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ABSTRACT The loss or compromise of any safety critical industrial infrastructure can seriously impact
the confidentiality, integrity, or delivery of essential services. Research has shown that such threats often
come from malicious insiders. To identify these insiders, survey- and electrocardiogram-based approaches
have been proposed; however, these approaches cannot effectively detect or predict any malicious insiders.
Recently, electroencephalograms (EEGs) have been suggested as a potential alternative to detect these
potential threats. Threat detection using EEG would be highly reliable as it overcomes the limitations of
the previous methods. This study proposes a proof of concept for a system wherein a model trained using
a deep learning algorithm is employed to evaluate EEG signals to detect insider threats. The algorithm can
classify different mental states based on four category risk matrices. In particular, it analyses brainwave
signals using long short-term memory (LSTM) designed to remember the previous mental states of each
insider and compare them with the current brain state for associated risk-level classification. To evaluate the
performance of the proposed system, we performed a comparative analysis using logistic regression (LR)—
a predictive analysis technique used to describe the relationship between one dependent binary variable
and one or more independent variables—on the same dataset. The experimental results obtained suggest that
LSTM can achieve a classification accuracy of more than 80% compared to LR, which yields a classification
accuracy of approximately 51%.

INDEX TERMS Deep learning, EEG sensors, fitness evaluation, insider threats, LSTM, safety critical
industrial infrastructure.

I. INTRODUCTION
Industrial organization always secure measures to mitigate
data security threats. It is a general belief that cyber-attacks
are executed by outsiders rather than insiders. Given this
belief, a considerable amount of effort has been invested
in developing security measures to prevent outsider attacks.
However, the reality is considerably different. Carnegie Mel-
lon University [1] conducted a survey wherein they consulted
2,134 global executives regarding the nature of cybersecurity
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and privacy; the results indicated that the most common
causes of breaches in the last 12 months were attributed to
inadvertent attacks by insiders (36%) and malicious attacks
by insiders (25%). This implies that 61% of all security
attacks were organized by insiders. Companies can lose
approximately $445,000 dealing with one such attack. The
reported average of 3.8 successful attacks per year implies
damages of up to $1.7 million, coupled with other long-
term effects. Lunt [2] identified via survey that the number
of intruders has been growing steadily, and currently, there
are technical approaches that can handle this security threat
feasibly and effectively.
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Safety critical industrial infrastructures (SCIIs) deploy a
periodic psychological survey among their employees to
detect internal intrusions [3]. However, this survey-based
approach cannot effectively detect or predict any insider
threats because surveyees become familiar with the survey
questions and can fake their responses. Thus, there have been
several attempts to automate such a process using electrocar-
diogram (ECG) sensors [4]–[6]; unfortunately, recent studies
have indicated that humans can control their ECG signals by
practicing special breathing techniques [7].

To overcome the limitations of the previous methods, elec-
troencephalograms (EEGs) have been suggested as a poten-
tial alternative, and they are gaining research interest in the
security community. EEGs can not only capture cognitive
processes in the time frame in which a thought occurs, but
also record electrical brainwaves corresponding to the dif-
ferent mental states of a human. Unlike ECG, brainwaves
cannot be controlled by humans, which makes EEG suitable
for detecting attack intentions. Human brainwaves travel at
different frequencies; they are categorized into five bands:
Delta, Theta, Alpha, Beta, and Gamma. The delta band is
linked with relaxed mental states (e.g., when a subject is in a
mentally relaxed mode such as deep sleep). The brainwaves
move towards the Gamma band as the subject engages in
higher cognitive processes such as complex tasks and high
intentions.

Expensive and complex EEG sensors that employ 20 elec-
trodes are routinely used for the diagnosis and treatment of
mental and brain diseases and abnormalities [8], whereas
economic EEG sensors with fewer electrodes are used in
Brain–Computer Interfaces (BCI) employed in the gaming
and entertainment industries.

Commercial EEGs have recently been adopted for the
implementation of various security systems. For example,
they could be used as a trustworthy biometric signal for
multimodal authentication systems [9]. Further, EEG signals
have been the focus of studies investigating privacy attacks
because they can be used to intercept brainwaves to extract
confidential information [10] and as a source of information
about individuals [11].

