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Abstract: With the rapid development of computer technology, the research on complex networks
has attracted more and more attention. At present, the research directions of cloud computing,
big data, internet of vehicles, and distributed systems with very high attention are all based on
complex networks. Community structure detection is a very important and meaningful research
hotspot in complex networks. It is a difficult task to quickly and accurately divide the community
structure and run it on large-scale networks. In this paper, we put forward a new community detection
approach based on internode attraction, named IACD. This algorithm starts from the perspective of
the important nodes of the complex network and refers to the gravitational relationship between two
objects in physics to represent the forces between nodes in the network dataset, and then perform
community detection. Through experiments on a large number of real-world datasets and synthetic
networks, it is shown that the IACD algorithm can quickly and accurately divide the community
structure, and it is superior to some classic algorithms and recently proposed algorithms.

Keywords: community detection; complex networks; node attraction; local information; important
nodes

1. Introduction

Community structures exist in many networks in the real world, such as social networks,
e-commerce networks, biological networks, routing networks, and so on. In recent years,
community structure detection of complex networks has attracted much attention, and a series of
complex network mining algorithms have been proposed [1–5]. The identification of community
structure in the network has great application value. For example, discovering organizations
and providing personalized services in social networks; precision marketing and intelligent
recommendation in e-commerce networks; it can also be used to discover the close relationship
between proteins in biological networks and so on. The community detection methods have been
widely used in various disciplines and many fields. So far, researchers have proposed a large number
of community structure detection methods from different perspectives, such as graph partitioning [6],
modularity optimization [7], and dynamic methods [8,9]. However, most existing algorithms need
to consider setting parameters, so the quality of identifying communities depends largely on the
choice of parameters. For example, Markov clustering algorithm (MCL) [10] is a dynamic method
that is widely used in graph clustering studies, but MCL is more sensitive to setting parameters.
In addition, many algorithms also have problems with unstable detection results. For example,
the label propagation algorithm (LPA) [11] and fluid community method (FluidC) [12] although their
complexity are relatively low and the calculation speed are fast, they may produce different division
results. In addition, the increasing network scale also poses another challenge to community detection.
Compared with some algorithms that have better detection results on small networks, such as the
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Girvan and Newman algorithm (GN) [13]. Due to the high time complexity, it cannot be used in
large-scale networks. Therefore, for many existing complex network community detection algorithms,
they cannot fully meet the needs of various scenarios in the real world.

Aiming at the above problems, this paper proposes a new community detection algorithm
named IACD. Firstly, the degree and the k-core value [14] are used to re-define the importance
of nodes. Then, based on the idea of the interaction between celestial bodies in physics, the relationship
of gravitational interactions between pairs of nodes in the network is constructed, so that each node
chooses another node that is most attractive to it, forming an attractive node pair. Finally, all the nodes
will find the matching nodes, and the divided community structure will be obtained.

The main contributions of this work are as follows: (1) A new method based on
physical phenomena: the IACD draws on the idea of gravitation in physics and defines the
attractiveness calculation method between nodes in the network. It can intuitively discover
communities and be understood easily; (2) Parameter free: IACD does not rely on parameter setting
and can automatically perform communities division based on the local topology of the network;
(3) Scalability: IACD uses second-order neighbors of nodes to construct attractive node pairs which
reduces the calculation cost. Therefore, the IACD algorithm has low time complexity and can be
applied to large-scale networks; (4) Higher accuracy: A large number of experiments on real-world
and synthetic networks show that the IACD has a good ability to divide communities.

2. Related Work

At present, there are many algorithms in the field of complex network community detection.
This section mainly introduces and analyzes several types of representative algorithms. The method of
dividing the community structure according to the algorithm is roughly divided into graph partitioning,
hierarchical clustering, label propagation, and modularity optimization, and other community
detection algorithms.

Graph partitioning methods. Graph cut [13] is a classic problem. The idea is to divide the network
graph into two subgraphs first, then separate the two subgraphs, and iterate repeatedly until the
required number of subgraphs is obtained. For the graph partitioning methods, there are two points
to note. One is to know the number of communities in advance, and the other is to know the number of
nodes that should be included in each community. The representative algorithm of graph partitioning
algorithm is Kernighan-Lin (KL) [15] algorithm, which is a tentative dichotomy algorithm based on
the idea of greedy optimization. The KL algorithm needs to introduce a gain function Q in the process
of dividing communities. The value of Q is defined as the difference between the number of all edges
in two communities and the number of connected edges between the two communities.

