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Abstract: Inspired by the Daley-Kendall and Goffman-Newill models, we propose an Ignorant-
Believer-Unbeliever rumor (or fake news) spreading model with the following characteristics: (i) a
network contact between individuals that determines the spread of rumors; (ii) the value (cost versus
benefit) for individuals who search for truthful information (learning); (iii) an impact measure that
assesses the risk of believing the rumor; (iv) an individual search strategy based on the probability
that an individual searches for truthful information; (v) the population search strategy based on the
proportion of individuals of the population who decide to search for truthful information; (vi) a payoff
for the individuals that depends on the parameters of the model and the strategies of the individuals.
Furthermore, we introduce evolutionary information search dynamics and study the dynamics of
population search strategies. For each value of searching for information, we compute evolutionarily
stable information (ESI) search strategies (occurring in non-cooperative environments), which are
the attractors of the information search dynamics, and the optimal information (OI) search strategy
(occurring in (eventually forced) cooperative environments) that maximizes the expected information
payoff for the population. For rumors that are advantageous or harmful to the population (positive
or negative impact), we show the existence of distinct scenarios that depend on the value of searching
for truthful information. We fully discuss which evolutionarily stable information (ESI) search
strategies and which optimal information (OI) search strategies eradicate (or not) the rumor and the
corresponding expected payoffs. As a corollary of our results, a recommendation for legislators and
policymakers who aim to eradicate harmful rumors is to make the search for truthful information
free or rewarding.

Keywords: fake news; rumor spreading; Nash equilibrium; evolutionarily stable strategies;
evolutionary information search dynamics

1. Introduction

The theory of rumor (or fake news) spreading proposed by Daley and Kendall [1,2] became known
as the DK model, in which a population is divided into three different groups: ignorants—people
who are ignorant concerning the rumor; spreaders—people who actively spread the rumor;
and stiflers—people who have heard the rumor but are no longer interested in spreading it. Goffman
and Newill [3] also published a paper in 1964 that generalized epidemic theory and provided a clear
analogy between the spreading of infectious disease and the transmission of ideas. In the subsequent
years, several authors developed the theory of rumor spreading, proposing new models using
complex networks [4], transitions capable of describing different issues in the transmission process [5],
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and Lévy noise [6]. In this paper, we develop a game-theoretical approach for a network-extended
version of the rumor spreading models proposed in [1,3], using the ideas developed by Bauch and
Earn [7] for the well-known Susceptible-Infected-Recovered (SIR) epidemiological model. Furthermore,
the topic of fake news is quantified in terms of the value of searching for truthful information (learning),
the impact of believing the fake rumor, and the individual’s payoff, which is of paramount importance
in academia.

Rumors and fake news can be considered a form of cheating. Individuals might be pushed toward
risk-seeking or loss aversion on the basis of their feelings (see [8]). Political news can have a strong
effect on stock prices (see [9]). In terms of the outbreak of COVID-19, information on social media can
lead to numerous negative behaviors that can reduce vaccination coverage and the use of COVID alert
applications (see [10]). On the other hand, rumors and fake news do not necessarily have negative
impacts. An extreme example occurred during the Cold War: the propaganda machines from the
American and Soviet sides spread numerous rumors about (i) the intentions of their rivals and (ii) the
achievements of their countries in several areas (e.g., science, business, and industry). These rumors
served the purpose of contributing to improvements in the well-being of both populations. If we see
a rumor as an exaggerated piece of information with an essence of truth, then it can have a positive
impact on the population. Another example occurred during World War II, when many rumors were
spread concerning Nazi Germany. Although some news was fake, it served the purpose of boosting
the morale of the Allied population and the troops. Hence, fake news can have either a negative or a
positive impact on an individual’s behavior.

In the Ignorant-Believer-Unbeliever (IBU) rumor (or fake news) spreading dynamical model,
individuals are spatially distributed in a network and can be either ignorants, believers, or unbelievers
regarding a certain rumor. When a rumor appears in a population, individuals will act differently
depending on their beliefs about the rumor. If an individual believes the rumor, then he/she will
spread the rumor to his/her neighbors. On the other hand, individuals who do not believe the
rumor will not act as active spreaders. This spreading dynamical model is fully inspired by the SIR
epidemiological model. The impact measure y of the rumor evaluates the gains and losses resulting
from individuals’ decisions, provoked by their beliefs in the rumor. The value v of searching for
truthful information (learning), instead of just believing the rumor, has natural benefits and costs to the
individual. Each ignorant individual has his/her own information search strategy S based on his/her
probability of searching for truthful information per unit of time. The population’s information search
strategy s is the proportion of ignorant individuals who will choose to search for truthful information
per unit of time. For instance, if all ignorant individuals follow the same strategy S (homogeneous
strategy), then s = S. For an ignorant individual, we introduce the expected information search payoff,
which depends on (i) his/her information search strategy S; (ii) the population information search
strategy s; (iii) the value v of searching for truthful information; (iv) the impact measure y of the rumor;
and (v) the spread dynamics of the rumor.