A wide range of applications utilizing EEG signals are
emerging; these include learning attention detection, assisted
systems for disabled people, and brain disease diagnosis.
Hadoush et al. identified differences between children with
mild and severe ASD using EEG signal analysis with empir-
ical mode decomposition (EMD) and second-order differ-
ences plot (SODP); they achieved a model sensitivity and
specificity of 100% in EMD, 94.7% in the SODP model, and
an overall accuracy of 97.2% [12]. Kim et al. proposed and
developed a vision-aided brain-machine interface training
system for robotic arm control. Their proposal usesMicrosoft
Kinect to detect and estimate the 3D positions of possi-
ble target objects. The predicted velocity vector for a robot
arm input is compensated using artificial potential to follow
an intended object among all possible targets. The system
trained with two participants with cervical spinal cord injury

to explore its possible effects [13]. Ieracitano et al. proposed
data-driven machine learning for differentiating subjects with
Alzheimer’s disease, mild cognitive impairment, and healthy
control by analyzing EEG signals obtained via a noninvasive
interface.

Another proposal suggested evaluating the power spec-
tral density (PSD) of 19-channel EEG traces and reflect-
ing the relevant spectral profiles into 2D grayscale images
(PSD-images). A convolutional neural network with one pro-
cessing module of convolution, rectified linear units (ReLU),
and a pooling layer is used to extract suitable features from
PSD-images and perform two- and three-way classification
tasks. The CNN achieved an average accuracy of 89.8% in
binary classification and 83.3% in three-way classification
[14]. However, these applications are based on EEG devices
that have more than 15 channels. Such EEG signal analysis
using an EEG device with a large number of channels is
not practical for use in the context of an industry safety
environment. Thus, we plan to demonstrate a high-precision
lightweight EEG analysis using an EEG device with five
channels only.

Understanding and developing novel signal processing
techniques for the analysis of EEG signals specifically tar-
geted to detect the perturbed states of the mind are still
open problems in CPS security research. Such a development
could help meet the increasing requirements for affordable
and effective security monitoring measures [15]; however,
privacy-related issues such as preventing the exploitation
of EEG signals should be considered for EEG signal
processing.

This study proposes a novel EEG sensor-based risk assess-
ment framework using deep-learning techniques as a reliable
and cost-effective method that can be employed by SCII
to protect its data and valuable assets from insider threats.
The proposed framework is expected to detect any individ-
uals (insiders) who have knowledge of and access to SCII
facilities and its valuable assets and/or who may attempt
unauthorized actions, sabotage, or aid outsiders in such
purposes.

The proposed framework can also be viewed as an access
control scheme that predicts potential insider threats before
any malicious actions can occur. framework not only captures
the brainwaves of individuals before they enter their work
zones within the SCII, but also decides whether to grant
them access based on their current mental state and fitness
level to perform their daily responsibilities. The experiments
stimulate different emotions and intentions in the user by
utilizing a scientific open affective standardized image set
(OASIS) [16]. Brainwaves are captured using light Emo-
tiv EEG devices that use five electrodes during the emo-
tional stimulation experiment. This creates a large dataset
of EEG signals that can be utilized for learning a model
from a long short-term memory (LSTM) network. The final
trained model is used to map the captured brainwaves to
a risk matrix that classifies the criticality of the potential
threats.
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The main contributions of this paper are as follows.

• Proof that using a lightweight EEG device with reduced
number of electrodes is sufficiently reliable to build a
strong access control system for securing SCIIs

• Taught neural networks to exploit and distinguish
between the normal and abnormal EEG signals with a
given input difference from random data.

• Tested the strength of different deep learning
distinguishers and explored the optimal configuration
parameters of a neural network to achieve better overall
classification accuracy.

The remainder of this paper is organized as follows.
Section II describes the related studies to analyze the gaps in
current knowledge. Section III provides the details of the EEG
risk framework using the LSTM network. The experimental
results are discussed in Section IV. Finally, conclusions are
presented in Section VII along with suggestions for future
work.

II. RELATED WORK
Studies that focus on the aspect of emotional responses when
monitoring emotional changes have been conducted [17],
[18]. These studies provide key knowledge for determining
the reactions of individuals based on the transformation of
their brains.

The techniques for assisting in the measurement of emo-
tional responses include frontal alpha asymmetry, laterality
index at rest from near-infrared spectroscopy and comfort
vector model [17]. Rahman and Oyama [17] examined the
applicability of the aforementioned techniques to validate the
extent of positive and negative effects caused by depression-
related symptoms such as anxiety. NIRS and EEG techniques
have been shown to be useful in detecting changes based
on different illnesses [17]. Further, Oyama and Sakatari [19]
demonstrated that NIRS and EEG signals are effective in
measuring emotional responsiveness.