Hierarchical clustering methods. The idea of hierarchical clustering algorithm is to cluster nodes
by layer-by-layer iteration to achieve community detection of the network. According to the method
of hierarchical decomposition, it can be divided into splitting method and agglomeration method.
The splitting algorithm is a community segmentation from top to bottom. The algorithm first considers
the entire network as a community, and then divides the community into multiple small communities
through layer-by-layer recursive segmentation. A typical splitting algorithm is the GN algorithm [13].
This algorithm proposes the concept of edge betweenness, which refers to the number of all shortest
paths in the network through the current edge. Because the shortest paths of nodes in different
communities in the network can only be obtained by the edges between communities, the connected
edges between communities often have a large edge betweenness. The other is the agglomeration
algorithm, which initially treats each node in the network as a community alone, and then performs
layer-by-layer aggregation iterations. For example, Newman proposed a fast and complex network
community detection algorithm based on local search, referred to as FN algorithm [16].

Label propagation methods. The label propagation algorithm is a graph-based semi-supervised
learning algorithm. The main idea is to use the label information of the labeled nodes to predict
the label information of the nodes that have not been labeled. Due to the advantages of label
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propagation algorithms in terms of time complexity, more and more researchers have invested in that,
and have successively proposed label propagation algorithms with various ideas. The most classic
label propagation algorithm among these algorithms is LPA proposed by Raghavan [11] et al. The LPA
algorithm initially assigns unique labels to each node, and then for each node, it selects the label of
the node with the highest frequency of labels in the neighboring nodes to update to its own label.
Iteratively update the node label until the maximum number of iterations is reached or the label of
each node in the network no longer changes, and finally the nodes with the same label will be assigned
to the same community.

Modularity optimization methods. The main idea of the modularity optimization algorithm
is to optimize the modularity index Q by defining the objective function of the quality of
community division. Therefore, the larger the community modularity value after the division, the better
the division result is. However, because there are many ways to divide the graph, it is not feasible
to use the exhaustive method to achieve the optimal modularity, and the optimization of modularity
is an NP-complete problem [17]. Researchers have devised many methods to efficiently obtain
their approximate solutions, such as Fastgreedy [18], Fiduccia-Mattheyses [19], Louvain [20] and
other methods. But, the research results show that this type of methods have resolution limitation
problems on a large number of real networks [21], especially on large-scale networks.

The IACD algorithm based on internode attraction proposed in this paper has a good performance
in real-world network datasets and synthesis networks. It can run on large-scale networks effectively.

3. The IACD Method

3.1. Preliminaries

Community structure detection is the process of partitioning communities in the network.
We model a dynamic network as an undirected graph G = (V, E), where V is the set of nodes
and E is the set of edges. The neighbors of a node v ∈ V in an undirected graph G is the set
N(v) = {x ∈ V|(v, x) ∈ E} containing all nodes directly connected to it. Furthermore, A node
in N(v) has a set of nodes with connected edges, excluding node v itself. The set of second-order
neighbor nodes of node v is denoted as N2(v) = {x ∈ V|(n, x) ∈ E, n ∈ N(v)}. Let SL(v, m)

represents the shortest path length between nodes v and m in the network. Let KScore(v) represents
the global position of v node in the network, which is defined using the k− core (also called k− shell)
decomposition analysis [14]. The larger the value, the closer the node is to the center of the network.
Before explaining our proposed algorithm in detail, we formalize some basic definitions. All important
definitions are summarized and briefly defined in Table 1.

Table 1. Summary of the definitions.

Symbol Definition

n The number of nodes(n = |V|)
e The number of edges(e = |E|)
Deg(v) The degree of node v
N(v) The neighborhood of node v
N2(v) The second-order neighborhood of node v
KScore(v) The k-core value of node v
IF(v) The influence of node v
GIF(v) The global influence of node v
Triangle(v, m) The number of triangles formed by node v and m
P(v, m) Coefficient of attraction of node m to node v
SL(v, m) Shortest path length for node v and node m
Attr(v, m) The attraction of node m to node v
Max_Strong(v) The node with the greatest attraction to node v
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Definition 1. (Node Influence) The node influence IF(v) reflects the influence of node v in the entire network,
considering the location and degree of the network in which it is located.

IF(v) = Deg(v)× KScore(v) (1)

Here, in order to take into account both the local influence of the node and the position of the node
in the entire network, we consider both the degree value Deg(v) and the position of the node in
the network, i.e., the k-core value KScore(v).

