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ABSTRACT Vehicle mass and road grade information is important to improve the control capability and 

further intellectualization of vehicles. With the aim of real-time estimation of mass and grade without 

additional sensors, a two-step estimator is proposed in this paper. In the first-step estimator, the recursive 

least square with dual forgetting factors is used to estimate the vehicle mass with the consideration of the 

time-varying rolling friction coefficient and system error. In the second-step estimator, the road grade is 

estimated using an extended Kalman particle filter. Based on the data of CarSim/MATLAB co-simulation, 

the proposed approach has faster convergence rate and better tracking accuracy on the premise of meeting 

the real-time requirements by comparison with other estimation algorithms. The performance of the estimator 

is finally validated by the vehicle road test, and the results show that the mass and grade are estimated with 

great accuracy and robustness under different road conditions. 

INDEX TERMS Vehicle mass, road grade, estimator, recursive least square, particle filter.

I. INTRODUCTION 

With the improving demand of the market for vehicle safety 

and the energy economy, the active safety and intelligent 

control technology in vehicles have been widely developed 

and applied [1]. Knowledge of vehicle parameters and road 

conditions, especially vehicle mass and road grade, is of great 

significance to achieve optimal control performance [2]. 

The vehicle mass will change depending on passengers and 

payload, with variations in the mass of up to 50% for 

passenger vehicles, and 400% for heavy-duty vehicles [3]. 

Since the vehicle mass indirectly affects the longitudinal and 

lateral forces, active safety technologies such as direct yaw 

control and anti-lock braking systems require mass 

information to perform the primary system calibration [4]. 

Moreover, the vehicle mass also significantly influences 

energy usage, so the accuracy of distance-to-empty 

predictions without real-time mass estimation cannot be 

guaranteed [5]. Road grade is another important variable that 

needs to be estimated in real time, which has a crucial impact 

on driving safety and energy consumption [6]. The 

information of mass and grade plays a critical role in 

transmission shift scheduling and power management strategy 

for hybrid vehicles [7], which can improve power 

performance and reduce fuel consumption and emissions. As 

the level of autonomous driving increases, the control 

authority is gradually transferred from driver to machine, and 

intelligent vehicles will face the situation of human-machine 

coordinated control in the next period of time [8]. Its 

representative Advanced Driver Assistance Systems’ control 

precision will benefit from a reliable and robust estimation of 

vehicle mass and road grade [9] [10]. 

There have been a large number of studies in estimating 

vehicle mass and/or road grade over the last two decades. The 

early proposed sensor-based methods used the global 

positioning system (GPS) and additional sensor information to 

implement the estimation [11]-[13]. However, on account of 

their limited estimation accuracy, high cost, and sensitivity to 

environmental noise, the subsequent researches mainly 

focused on model-based methods. Fathy et al. [14] proposed 

an online mass estimation approach based on recursive least 

square (RLS) algorithm and a fuzzy supervisor, which was 

used to extract parameters of high-frequency components 

when the vehicle has significant longitudinal motion. Lin et al. 

[15] considered the system error as an unknown parameter, 

and it was estimated together with the vehicle mass using RLS. 

RLS with multiple forgetting factors (RLS-MFF) was adopted 

in simultaneous estimation of mass and grade to deal with the 

problem of different change rates for the two parameters [16]. 

Kalman filter (KF) was first applied in this field in 2002 [17], 

but it is unable to solve the nonlinear estimation problems [18]. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3042656, IEEE Access

 

 

VOLUME XX, 2017 9 

Extended KF (EKF) was used in the estimation of both mass 

and grade based on the longitudinal dynamic model [19] and 

in mass estimation based on the lateral model [20]. The EKF 

inevitably has the linearization error when calculating the 

Jacobian matrix, while the unscented KF (UKF) can 

approximately obtain the statistical characteristics of the 

nonlinear transformation through the unscented transform, so 

it is more advantageous in the estimation of strongly nonlinear 

systems [21]. Vehicle mass and other inertial parameters were 

estimated using a dual UKF [22] [23]. 

