in the form of heat. The receiver performs
either ID or EH based on the policy u(gn), which will be rigorously discussed throughout this study.

3. Optimal DPS Solution

In this section, we introduce the optimal solution to the problem of maximizing the average
harvested energy, E, subject to a minimum average achievable rate, R, for reliably decoding the data.
Accordingly, we first assume that full CSI is available, i.e., the received signal power, gn, n = 1, · · · , N,
is available as input in the optimization problem, where n denotes the packet index; this is also referred
to as the offline approach. We shall later assume that only causal CSI is available; this is referred to as
the online approach.

First, we tackle a general DPS problem. In DPS, the variables to be optimized are the power
splitting variables 0 ≤ sn ≤ 1, ∀n ∈ {1, · · · , N}. The variable sn denotes the fractional power of the
received signal used for EH, while the remaining (1− sn) fraction is used for ID. Thus, under the full
CSI assumption, our DPS problem can be formulated as

max
{0≤sn≤1}

E ,
1
N

N

∑
n=1

ηgnsn (5)

s.t.
1
N

N

∑
n=1

I(gn(1− sn)) ≥ R. (6)

where R is the target rate. Throughout this study, we assumed that a rateless code [41] was employed
in each packet and the receiver could accumulate the mutual information by performing joint decoding
over the received packets. We denote the optimal DPS solution as {s∗n} and the maximum average
harvested energy as E∗DPS. The optimal DPS solution is essentially derived from [17] and is stated in
the following theorem.

Theorem 1. Suppose that full CSI is available. Then, for R > 0, the solution to the DPS problem in (5) and (6)
is given by

s∗n =

{
1− τ

gn
, if gn ≥ τ

0, if gn < τ,
(7)

where τ , λ
η ln 2 − σ2

v > 0 and λ is a Lagrangian multiplier that satisfies λ > σ2
v η ln 2.
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Proof. The DPS problem is a convex optimization problem. By solving the dual problem along with the
Karush–Kuhn–Tucker conditions, (7) can be obtained. The detailed proof is provided in Appendix A
for completeness.

Based on Theorem 1, the following insightful observations were made according to the received
signal power, gn.

Remark 1. The constant τ acts as a threshold that determines the characteristics of the DPS solution.
More specifically, the receiver performs ID (i.e., s∗n = 0) if the channel gain is too small, i.e., if gn < τ.
In contrast, the receiver performs a non-trivial DPS for EH and ID (i.e., 0 < s∗n < 1), i.e., gn ≥ τ, owing to
λ > σ2

v η ln 2. Thus, the optimal DPS solution never harvests all energy in any one slot irrespective of the value
of gn.

The solution in (7) can be interpreted as follows. If the target rate, R, increases, then s∗n needs to
decrease for some n to satisfy (6); in turn, λ increases, and consequently, s∗n in (7) decreases for all n.
In other words, if R increases, then the receiver makes adjustments by increasing the fractional power
used for ID and decreasing the remaining fraction used for EH. The power ratio for ID decreases if the
channel gain, gn, is high because the high channel gain is sufficient for achieving the target rate R with
a small amount of the received power; meanwhile, the power ratio for EH increases as the remaining
signal is used for EH. When there are no feasible solutions for {sn}, i.e., 1

N ∑N
n=1 I(gn) < R, ID is not

performed at the receiver.
By observing (7) and (6), we establish the following corollary.

Corollary 1. If R = 0, then the receiver only performs EH, i.e., s∗n = 1, ∀n. In contrast, if R > 0, then the
receiver performs a mixture of EH and ID. Especially, the nth packet with its channel gain, gn < λ−1

η ln 2 , τ,
is used only for ID, while the n′th packet with its channel gain, gn′ ≥ τ, is used for both EH and ID.

Proof. Refer to Appendix B for the proof.

Moreover, we discuss some practical situations related to the optimal power splitting as follows.

Remark 2. As illustrated in Figure 2 as a motivating example, the optimal power splitting in (7) involves the
following three practical issues:

• All N packets and their channels should be stored in a controller/buffer to determine the power splitting
ratio {sn}. Note that τ is a function of λ, which is a function of all gn.

• Power splitting for each packet requires a high-speed and highly accurate power splitter.
• Computing λ may cause a significant delay and requires high computational complexity.

n
gn

0

1

1 2 3 ... ...