A population information search strategy S is a Nash equilibrium if not a single individual has
an incentive to change his/her information search strategy to any other strategy S′ 6= S (see [11]).
A population information search strategy S is an evolutionarily stable information search strategy if
any small group of individuals that tries to adopt a different strategy S′ obtains a lower payoff than
those adopting the original strategy S (see [11]). Evolutionarily stable information search strategies
are Nash strategies that are practiced by individuals in non-cooperative environments. A population
information search strategy S is an optimal information search strategy if it maximizes the payoffs
of individuals. Optimal information search strategies are practiced by individuals in (eventually
forced) cooperative environments. Here, we fully characterize the triples (v, y, S), where S is (i) a Nash
strategy, (ii) an evolutionarily stable information search strategy, or (iii) an optimal information search
strategy; v is the value of searching for information; and y is the impact measure of believing a false
rumor (fake news). Finally, we introduce evolutionary information searching dynamics following the
replicator dynamics theory [11–13], where the search strategies evolve over time to increase the payoffs
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of individuals. Evolutionarily stable information search strategies are the attractors of the dynamics;
i.e., over time, the population search strategy tends toward the evolutionarily stable information search
strategy (and not necessarily to the optimal information search strategies).

For rumors that are advantageous to the population (positive impact y > 0), three distinct
scenarios occur, depending on the value of searching for truthful information: (i) for high positive
values of searching, both evolutionarily stable information (ESI) and optimal information (OI)
search strategies coincide, and all individuals search for truthful information, eradicating the rumor;
(ii) (bi-stability) for small positive values of searching, there are two ESI search strategies: either all
individuals search for truthful information (eradicating the rumor in non-cooperative environments),
or no one searches for truthful information (persistence of the rumor in non-cooperative environments),
and the OI search strategy jumps (at the right-boundary of this bi-stability region) from no one
searching (persistence of the rumor in cooperative environments) to all individuals searching
(eradicating the rumor in cooperative environments); (iii) for negative values of searching, we show
that both ESI and OI search strategies coincide, and no individuals search for truthful information,
and thus, the rumor persists.

For rumors that are harmful to the population (negative impact y < 0), we show the existence
of three distinct scenarios that occur, depending on the value of searching for truthful information:
(i) for positive values of searching, both ESI and OI search strategies coincide, and all individuals
search for truthful information, eradicating the rumor; (ii) for small negative values of searching, the OI
search strategy coincides with the critical probability that is necessary to eradicate the rumor, and thus,
the rumor is eradicated in cooperative environments, but the ESI search strategy is less successful than
the OI search strategy, so, unfortunately, the rumor persists in non-cooperative environments; (iii) for
highly negative values of searching, both ESI and OI search strategies coincide, and no individuals
search for truthful information, and thus, the rumor persists. Hence, a recommendation for legislators
and policymakers who aim to eradicate harmful rumors is to make the search for truthful information
free or rewarding, i.e., information search value v ≥ 0. For instance, truthful public social media
campaigns can help by making the information easily available.

This paper is organized as follows. In Section 2, we introduce the IBU rumor spreading model for
networks. In Section 3, we introduce a utility for individuals that depends on the value of information
and the impact of believing the rumor. Nash and evolutionarily stable information search strategies are
completely characterized. In Section 4, optimal information search strategies are deduced for different
values of information. In Section 5, we introduce evolutionary information search dynamics and study
its attractors. Section 6 provides the conclusions of the paper and directions for future research work.

2. The IBU Spreading Model on Regular Networks

Inspired by the work in [1,3], we propose the Ignorant-Believer-Unbeliever (IBU) dynamic model
for rumor spreading based on the classical Susceptible-Infected-Recovered (SIR) epidemic model
(see also [14,15]). Individuals can be either Ignorants, Believers, or Unbelievers of a certain rumor.
The IBU model is directly analogous to the SIR model:

S—Susceptibles correspond to I—Ignorants,
I—Infected individuals correspond to B—Believers of the rumor,
R—Recovered individuals correspond to U—Unbelievers of the rumor.

Individuals who believe the rumor are the active spreaders: i.e., they are the individuals who
transmit the rumor to ignorant individuals. Once a believer stops believing the rumor and becomes an
unbeliever, he/she will stop transmitting the rumor. Hence, unbelievers are not active spreaders. As in
epidemiology [10], a transition corresponding to vaccination is introduced in the model. This transition
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is due to information search activities that can be voluntarily adopted by an ignorant individual. State
transitions in the IBU model are illustrated in Figure 1 and defined by the following reaction scheme:

Ii +Bj
β−→ Bi +Bj

Bi
γ−→ Ui

Ii
ν−→ Ui

Ii,Bi,Ui
µ−→ Ii.

Figure 1. The compartmental Ignorant-Believer-Unbeliever (IBU) rumor spreading model.

The individual state variables Ii, Bi, and Ui ∈ {0, 1} identify the state of individual i, restricted to
the condition that the individual belongs to one of the three classes. Hence,

Ii +Bi +Ui = 1.

The parameters of the model have the following interpretation: β is the rate at which one believer
individual spreads the rumor; µ is the mean birth and death rates, and thus, 1/µ is the mean life
expectancy at birth; γ is the rate at which a believer stops believing the rumor and stops spreading
it, and thus, 1/(γ + µ) is the mean believing/spreading period; ν is the information search rate,
i.e., the rate at which an ignorant individual searches for real information and become an unbeliever.

Let us assume that a population is fixed in size with N individuals; hence,

N

∑
i=1

(Ii +Bi +Ui) = N.