The hybrid algorithms for estimation of mass and grade 

were proposed to make full use of their strengths. Sun et al. 

[24] proposed a hybrid algorithm combining EKF and RLS, in 

which the mass was estimated twice and a weight coefficient 

was introduced to make a tradeoff. Chu et al. [25] proposed an 

estimator based on a combined kinematic and dynamic model 

to eliminate the influence of different frequency noise. 

Furthermore, two-layer estimation algorithms were proposed 

to alleviate the coupling effect between the two parameters 

and improve the computational efficiency [26]-[29]. In the 

first layer, the mass or grade was estimated, and it was taken 

as a known parameter in the second layer to estimate the other 

parameter. Besides, the neural network approach has recently 

been applied to estimate vehicle mass and road grade [30], 

which makes it possible to estimate when braking. But a great 

deal of data from drivers with diverse driving styles are needed 

to train neural networks. 

Recently, particle filter (PF) has been popular in the 

estimation of vehicle state and parameter owing to its 

advantages over EKF and UKF in solving the nonlinear 

estimation problems without the Gaussian distribution 

assumption of the process and measurement noise [31]-[34]. 

Based on the Monte Carlo method and recursive Bayesian 

estimation, a group of discrete weighted random sample points 

(i.e. particles) in the state space are used to approximate the 

posterior probability density function of the estimated states. 

The value and weight of particles are continuously adjusted on 

the basis of the observation, and finally, the estimated value is 

represented by the weighted sum. Nevertheless, the standard 

particle filter has the defect of particle degeneracy [35]. With 

the increase of iteration times, the weight of most particles 

decreases to zero, which will lead to the waste of computing 

resources and the decline of estimation accuracy. The 

common methods to reduce the impact of particle degradation 

include the introduction of resampling methods and the 

selection of appropriate importance density function [36]. 

A two-step structure approach for vehicle mass and road 

grade estimation is proposed in this paper. The information of 

the acceleration sensor in Electronic Stability Program (ESP), 

which is widely applied in vehicles nowadays, is used to 

decouple mass and grade in the longitudinal dynamic model. 

In the first step, vehicle mass is estimated by RLS with 

forgetting factors, in which the time-varying characteristics of 

rolling resistance and system error are considered to improve 

the estimation accuracy. In the second step, with the mass 

known, the extended Kalman particle filter (EKPF) algorithm 

is used to estimate the road grade. The validity of the proposed 

estimator is verified by comparison with RLS-MFF and EKF 

algorithms, and the real-time performance is analyzed. The 

effectiveness of the estimator is further verified by vehicle 

road tests with a small SUV. Two major contributions that 

clearly distinguish our endeavor from other studies: 1) A two-

step estimator structure is designed, and the coupling 

relationship between mass and slope parameters is canceled 

by using the longitudinal acceleration sensor information. The 

mass estimated in the first step is used as the known parameter 

of grade estimation in the second step. 2) In the mass 

estimation, an equivalent resistance coefficient is proposed to 

eliminate the influence of time-varying rolling resistance 

coefficient and system error, and EKPF is applied to the field 

of road grade estimation. 

The remainder of this paper is structured as follows: Section 

II introduces the vehicle longitudinal dynamic model. In 

Section III, the proposed estimator for vehicle mass and road 

grade is designed. Various simulations and comparisons are 

provided in Section IV. The results of the vehicle road test are 

presented in Section V, and the conclusion is summarized in 

Section VI. 