To detect malicious attacks and data breaches, it is neces-
sary to identify malevolently acting insiders. Current secu-
rity methods have been unable to assist in handling such
issues effectively. Therefore, studies that focus on utilizing
human biological data to detect and predict threats caused by
individuals within an organization are being conducted [18].
Meanwhile, the ‘‘affect-as-information’’ hypothesis can be
used to explain emotional influences [20], [21]. Zadra and
Clore [20] argued that the visual perception of an individual
is of considerable importance in determining his or her envi-
ronment. This means that a person can develop positive or
negative moods based on their surroundings and actions. Suh
and Yim [18] investigated emotional changes in participants;
they focused on identifying EEG signals that can be used to
detect the desire and behavior of an intruder using an Epoc
Emotive wearable device and electrodes. The aforementioned
procedures were guided toward measuring how ECG data can
supplement the identification of the emotional changes in an
individual. In this study, a piece of significant evidence was

FIGURE 1. Basic network types.

observed based on the behavior of a person. As a malicious
insider would act differently, it is possible to employ EEG
indicators to categorize the judgement of an individual.

There is an interesting aspect of human brain functions
mandated by various cognitive processes. Suh and Yim [22]
listed thinking, judging, and controlling one’s emotions to
the process. To investigate how a malicious insider can be
detected using potential approaches such as EEG analysis,
human emotion data play an important role. This school of
thought suggests that an emotion can assist in identifying any
potential fluctuations in the human brain [22]. The evident
changes in human emotional responses could be identified
based on various reactions. In particular, behavioral patterns
are expressed in the form of feelings and reasoning by per-
petrators. This is an important indicator of variations in the
brainwaves of an individual [22]. Thus, the analysis of any
abrupt changes in one’s bodily behaviors can help determine
his or her motive as a malicious insider.

There are different theoretical approaches to designing
brain networking models. Some studies have focused on
information related to the theory of networks [23], [24].
Many of these studies seek to understand different hypotheses
formulated to assist in explaining the workings of the human
brain. Stam and Reijneveld [21] developed the concept of
classical graph theory. The success of this approach was
determined by a graph that shows a significant transition as
a crucial factor in connected networks. Understanding the
working nature of the graph therefore assists in interpret-
ing the evident relationship between interaction and action,
which means that a network is an ordered interconnection
based on graphical representations that need to be appreci-
ated. The basic network types—ordered, small-world, and
random [23]—are shown in Fig. 1.
The basic network types have unique characteristics. For

example, the ordered network is a ring with 16 vertices con-
nected to four neighbors. A graph of such a nature has a high
clustering coefficient. In the case of a random network, the
procedure involves choosing a random vertex, which results
in an increasing rewiring probability. Data mining is a crucial
technique in various analyses. The approach to data discovery
indicates that there is a way to extract useful information
or patterns [24]. Any evident patterns from databases can
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be recognized, thereby making a unified conclusion. On the
contrary, one needs to understand the source of the data
for conducting an EEG analysis. The technique comprises
recording operations of the human brain using electrodes
[24]. In particular, the neocortex can be considered a major
source of such data. As discussed, EEG entails themonitoring
of the electrical impulses of the human brain under different
scenarios. Interestingly, EEG big data must be comprehended
when considering an investigation to detect insider threats to
create attacks.

An investigator may need to seize an opportunity in the
prediction by employing strategies such as a BCI. As such, the
application of the analysis of EEG signals can be effective as
it can offer much-needed real-time solutions based on elec-
trographic behavior analysis [25]. The effectiveness of the
EEG signals has been appreciated as a working technology to
identify that the response of a person to a particular scenario
lies in the use of the right algorithm in ensuring effective
prediction and processing of real-time data [26].

Jeonghyun et al. [27] proposed a novel methodology
for a convolutional neural network (CNN) based on motor
imagery (MI) classification using a new form of input. Con-
tinuous wavelet transform is applied to the input EEG signal
to track the features ofMI. They considered the real and imag-
inary parts of the transformed signal to exploit the magnitude
and phase information simultaneously. The features extracted
are then fed to a basic CNN with only one convolution layer,
one max-pooling layer, and one fully connected layer. Two
public BCI datasets were used to test the classification accu-
racy: BCI competition IV dataset IIb that has data from nine
subjects and BCI competition II dataset III that has data from
one subject. The proposed method achieved at best 78.3%
accuracy using BCI competition IV dataset IIb and an average
of 89.6% accuracy rate using BCI competition II dataset III.

Shingchern et al. [28] reported the use of EEG signal
recordings to assess if a user likes a video clip he/she is
watching. The experiment was performed based on a ready
dataset called Database for Emotion Analysis, using physio-
logical signals that provided by Queen Mary University of
London in UK. The dataset contains EEG signals that are
segmented, and features from each segment are computed
prior to classification. They used the k-nearest neighbors,
support vector machine (SVM), multilayer neural network,
and autoencoder neural networks. The autoencoder achieved
the best classification accuracy rate of approximately 80%,
whereas other classifiers yielded only approximately 60%
accuracy.