ID: {1-sn*}

EH: {sn*}

N
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o
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Figure 2. Illustration of optimal power splitting ratios, s∗n and (1− s∗n), for EH and ID, respectively,
over N packets.

Although the optimal power splitting in (7) has a practical challenge in terms of realization,
it informs us of providing a performance bound, and furthermore allows us to obtain insights on the
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structure of the policy based on a threshold. In the next section, we present simple TPS policies for
ease of implementation.

4. Optimal TPS Solutions

In this section, to ensure that EH can be easily implemented in practice, we present several
TPS policies. We also present asymptotically optimal TPS solutions for a large number of packets, N.

4.1. Problem Formulation

We propose an adaptive form of power splitting. To further simplify the implementation, we focus
on power switching that only depends on the current channel gain instead of the current packet index.
This allows the TPS solution to be stored as a policy with a smaller storage size.

Specifically, in our TPS problem, the objective function and constraint are essentially the same
as those in the DPS problem, but we restrict the DPS variables to be binary that accept the values of
0 (for ID only) or 1 (for EH only). To distinguish from the real-valued DPS variables {sn}, we refer
to the new binary variables as TPS variables, denoted as {un}. To reduce the storage of the solution,
leading to easier implementation, we design the TPS variables, un, such that they only depend on the
channel gain, i.e., un = u(gn), where u(·) ∈ Π is a function or policy and Π is the feasible policy space
consisting of all possible functions that take a positive value as input and return a binary value as
output. Then, the TPS problem aims to find the optimal policy u(g): (To simplify the notations, gn will
be written as g if dropping n does not cause any confusion.)

max
u(g)∈Π

E ,
1
N

N

∑
n=1

ηgnu(gn) (8)

s.t.
1
N

N

∑
n=1

I(gn(1− u(gn))) ≥ R. (9)

We denote the optimal TPS policy as u∗(g) and the maximum average harvested energy as E∗TPS.
Note that E∗TPS ≤ E∗DPS because any feasible TPS solution is a feasible DPS solution but the converse is
not necessarily true.

Before investigating the optimal policy for the TPS problem, we provide an intuitive discussion
on the possible relationship between the optimal DPS and TPS solutions. From Remark 1, s∗n does not
take the value of 1. Thus, it is not immediately clear how the optimal DPS solution, {s∗n}, translates to
the optimal TPS policy, u∗(g). A reasonable conjecture can be derived considering that u∗(g) = 0 for
small g to be consistent with (7). However, this conjecture is not true in general. In other words, it is
possible that u∗(g) = 0 for some large g, while u∗(g) = 1 for some small g. For the DPS solution,
there exists a single threshold for g that determines whether u∗(g) = 0 or u∗(g) = 1. It is, however,
intuitively unclear whether there may exist a single or multiple thresholds for the TPS policy.

4.2. Class of TPS Policies

We note that the TPS problem is an integer program that, in general, is difficult to solve exactly.
In this section, we aim to find an asymptotically optimal solution for the TPS problem for large N
under any given channel condition. We shall see that the optimal solution is well structured and
provides insights on solving the offline problem where only the causal CSI is available.

Without loss of generality, by taking the value of 1 in set S and 0 in set T , we can express the TPS
policy as follows.

u(gn) =

{
1 (EH), if gn ∈ S
0 (ID), if gn ∈ T .

(10)

Note that sets S and T are possibly non-contiguous. This implies that the TPS policy has M-pair
thresholds if S and T can be expressed as at least M and M + 1 contiguous regions, i.e., S =

⋃M
m=1 Sm
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and T =
⋃M

m=0 Tm, where Sm and Tm are the contiguous sets for all m. Specifically, as depicted in
Figure 3, we have

Sm , {g : αm ≤ g < βm} (11)

Tm , {g : βm ≤ g < αm+1} (12)

such that β0 ≤ α1 < β1 < α2 < β2 < · · · < βM ≤ αM+1, with β0 = 0 and αM+1 = ∞. Thus, the policy
u(g) ∈ Π can be uniquely determined by the M-pair variables {αm, βm} for m = 1, . . . , M. Our policy
is said to have a single threshold if M = 1 and α1 = 0 or β1 = ∞.