II. VEHICLE LONGITUDINAL DYNAMIC MODEL 

The proposed estimator is available for vehicle mass and 

road grade estimation when the vehicle is in longitudinal 

motion, which is dominant in the daily driving process. As 

shown in Fig. 1, driving force and various resistances acting 

on the vehicle during longitudinal driving, and it is assumed 

that there is no wheel slip. According to Newton's Second 

Law, the vehicle longitudinal dynamics equation as: 

 drive acc aero roll grade errF F F F F F      (1) 

where Fdrive, Facc, Faero, Froll, Fgrade are the vehicle’s driving 

force, the inertia force, the aerodynamic drag force, the 

rolling resistance, the grade resistance, respectively; Ferr is 

the system error, which caused by uncertain environment 

disturbance in longitudinal dynamics [15]. 

aeroF

rollF

gradeF mg

v

driveF



accF

 

FIGURE 1.  The longitudinal forces of the vehicle on the ramp. 
 

The torque Ttq from the engine or driving motor is 

delivered to the driving wheels through the driveline, 

generating a circumferential force on the ground. Fdrive is the 

reaction force of the ground to the driving wheel, which can 

be expressed as: 

 0 /drive tq g T wF T i i r  (2) 
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where ig is the transmission gear ratio; i0 is the final drive 

ratio; ηT is the mechanical efficiency of the driveline; rw is 

the wheel radius.  

The inertial force during acceleration can be presented as: 

 accF mv  (3) 

where m is vehicle mass; v is longitudinal velocity. 

The aerodynamic drag force can be presented as: 

 
2 / 2aero DF C A v  (4) 

where CD is the drag coefficient; A is the frontal area; ρ is the 

air density.  

The rolling resistance is related to the road condition and 

the vertical load of the wheel, which can be expressed as: 

 cosrollF mg   (5) 

where g is the acceleration due to gravity; μ is the rolling 

friction coefficient; β is the road grade angle. 

The grade resistance is the component force of vehicle 

gravity along the slope, which can be expressed as: 

 singradeF mg   (6) 

III. DESIGN OF THE TWO-STEP ESTIMATOR 

Based on the model mentioned above, there is a strong 

coupling relationship between vehicle mass and road grade. 

Knowing one will facilitate estimation of the other, hence 

mass and grade are independently estimated by a two-step 

estimation approach. In the first step, the vehicle mass is 

estimated by using the acceleration sensor information, and 

the estimated value is taken as the known parameter in the next 

step. In the second step, a nonlinear estimator is constructed to 

estimate the road grade. The structure of the two-step 

estimator is presented in Fig. 2. 
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FIGURE 2.  The block diagram of the two-step estimator. 

 

As the proposed estimator is based on longitudinal 

dynamics, and persistent excitation of the input signal is 

required like other model-based methods, the following 

preconditions for estimator activation are established: 

a) The steering wheel angle does not exceed 15 degrees; 

b) The brake pedal is not depressed; 

c) The clutch is fully engaged. 

When any of the above conditions are not met, the estimator 

is suspended until all conditions are satisfied again. During 

this interval, the estimated mass and grade maintain the values 

at the time before the suspension. 

A.  VEHICLE MASS ESTIMATOR BASED RLS IN THE 
FIRST STEP 

The measurement asen_x of the longitudinal acceleration 

sensor in ESP includes the information of vehicle 

acceleration and component force of gravity along the slope, 

and their relationship is: 

 _ + sinsen xa v g   (7) 

Substituting (2), (3), (4), (5), (6), (7) into (1), equation can 

be written as: 

 
2

_ 0( / / 2) /sen x tq g T w Da T i i r C A v m g      (8) 

where cos /errF g     , μ' is defined as the equivalent 

resistance coefficient, which contains the information of 

rolling resistance coefficient and system error. 
In the above equation, the vehicle mass will change with 

the number of passengers and the weight of luggage. For 

equivalent resistance coefficient, the rolling resistance 

coefficient is an unknown time-varying parameter, which is 

usually regarded as a known constant, and its value is related 

to the road condition, driving speed, and tire parameters. And 

the existence of system error is mainly due to modeling error 

and environmental noise. Other data and parameters can be 

obtained from the controller area network (CAN) Bus or 

provided by the automobile manufacturer. The equivalent 

resistance coefficient and vehicle mass are estimated 

simultaneously by RLS. Equation (8) can be rewritten in the 

following form: 