Haoyan et al. [29] proposed a new lightweight EEG clas-
sification model based on EEG devices with a small number
of channels. They used an EEG sensor that uses five chan-
nels to perform blind source signal separation to obtain data
from several sources, including noise signals such as electro-
oculography. Further, they used a combination of EEG and
EOG signals and decomposed the signal into different fre-
quency bands, and then, they input them into a lightweight
CNN and SVM to perform data classification and obtain five

FIGURE 2. Development phases.

classifiers. The prototype system showed a final accuracy rate
of 74.7% using SVM and 80.1% using the CNN.

Chen et al. [30] proposed a hierarchical bidirectional GRU
model with an attention mechanism (H-ATT-BGRU) for EEG
features learning to perform emotional classification. They
showed that the model that explores hierarchical structures
such as H-AVE-BGRU and H-MAX-BGRU shows better
performance in EEG features classification compared to non-
hierarchical models such as CNN and LSTM. They found
that the classification accuracy of the H-AVE-BGRU model
is 8.4% and 1.9% greater than the accuracy obtained using
CNN and LSTM, respectively, for classifying the valence
with 8.1% and 2.5% for classifying the arousal feature. The
best accuracy was obtained by the H-ATT-BGRU model
(66.5%), which is 12% more than the accuracy achieved by
the best shallow baseline SVM model. The CNN model did
not show a significantly better result because its accuracy in
classifying the valence achieved 57.2%, which outperforms
the BT model by 1% and its accuracy in classifying the
arousal achieved 56.3%; this outperforms the SVMmodel by
1.8%. The LSTMmodel outperformed the CNN by 6.5% and
5.6% in classifying the valence and arousal, respectively.

Alkalin and Kose [31] proposed emotional stimulation
using a visual and audio experimental setup and collected
physiological signals data from 20 participants using Neu-
rosky EEG device. They used three different classifica-
tion models: SVM, random forest, and deep learning. Their
research showed success in achieving an accuracy rate
of 77.04% using SVM, 79.76% using random forest, and
62.86% using deep learning.

These findings provide encouragement for investigations
into the use of human brainwave signals to extract useful
information to find potential attacks in SCII and analyze them
with a high accuracy rate using deep learning algorithms.

III. RESEARCH METHODOLOGY AND ANALYSIS
As depicted in Fig. 2, the first phase of this study focuses
on preparing the experimental setup and collecting data from
digital marketing campaigns. The second phase includes
manipulating data, preprocessing, clearing data, and wran-
gling and extracting features that ensure the collected data
are in the state to be fed into the deep-learning algorithm. The
third phase learns a model from the deep-learning algorithm
using the preprocessed data obtained during the second phase.
The final phase performs a proof of concept considering the
full and realistic architecture of SCII.

A. EXPERIMENTAL SETUP AND DATA COLLECTION
This process started with complying to all ethical procedures
defined by the Khalifa University Compliance Committee.
A dedicated lab for our experiments was setup to facilitate
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FIGURE 3. Experimental setup and data collection tasks.

the required conducive atmosphere. A Java-based application
that simulates the visual expressions of the participant upon
displaying the OASISwas then developed andmade available
with five main screens, as shown in Fig. 4.
Data collection was conducted in a dark, square room (1.7

m × 1.7 m) with one study table, the desktop hosting the
experimental application, a recording camera, and one chair;
this room was specially designed for this research. Figure 5
shows an actual photo of the data collection room.

Finally, marketing campaigns that promote the awareness
of this study were launched. An online registration form
that allows users to register their preferred date and time to
participate in the experiment was created, and confirmations
were sent over the phone. These campaigns and registrations
were conducted following the guidelines set by the university
compliance committee.

B. PRE-PROCESSING
The data collected during this experiment were pre-processed
following the processes depicted in Fig. 6
Pre-processing started with using the Emotiv application

that removes noise signals (Fig. 7). Emotiv Insight generates
a file in the EDF file format, which is converted to a CSV
file to ease data manipulation using MATLAB. The signals
for each captured image were separated and divided into
four categories identified in our risk matrix; the signals were
labelled accordingly. The procedure followed to label the data
using MATLAB is shown in algorithm 1.