0

T

1

T

M

T

1

S

2

S

M

S

0

0

=β
1

β
2

β
M

β
1

α
2

α
M

α ∞=+1M

α

Figure 3. Illustration of two sets S =
⋃M

m=1 Sm and T =
⋃M

m=0 Tm for the TPS policy with
M-pair thresholds.

4.3. Two Single-Threshold Policies

Before stating our new analytical finding, we characterized two important classes of
single-threshold TPS policies as follows,

Policy I: u1(gn) =

{
1 (EH), if gn ≥ γ1

0 (ID), if gn < γ1
(13)

Policy II: u2(gn) =

{
0 (ID), if gn > γ2

1 (EH), if gn ≤ γ2,
(14)

which are illustrated in Figure 4.
It should be noted that Policies I and II are realized with {α1, β1} = {γ1, ∞} and

{α1, β1} = {0, γ2}, respectively. Let us denote the maximum harvested energy achieved in the TPS
problem, where we restrict to Policies I and II, as E1 and E2, respectively. Then, for each policy,
there exists only one parameter given by threshold γi for i ∈ {1, 2}. Therefore, Ei can be easily
obtained by setting the constraint (9) to the equality and solving for γi accordingly because Ei can be
further increased otherwise.

n
gn

0

1

N1 2 3 ... ...
g

EH (Policy I)

/ID (Policy II)

ID (Policy I)

/EH (Policy II)

P
o
w
e
r
s
p
lit
ti
n
g
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ti
o

Figure 4. Illustration of threshold-based power-splitting (TPS) policies I and II.

4.4. Asymptotic Analysis

In this subsection, we present the asymptotic analysis built upon the analytical findings of our
previous work [39]. More specifically, we show that the optimality of Policy I is valid for a large
number of packets, N. We proceed with providing a sufficient condition for the asymptotic optimality
of Policy I as follows.



Entropy 2020, 22, 1341 8 of 16

Theorem 2. For any channel gain, {gn}, Policy I solves the TPS problem within the energy gap ε′(N) ≥ 0
of the optimal policy, i.e., E1 ≥ E∗TPS − ε′(N), along with the asymptotic property stating that for large N,
ε′(N) = O(1/N).

Proof. See Appendix C for the proof.

From Theorem 2, it asymptotically follows that ε′(N) = O(1/N)→ 0 for large N. Thus, Policy I
is asymptotically optimal over the class of any policy as N increases.

4.5. Statistics-Based Policies

Although Policy I was found to be optimum, we still need to determine the optimal threshold, γ∗1 ,
for Policy I. The receiver should be aware of all gn to find the minimum γ1 that satisfies constraint (9).
In practice, however, the proposed EH–ID receiver in Figure 1 operates packet-by-packet; therefore,
it is difficult for the receiver to know all gn before data detection. To resolve this issue, we introduce
a way of determining γ∗1 based on the statistics of channel gains.

Under the wide-sense stationary assumption, we rewrite (8) and (9) with a single threshold
as follows,

max
γi≥0

η E [gui(g)]

s.t. E [I (g(1− ui))] ≥ R,
(15)

where i ∈ {1, 2}, and E[·] represents the expectation over g. Equation (15) can further be rewritten as

max
γ1≥0

η
∫ ∞

γ1

g f (g)dg (16)

s.t.
∫ γ1

0
log2(1 + g) f (g)dg ≥ R (17)

and

max
γ2≥0

η
∫ γ2

0
g f (g)dg (18)

s.t.
∫ ∞

γ2

log2(1 + g) f (g)dg ≥ R (19)

for policies I and II, respectively, where f (g) is the probability density function (PDF) of g, and without
loss of generality, σ2

v = 1. As γ1 increases in (16) and (17), the objective function in (16) decreases
monotonically, while the left-hand side of constraint (17) increases monotonically. On the other
hand, as γ2 increases in (18) and (19), the objective function in (18) increases monotonically, while the
left-hand side of constraint (19) decreases monotonically. Therefore, the optimal γ∗1 and γ∗2 are designed
by solving the equalities in the constraints as follows,

∫ γ∗1

0
log2(1+g) f (g)dg = R,for γ∗1 of Policy I,∫ ∞

γ∗2
log2(1+g) f (g)dg = R,for γ∗2 of Policy II.