 
Ty    (9) 

where 
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The vehicle mass will not change after the vehicle is 

started and it can be considered as a constant parameter over 

the course of a trip, while the equivalent resistance 

coefficient will change with the vehicle driving situation and 

road conditions. Therefore, RLS with dual forgetting factors 

is used to estimate the parameters that change with different 

rates. The equations of the RLS algorithm can be expressed 

as [16]: 

  Tˆ ˆ ˆ( )= ( 1) ( ) ( ) ( ) ( 1)k k K k y k k k        (10) 

where K'(k) is defined as: 

1 1

1

2 2

2 21 1 2 2

1 2 2
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  T( )= ( ) ( ) ( 1) /i i i i iP k I K k k P k    (12) 

 
1

T( )= ( 1) ( ) ( ) ( 1) ( )i i i i i i iK k P k k k P k k   


       (13) 

where λ1 and λ2 are forgetting factors for the two parameters 

respectively; Pi(k) is the covariance matrix; Ki(k) is the 

update gain, and in (12) and (13), i = 1, 2.  

To make full use of historical data to get an accurate 

estimation of vehicle mass, the forgetting factor λ1 is set to 1. 

In view of the time-varying characteristics of the equivalent 

resistance coefficient, the forgetting factor λ2 is set to 0.9. 

B.  ROAD GRADE ESTIMATOR BASED EKPF IN THE 
SECOND STEP 

Taking the estimated vehicle mass in the first step as a known 

parameter, the state-space model of the system is established. 

Longitudinal velocity and road grade are defined as state 

parameters in the estimating process. To simplify the model 

to ensure the real-time estimation and avoid introducing new 

unwanted errors into the second-step estimator, the rolling 

resistance coefficient is set to a constant value with Ferr = 0.  

Since road grade is generally small, it is assumed that 

sin tan i   , cos 1  , where i is the road grade. The 

grade changes slowly, so the derivative of time is 

approximately zero. The differential equations can be given 

as: 

2

0( ) ( ) / ( ) / 2 ( )

( ) 0

tq g T w Dv t T t i i mr C A v t m g gi t

i t

      



 (14) 

The Euler approximation is used to discretize (14), and 

the discretized difference equations are expressed as: 

 
( ) ( 1) ( 1)

( ) ( 1)

v k v k t v k

i k i k

     


 
 (15) 

where 

2

0( ) ( ) / ( ) / 2 ( )tq g T w Dv k T k i i mr C A v k m g gi k       (16) 

In this paper, the EKPF algorithm with the introduction of 

the systematic resampling algorithm is used to estimate road 

grade. EKPF algorithm is to approximate the optimal 

importance density function using EKF after the 

initialization stage of the PF algorithm, which makes the 

particle distribution closer to the real posterior probability 

distribution. Then, the generated particles are transferred to 

the likelihood function to complete the calculation. The 

systematic resampling algorithm is chosen because of its 

excellent performance in resampling quality and 

computational efficiency [37]. To apply the EKPF algorithm, 

the discrete state space equation is formulated as: 

 
1 1( , )k k k k

k k k

x f x v

y Hx





  


 
 (17) 

where xk=[vk,ik]T is the state vector; yk is the measurement 

vector; T( , ) [ , ]k k k k kf x v v t v i   is the nonlinear mapping 

function, reflecting the relationship between the state at the 

current time and the previous time; H=[1,0] is the state 

observation matrix; k  and k  are process noise and 

measurement noise, and their covariance matrices are Q and 

R, respectively. 

The basic steps of the EKPF algorithm are expressed as 

follows: 

1)  INITIALIZATION 

A set of particles are generated randomly based on the 

prior probability distribution p(x0). The number of particles 

is set to N, and their values 0,ix
, covariance matrix 0,iP

, and 

weight 0,iw  are initialized. 