Algorithm 1MATLAB Implementation
Procedure Data labeling EEG signal records
1) Input EDF file format including captured EEG signals

from all subjects
2) Convert EDF file format to CSV file format
3) Convert timestamp associated with the EEG signal to

local time
4) Segregate the EEG signal for each OASIS image period

using the converted timestamp
5) Label each EEG signal corresponding to the OASIS

image based on the arousal and variance value of the
image

The data files have 26 features including 25 inputs and
one output. Each of the five electrodes of the EEG device
captures the five brainwave bands: Theta, Alpha, Low_Beta,
High_Beta, Gamma. We then performed feature extraction
by identifying features using the band-to-band power ratio of FIGURE 4. Experiment application.
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FIGURE 5. Data collection room.

FIGURE 6. Data pre-processing steps.

beta-to-alpha (β
α
) and gamma-to-alpha ( γ

α
) waves as they are

considered to be dependent variables.
This helps to find informative features that can be fed

into the deep-learning algorithm to preserve the identities of
the subjects, ensuring anonymity. Feature extraction may not
be required if it does not improve the deep learning results.
In this case, only data normalization needed to be performed.
The source code and the dataset are provided in the appendix
for validating and reproducing the results.

C. MODEL BUILDING AND OPTIMIZATION
This phase describes the three main activities shown in Fig. 8.
To learn a model from the dataset, we preprocessed data
from the previous phase, and we utilized a deep learning
algorithm. The intermittent results were analyzed and turned
by adjusting its parameters and structures.

The dataset was split into training, validation, and test-
ing sets. The training dataset was used to learn the model,
whereas the validation dataset was used for model optimiza-
tion purposes; finally, the test dataset was used for mea-
suring and evaluating the performance of the model built
using an LSTM network scaled up based on the perfor-
mance analysis to ensure a high (90% - 98%) accuracy
rate.

Changes to the accuracy and loss of the model at each
epoch were plotted, and the confusion matrix with and with-
out normalizationwere compared to validate the usefulness of
the normalization technique applied to the dataset. The code
in algorithm 2 shows the procedure followed in our Keras
implementation.

In algorithm 2, i denotes the input gate, and o and f are
the output gate and the forget gate, respectively. tc represents
the input to the memory cell, c denotes the activation vector,
andm is the output of the memory cell. Further, ‘‘W’’ denotes
the weight matrices from x to the input gate i. b is the bias,
and g and h are the activation function of the cell input
and cell output, respectively. � is the SoftMax activation
function.

Algorithm 2 LSTM-RNN Keras Implementation Procedure
1) Input x = (x1, x2, . . . , xt ), where xi is a vector of

size 25 representing the EEG signal features
2) Outputs y = (y1, y2, . . . , yt ), where yi is a vector

of size 4 representing hot encoding for four output
classifications

3) Shape Input(x) and Output(y) data
4) Define Train data size AND Test data size
5) For i = 1, 2, . . . t do
6) it = σ (Wixxt +Wimmt−1 + bi)
7) ot = σ (Woxxt +Wommt−1 + bo)
8) ft = 1− it
9) tct = g(Wcxxt +Wcmmt−1 + bc)

10) ct = ft � ct−1 + it � tct
11) mt = ot � hct
12) yt = φ(Wymmt + by)
13) EndFor
14) Show accuracy rate for training and test dataset
15) Show confusion matrix without nomrmalizatio and

with nomalization

FIGURE 7. Emotiv Insight signal noise sample.

FIGURE 8. Deep learning implementation action.

D. NETWORK ARCHITECTURE AND SPECIFICATION
The sequential model API was used to create the LSTM
models, where an instance of the sequential class and model
layers were created and added to it. The model was initial-
ized with three LSTM layers of size 128 with parameters
batch_input_shape, which indicates that the sequential clas-
sification of the LSTM network can accept input data of the
defined batch size only, thereby restricting the creation of any
variable dimension vectors.

The second parameter return_sequence was set true for the
first two layers, and it indicates that the recurrent layer of
the LSTM network should return its entire output sequence
(i.e., a sequence of vectors of specific dimension) to the next
layer of the network followed by a dense layer that outputs
the prediction.
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The model calculates the loss function using the
mean_absolute_error and optimizes it using the Adam opti-
mizer function. The model uses the SoftMax function as
the activation function to output a vector that represents the
probability distributions of a list of potential outcomes and
acts as a fully connected layer. The epochs parameter was
set to 500 so that the model could parse through the training
set 500 times, thereby increasing the overall accuracy of the
model.

E. MATHEMATICAL IMPLEMENTATION
The LSTM is composed of a linear unit surrounded by three
logistic gates, They are
• the ‘‘Input’’ gate, which handles the writing of data into
the information cell;

• the ‘‘Output’’ gate, which handles the sending of data
back onto the recurrent network; and

• the ‘‘Keep’’ gate, which maintains and modifies the data
stored in the information cell.