Definition 2. (Global Influence of Nodes) Normalize the influence IF(v) of node v.

GIF(v) =
IF(v)

MAX_IF
(2)

Here, MAX_IF is the influence value of the node with the largest node influence in the network.

Definition 3. (Triangle) Triangles have stability. Triangle(v, m) represents the number of triangles formed by
node v, node m, and other nodes. The larger the number, the closer the two are.

Triangle(v, m) = |N(v) ∩ N(m)| (3)

Definition 4. (Coefficient of Attraction) P(v, m) represents the attractive coefficient of node m to node v in the
node pair formed by node v and node m.

P(v, m) =
Triangle(v, m) + 1

Deg(v)
(4)

Here, P(v, m) may not be equal to P(m, v), the formula is directional, because Deg(v) may not be equal
to Deg(m).

Definition 5. (Internode Attraction) In the node pair formed by node v and node m in the network, the attraction
Attr(v, m) of node m to node v is defined as follow.

Attr(v, m) = P(v, m)
GIF(v)× GIF(m)

SL(v, m)2 (5)

Here, we only consider nodes in the second-order neighborhood of node v, i.e., N2(v), and for
nodes outside the second-order, the internode attraction will be very small due to the distance.
Besides, the formula is directional, Attr(v, m) may not be equal to Attr(m, v), because P(v, m) may not
be equal to P(m, v).

3.2. The IACD Model

At present, many scholars have proposed various complex network community detection
algorithms from different perspectives, each with advantages and disadvantages. The community
detection algorithm IACD based on internode attraction, the main idea of this algorithm consists of
three steps: node importance representation, attractive node pair selection and community division.
The IACD model is illustrated in detail, using the example network shown in Figure 1.
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Figure 1. An example network.

Node importance representation.In the field of important node selection of complex networks,
there are many methods to describe the importance of nodes, such as degree centrality [22],
closeness centrality [23], betweenness centrality [24], k-core [14], and subgraph centrality [25],
leader rank [26], page rank [27], hits [28], etc.

However, these indicators cannot fully reflect the importance of a node in the network.
For example, a node with a high degree value is often considered an important node. But, if the
position of this node is at the edge of the network, it may not be as important as a node with a low
degree value but located at the core position. We comprehensively consider the two factors of the
node’s own degree value and its location, and then redefine the importance expression method of
node i and record it as the node influence IF(i) according to Equations (1). After normalization, we
obtain the global influence GIF(i) according to Equations (2). For the example network in Figure 1,
the influence of each node is shown in Table 2.

Table 2. Node influence of simple networks.

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Deg (i) 5 4 4 5 3 4 4 2 5 4 5 4 4 2 2 3
KScore (i) 3 3 3 3 3 3 3 2 3 3 3 3 2 2 2 2

IF (i) 15 12 12 15 9 12 12 4 15 12 15 12 8 4 4 6
GIF (i) 1.0 0.8 0.8 1.0 0.6 0.8 0.8 0.27 1.0 0.8 1.0 0.8 0.53 0.27 0.27 0.4

Attractive node pair selection. We believe that there is attraction between the nodes in the network.
Drawing on the gravitational relationship between cosmic celestial bodies in physics, we define the
gravitational interaction Attr(i, j) between nodes i and j in the network. That is, the attraction of
node j to node i is directly proportional to the product of the global influence of the two nodes,
inversely proportional to the square of the two paths length, and proportional to the attraction
coefficient of node node j to node i. For node i, we consider selecting its most attractive node from its
second-order neighbor N2(i) to form an attractive node pair. Consider the strength of the attractive
effect first, if there are nodes with equal attractive strength, then consider the node j with the shortest
path length. Of course, there may be multiple nodes that meet the conditions. At this time, one can be
randomly selected, that is, for node i, there is only one node j that has the strongest attraction to it,
we call node j as MAX_Strong(i). MAX_Strong(i) defined as Equation (6).

MAX_Strong(i) = maxAttr(i, j) and minSL(i, j), j ∈ N2(i) (6)

For node v1 in Figure 1, the second-order neighbor N2(i) of node v1 is {2, 3, 4, 5, 6, 9, 10, 11, 12}.
For these 9 points, the attractiveness to node v1 is calculated in the Table 3.
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Table 3. Node v′1s second-order neighbor attraction and shortest path length.