To describe the neighbor structure of individuals in the population, we consider the N × N
adjacency matrix J with elements Ji,j ∈ {0, 1} such that: if individual i is a neighbor of j, then
Ji,j = 1, and if individual i is not a neighbor of j, then Ji,j = 0. The matrix J is symmetric with zero
elements in the diagonal. Let {I1,B1,U1, ..., Ii,Bi,Ui, ...,UN} denote a certain state of the population,
and let p(I1,B1,U1, ..., Ii,Bi,Ui, ...,UN , t) be the probability of that state occurring at time t. The time
evolution of p(I1,B1,U1, ..., Ii,Bi,Ui, ...,UN , t) is described by a master equation [16] given by an
ordinary differential equation (ODE) system that models the probabilistic combination of states and the
switching between those states depending on the transition rates of the mathematical model and the
spatial structure of the population. Following Glauber’s Ising spin dynamics [17] or Stollenwerk et al.’s
reinfection SIRI model [18,19], the master equation for the IBU spreading model is given by
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d
dt

p (I1,B1,U1, ..., Ii,Bi,Ui, ...,UN , t)

=
N

∑
i=1

β

(
N

∑
j=1

JijBj

)
(1− Ii) p(I1,B1,U1, ..., 1− Ii, 1−Bi,Ui...,UN , t)

+
N

∑
i=1

γ (1−Bi) p(I1,B1,U1, ..., Ii, 1−Bi, 1−Ui...,UN , t)

+
N

∑
i=1

ν(1− Ii) p(I1,B1,U1, ..., 1− Ii,Bi, 1−Ui...,UN , t)

(1)

+
N

∑
i=1

µ

[
(1− Ii) p(I1,B1,U1, ..., 1− Ii,Bi,Ui...,UN , t)

+ (1−Bi) p(I1,B1,U1, ..., 1− Ii, 1−Bi,Ui...,UN , t)

+ (1−Ui) p(I1,B1,U1, ..., 1− Ii,Bi, 1−Ui...,UN , t)

]

−
N

∑
i=1

[
β

(
N

∑
j=1

JijBj

)
Ii + γ Bi + νIi + µ (Ii +Bi +Ui)

]
p(...Ii,Bi,Ui...).

The expectation value for the total number of ignorant individuals in the population at a given
time t is defined by

〈I〉 =
1

∑
I1=0

1

∑
B1=0

1

∑
U1=0

1

∑
I2=0

...
1

∑
UN=0

(
N

∑
i=1

Ii

)
· p(I1,B1,U1, I2, ..., UN , t), (2)

and its time evolution is given by

d
dt
〈I〉 =

1

∑
I1=0

1

∑
B1=0

1

∑
U1=0

1

∑
I2=0

...
1

∑
UN=0

(
N

∑
i=1

Ii

)
· d

dt
p(I1,B1,U1, I2, ..., UN , t). (3)

Inserting the master equation into Equation (3), after some computations, we obtain the dynamic
equation for the mean quantity of ignorant individuals in the population:

d
dt
〈I〉 = −β 〈IB〉1 − ν〈I〉 − µ〈I〉+ µ(〈I〉+ 〈B〉+ 〈U〉). (4)

Similarly, for the expectation value of the total number of believers and unbelievers, we obtain
the following dynamic equations:

d
dt
〈B〉 = β 〈IB〉1 − γ〈B〉 − µ〈B〉 (5)

d
dt
〈U〉 = γ〈B〉+ ν〈I〉 − µ〈U〉. (6)

The dynamics of the first moments depend on the second moment:

〈IB〉1 =
1

∑
I1=0

1

∑
B1=0

1

∑
U1=0

1

∑
I2=0

...
1

∑
UN=0

(
N

∑
i=1

N

∑
j=1

(J1)ijIiBj

)
· p(I1,B1,U1, I2, ..., UN , t)
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which is the mean number of ignorant and believer neighbors. We can now proceed by computing
the dynamic equation for the second moment 〈IB〉1, or we can close the ODE system (4)–(6) by
approximating 〈IB〉1 by a mathematical formula involving only the first moments 〈I〉, 〈B〉, and 〈U〉.
Here, we close the ODE system (4)–(6) using the mean-field approximation.

Let us assume that the individuals in the population are distributed in a regular network, where all
individuals have the same number of neighbors Q, and hence,

N

∑
j=1

Jij = Q .

In the mean-field approximation, the exact number of believers who are neighbors of a certain
individual i is approximated by the average of the number of believers in the entire population:

N

∑
j=1

JijBj ≈ Q
〈B〉
N

, ∀ i = 1, ..., N.

Hence, the second moment 〈IB〉1 is approximated by

〈IB〉1 ≈
Q
N
〈I〉〈B〉,

and the ODE system (4)–(6) transforms into the closed system

d
dt
〈I〉 = −β

Q
N
〈I〉〈B〉 − ν〈I〉 − µ〈I〉+ µ(〈I〉+ 〈B〉+ 〈U〉) (7)

d
dt
〈B〉 = β

Q
N
〈I〉〈B〉 − γ〈B〉 − µ〈B〉 (8)

d
dt
〈U〉 = γ〈B〉+ ν〈I〉 − µ〈U〉. (9)

We observe that more complex ODEs can be obtained by using higher-order moment closures
(see [18,20]).

Next, let the normalized state variables I(t) = 〈I〉/N, B(t) = 〈B〉/N and U(t) = 〈U〉/N
denote the mean densities of ignorant, believer, and unbeliever individuals in the population; then,
we normalize the time scale τ = (γ + µ)t by the mean believing/spreading period 1/(γ + µ). Hence,
I(τ) + B(τ) + U(τ) = 1 and Equations (7)–(9) are rescaled to the following ODE system:

dI
dτ

= −R0BI − (s + f )I + f (10)

dB
dτ

= R0BI − B (11)

dU
dτ

= (1− f )B + sI − f U ; (12)

where

(a) f = µ/(γ + µ) > 0, typically very small, is the mean birth and death rates in the time unit given
by the mean believing/spreading period (τ);

(b) s = ν/(γ + µ) is the information search rate in the time unit (τ); and
(c) R0 = βQ/(γ + µ) is the so-called basic reproductive number R0 (see [21]) in epidemiological

models: i.e., R0 is the rate at which the expected number of ignorant individuals become believers
through the influence of the expected number of believer/spreader individuals in the time unit (τ).
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Stable Stationary States

Let the stationary values of ignorants, believers, and unbelievers of the rumor be denoted by I∗,
B∗, and U∗, respectively.