The three gates are the centerpiece of the LSTM unit. The
gates, when activated by the network, perform their respective
functions. The Input gate will write whatever data are passed
into the information cell, the Output gate will return whatever
data are in the information cell, and the Keep gate will main-
tain the data in the information cell; this gate can modify the
data based on the signal they are sent.

The Keep gate decides whether to keep or forget data
currently stored in the memory. It receives both the input
and the state of the recurrent network, and it passes the input
through its Sigmoid activation function. If Kt has a value of
one, it means that the LSTM unit should keep the data stored
perfectly, and if Kt has a value of zero, it means that it should
forget it entirely. Consider St−1 as the incoming (previous)
state, Xt as the incoming input, and Wk , Bk as the weight
and bias for the Keep gate, respectively. In addition, consider
Oldt−1 as the data previously in memory. What happens can
be summarized by the following equations.

Kt = σ (Wk × [St−1, xt ]+ Bk ) (1)

Oldt = Kt × Oldt−1 (2)

As Oldt−1 multiplied by the value was returned by the
Keep gate(Kt ), this value is written in the memory cell.

Then, the input and state are passed on to the Input gate,
in which another Sigmoid activation is applied. Concurrently,
the input is processed as normal by whatever processing unit
is implemented in the network, and then it is multiplied by
the Sigmoid activation’s result It , shown in

It = σ (Wi × [St−1, xt ]+ Bi), (3)

which is similar to the Keep gate. Consider Wi and Bi as
the weight and bias for the Input gate, and the Ct as the result
of the processing of the inputs using the recurrent network.

Newt = It × Ct (4)

Newt shown in equation 4 is the new data to be input into
the memory cell. This is then added to whatever value is still

FIGURE 9. LSTM network architecture diagram.

stored in the memory, as shown in 5.

Cellt = Oldt + Newt (5)

The obtained candidate data are to be kept in the memory
cell. The conjunction of the Keep and Input gates work in an
analog manner, making it so that it is possible to retain part
of the old data and add only part of the new data.

The Output gate functions in a similar manner. To decide
what we should output, we take the input data and state
and pass it through a Sigmoid function. The contents of our
memory cell, however, are pushed onto a Tanh function to
bind them between values of -1 to 1. Consider Wo and Bo as
the weight and bias for the Output gate shown in

Ot = σ (Wo × [St−1, xt ]+ Bo) (6)

Outputt = Ot × tanh(Cellt ) (7)

Further, Outputt is output into the recurrent network.

F. FULL PROOF-OF-CONCEPT SYSTEM
The proof-of-concept system has two main components:
Registration and Access Granting. Registration or pre-
registration is the stage where all internal employees of an
organization pass through the data collection point. This cap-
tures the brainwaves of the employees which are then used
to build a model from the LSTM network. The second stage
is the access granting stage. If an employee wishes to access
a critical zone within the SCII, then he or she can be asked
to perform a quick brainwave capture using the EEG device.
Here, the signals are matched into different risk categories
and the access may either be granted or rejected. Fig. 10
shows the architecture of the full proof-of-concept system.

Fig. 11 shows the positions of the electrodes in Emotiv
Insight (e.g., green dots) during both data collection and the
full proof-of-concept phases. This helps obtain brainwaves
related to deceptive and cognitive behaviors. AF3 and AF4
are mapped to Brodmann Areas 9 and 10, respectively. These
areas are responsible for gathering information and coor-
dinating intellectual functions and actions. AF3 is related
to making decisions about emotional stimuli, attribution of
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FIGURE 10. Proof-of-concept system architecture.

FIGURE 11. Emotiv five channels positions.

intention to others, and inferential reasoning. AF4 is in charge
of decision-making such as conflict and rewards, planning
and judgment. T7 and T8 are in the attribution of intentions
and Pz is for cognitive process.

IV. RESULTS
Our dataset included seven participants: one female
aged 28 years and six males aged between 21 and 33 years.
All participants were in good health and did not suffer from

TABLE 1. Demographics of Participants.

TABLE 2. Data labeling.

any brain illnesses. Table 1 shows the filtered demographics
of the subjects collected using the Java application.

More than 10,000 brainwaves were collected. However,
after applying several data filtering techniques including the
removal of noise signals and margin from the start and end of
each picture showing time, only 1550 brainwaves are ready to
be fed into the LSTM network. The final dataset is split into
three different sets: training (60% of entire dataset), testing
(40% of entire dataset) and validation set (40% of the training
dataset). The target dataset was labelled into four groups that
will be used as the final risk matrix where 0 indicating the
lowest risk and 3 the highest. Table 2 shows the labelling
using the library ‘‘Dummies.’’