Node 2 3 4 5 6 9 10 11 12

Attr (i,j) 0.64 0.64 0.8 0.36 0.08 0.1 0.08 0.4 0.06
SL (i,j) 1 1 1 1 2 2 2 1 2

It can be judged that the most attractive node for node v1 is node v4, so node v1 and node v4 form
an attractive node pair [v1, v4] according to Equation (6). For each node in the network, there will be a
node with the strongest attraction to form an attractive node pair.

Community division.In the second stage, each node will find a node that is most attractive to it,
forming an attractive node pair. In the third stage of community division, we first obtain that each
node forms an attractive node pair and then forms a two-dimensional table structure. For the example
network in Figure 1, the two-dimensional table is shown in Table 4.

Table 4. Attractive node pairs of simple networks.

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MAX_Strong (i) 4 1 1 1 1 9 9 9 6 9 10 11 16 13 13 13

Then we do the community division. First, each node can be regarded as a community individually.
We start with the head node i in two-dimensional table to determine whether the corresponding most
attractive node j is in the same community. If the two points are in the same community, then the next
set of node pairs will be judged. Else, all nodes of the community to which j belongs are merged with
the community to which i belongs to form a new larger community. Repeat this process until all nodes
execute this process. In Table 4, we can observe that the strongest attraction for node v1 is node v4,
so divide node v4 and node v1 into the same community C1{1, 4}. The strongest attraction for node
v2 is node v1. Since the community to which node v1 belongs does not include node v2, then merge
the two communities and update C1 to {1, 4, 2}. For node v3, node v1 is not in the same community,
then update C1 to {1, 4, 2, 3}. Then for node v4, since node v1 has been merged with node v4 into the
same community before, skip this group, continue to judge the next group of nodes, and repeat this
process until all ends. Finally, we can get Three communities C1{1, 2, 3, 4, 5}, C2{6, 7, 8, 9, 10, 11, 12}
and C3{13, 14, 15, 16}. The result is shown in Figure 2.

Figure 2. Example network community detection result.

3.3. The IACD Algorithm

First, according to Equations (1) and (2), the IF and GIF of each node are calculated in turn.
Then calculate the strongest attractive node of each node according to Equations (5) and (6) to form
attractive node pairs. Finally, divide the two-dimensional table and output the result. The IACD
algorithm is given in Algorithm 1.
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Algorithm 1 Community Detection Based on Internode Attraction.

Require:

Graph : G = (V, E);
Ensure:

C, the graph G’ communities
// Initialization of the information of each node.
for each node i in V do

compute the IF value using Equation (1)
end for
for each node i in V do

compute the GIF value using Equation (2)
end for
// Node attraction judgment.
for each node i in V do

for each node j in N2(i) do

compute the Attr(i, j) value using Equation (5)
end for
choose the Max_Strong(i) value using Equation (6)

end for
// Communities division process.
Construct attraction two-dimensional table.
for each pair of nodes in table do

merge the two communities of each node belongs to
end for

3.4. Time Complexity

The whole algorithm is mainly divided into three phases. In the first stage, determine the influence
and global influence of each node, the time complexity is O(n) + O(e), n is the number of nodes in
the network, and e is the number of edges; in the second stage, each node calculates the attraction
value with its second-order neighbor nodes, and form the node pair with the most attraction. The time
complexity is O(n < k >2), and < k > is the average degree. Finally, the community division
is performed, the time complexity is O(n).

In summary, the time complexity of the IACD algorithm is the sum of the three parts: O(n) +
O(e) + O(n < k >2) + O(n) ≈ O(n < k >2 +e).

4. Experimental Evaluation

In this section, we compare our proposed algorithm IACD with several representative algorithms
on synthetic and real-world networks to study the performance on community detection.