The stationary states of the ODE system (10)–(12) are given by

I∗0 =
f

s + f
, B∗0 = 0 and U∗0 =

s
s + f

, (13)

and by

I∗ =
1

R0
(14)

B∗ = f
(

1− 1
R0

)
− s

R0
≥ 0 (15)

U∗ = (1− f )
(

1− 1
R0

)
+

s
R0

. (16)

From Equation (15), we observe that the believers’ stationary state decreases linearly with the
information search rate s (see also Figure 2), and the critical information search rate, which is the rate
at which the believers’ stationary state vanishes, is

sC = f (R0 − 1). (17)

Since f is a small number, we assume in this paper that 0 < sC = f (R0 − 1) < 1. We observe that
the stationary states (I∗, B∗, U∗) only hold for s ≤ sC because of the natural restriction that B∗ ≥ 0.
If s = sC, then there is a single equilibrium (I∗0 , B∗0 , U∗0 ) = (I∗, B∗, U∗).

0 0.1 0.2 0.3 0.4 0.5

s

0

0.002

0.004

0.006

0.008

0.01

B
* (s

)

R
0
 = 2

R
0
 = 10

R
0
 = 20

0 0.1 0.2 0.3 0.4 0.5

s

0

0.2

0.4

0.6

0.8

1

P
(s

)

R
0
 = 2

R
0
 = 10

R
0
 = 20

Figure 2. (left) The stationary value of believers B∗(s) and (right) the probability that an ignorant
individual does not search for real information to become believer P(s), which depends on the
information search rate s. The other parameter is f = 0.01.

Lemma 1. For s < sC, the stationary states (I∗0 , B∗0 , U∗0 ) are unstable, and the stationary states (I∗, B∗, U∗)
are stable. Furthermore, for s > sC, the stationary states (I∗0 , B∗0 , U∗0 ) are stable.
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Proof. The Jacobean matrix of the ODE system (10)–(12) is given by

J(I, B, U) =


−R0 B− s− f −R0 I 0

R0 B R0 I− 1 0

s 1− f − f


The eigenvalues of the Jacobean matrix J(I∗0 , B∗0 , U∗0 ) are

λ1 = − f , λ2 = −s− f and λ3 =
f (R0 − 1)− s

s + f
.

Hence, all eigenvalues have a negative real part if and only if s > f (R0− 1) = sC. The eigenvalues
of the Jacobean matrix J(I∗, B∗, U∗) are

λ1 = − f , λ2 = −1/2 f R0 − 1/2
√

f 2R0
2 + 4 s + 4 f − 4 f R0 and

λ3 = −1/2 f R0 + 1/2
√

f 2R0
2 + 4 s + 4 f − 4 f R0 .

Hence, all eigenvalues have a negative real part if and only if

f 2R2
0 > f 2R0

2 + 4 s + 4 f − 4 f R0.

This is equivalent to s < f (R0 − 1) = sC.

3. Nash and Evolutionarily Stable Information Search Strategies

In this section, we consider a game in which individuals have to decide between searching
and not searching for real information to avoid believing the false rumor. Here, we define the Nash
and evolutionarily stable information search strategies (see [7,10,11]).

S denotes the probability that an ignorant individual will choose to search for information.
This probability S is the individual’s information search strategy in the game. The uptake level of
searching for information in the population is the proportion of individuals who will choose to search
for real information, i.e., the mean of all information search strategies. We denote the uptake level of
searching for information by s, i.e., the population information search strategy.

Let bL and cL denote the benefits and the costs of searching for information, respectively,
and let v = bL − cL denote the value of the information search. We define the payoff of an ignorant
individual who searches for real information and does not believe in the false rumor by v.

Let bB and cB denote the benefits and the costs of believing the rumor, respectively,
and let y = bB − cB denote the impact measure that assesses the risk of believing the rumor.

Let P(s) denote the probability that an ignorant individual, who does not search for real
information, becomes a believer for a proportion s of individuals in the population who search for
information. The probability P(s) uses the stable stationary states of ignorant and believer individuals
computed in Lemma 1:

P(s) =
R0B∗ I∗

R0B∗ I∗ + f I∗
=

f (R0 − 1)− s
f R0 − s

, i f s < sC. (18)

If s ≥ sC, then B∗ = 0, and thus, P(s) = 0 (see Figure 2). In particular, P(0) = (R0 − 1)/R0.
We define the payoff of an ignorant individual who does not search for real information and believes
the rumor by

yP(s).



Entropy 2020, 22, 1368 9 of 18

The expected information search payoff E(S, s) of an individual with an information search strategy
S in a population with an information search strategy s is

E(S, s) = vS + yP(s)(1− S)

= yP(s) + S(v− yP(s)). (19)

Nash and evolutionarily stable information search strategies are the typical strategies studied in
game theory (see [10,12]).