Each picture in the OASIS library is attached with two
main values: Valence, which shows the degree of positive
or negative effect the image evokes, and Arousal, which
shows the intensity of the effect the image evokes. Each
of these two values has a scale from 1–7: a Valence value
of 1 reflects ‘‘very negative’’; 2, ‘‘moderately negative’’;
3, ‘‘somewhat negative’’; 4, ‘‘neutral’’; 5, ‘‘somewhat
positive’’; 6, ‘‘moderately positive’’; and 7, ‘‘very positive.’’
Further, for Arousal, 1 reflects ‘‘very low’’; 2, ‘‘moderately
low’’, 3, ‘‘somewhat low’’; 4, ‘‘neither low nor high’’; 5,
‘‘somewhat high’’; 6, ‘‘moderately high,’’ and 7, ‘‘very high.’’
We created a four-dimension risk matrix for mapping each
image group to one risk category as follows:
• Images with valence value equal to one are labeled as
zero: ‘‘High Risk’’

• Images with valence value equal to two and three are
labeled as one: ‘‘Medium Risk’’

• Images with valence value equal to four and five are
labeled as two: ‘‘Normal’’

• Images with valence value equal to six and seven are
labeled as three: ‘‘Low Risk’’

All images selected as part of this experiment had arousal
values more than five to ensure their intense impact on the
participants.
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TABLE 3. List of all inputs from Emotiv electrodes.

TABLE 4. LSTM model summary.

The input data to the LSTMnetwork are a collection of five
data inputs generated from each of the five Emotiv electrodes.
The input data are shown in Table 3

The neural network developed in this experiment had four
layers: three LSTM layers each with 128memories and 1 out-
putDense layer with the samememory size as the LSTMwith
the SoftMax activation function. The network was trained
using the mean absolute error loss function and the Adam
optimizer. Table 4 provides the summary of the model.

The model was learned from the training dataset
using 500 epochs. We then optimised the model with the
validation dataset using 500 steps. The validated model was
finally run on the test dataset for evaluation.With the architec-
ture we used, we managed to obtain 80.91% accuracy. Fig. 12
shows the model lost and accuracy changes over 500 epochs.

After the first 100 epochs, the training accuracy was sta-
bilized. This phenomenon was also shown with the val-
idation dataset. After the first 100 epochs, the accuracy
started decreasing slowly over the next 300 epochs until it
increased again over the last 100 epochs. The model loss
in both training and testing showed that it aligned with the
model accuracy. Over the first 100 epochs, it was unstable;
however, it stabilized over the last 400 epochs as shown in
Fig. 14.

FIGURE 12. Changes in accuracy and loss model.

Fig. 13 shows the confusion matrix with and without nor-
malization. As shown in the figure, it reaches an accuracy of
80.91%. Although we aim to obtain a result that is 90% or
above, the accuracy we achieved shows a great potential for
further research. True positives and true negatives are within
an acceptable level for the dataset with some level of false
positives and false negatives that are expected because of the
noise available in the dataset.

V. EXTENDED EXPERIMENT USING LOGISTIC
REGRESSION
A. INTRODUCTION
A Naive Bayes classifier is a probabilistic machine learning
model that is used for the classification task. The classifier is
based on Bayes theorem, which is used to determine the prob-
ability of the hypothesis happening, given that the evidence
has occurred. The assumption made here is that the predic-
tors/features are independent. The presence of one particular
feature does not affect the other. Hence, it is called naive.
The method can calculate conditional probability, which is
the probability of an event based on previous knowledge
available on the events.

B. ARCHITECTURE
Initially, the model needs to decide what to use as features.
It excludes things that may be known but are not useful to
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FIGURE 13. Emotiv five channels positions.

the model. The probability is transformed to calculate the
required result. For this, some basic properties of probabil-
ities, and the Bayes’ theorem are used.

From a statistical point of view, MLE sets the mean
and variance as parameters for determining the specific
parametric values for a given model. This set of parameters
can be used for predicting the data needed in a normal distri-
bution. The MLE assumes a joint probability mass function.

The Sigmoid function, also called the logistic function
gives an ‘S’ shaped curve that can accept any real-valued
number and map it to a value between 0 and 1. If the curve
goes to positive infinity, y predicted will become 1, and if the
curve goes to negative infinity, y predicted will become 0.