 0, 0 0, 0 0,~ ( ), var( ), 1/i i ix p x P x w N     (18) 

where the subscript i refers to the i-th particle. 

2)  UPDATE OF PARTICLES 

The value and covariance of each particle are calculated 

by EKF, and the particle set is updated. 

Prediction) priori particles ,k ix
 and their covariance ,k iP

 

are predicted using the particles’ value 1,k ix

  at instant (k-1) 

as: 

 , 1, 1( , )k i k i kx f x v 

   (19) 

 
T

, 1, 1, 1,k i k i k i k iP F P F Q 

     (20) 

where 1,k iF   is the Jacobian matrice of the process model. 

 1,

1,

( , )
k i

k i

f x v
F

x xx








 (21) 

Correction) According to the observation and Kalman 

gain ,k iK , posteriori particles 
+

,k ix  and their covariance 
+

,k iP  

are updated as: 

 
+

, , , , ,+k i k i k i k k i k ix x K y H x      (22) 

 
+

, , , ,( )k i k i k i k iP I K H P   (23) 

where 

 
T T 1

, , , , , ,( )k i k i k i k i k i k iK P H H P H R     (24) 

Then, by sampling from the proposal distribution, 

particles are updated as: 

 
+

, , 0: 1, 1: , ,
ˆ ~ ( , ) ( , )k i k i k i k k i k ix q x x y N x P 

   (25) 

where , ,( , )k i k iN x P 
 is a normal distribution with mean ,k ix

 

and variance ,k iP
. 
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3)  IMPORTANCE WEIGHT CALCULATION  

The importance weight of each particle is calculated.  

 
, , 1,

,

, 0: , 1:

( ) ( )

( , )

k k i k i k i

k i

k i k i k

p y x p x x
w

q x x y

   (26) 

where 

T

, , , ,

,

( )( )1
( ) exp( )

22

k k i k i k k i k i

k k i

y H x y H x
p y x

RR

  
  

  (27) 

, 1,

T

, 1, 1 , 1, 1

1
( )

2

ˆ ˆ( ( , ))( ( , ))
exp( )

2

k i k i

k i k i k k i k i k

p x x
Q

x f x v x f x v

Q




 

   



 
 

 (28) 

+ + T

, , , ,

, 0: , 1: ++
,,

ˆ ˆ( )( )1
( , ) exp( )

22

k i k i k i k i

k i k i k

k ik i

x x x x
q x x y

PP

  
  

   (29) 

Then, the importance weights are normalized. 

 

,

,

,
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 (30) 

4)  RESAMPLING 

To obtain a new particle set
+

,k ix , the systematic 

resampling algorithm [38] is used to copy and eliminate the 

particles according to the normalization weight ,k iw . 

5)  ESTIMATION  

The state estimation is calculated. 

 ,

1

1 N

k k i

i

x x
N





   (31) 

IV. VERIFICATION RESULTS OF SIMULATION DATA 

The validity of the proposed estimator was first verified by the 

simulation data based on the vehicle model in CarSim. The 

estimator was developed in Matlab, and Gaussian noise was 

added to make the data closer to the actual situation. A docking 

road and two sloping roads were constructed, and the vehicle 

was driving in a straight line with a constant throttle control of 

0.15.  

A.  DOCKING ROAD  

Since the time-varying rolling resistance coefficient is 

considered in the first-step estimator, its estimation effect can 

be verified by the docking road experiment in which the 

rolling resistance coefficient changes suddenly. A docking 

road with a grade angle of 0 is constructed, as shown in Fig. 3. 

The beginning section is a good asphalt pavement, which turns 

into a dirt road at 20 meters. 

 

FIGURE 3.  Docking road in CarSim. 