4.1. Data Description

Synthetic networks. To generate artificial synthetic networks that are more similar to
real-world networks, we use the well-known benchmark generation model LFR [29] to generate
network datasets. The LFR model was proposed by Fortunato et al. It can easily control the LFR model
to create a synthetic network by using several properties of the network in real life as parameters.
For example, the number of nodes in the network, the average degree, the maximum degree, the size
of the community, and the average clustering coefficient. The most important parameter is the mixing
parameter mu, which is defined as the ratio of the number of consecutive edges of a node outside
the community to the total number of edges. The larger mu indicates that the more connected edges
outside the community, the more difficult the identification of the community. The main parameters are
shown in Table 5. In order to evaluate the quality of the IACD algorithm more effectively. First, we fix
the number of nodes N = 1000, the average degree < k >= 15, the maximum degree maxK = 50,
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the minimum community size minC = 20, and the maximum community size maxC = 50. Then change
the parameter mu form 0.1 to 0.7 to generate several networks. In addition, in order to evaluate the
community recognition effect of community detection algorithms with different network densities.
We fixed the mixing parameter mu = 0.2 and then changed the average degree < k > from 10 to 35
and maxK = 5× K to generate multiple synthetic networks with different densities. Finally, in order
to evaluate the effect of community detection algorithm with different node sizes. We fixed mu = 0.1,
average degree < k >= 15, maximum degree maxK = 50, and change N from 1000 to 30,000 with
step size around 5000 to generate multiple synthetic networks with different scales. Besides, we also
generate a very large-scale network, which contains 500,000 nodes. The purpose is to explore the
performance of IACD on very large-scale synthetic network.

Table 5. The main parameters of LFR model.

Symbol Definition

N The number of nodes
< k > Average degree
maxK Maximum degree
minC Minimum community size
maxC Maximum community size
mu Mixing parameter

Real-world datasets. The experiment selects some real-world networks with real community
structure. The basic statistics of the dataset are shown in Table 6.

Table 6. The statistics of six real-world complex networks: Node number |V|, edge number |E|,
clustering coefficient < CC >, average degree < k > and number of communities #C.

Datasets |V | |E| < CC > < k > #C

Karate 34 78 0.571 4.588 2
Dolphins 62 159 0.303 5.129 2
PolBook 105 441 0.48 8.4 3
AGBlogs 1222 33,428 0.36 27.335 2

UmbcBlog 404 2382 0.367 11.792 2
Amazon 334,386 925,872 0.397 5.53 75,149

Zachary’s karate network [30]: This is a well-known American karate club network,
which represents the friendship between 34 members of the club. For some time, due to the issue of
leadership disagreement, the network was divided into two communities.

Amazon network [31]: This network is a record of purchases on the amazon website for a period
of time. It contains 925872 edges and 334863 nodes. In this network, products represent nodes, and the
products that are frequently co-purchased are represented by edges, and the category to which each
product belongs is considered as a real community.

Politics books network [32]: This is an American political books network, which consists of 105
nodes and 441 edges. Among them, nodes represent books, and the relationship between books that
are frequently purchased by the same buyer is represented by edges.

Dolphins network [33]: This network is a social relationship network between dolphins.
Frequent exchanges between dolphins constitute a connection between different dolphins, consisting of
62 nodes and 159 edges. Nodes represent dolphins, and edges represent interactions between dolphins.

AGBlogs network [34]: This network is a network of political blogs. It contains 1222 points and
33,428 edges, including two real community structures.

UmbcBlog network [35]: This network contains 2382 edges and 404 nodes, including two real
community structures.
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4.2. Comparing Algorithms

To evaluate the performance of IACD algorithm, we compare it with several representatives
algorithms which belong to different viewpoints and different periods. The basic idea and time
complexity of them are shown in Table 7.

LPA [11]: LPA is a very fast community detection method implemented by label propagation.
Due to its linear time complexity, it can run on large-scale networks.

Fastgreedy (FG) [18]: FG is a modularity optimization algorithm, which uses the greedy method
to optimize the modularity to reveal the community structure of the network.

Louvain [20]: Louvain is a well-known multi-level modularity optimization algorithm.
Compared with the modularity algorithm proposed by Newman [36], it has lower time complexity.

GN [13]: The GN algorithm continuously deletes the edges with the largest betweenness relative
to all source nodes in the network, and then recalculates the betweenness of the remaining edges in
the network relative to all source nodes, repeating this process until all edges are deleted.

FluidC [12]: FluidC is a scalable propagation-based community detection algorithm that simulates
the expansion and contraction behavior of fluid until a balance is found.

Leading-Eigenvector (LE) [37]: LE finds the community structure in the network by constructing
the Laplacian matrix feature vector of the network.

CDID [38]: CDID was proposed in 2019. It considers the network as an adaptive dynamic system,
then simulates the information interaction on it, and reveals the community structure in the network
through information dynamics.

Table 7. The relevant infomations of algorithms used for comparison.