C. MATHEMATICAL IMPLEMENTATION
This is a special case of linear regression where the target
variable is categorical in the nature; it uses a log of odds as the
dependent variable. LR predicts the probability of occurrence
of a binary event by utilizing a logit function.

The liner regression equation is given as

y = β0+ β1X1+ β2X2+ . . .+ βnXn (8)

where y is the dependent variable and x1, x2 . . . , and Xn are
the explanatory variables.

FIGURE 14. Logistic regression architecture.

The Sigmoid function is given by

p =
1

1+ e−y
(9)

Applying the Sigmoid function on linear regression,

p =
1

1+ eβ0+β1X1+β2X2+...+βnXn
(10)

D. MODEL DEVELOPMENT
During the initial stage, the data set is prepossessed into a
suitable format for actual processing. The dataset is shuffled
using the re-index and the random permutation function,
and therefore, the test set contains all classes that achieve
better accuracy. Unnecessary features are dropped from the
dataset. Feature scaling is performed using the standard scaler
function to standardize the independent features present in
the data in a fixed range; it is performed during the data
pre-processing step to handle highly varying magnitudes or
values. Then, the dataset is split into the train and test sets;
with a test set size of 20%.

The LR is imported using LogisticRegression from
Sklearn. Gridsearch is used for parameter tuning that will
methodically build and evaluate the model for each combi-
nation of the algorithm parameters specified in a grid where
the parameters are a ‘‘penalty’’ that is used to specify the
norm used in the penalization, and ‘c’ is the inverse of the
regularization strength.

E. RESULT
1) ACCURACY
The model only achieved a train accuracy of 56% and a test
accuracy of 51%. It is the ratio of number of correct predic-
tions to the total number of input samples. The accuracy is
generated using the accuracy score metrics.

2) CONFUSION METRICS
The confusion matrix, also known as an error matrix, is a
specific table layout that allows the visualization of the per-
formance of the random forest algorithm. Confusion metrics
with and without normalization are created.

The confusion metrics with and without normalization are
generated for a wider range of analysis. The model only
attained about 51% accuracy, which is not really good. True
positives and true negatives are not at an acceptable level for
the dataset with several false positives and false negatives.
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FIGURE 15. Emotiv five channels positions.

VI. COMPARISON BETWEEN LSTM AND LOGISTIC
REGRESSION
The test accuracy reaches its optimal value in the case of the
LSTMmodel. The LSTMmodel can utilize the past activities
to predict the next activity and achieve the highest accu-
racy. Since the model is implemented using a deep learning
algorithm, it achieved higher complexity. The LSTM model
achieved 80.91% accuracy.

Further, the model is compared with the classical LR
method. Because the LSTM is more complex than LR, it is
understood that the solution achieves a considerably higher
accuracy than that of LR. Further, LR is less prone to over-
fitting but it can overfit in high-dimensional datasets. The LR
model achieved an accuracy of 51%.

VII. CONCLUDING REMARKS
This paper presented a novel deep-learning-based framework
that detects insider threats using human brainwaves. Brain-
waves were collected using EEG sensors from seven different
subjects and fed into an LSTM network to build a detection
model. This framework is particularly designed to protect
SCIIs’ assets using a comparatively reliable electrophysio-
logical monitoring method that cannot be manipulated or
controlled.

The theories of LSTM and its novel architecture were
applied to the problem of insider threats using EEG signals.
The network included three LSTM layers followed by a
single ‘‘Dense’’ layer, each with 128 neutrons. The ‘‘Dense’’
layer uses ‘‘SoftMax’’ as an activation function that has the
same number of nodes as the output layer, while both ‘‘mean
absolute error’’ is used as a loss function and ‘‘Adam’’ as the
optimizer. The usefulness and effectiveness of this architec-
ture has been proved by achieving an accuracy of 80.91%,
which outperformed the accuracy achieved in a similar work
with the H-ATT-BGRU model (66.5%) and random forest
(79.76%). The LR model only achieved 51% test accuracy
because the model over-fitted on high-dimensional datasets.

We believe that the proposed framework could be refined
to achieve a detection accuracy of 90% or more. To achieve
this, in the future, the dataset will be increased by collecting
additional samples while reducing the number of levels in
target classification. The reduction in the noise presented in
the dataset will also lead to an improvement in performance
significantly.

The future work will include tuning the parameters for
optimal performance and experimenting with other potential
algorithms to achieve higher accuracy.

APPENDIX
Python deep learning libraries were used for the develop-
ment of this novel EEG risk framework that identifies insider
threats in SCII using deep learning. The corresponding Ten-
sorFlow codes and the dataset are available at [32] for users
to reproduce the results obtained in this study.
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