(20)

Evidently, it follows that γ∗1 = 0 and γ∗2 = ∞ if R = 0; however, it is difficult to derive a closed form
expression of the optimal threshold for general f (g) with R > 0. Nevertheless, the optimal threshold
can always be determined from (20), at least numerically.
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In general, it is difficult to analytically find the optimal threshold, except for a few special cases
of f (g). For example, we consider a monomial function of f (g) as

f (g) =

{
Kgα, K1 ≤ g ≤ K2

0, otherwise,
(21)

where α is an integer, K = α+1
Kα+1

2 −Kα+1
1

if α 6= −1, and K = 1
ln K2−ln K1

if α = −1 so that f (g) becomes

a PDF. Note that K1 > 0 if α < 0. As a special case where α = 0, we obtain specific solutions from (20)
as follows,

γ∗1 = exp
(

W0

(
ξ1

exp(1)

)
+ 1
)
− 1 (22)

γ∗2 =

exp
(

W0

(
ξ2

exp(1)

)
+ 1
)
− 1, if ξ2 ≥ −1

0, otherwise,
(23)

where W0 is a Lambert W function, ξ1 = R(K2 − K1) ln 2 + (K1 + 1) ln(K1 + 1) − K1 − 1,
and ξ2 = −R(K2 − K1) ln 2 + (K2 + 1) ln(K2 + 1)− K2 − 1.

However, the optimal policy is still unclear. To find an optimal policy for the statistical case,
we compare E1 and E2 by deriving them using the following equations,

E∗1 = η
∫ ∞

γ1
∗

g f (g) dg (24)

E∗2 = η
∫ γ∗2

0
g f (g) dg. (25)

It is difficult to find a necessary and sufficient condition for either E1 ≥ E2 or E2 > E1 with a general
PDF of the received signal power, i.e., f (g). In our study, we establish the following theorem for the
monomial function f (g).

Theorem 3. Policy I is optimal if the PDF of the received signal power is a monomial function in (21).

Proof. See Appendix D for the proof.

5. Numerical Evaluation and Discussion

In this section, we perform numerical evaluation via intensive simulations to empirically validate
the effectiveness of our TPS policies by applying the monomial function in (21) and exponential
function as statistics of the channel gains.

5.1. Simulation Environment

We first describe the simulation environment as follows. We evaluate the performance of EH and
ID for different power splitting policies by varying the target rate R ≥ 0. Accordingly, we numerically
characterize an R–E trade-off for each policy. The power conversion efficiency was set to η = 0.6.
Each point on the EH–ID trade-off was numerically obtained by transmitting N = 106 packets.
We considered Rayleigh fading channels, i.e., h[n] ∼ CN (0, σ2

h ) for the nth packet to model a typical
channel in wireless communications. The PDF, f (g), of g = P|h[n]|2 can be then given by

f (g) =


1

Pσ2
h

exp
(
− g

Pσ2
h

)
, if g ≥ 0,

0, otherwise.
(26)
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5.2. Numerical Results

In our simulations, we considered four types of PDFs of channel gain g as follows (see Figure 5).

(1) Exponential function in (26): Rayleigh fading with σ2
h = 4.

(2) Monomial function in (21): type-1 with low gain dominant channels for α = −2, K1 = 1,
and K2 = 2.

(3) Monomial function in (21): type-2 with uniform gain channels for α = 0, K1 = 0, and K2 = 10.
(4) Monomial function in (21): type-3 with high gain dominant channels for α = 2, K1 = 0,

and K2 = 10.

Now, we evaluate the performance of the following three power-splitting policies: (i) the optimal
DPS policy using s∗n in (7); (ii) the TPS policy with the optimal threshold γ∗1 in (22) (i.e., Policy I
with γ∗1); and (iii) another TPS policy with the optimal threshold γ∗2 in (23) (i.e., Policy II with γ∗2).
Figure 6 illustrates the R–E trade-off region according to the aforementioned four types of PDFs
of channel gain, where three power splitting policies are adopted for each type. The results clearly
exhibit that the optimal DPS policy achieves the highest harvested energy for a given information
rate, i.e., the outermost boundary of the trade-off region, irrespective of the PDF type. In other words,
the optimal DPS policy reveals the best R–E trade-off. It can be observed that the performance of Policy
I with γ∗1 is consistently superior to that of Policy II with γ∗2 ; this can be attributed the fact that Policy II
with γ∗2 is naïvely designed based on the statistics of channel gains when no CSI is available. Moreover,
it can be observed that the performance on the R–E trade-off improves when α increases (i.e., the case
of high gain dominant channels).
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Figure 5. Probability density functions (PDFs) of channel gain g according to four types of channels.