Algorithm Basic Principle Time Complexity

LPA Label propagation O(n)
FG Modularity optimization O(e(n + e))
Louvain Modularity optimization O(n log2 n)
GN Betweenness O(e2n)
FluidC Fluids interacting in an environment O(e)
LE Eigenvectors of matrices O(n2)
CDID Information dynamic O(Ln lg < k >)
IACD Internode Attraction O(n < k >2) + O(e)

4.3. Evaluate Metric

In the research of non-overlapping community detection in complex networks, many standards
have been proposed to quantify the quality of community detection. For example, Modularity [39],
Normalized Mutual Information(NMI) [40], Adjusted Rand Index(ARI) [41], Purity [42].
Here, we briefly introduce three evaluation metrics used in this paper.

NMI is a similarity measurement method which assumes that if two partitions are more similar,
less additional information is needed to infer the allocation of the other partition. It is defined as follow:

NMI(X; Y) =
2I(X; Y)

H(X) + H(Y)
(7)

Here, the range of NMI value is 0 to 1. The larger the NMI value, the more similar the two
parts are.

ARI is another viewpoint measure of similarity to compare two clusters, defined as follow:

ARI =
RI−ExpectedRI

MaxRI−ExpectedRI
(8)
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Here, RI is a method of similarity measure, which considers all sample pairs. The quality of
community detection is evaluated by calculating the number of identical and different sample pairs
in the predicted community partition and the true community partition. The larger the ARI value,
the more similar the two parts are.

Purity is the percentage of correctly classified samples to the total number of samples. The larger
the Purity value, the more similar the two parts are. It is defined as follow:

Purity(Ω, C) =
1
N

k

∑
i=1

maxj|ωi ∩ cj| (9)

Here, Ω = {ω1, ω2, ..., ωk} is the set of predicted community divisions, C = {c1, c2, ..., cj} is the
set of true classifications, and N is the total number of samples.

4.4. Performance Evaluation

This section mainly evaluates the partitioning ability of the community detection algorithm IACD.
The comparison algorithm and experimental data used in the experiment are as described in the
previous section. The evaluation metrics are NMI, ARI, and Purity. Most algorithms are implemented
with python packages such as sklearn-cluster, igraph, and other comparison algorithms use the source
code provided by the original paper. The comparison algorithms for small and medium scale networks
are run 50 times on each experimental dataset, and the results are averaged 30 times on large networks.
All experiments are run on a desktop computer. We rendered experiments on Feiteng Server provided
by Kirin Operating System, Feiteng 1500 A CPU, 32 G memory and 2TB hard disk.

4.4.1. Performance Evaluation on Real-World Datasets

In seven real-world networks with node size ranging from 34 to 334,386, we use 7 different
comparison algorithms and three evaluation metrics for comparison. The experimental results are
shown in Table 8. As a whole, in real networks, the comparison between the results of the algorithms
on the purity evaluation metrics is not significant enough, and the two metrics NMI and ARI are more
representative of the results.

Karate network. The IACD algorithm proposed in this paper is far more than the other
seven algorithms in both the NMI metric and the ARI metric, and the three metrics have achieved
maximum values. The visualization of community detection results on the Karate network is shown in
Figure 3a. We can observe that the IACD algorithm completely separates the network and is consistent
with the real structure. Except for the CDID algorithm, the results of the other six algorithms are lower
than 0.80 on each metric.

Dolphins network. The LPA algorithm achieves the highest value on both NMI and ARI. The IACD
algorithm reach 0.63 on NMI, which is only 0.02 from the first place, and ranked third in all algorithms
on the ARI metric. Our algorithm performs well in general and is superior to most comparison
algorithms. The visualization of the partition results is shown in Figure 3b. Our algorithm divided the
network into four communities. One of the communities contains only five nodes, indicating that the
IACD algorithm can identify small structures in the network and is more authentic. It can be seen that
the algorithms such as LE and CDID have lower values and perform worse in the dolphin network
from Table 8.

Polbook network. IACD algorithm achieves the highest value in the NMI index, reaching 0.61,
and the difference between the ARI index and the highest value obtained by the GN algorithm is
only 0.01. The visualization of the division results is shown in Figure 3c.
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Table 8. The results of real-world networks.