 

In this case, the comparison between the first-step estimator 

and RLS without μ' was conducted. The latter is a similar mass 

estimator based on acceleration sensor information, but the 

system error and time-varying rolling resistance coefficient 

are not considered. As can be seen from Fig. 4, the 

convergence speed of the first-step estimator is faster than that 

of RLS without μ', and the first-step estimator is significantly 

less affected when the road surface changes. 

 

FIGURE 4.  Mass estimation results on docking road. 

B.  SLOPING ROAD 1 

Sloping Road 1 includes a flat section and an uphill section 

with a constant grade, and there is a mild transition section 

between them. Two widely accepted simultaneous estimation 

approaches, RLS-MFF and EKF were implemented as a direct 

comparison of the estimation results to verify the accuracy of 

the proposed estimator.  

Fig. 5 shows the mass estimation results and relative errors 

of RLS-MFF, EKF, RLS without μ', and the first-step 

estimator in this paper. It can be seen that the estimated mass 

of all approaches converge quickly, and the errors of mass 

estimation based on acceleration sensor information are 

smaller. Moreover, the first-step estimator takes into account 

the system error and the time-varying characteristics of the 

rolling resistance coefficient, so it can be adaptive to the 

system disturbance and show a better estimation effect than 

RLS without μ'.
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FIGURE 5.  Mass estimation results on Sloping Road 1. 

 

FIGURE 6.  Grade estimation results on Sloping Road 1. 

 

FIGURE 7.  Mass estimation results on Sloping Road 2. 

 

FIGURE 8.  Grade estimation results on Sloping Road 2. 

The grade estimation results and errors of RLS-MFF, EKF, 

RLS-PF, and the second-step estimator in this paper are shown 

in Fig. 6. In RLS-PF, a similar but slightly different two-step 

estimator, the standard particle filter is used to estimate the 

grade based on the mass results of the first-step estimator. 

From the figure, the jump phenomenon is found at the 

beginning for all approaches, which is caused by the large 

deviation between the set initial mass value and the actual 

value. But the estimated grade converges to the actual value in 

a short time. The second-step estimator shows better 

performance in the tracking accuracy when the grade changes 

and has a more stable estimation when the grade becomes 

constant than other approaches.  

C.  SLOPING ROAD 2 

Sloping Road 2 is a continuous variable grade road to simulate 

mountainous highways. Fig. 7 and Fig. 8 show the estimated 

results and errors of vehicle mass and road grade respectively. 

Due to the continuous change of grade, the estimated mass 

based on RLS-MFF and EKF fluctuates slightly. The first-step 

estimator can converge quickly without the influence of grade 

change and maintain a good estimation level. 

For grade estimation, the curve of the second-step estimator 

is relatively smooth in the whole estimation process compared 

with other approaches. And the tracking accuracy is better 

when the road grade changes greatly, especially at the peak of 

the curve. So the superiority of the EKPF algorithm in 

nonlinear system state estimation is proved. 

To quantify the estimation accuracy of these approaches, 

root mean square error (RMSE) and mean absolute error 

(MAE) are selected as evaluation indexes. RMSE and MAE 

are calculated by the following equation respectively: 

 
2

1

1
ˆRMSE ( )

N

i i

iN
 



   (32) 

 
1

1
ˆMAE

N

i i

iN
 



   (33) 

where ˆ
i  and i  represent the actual value and estimated 

value at the i-th moment respectively. 

The RMSE and MAE of vehicle mass and road grade for 

both sloping roads are shown in the histogram of Fig. 9. 
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FIGURE 9.  Histogram of estimation errors of the estimators. 

D.  ANALYSIS OF PARTICLE NUMBER 

Computational complexity has always been a major drawback 

of the particle filter algorithm. To balance precision and real-

time, it is very important to choose the appropriate number of 

particles. The relationship between the number of particles and 

the calculation time and estimation error is analyzed. In this 

paper, the mean single iteration time is selected as the 

quantitative evaluation index of the computational burden. 