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Rate, b/s/Hz

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

E
n

e
rg

y
, 

J
/s

DPS

Policy I with 
1

*

Policy II with 
2

*

type-3

type-1

exp.

type-2

Figure 6. R–E trade-off according to four types of PDFs of channel gain, where three power splitting
policies are adopted for each type.



Entropy 2020, 22, 1341 11 of 16

6. Concluding Remarks

In this paper, we presented several power-splitting policies by formulating the harvested energy
maximization problem under a minimum rate constraint for wireless point-to-point communication
systems where both the information and power are transmitted through the same wireless channel to
a sensor. To optimally solve the problem, we first designed an optimal DPS policy wherein the receiver
makes adjustments by increasing the fractional power for ID and decreasing the remaining fraction
for EH when the target rate increases. In addition, as effective solutions, we proposed two types of
single-threshold TPS policies, policies I and II. Subsequently, we presented an asymptotic analysis
based on our previous analytical findings, which proves that the optimality of policy I is valid when
the number of packets is sufficiently large. Furthermore, we introduced statistics-based policies to
ensure that the EH–ID receiver operates according to channel gain statistics without instantaneous CSI.
The numerical results demonstrated that the optimal DPS policy always exhibits the best performance
in terms of the R–E trade-off. It was also empirically shown that policy I with the optimal threshold
consistently outperforms policy II with another threshold determined by the channel gain statistics in
various simulation settings.
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Abbreviations

The following abbreviations are used in this manuscript.

CSI channel state information
DPS dynamic power splitting
DTS dynamic time sharing
EH energy harvesting
ID information decoding
MIMO multiple-input multiple-output
MISO multiple-input single-output
PDF probability density function
R–E rate–energy
SIMO single-input multiple-output
SISO single-input single-output
SWIPT simultaneous wireless information and power transfer
TPS threshold-based power-splitting

Appendix A. Proof of Theorem 1

Proof. The optimization problem in (5) and (6) is formulated as a Lagrangian problem without any
constraint; thus, it can be expressed as

max
{0≤sn≤1,λ≥0}

1
N

N

∑
n=1

ηgnsn + λ

(
1
N

N

∑
n=1

I (gn(1− sn))− R

)
. (A1)

Because (A1) is a concave optimization problem without any constraint, we can find the optimal
s∗n from the solution that enables the first derivative of the objective function with respect to sn to
be zero as follows (Note that the result in (A2) is identical to that in [17], wherein the solution s∗n is
obtained by maximizing ID with the EH constraint.),
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s∗n =

[
1− 1

gn

(
λ

η ln 2
− σ2

v

)]1

0
, ∀n ∈ {1, . . . , N}, (A2)

where [x]ba takes x if it lies between a and b; otherwise, it takes the closest boundary a or b.
The Lagrangian multiplier, λ, is derived from (6).

From (6), if R > 0, then at least one s∗n should be greater than zero to satisfy (6). Therefore,
from (A2), it can be demonstrated that τ = λ

η ln 2 − σ2
v should be positive, and s∗n = 0 if gn < τ and

0 < s∗n < 1 if gn ≥ τ. This completes the proof of this theorem.

Appendix B. Proof of Corollary 1

Proof. From (7), s∗n = 1, ∀n, by setting R = 0. In contrast, if R > 0, then at least one s∗n should be
greater than zero to satisfy (6). Thus, from (A2), it can be demonstrated that s∗n = 0 if gn < λ−1

η ln 2 and

0 < s∗n < 1 if gn ≥ λ−1
η ln 2 . This completes the proof of this corollary.