A population information search strategy s = S∗ is an information search Nash equilibrium if

∆S∗→S′ = E(S′, S∗)− E(S∗, S∗) ≤ 0 , (20)

for every strategy S′ ∈ [0, 1]. By Equation (19), an information search strategy S∗ is a Nash equilibrium
if and only if

(S′ − S∗)(v− yP(S∗)) ≤ 0.

Let W ≡ y(R0 − 1)/R0 be the threshold for believing a rumor, where (R0 − 1)/R0 = P(0).
The remark below follows, for instance, from Lemma 1 in [10].

Remark 1. An information strategy S∗ is a Nash equilibrium if and only if S∗ satisfies one of the
following conditions:

(a) S∗ = 0 and v ≤W, with
E(0, 0) = W; or

(b) S∗ ∈ (0, 1) and v = yP(S∗), with P(S∗) < P(0) and

E(S∗, S∗) = yP(S∗) = v; or

(c) S∗ = 1 and v ≥ 0, with
E(1, 1) = v.

Hence, for every S∗ > 0, E(S∗, S∗) = v is constant, with |v| < |W|. We observe that (i) for every
S∗ ∈ (0, sC), P(S∗) > 0, and (ii) for every S∗ ∈ [sC, 1), P(S∗) = 0, and thus, E(S∗, S∗) = 0 = v.
In Figure 3, we plot the Nash information search strategies s = S∗ for each mixed Nash strategy with
the value of information v = yP(s) and for pure Nash strategies S∗ = 0 and S∗ = 1.

To define an evolutionarily stable information search strategy, we start by assuming that all
individuals in the population opt for an individual information search strategy S. If a group of size ε

chooses a different individual information search strategy S′, then the population information search
strategy becomes

s(ε) = (1− ε)S + εS′.

A population information search strategy S∗ is a left evolutionarily stable information search strategy
if there is a ε0 > 0 such that for every ε ∈ (0, ε0) and for every S′ < S∗,

∆ES∗→S′(s(ε)) = E(S′, s(ε))− E(S∗, s(ε)) = (S′ − S∗) (v− yP(s(ε))) < 0 .

The definition of a right evolutionarily stable information search strategy is similar. A population
information search strategy S∗ is an evolutionarily stable information search strategy if it is a left and right
evolutionarily stable strategy.
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Figure 3. Nash and evolutionarily stable information search strategies s, depending on the information
search values v. On the (left), a negative impact measure y = −1 is considered, and on the (right),
a positive impact measure y = 1 is considered. The blue line corresponds to Nash equilibria (that are
not ESI strategies), and the black line corresponds to evolutionarily stable information (ESI) search
strategies. Other parameter values: R0 = 20, f = 0.01, and sC = 0.19.

Theorem 1. A Nash search strategy S∗ is an evolutionarily stable information (ESI) search strategy if and only
if S∗ satisfies one of the following conditions:

(i) For positive impact measures y ≥ 0,

(a) S∗ = 0 and v < yP(0); or
(b) S∗ = 1 and v > 0.

(ii) For negative impact measures y ≤ 0,

(a) S∗ = 0 and v ≤ yP(0); or
(b) S∗ ∈ (0, sC) and v = yP(S∗); or
(c) S∗ = 1 and v > 0.

Moreover, S∗ is a Nash equilibrium and a left (and not a right) evolutionarily stable information search
strategy if and only if S∗ = sC, v = 0, and y > 0.

Hence, S∗ is a Nash equilibrium and not an evolutionarily stable information search strategy if
S∗ ∈ [0, 1] and v = yP(S∗) and y > 0.

In Figure 3, we plot the evolutionarily stable information search strategies s = S∗ for each value v
of searching for information.

Proof. The proof follows from Lemma 2 in [10], noting that v is negative and P(S∗) is strictly decreasing
for S∗ ∈ (0, sC).

4. Optimal Strategies

In this section, we compute the optimal information (OI) search strategy for every value of
searching for information and every value of the rumor impact measure, under the assumption
that all individuals adopt the same information search strategy s = S (homogeneous strategy).
Let sC = f (R0 − 1) be the critical information search strategy. Let

Ẽ(s) ≡ Ẽ(s; v) = vs + yP(s)(1− s),

for 0 ≤ s ≤ sC.
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Lemma 2. Assume that f is sufficiently small, where f < 1/R0.

(i) Ẽ′′(s) < 0 for positive impact measure values y > 0;
(ii) Ẽ′′(s) = 0 for null impact measure values y = 0; and
(iii) Ẽ′′(s) > 0 for negative impact measure values y < 0.

Proof. We have

Ẽ′′(s) = y
(
P′′(s)(1− s)− 2P′(s)

)
.

We observe that Ẽ′′(s)/y < 0 is equivalent to 2P′(s) > P′′(s)(1− s). By Equation (18), we have
P′(s) = − f /( f R0 − s)2 and P′′(s) = −2 f /( f R0 − s)3. Thus, 2P′(s) > P′′(s)(1− s) is equivalent to

−2 f /( f R0 − s)2 > −2 f /( f R0 − s)3.

Hence, we conclude that Ẽ′′(s)/y < 0 is equivalent to f R0 < 1.

By Equation (19), the expected information search payoff is given by

E(s; v) ≡ E(s, s; v) =

{
Ẽ(s; v) i f s ≤ sC
vs i f s > sC

. (21)

Since P(sC) = 0, we note that Ẽ(sC; v) = v sC, and thus, E is a continuous function (see also
Figure 4). The optimal information (OI) search strategy (or strategies, eventually) is

sO ≡ sO(v) = arg max
0≤s≤1

E(s; v).