The mean single iteration time denotes the average value of 

the time consumed in a single iteration of state estimation. The 

simulation was carried out in Matlab R2019b environment on 

a desktop computer equipped with Intel Xeon (R) silver 4110 

processor (2.1GHz). 

TABLE 1. Algorithms performance with different particle numbers. 

Algorithm 
Number of 

particles 

Mean single 

iteration time (s) 
MAE (°) 

PF 

40 2.74×10-4 0.286 

60 3.94×10-4 0.255 

100 6.75×10-4 0.226 

EKPF 

5 3.34×10-4 0.169 

10 5.83×10-4 0.136 

30 1.21×10-3 0.095 

The calculation results of grade estimation based on PF and 

EKPF algorithms are listed in Table 1. For PF, if the number 

of particles is too small, there will be a serious divergence 

phenomenon caused by the lack of particles. In this study, the 

divergence phenomenon appeared when the particle number 

was less than 40. The estimation accuracy of PF and EKPF 

was improved with the increase of particle number, but the 

computation time became longer. For EKPF, the estimation 

accuracy will not be significantly improved when the particle 

number exceeds 30. Thus, the number of particles is set as 30, 

and the mean single iteration time is 0.00121s, which meets 

the real-time requirements of the estimator. 

V. VERIFICATION RESULTS OF ROAD TEST DATA 

To further verify the feasibility of the proposed estimator, the 

off-line simulation was carried out based on the data of the 

vehicle road test. The test vehicle is a small SUV equipped 

with a seven-speed double-clutch transmission, and 

experiments were conducted on expressway and mountainous 

highway to validate the robustness of the estimator under 

different road conditions. 

The data from the CAN Bus were collected using Racelogic 

VBOX3i through the on-board diagnostics (OBD) interface 

and stored in a laptop computer. Fig. 10 shows the schematic 

diagram of the data acquisition of the vehicle road test. Only 

the data of straight-line driving were collected, including 

vehicle velocity, longitudinal acceleration, engine torque and 

speed, transmission gear, and brake master cylinder pressure, 

etc. The sampling frequency is 100Hz.  

A Dual GPS antenna, which has high positional precision 

using multiple satellites, was installed at the front and rear of 

the vehicle roof centerline to obtain the relative elevation 

information [39]. The actual value of road grade was obtained 

through preprocessing, differential calculating, and removing 

the abnormal points. And the actual value of vehicle mass is 

1812kg, including the weight of one driver, three passengers, 

and test equipment. Fig. 11 shows the installed test equipment 

and the test road.  

TCU ESP EMS  

Data

CAN-H
OBD

CAN-L

VBOX Laptop

 

FIGURE 10.  Schematic diagram of data acquisition. 
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FIGURE 11.  Test equipment and test road.

 

FIGURE 12.  Estimation results for Experiment 1. 

 

FIGURE 13.  Estimation results for Experiment 2.

A.  EXPERIMENT 1 

In Experiment 1, a period of 60 seconds of data in the 

expressway was selected, and the grade value was small, close 

to 0. During this driving process, the master cylinder pressure 

was 0 and the transmission was in 7th gear. 

Fig. 12 shows part of the data from Experiment 1 and the 

comparison results of three approaches. The mass estimated 

by all approaches converge to the actual value within 10s, and 

there are some deviations after the convergence, among which 

the proposed estimator is the smallest. In addition, there are 

some small fluctuations, especially for EKF, which is owing 

to the sudden drop of engine torque caused by the driver 

releasing the accelerator pedal to avoid other vehicles when 

driving on the expressway. The estimated grade begins to 

converge to the actual value when the mass estimation error is 

less than 10% (about 2 s). For grade estimation, the proposed 

estimator shows better tracking and robustness than other 

approaches as a result of the existence of environmental noise. 
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B.  EXPERIMENT 2 

In Experiment 2, a period of 50 seconds of data in the 

mountainous highway was selected, and the road grade was 

relatively large, about 9°. During this driving process, the 

master cylinder pressure was 0 and the transmission was in 

2nd gear.  