Appendix C. Proof of Theorem 2

Proof. Consider the TPS policy with a single threshold. From Theorem 1 in [39], it can be demonstrated
that E1 ≥ E2 − |ε(N)|, where E1 and E2 are the maximum energy of policies I and II, respectively,
which are harvested from N packets in S ∪ T . Following the procedure in the proof of Lemma 1 in [39],
it can be observed that the loss of harvested energy due to switching the optimal TPS policy to policy I
is not greater than |ε(N)|. Therefore, if we implement policy I, we can readily derive the maximum
gap of harvested energy between the global optimal TPS and global policy I as ε′(N) = |ε(N)| ≥ 0;
thus, we have

E1 ≥ E∗TPS − ε′(N).

From Theorem 1 in [39], ε(N) → 0 as N → ∞. Assuming N → ∞, we can further assume that the
number of packets with channel gain in S ∪ T increases without a limit, i.e., N → ∞. Therefore,
we finally have ε′(N)→ 0, which completes the proof of this theorem.

Appendix D. Proof of Theorem 3

We basically use the convex function calculus (CFC) to prove this theorem.
CFC: If f (x) is convex (i.e., f ′′(x) > 0) and h(x) is convex and non-decreasing (i.e., h′(x) > 0 and

h′′(x) > 0), then h( f (x)) is convex. However, if f (x) is concave (i.e., f ′′(x) < 0) and h(x) is convex and
non-increasing (i.e., h′(x) ≤ 0 and h′′(x) > 0), then h( f (x)) is convex.

Proof. For simplicity, without loss of generality, we assume the perfect conversion efficiency of power,
i.e., η = 1. Using PDF f (g) in (21), we can derive E1 and E2 as follows,

E1 =
∫ K2

γ1

Kggαdg

=

 K
α+2

(
Kα+2

2 − γα+2
1

)
if α 6= −2,

K (ln K2 − ln γ1) if α = −2,

E2 =
∫ γ2

K1

Kggαdg

=

 K
α+2

(
−Kα+2

1 + γα+2
2

)
if α 6= −2,

K (− ln K1 + ln γ2) if α = −2,
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where γ1 and γ2 are the functions of R satisfying

γ1 s.t. R =
∫ γ1

K1

log2(1 + g)Kgαdg, (A3)

γ2 s.t. R =
∫ K2

γ2

log2(1 + g)Kgαdg, (A4)

respectively.
For the integration in (A4), using the integration formulation below∫

log2(1+x)xαdx

=


1

ln 2
1

1+α

[(
xα+1+(−1)α

)
ln(x+1)+(−1)α ∑α+1

n=1(−1)n xn

n

]
, if α ≥ 0,

1
ln 2

1
1+α

[(
xα+1+(−1)α

)
ln(x + 1)+(−1)α+1 ln x−∑−1

n=α+2(−1)n xn

n
]
, if α < 0, α 6= −1,

−Li2(−x), if α = −1,

(A5)

where Li2(·) is a Spence’s function, we define y(R) as follows,

y(R) , E2 − E1 =


1

(ln K2−ln K1)
(γ1 + γ2 − K1 − K2) , if α = −1,

1
K−1

1 −K−1
2

(ln γ1 + ln γ2 − ln K1 − ln K2) , if α = −2,

α+1
(α+2)(Kα+1

2 −Kα+1
1 )

(
γα+2

1 + γα+2
2 − Kα+2

1 − Kα+2
2

)
, otherwise.

(A6)

If y(R) ≥ 0, then E2 ≥ E1; thus, policy II is optimal. Otherwise, policy I is optimal. Now, we check
whether y(R) ≥ 0 or y(R) < 0.

By partially differentiating both sides of (A3) and (A4) with respect to R, we obtain

∂γ1

∂R
=

1
K log2 (1 + γ1) γα

1
> 0, (A7)

∂γ2

∂R
=

−1
K log2 (1 + γ2) γα

2
< 0. (A8)

Again, by partially differentiating both sides of (A7) and (A8), we obtain the second derivatives of γ1

and γ2 with respect to R as

∂2γ1

∂2R
= − 1

K
∂γ1

∂R
1

γα+1
1 log2(1 + γ1)

{
γ1

1 + γ1

1
ln(1 + γ1)

+ α

}
, (A9)

∂2γ2

∂2R
=

1
K

∂γ2

∂R
1

γα+1
2 log2(1 + γ2)

{
γ2

1 + γ2

1
ln(1 + γ2)

+ α

}
. (A10)

Because 0 ≤ z
1+z

1
ln(1+z) ≤ 1, we obtain the following new analytical findings from (A9) and (A10).