The expected payoff of the optimal information search strategy is EO(v) = E(sO(v); v). Let sESI(v)
denote the evolutionarily stable information search strategy (or strategies, eventually). The expected
payoff of the evolutionarily stable information search strategy is EESI(v) = E(sESI(v); v). Let sNash(v)
denote the Nash search strategy (or strategies, eventually) that are not evolutionarily stable information
search strategies. The Nash expected payoff is ENash(v) = E(sNash(v); v).
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Figure 4. The expected information search payoff, depending on the information search strategy s,
for different information search values v. On the (left), a negative impact measure y = −1 is considered,
and on the (right), a positive impact measure y = 1 is considered. Other parameter values: f = 0.01,
R0 = 20, and sC = 0.19.

4.1. The OI Search Strategy for a Positive Impact Measure

Throughout this section, let us assume that the impact measure is positive y > 0. Hence,
by Lemma 2 (see also Figure 4), for v 6= 0, Ẽ is strictly concave, and thus, the optimal information
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search strategy is a pure strategy (0 or 1) or a mixed strategy sC or sM(v), where sM(v) is the interior
maximum point of Ẽ(s; v) (when it exists).

Let U = y( f R0(R0 − 1) + 1)/( f R2
0) be the positive information search threshold. Note that

0 < W < U.

Lemma 3. Assume that f is small, where f < 1/R0. For a positive impact measure y > 0, the optimal
information (OI) search strategy is

(a) for v < W, sO(v) = 0, with E(sO(v)) = W;
(b) sO(W) ∈ {0, 1}, with E(sO(W)) = W; and
(c) for v > W, sO(v) = 1, with E(sO(W)) = v.

For a null impact measure y = 0, optimal information (OI) search strategies are similar to those
described above, observing that sO(0) ∈ [0, 1] (note that W = 0).

Proof. Since Ẽ is strictly concave, if E′(0) ≤ 0, then 0 or 1 is the maximum of E. Hence, let us compute
the following for E′(0) ≤ 0. The first derivative of the expected payoff is

E′(s) = v− y(P(s) + (s− 1)P′(s)).

Since P(0) = (R0 − 1)/R0 and P′(0) = −1/( f R2
0), we have E′(0) = v−U. Hence, E′(0) ≤ 0 if

and only if v ≤ U. Therefore, for v ≤ U, 0 is the maximum point of E when E(0) ≥ E(1), and 1 is the
maximum point of E when E(0) ≤ E(1). Recall that E(0) = W and E(1) = v. Hence, E(0) ≥ E(1) if
and only if v ≤W.

Finally, for v > U > 0, let us prove that 1 is the maximum of E. This follows from the confirmation
that E(s) < E(1) for every s ≤ sC. We observe that E(s) < E(1) if and only if

s < f R0 +
y f

v− y
.

Since sC = f (R0 − 1), we confirm that the equivalence between

sC = f (R0 − 1) < f R0 +
y f

v− y

and −y(1− f ) < f v holds because of −y(1− f ) < 0 < f v. Hence,

s ≤ sC < f R0 +
y f

v− y
,

which concludes the proof.

Remark 2. Assume that f is small, where f < 1/R0, and the impact measure is positive y > 0.

(a) sESI(v) = sO(v) = 0, for v < 0;
(b) 0 = sO(0) < sNash(0) ∈ [sC, 1];
(c) 0 = sO(v) < sNash(v) < 1 and sESI(v) ∈ {0, 1}, for 0 < v < W;
(d) 0 = sNash(W) < sESI(W) = 1 and sO(W) ∈ {0, 1}; and
(e) sESI(v) = sO(v) = 1, for v > W.

For the null impact measure y = 0, the comparison is similar to that described above, observing
that sO(0), sNash(0) ∈ [0, 1] (note that W = 0).

By Lemma 3 and Remark 2, (i) for small values of the information search v ≤ W, the optimal
strategy sO = 0 coincides with the evolutionarily stable information search strategy sESI = 0, in which
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individuals never search for truthful information; (ii) for positive values of the information search
v ≥W, the optimal strategy sO = 1 coincides with the evolutionarily stable information search strategy
sESI = 1, in which individuals always search for truthful information. In Figure 5, we compare
the expected payoff of the evolutionarily stable information search EESI(v) with that of the optimal
information search, denoted by EO(v).
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Figure 5. The expected information search payoff E(s; v), depending on the value of the information
search v for different search strategies s: critical search strategy sC, OI search strategy sO, ESI search
strategy sESI , and Nash strategy sNash. On the (left), a negative impact measure y = −1 is considered,
and on the (right), a positive impact measure y = 1 is considered. The other parameter values are
f = 0.01 and R0 = 20. Hence, V = −5 and W = −0.95 (left) or W = 0.95 (right).

4.2. The OI Search Strategy for a Negative Impact Measure

Throughout this section, let us assume that the impact measure is negative y < 0. Hence,
by Lemma 2 (see also Figure 4), Ẽ is strictly convex, and thus, the optimal information search strategy
is a pure strategy (0 or 1) or a mixed strategy sC for v 6= 0. Let V = y/( f R0) < 0 be the negative
information search threshold.