Karate Dolphins PolBook AGBlogs UmbcBlog Amazon
NMI ARI Purity NMI ARI Purity NMI ARI Purity NMI ARI Purity NMI ARI Purity NMI ARI Purity

FG 0.71 0.68 0.97 0.55 0.35 0.97 0.53 0.64 0.84 0.66 0.79 0.95 0.57 0.67 0.93 0.42 0.14 0.61
GN 0.62 0.47 0.97 0.6 0.4 0.98 0.56 0.68 0.86 0.47 0.56 - 0.46 0.47 0.97 - - -
LE 0.72 0.51 1 0.5 0.28 0.95 0.53 0.55 0.85 0.69 0.78 0.94 0.61 0.71 0.94 0.01 0.01 0.97

LPA 0.69 0.68 0.90 0.65 0.49 0.97 0.55 0.65 0.85 0.66 0.74 0.91 0.48 0.54 0.90 0.52 0 0.99
FluidC 0.71 0.74 0.95 0.56 0.46 0.98 0.54 0.6 0.88 0.7 0.79 0.93 0.61 0.71 0.90 0.51 0 0.98

Louvain 0.61 0.46 0.97 0.56 0.34 0.97 0.51 0.55 0.85 0.64 0.77 0.95 0.55 0.55 0.95 0.47 0.13 0.98
CDID 0.93 0.94 1 0.1 0 0.95 0.58 0.64 0.84 0.1 0 0.92 0.13 0 0.93 0.41 0 0.99
IACD 1 1 1 0.63 0.44 0.97 0.61 0.67 0.85 0.7 0.8 0.95 0.62 0.71 0.95 0.51 0.01 0.98

(a) (b)

(c)

Figure 3. The community detection result. (a) Community detection result on Karate. (b) Community
detection result on Dolphins. (c) Community detection result on PolBook.

AGBlogs network and UmbcBlog network. The IACD algorithm achieves the highest values in
both NMI and ARI metrics, and the quality of the division results is very high. It can be observed that
the detection results of algorithms such as LE and Louvain are also very good, and there is not much
difference with IACD, but the value of the metrics of community detection by algorithms such as GN
and CDID is low.

In order to evaluate the community detection performance of the IACD algorithm on large-scale
real-world network, we used amazon network for experimental evaluation. Due to the high complexity
of the GN algorithm, it cannot run on this network. LPA algorithm achieves the highest value on NMI,
IACD is 0.51, the difference is only 0.01. The LE algorithm partition result is not ideal, and the NMI
value is only 0.01. Other algorithms perform well, and the division results are reasonable. On the
ARI metric, the results of the algorithms such as CDID, FluidC, and LPA are very low and almost 0,
and the FG and Louvain algorithms have relatively high ARI values. The performance of the IACD
algorithm in large-scale real networks is satisfactory. Although the LPA algorithm has a best detection
result, it is an unstable algorithm. The FluidC algorithm needs the number of real communities, but for
most networks in the real world, we don’t know so much real information. The advantage of the
IACD algorithm is that it does not require parameter settings and the segmentation results are stable.
The quality of the segmentation is high and satisfactory.
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4.4.2. Performance Evaluation on Synthetic Networks

To further compare the performance of different algorithms, we generate the LFR network by
changing the mixing parameter mu, and the result shown in Figure 4. When the mixing parameter mu
changes from 0.1 to 0.5, except for the CDID, LE, and FG algorithms, the quality of the community
detected by other algorithms is very high on each metric. Among them, the IACD, GN, Louvain,
and LPA algorithms remain high, and the FluidC also perform well. However, with the value of
mu increases, the community structure becomes more and more difficult to distinguish, and the quality
of the communities detected by these algorithms starts to decline. Specifically, when mu is 0.6, the LPA
algorithm drops sharply, and each metric is almost 0, the GN algorithm performs well on the NMI
and Purity metrics. The gap between the IACD algorithm and the Louvain algorithm is small when
mu is 0.6, and the NMI and Purity of the IACD are slightly higher than the Louvain algorithm when
mu is 0.7. Louvain algorithm is a stable community discovery algorithm commonly used in industry.
Compared with Louvain, the IACD algorithm proposed in this paper has good performance when the
mixing parameter mu changes on each metric.

Figure 5 shows the performance of these comparison algorithms on the LFR benchmark network
when the average degree < k > changes from 10 to 35. When the average degree < k > is smaller,
the community structure becomes more difficult to distinguish. It can be seen from the figure that the
three algorithms of FG, CDID, and LE have a large fluctuation on the three metrics, when K is small,
and the quality of dividing communities is not high. Among them, the FluidC and FG algorithms
gradually increase the value of the index with the increase of K, but they still cannot reach the highest
value when the structure of the community is very clear. The IACD algorithm we proposed is greater
than 0.9 on each metric when K is small and has little difference from GN and Louvain algorithms.
As the K increases, it quickly reaches the highest value with almost no change on each metric. Although
the value of each metric has been stable at the maximum value at the beginning of the LPA algorithm,
when K is 35, it obviously decreases. In general, the IACD algorithm has a good performance when
K is small, and the community structure is not obvious. With the continuous clear structure of the
community, the division result is stable and of high quality.