If α ≥ 0, γ′′1 ≤ 0, and γ′′2 ≤ 0, then γ1 and γ2 are concavely increasing and decreasing over R,
respectively. However, if α ≤ −1, γ′′1 ≥ 0 and γ′′2 ≥ 0, then γ1 and γ2 are convexly increasing and decreasing
over R, respectively.

Next, we consider four cases to complete the proof using the above statement.

(i) Case 1 (α ≥ 0): Define h(x) , K
α+2 xα+2. Because h′(x) = Kxα+1 > 0 and h′′(x) = K(α + 1)xα > 0,

h(x) is a convex increasing function. From the CFC rule, it is evident that h(−γ1) and h(−γ2)

are convex functions because −γ1 and −γ2 are convex functions owing to the non-negative
α. Because h(−γ1) =

K
α+2 (−γ1)

α+2 = K
α+2 (−1)α(γ1)

α+2 is convex, K
α+2 (γ1)

α+2 is convex if α is
an even integer. In contrast, because xβ−1 is a convex function if xβ is convex with a positive
integer, i.e., β ≥ 2 and x ≥ 0, K

α+2−1 (γ1)
α+2−1 is also convex. Therefore, in general, K

α+2 (γ1)
α+2 is
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a convex function for all α ≥ 0. Similarly, we can show that K
α+2 (γ2)

α+2 is convex. Consequently,
y(R) in (A6) is convex because it denotes the sum of two convex functions if α ≥ 0. Furthermore,
because y(0) = y(Rmax) = 0, we can show that y(R) ≤ 0 if α ≥ 0, which implies that Policy I is
optimal if α ≥ 0. Here, Rmax is the maximum achievable rate derived as

Rmax =
∫ K2

K1

log2(1 + g)K f (g)dg.

(ii) Case 2 (α ≤ −3): Because h′(x) > 0 and h′′(x) < 0, h(x) is a concave increasing
function. Thus, −h(x) is a convex decreasing function. From the CFC rule, −h(−γ1) and
−h(−γ2) are convex as −γ1 and −γ2 are concave functions owing to the negative α.
Because −h(−γ1) = − K

α+2 (−γ1)
α+2 = K

α+2 (−1)α+3(γ1)
α+2 is convex, K

α+2 (γ1)
α+2 is convex if

α is an odd number. If xβ is convex when β ≤ −3 and x ≥ 0, then xβ−1 is convex. Therefore,
K

α+2−1 (γ1)
α+2−1 is also convex. Therefore, K

α+2 (γ1)
α+2 is convex for all α ≤ −3. Similarly, we can

show that K
α+2 (γ2)

α+2 is convex for all α ≤ −3. Consequently, y(R) is convex for all α ≤ −3 as
it denotes the sum of two convex functions. Furthermore, because y(K1) = y(K2) = 0, we can
show that y(R) ≤ 0 if α ≤ −3, which implies that Policy I is optimal if α ≤ −3.

(iii) Case 3 (α = −1): y(R) is convex because it denotes the sum of two convex functions:
γ1 and γ2. Note that γ1 and γ2 are convex owing to the negative α. Furthermore,
because y(0) = y(Rmax) = 0, we can show that y(R) ≤ 0 if α = −1, which implies that Policy I is
optimal if α = −1.

(iv) Case 4 (α = −2): From (A5), we obtain the following equalities when α = −2:

f−1(R) = c1

(
−
(

1
γ1

+ 1
)

ln(γ1 + 1) + ln γ1 + c2

)
,

g−1(R) = c3

((
1

γ2
+ 1
)

ln(γ2 + 1)− ln γ2 + c4

)
,

(A11)

where {c1 . . . , c4} are constant values. Because f−1(R) is a logarithmically increasing concave
function, γ1 is a logarithmically convex function, i.e., ln(γ1) is convex. In contrast, g−1(R)
is an exponentially decreasing convex function; thus, γ2 is a decreasing logarithmically
convex function, i.e., ln(γ2) is convex. Therefore, y(R) in (A6) is convex. Considering that
y(0) = y(Rmax) = 0, we can show that y(R) ≤ 0 if α = −2, which implies that policy I is optimal
if α = −2.

This completes the proof of this theorem.
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