Lemma 4. Assume that f is small, where f < 1/R0. For a negative impact measure y < 0, the optimal
information (OI) search strategy is

(a) for v < V, sO(v) = 0, with E(sO(v)) = W;
(b) sO(V) ∈ {0, sC}, with E(sO(V)) = W;
(c) for V < v < 0, sO(v) = sC, with

E(sO(v)) = vsC = v f (R0 − 1) = vW/V;

(d) sO(0) ∈ [sC, 1], with E(sO(0)) = 0; and
(e) for v > 0, sO(v) = 1, with E(sO(v)) = v;

Proof. Since Ẽ(s; v) is a linear function in v, there is only one value V = y/( f R0) < 0 such that
Ẽ(0; V) = Ẽ(sC; V). Furthermore, E(0; v) > E(sC; v) if and only if v < V. (a) If v < V < 0,
E(0; v) > E(sC; v) and, by linearity, E(sC; v) > E(1; v). Hence, sO(v) = 0. (b) If v = V < 0,
E(0; V) = E(sC; V) and, by linearity, E(sC; V) > E(1; V). Hence, sO(V) = 0 or sO(V) = sC.
(c) If V < v < 0, E(sC; v) > E(0; v) and, by linearity, E(sC; v) > E(1; v). Hence, sO(v) = sC. (d) If v = 0,
E(sC; v) > E(0; v) and, by linearity, E(s; 0) = E(sC; 0) for all s ∈ [sC, 1]. Hence, sO(0) ∈ [sC, 1].
(e) If v > 0, E(sC; v) > E(0; v) and, by linearity, E(1; v) > E(sC; v). Hence, sO(v) = 1.

Since V = y/( f R0) < y(R0 − 1)/R0 = yP(0) ≡W, we state the following remark.
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Remark 3. Assume that f is small, where f < 1/R0 and the impact measure is negative y < 0.

(a) sESI(v) = sO(v) = 0, for v < V;
(b) sESI(V) = 0, sO(V) ∈ {0, sC};
(c) sESI(v) = 0 < sC = sO(v), for V < v < W;
(d) 0 < sESI(v) = P−1(v) < sC = sO(v), for W < v < 0;
(e) sNash(0), sO(0) ∈ [sC, 1]; and
(f) sESI(v) = sO(v) = 1, for v > 0;

By Lemma 4 and Remark 3, (i) for small values of searching for information v ≤ V, the optimal
strategy sO = 0 coincides with the evolutionarily stable information search strategy sESI = 0, in which
individuals never search for truthful information; (ii) for positive values of searching for information
v > 0, the optimal strategy sO = 1 coincides with the evolutionarily stable information search strategy
sESI = 1, in which individuals always search for truthful information; (iii) for intermediate values of
searching for information V < v < 0, the optimal strategy coincides with the critical information search
rate sC, which eradicates the rumor. This value is above the value given by the evolutionarily stable
information search strategy sESI that is not able to eradicate the rumor and yields a lower expected
information search payoff EESI(v) < EO(v) (see Figure 5).

5. Evolutionary Information Search Dynamics

Evolutionary information search dynamics is introduced here (see [11–13]), under the assumption
that all individuals adopt the same information search strategy s = S (homogeneous strategy).

Consider a case in which a small group of individuals of size ε modify their search strategy from
the population information search strategy S to S + ∆S. The change in the expected information search
payoff satisfies

∆ES→(S+∆S)

∆S
=

E(S + ∆S, s(ε))− E(S, s(ε))
∆S

= v− yP(s(ε)) , (22)

where s(ε) = (1− ε)S + ε(S + ∆S) = S + ε∆S defines the new population search strategy.
Let s(τ) be the population information search strategy adopted at time τ. Hence, we define the

evolutionary information search dynamics by

d s
dτ

= η(s) lim
∆S→0

∆ES→(S+∆S)

∆S
= η(s)(v− yP(s)), (23)

where η(s) ≥ 0 is a smooth map that measures the information search strategy adaptation speed of
the population.

A point s is a dynamic equilibrium of the evolutionary information search dynamics if and only if
ds/dτ = 0. Hence, a point s is a dynamic equilibrium if and only if

(i) η(s) = 0 or (ii) v = yP(s).

Recall that f is assumed to be small, and thus, sC = f (R0 − 1) < 1; P(1) = 0, and W = yP(0)
is the rumor belief threshold. As usual (see [10]), we assume the following for η: (i) η(s) > 0, for all
0 < s < 1; (ii) if v < W, then η(0) = 0 and η′(0) > 0; (iii) if v > W, then η(0) > 0; (iv) if v > 0,
then η(1) = 0 and η′(1) < 0; and (v) if v < 0, then η(1) > 0.

We use the standard definition of left, right, and global attractors for a dynamic equilibrium p
(see [10]).
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Theorem 2. Assume that f is small, where f (R0 − 1) < 1.

(i) For negative impact measures y ≤ 0, the dynamic equilibria of the evolutionary information search
dynamics are as follows:

(a) for v < 0, the evolutionarily stable information search strategy sESI(v) is a global attractor;
(b) for v = 0, the Nash information search strategies sNash(v) ∈ [sC, 1] are equilibria points, and sC is

a left (and not right) attractor;
(c) for v > 0, the evolutionarily stable information search strategy sESI(v) = 1 is a global attractor.

(ii) For positive impact measures y ≥ 0, the dynamic equilibria of the evolutionary information search
dynamics are as follows:

(a) for v < W, the evolutionarily stable information search strategy sESI(v) = 0 is an attractor
(also global for v < 0);

(b) for 0 ≤ v ≤W, the Nash information search strategies sNash(v) are dynamical equilibria, but not
attractors; and

(c) for v > 0, the evolutionarily stable information search strategy sESI(v) = 1 is an attractor
(also global for v > W).