Figure 4. Results of different algorithms on synthetic networks with varying mix parameters.

Figure 5. Results of different algorithms on synthetic networks with varying average degree.
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Figure 6 shows the performance of these comparison algorithms on the LFR benchmark network
when the number of nodes N changes from 1000 to 30,000. Due to the high time complexity of the
GN algorithm, when the number of nodes N is 20,000, the results cannot be obtained for three days,
the latter part is not shown in the figure. Except for the LE algorithm on the NMI metric, the other
algorithms have achieved high values and are relatively stable. The three algorithms, LPA, IACD,
and FluidC, are slightly higher than the Louvain, CDID, and FG algorithms. On the ARI and
Purity metrics, the differences in these comparison algorithms can be clearly seen. Among them,
Louvain, FG, and CDID algorithms show a significant downward trend, and the CDID algorithm
fluctuate greatly. The value of the two metrics of the FluidC algorithm is basically stable at 0.9.
The IACD algorithm and the LPA algorithm perform extremely well, and they have remain at the
highest value and are very stable.The last point on the abscissa represents a large-scale dataset with
a node size of 500,000. On NMI, Louvain, FG, and CDID algorithms decreased slightly, while LE
decreased significantly, and NMI is almost 0. It can be clearly seen on ARI and Purity that FG, Louvian,
LE, and CDID algorithms have low community detection quality on this dataset and a significant
downward trend. While, the three algorithms, LPA, FluidC, and IACD, have a high detection result,
and the trend remains stable. Among them, LPA and IACD have reached the highest value.

Figure 6. Results of different algorithms on synthetic networks with varying numbers of nodes.

In synthetic networks, when the number of nodes is small, the quality of the partitioning
effect of GN algorithm performs well. Due to its high time complexity, it cannot run on
large-scale networks.The LPA algorithm performs very well when the mixing parameter mu is small.
When the mixing parameter is greater than 0.5, the detection quality drops sharply. It achieves
excellent performance in two sets of experiments with changes in average degree and node size,
but the results detected by the algorithm itself are unstable due to the principle of label propagation.
The FluidC algorithm performes well in three sets of experiments, and the detection results are stable.
However, the algorithm itself needs the number of real communities, which has a lot of limitations.
Louvain algorithm is a community detection algorithm commonly used in industry. The detection
results are stable and effective in multiple experiments. When the mixing parameter mu and the
node number are very large, the quality of the community detected by the IACD is higher than the
Louvain algorithm. The CDID, LE, and FG algorithms have relatively large fluctuations in the detection
results of the community in the three sets of experiments, and when the community structure is obvious,
the detection results are relatively unsatisfactory.

5. Conclusions and Future Work

In this article, we draw on the law of universal gravitation in physics, combine it with the
influence of nodes in complex networks, and propose a new community detection algorithm.
First, the IACD algorithm re-expresses the importance of all nodes in the network, considering the
node’s own degree value and the network location to make it more reasonable, and performs
normalization processing. Then, based on the gravitational interaction relationship between celestial
bodies in physics, we measure the gravitational relationship between the nodes, and each node forms an
attractive node pair with the node that has the most attractive to it, and finally completes the community
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structure division. The IACD algorithm is concise and reasonable, and easy to understand. It performs
well on real-world networks and different kinds of synthetic networks and the partition results are
better than many classic algorithms and recently proposed algorithms. Besides, the algorithm execution
process does not require parameter setting, which has low time complexity and stable result.

Actually, there is much room for improvement based on this algorithm. In the future, we will set
out to make improvements in two directions. First, the algorithm proposed in this paper is oriented
towards undirected unweighted networks, which is a simpler network structure. There are many
networks in the real world with weighting relationships and directionality among nodes, which is
more complex compared to undirected unweighted networks. How to improve the existing algorithms
so that they can be applied to weighted and directed networks is also the next research direction.
Secondly, the node influence calculation method used in this article combines degree centrality and
the position of the node in the network, since there have been many interesting and effective node
influence calculation methods proposed in recent years, how to choose the appropriate node influence
calculation method is also a worthy direction to explore.
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