Fig. 13 shows part of the data from Experiment 2 and the 

estimation results. The estimated mass also converge within 

10s with a relative error of less than 3%, and the proposed 

estimator shows better convergence stability. As the mass 

approache the actual value, the grade estimated by all 

approaches converge rapidly from the initial value of 0 to the 

actual value. The proposed estimator still performs better, but 

the advantage is not so prominent as Experiment 1. This is due 

to the fact that the engine torque remained constant most of the 

time in this case, while changed greatly when driving on 

expressway.  

TABLE 2. RMSE of mass and grade in two experiments. 

Estimated 

parameters 
Experiment RLS-MFF EKF 

Proposed 

estimator 

Vehicle Mass 

(kg) 

1 41.5279 60.5933 14.1062 

2 26.7858 38.4752 17.1251 

Road Grade 

(°) 
1 0.2119 0.1791 0.0771 

2 0.3081 0.4739 0.1958 

 

Table 2 shows the RMSE results of vehicle mass and road 

grade estimation in two experiments. Since there is a big gap 

between the initial value and the actual value, the data of the 

first 2 seconds are ignored. The results show that the proposed 

estimator has better estimation performance than RLS-MFF 

and EKF. 

C.  SENSITIVITY ANALYSIS 

Furthermore, the potential defect of the two-step estimator was 

examined, that is, the sensitivity of the second-step estimator 

to the first-step estimated results. In this paper, it is the 

sensitivity of road grade estimation to the error of estimated 

vehicle mass. The estimated mass with errors of 5% and 10% 

were introduced into the grade estimator respectively. Table 3 

shows the RMSE of grade estimation under different mass 

estimation errors, and the data of the first 2 seconds are also 

ignored. 

TABLE 3. RMSE of grade estimation with different mass errors. 

Mass relative 

Error (%) 
Experiment 1 (°) Experiment 2 (°) 

0 0.0771 0.1958 

5 0.1202 0.2126 
10 0.1940 0.2701 

 

It can be seen from the table that the estimation performance 

of the second-step estimator will become worse with the errors 

of the first-step estimator under the two road conditions. The 

impact of the mass estimation results on grade estimation in 

mountainous highway is less, compared with the expressway 

with a small grade. In general, when the relative error of the 

estimated mass is less than 10%, the accuracy of grade 

estimation is acceptable. 

VI. CONCLUSION 

In this paper, a two-step estimator for estimating vehicle mass 

and road grade was proposed. RLS with forgetting factors was 

used to firstly estimate vehicle mass along with the equivalent 

resistance coefficient, which has a great influence on mass 

estimation. Then, the estimated mass value was used as a 

known parameter in the second-step estimator to implement 

the nonlinear estimation of road grade using EKPF. In terms 

of algorithm verification, the proposed estimator was 

compared with two commonly used estimation approaches 

based on simulation data, and the results indicate that it has a 

better estimation accuracy. Vehicle road tests were carried out 

on expressways and mountainous highways respectively, and 

the feasibility of the algorithm is further verified. Moreover, 

the sensitivity of grade estimation to mass error was analyzed, 

and it turned out to show a satisfactory performance of the 

second-step estimator when the error of the first-step estimator 

is less than 10%. 

The information on estimated vehicle mass and road grade 

can be used for active safety control and power management. 

And the estimator likely gets a more ideal effect for battery 

electric vehicles, it is attributed to the precise measurement of 

motor torque. The proposed estimator will not be activated in 

the downhill road where the braking operation is dominant, 

because the braking force cannot be accurately obtained. 

However, the braking safety of vehicles, especially heavy-

duty commercial vehicles, is greatly affected by vehicle mass 

and road grade. Consequently, the estimation of mass and 

grade on the downhill road as well as the braking control based 

on the estimated results will be the future research. 
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