In Figure 6, we show the dynamics described above. For advantageous rumors, we observe
the existence of a bi-stability region, where the evolutionarily stable information search strategies
in which no one searches (persistence of the rumor) or everyone searches (eradication of the rumor)
are the attractors, and the Nash equilibria form the boundary of the basins of attraction of the two
attractors. Hence, the Nash equilibria are unstable equilibria and are thus not observed (at least
for large periods), but have the interesting property of determining the basin of attraction of the
attractors. For harmful rumors, we observe that for negative values of the information search
v < 0, the evolutionary information search dynamic drives the population search strategy to an
evolutionarily stable information search strategy that is lower than the critical information search rate
sESI < sC. Hence, to eradicate the rumor, a forcing mechanism must be implemented to increase the
population search strategy to (or above) the critical information search rate sC. For positive values
of the information search v > 0, the evolutionary information search dynamic drives the population
search strategy to the evolutionarily stable information search strategy, in which individuals always
search for truthful information sESI = 1, and thus, the rumor is eradicated. Hence, a recommendation
for legislators and policymakers who aim to eradicate harmful rumors is to make the search for
truthful information free or rewarding, i.e., information search value v ≥ 0. Truthful public social
media campaigns can help by facilitating access to information.
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Figure 6. The stable (solid line) and the unstable (dashed line) equilibria of the evolutionary information
search dynamics. On the (left), a negative impact measure y = −1 is considered, and on the (right),
a positive impact measure y = 1 is considered. Parameter values: f = 0.01 and R0 = 20.
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The proof of the above theorem follows similarly to the proofs of Theorems 6–8 in [10].

Proof. Let y < 0 (the proof follows similarly for y > 0). To simplify the presentation of the proof,
let us introduce the function

F(s) = η(s)(v− yP(s))

such that ds/dτ = F(s).
(a) If v ≤ yP(0), then η(0) = 0, and thus, F(0) = 0. Hence, s = 0 is an equilibrium point.

Since P(s) is decreasing, for every s′ ∈ (0, 1], P(s′) < P(0), and thus, F(s′) < 0. Hence,

lim
τ→∞

s(τ; s′) = 0 ,

and therefore, s = 0 is a global attractor.
(b) If yP(0) < v < 0 and s∗ is such that v = yP(s∗), then F(s∗) = 0, and s∗ is an equilibrium

point. Since P(s) is decreasing, for every s′ ∈ [0, s∗), P(s′) > P(s∗), and thus, F(s′) > 0. Hence,

lim
τ→∞

s(τ; s′) = s∗ ,

and therefore, s∗ is a left attractor in [0, s∗). For every s′ ∈ (s∗, 1], P(s′) < P(s∗), and thus, F(s′) < 0.
Hence,

lim
τ→∞

s(τ; s′) = s∗ ,

and therefore, s∗ is a right attractor in (s∗, 1]. Hence, s∗ is a global attractor.
(c) For every s∗ ∈ [sC, 1], P(s∗) = 0, and thus, F(s∗) = 0 if v = 0. Hence, s∗ ∈ [sC, 1] are equilibria

points. Since P(s) is decreasing, for every s′ ∈ [0, sC), P(s′) > P(sC) = 0, and thus, F(s′) > 0. Hence,

lim
τ→∞

s(τ; s′) = sC ,

and therefore, sC is a left attractor in [0, sC).
(d) If v > 0, then η(1) = 0, and thus, F(1) = 0. Hence, s = 1 is an equilibrium point. Since P(s) is

decreasing, for every s′ ∈ [0, 1), P(s′) > P(1), and thus, F(s′) > 0. Hence,

lim
τ→∞

s(τ; s′) = 1 ,

and therefore, s = 1 is a global attractor.

6. Conclusions

In this paper, we present a rumor spreading model with potential information searching in a
population where individuals can be ignorants, believers, or unbelievers of the rumor. Depending on
whether the impact measure, which assesses the risk of believing the rumor (fake news), is positive
or negative and on the value of searching for information, we introduce an expected payoff or utility
for the individuals. We derive all of the Nash and all of the evolutionarily stable information search
strategies. Furthermore, we introduce evolutionary information search dynamics, whose attractors are
evolutionarily stable information search strategies.

For advantageous rumors, we observe the existence of a bi-stability region, where the
evolutionarily stable information search strategies are either to fully search for truthful information
or not search at all. For harmful rumors, we observe that there is a single evolutionarily stable
information search strategy by which individuals decide, or not, to search for information. When the
benefits of searching for information outweigh the costs, i.e., the value of information search is positive,
the evolutionarily stable information search strategy is to search for information with a probability of 1.
However, when the value of the information search is negative, the evolutionarily stable information
search strategy is smaller than the optimal information search strategy that eradicates the rumor.
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In this case, unfortunately, the rumor persists. The persistence of false rumors may be quite dangerous
and lead to extensive damage to the individual, as well as to all of society. For example, when a
disease is spreading, some cases of vaccination with moderate side-effects can be inflated by social
media, provoking fear in the population and leading to a large proportion of individuals deciding
against vaccination. In an outbreak with a large transmission rate, such as COVID-19, decisions
against vaccination are a major contributor to the spread of the disease and so are quite harmful to all.
A recommendation for legislators and policymakers who aim to eradicate harmful rumors is to make
the search for truthful information free or rewarding.

The population is assumed to be distributed in a regular spatial network, where all individuals
have the same number of neighbors, and thus, all of them can equally spread the rumor. This model will
be the basis for future works that involve different and more complex spatial networks, heterogeneous
strategies, and higher moment closure approximations and encompass the routes of modern social
media transmission.
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