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1  Introduction
Wireless sensor networks (WSNs) is widely deployed in the smart city. There exists a 
great amount of sensing devices in the urban environment, the sensing devices in WSNs 
can sense the environmental data [1–4]. The collected sensing data can be processed and 
sent to the remote server to make decisions, which can help improve the city manage-
ment [5–7].

The quickly developing micro-processing technologies are applied into the sens-
ing devices, the computation and communication capacities of the sensing devices are 
becoming more and more stronger [8–10]. Different kinds of sensing devices deployed 
in smart city, such as water pollution sensor, temperature sensor, humidity sensor, 
PM2.5 sensor, intelligent garbage can, intelligent streetlight. The sensing devices are the 
basis of the Internet of Things (IoT) [11–14]. The sensing devices can be applied into a 
large number of application scenarios, such as the environmental pollution monitoring 
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and traffic monitoring. For example, the water pollution sensors are deployed into urban 
water pipelines, which are used to sense and collect the status of water resources in the 
urban environment. Usually, the large amount of sensing data needs to be processed 
before making decisions. The sensing data processing can help people understand urban 
environment.

Processing the sensing data can generate a large number of real-time computing tasks. 
For example, the data deduplication task can remove the duplicated data. Furthermore, 
the data compression task can reduce the communication overhead in the process of 
data transmission. In addition, there is a large number of artificial intelligence algo-
rithms [15, 16], such as augmented reality (AR), face recognition, task classification, etc. 
However, the sensing devices exist shortcomings such as low computing power, limited 
storage capacity and limited battery power. Therefore, it is important to offload the com-
putation tasks to servers with strong computing power, the energy of sensing devices 
can be saved through computation offloading.

However, the sensing devices contain some communication problems. (1) The sens-
ing devices are usually very small, and the communication range is limited. (2) There 
is a large amount of sensing devices which are widely distributed in the city, the sens-
ing devices can be added or moved easily. Therefore, it is impractical to deploy fixed 
networks for sensing devices. For example, the garbage cans can be added or moved to 
other locations due to the demands. Thus, it is not cost-effective to apply an expensive 
wired network for these sensing devices. (3) The mobile communication technology is 
quickly developing, such as 5G technology. However, the SIM card cost and communica-
tion fee are too high for a sensing device. Therefore, many existing and deployed sensing 
devices usually do not use the cellular network. Totally, it is difficult to find a cost-effec-
tive way for sensing devices to complete the computation tasks.

The sensing devices have limited computation power and communication range, if 
the tasks are processed in the sensing devices, the sensing devices may consume a lot 
of energy and enter the sleepy mode. Furthermore, the deployment of communication 
system for these sensing devices has a large cost. Researchers proposed to adopt mobile 
vehicles to collect data sensed by the sensing devices distributed in the city. Similarly, 
there is a possible way to solve the task offloading problem, the moving mobile vehicles 
in the city can act as the task mules. There is a large number of vehicles moving around 
the city. When the vehicles pass by the sensing devices, the sensing devices send its com-
putation task to the vehicle. The sensing devices and vehicles can communicate with 
each other with a low energy cost, which leads to a low-cost and effective way to offload 
the computation tasks to the vehicles.

Numerous sensing devices and moving vehicles generate the IoT in smart city. The 
mobile edge computing (MEC) server on the roadside provides conditions for short-
distance edge computing, while cloud computing can provide powerful computing 
capabilities remotely. In order to support computation offloading for a large number 
of IoT devices, the cooperation between IoT, edge and cloud is required. Therefore, 
it is very important to study the computation offloading problem in IoT-edge-cloud 
network. In this paper, we attempt to apply vehicles to help offload the computation 
tasks of sensing devices. There are many mobile vehicles travelling around the city. In 
the future, the vehicles will gradually develop into the intelligent platform integrating 
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various communication functions. The vehicles can communicate with the sensing 
devices using short range communication, the mobile vehicles can communicate with 
more powerful servers. Thus, it is a possible solution to use mobile vehicles to com-
plete sensing devices’ computation offloading tasks.

In order to make full use of vehicles in computation offloading of mobile edge net-
work, we consider three layers in our system architecture: IoT device layer, mobile 
edge computing server and cloud center layer. The sensing devices offload the com-
putation tasks to mobile vehicles through short range communication technology. 
When mobile vehicles receive the computation tasks, vehicles choose to compute the 
tasks locally or transmit the tasks to the MEC servers. The MEC server can compute 
the tasks transmitted by the mobile vehicles.

The mobile edge computing is proposed to provide computation services for edge 
devices. However, a large number of sensing devices cannot connect to Internet, thus 
it is impossible to offload the computation tasks to MEC servers. In order to solve 
this problem, we propose to offload the computation tasks to vehicles, and the vehi-
cles can offload the computation tasks to MEC server when the vehicles cannot pro-
cess the tasks. Our objective is to design a computation offloading scheme for sensing 
devices. Through jointly coordinate with sensing devices, mobile vehicles and MEC 
servers, we propose a computation offloading scheme through vehicles in IoT-edge-
cloud network.

Artificial intelligence [17] is an important tool to solve the computation offloading 
problem efficiently, the deep reinforcement learning plays an important role in artifi-
cial intelligence. Deep reinforcement learning has a strong cognitive ability to the real 
environment and has been widely used in vehicular network. In large-scale network, 
deep reinforcement learning can significantly improve the decision-making speed and 
realize the task offloading for a large number of vehicles. With the explosive growth of 
sensing data, deep reinforcement learning can quickly learn knowledge from the envi-
ronment, especially in MEC-enabled systems, which can quickly select the appropri-
ate MEC server for vehicles to offload tasks. Therefore, it is very important to develop 
a deep reinforcement learning-based computation offloading method in heterogene-
ous network architecture.

The actor-critic (AC) framework is widely used in reinforcement learning algo-
rithms. The AC framework integrates the advantages of policy-based solution and 
value-based solution, AC algorithm is the most commonly considered algorithm 
when solving practical problems. In order to speed up the training process of the AC 
algorithm, asynchronous advantage actor-critic (A3C) algorithm is proposed. A3C 
puts AC into multiple threads for synchronous training, which can effectively use the 
resources of computer and improve the training efficiency. The server has multiple 
cores which can run multiple AC algorithms, the results are sent to the main network 
from multiple cores. The main network combines the results and decreases the rel-
evance, which is better for the convergence of the algorithm. In order to minimize the 
offloading cost of tasks, this paper proposes a computation offloading scheme based 
on deep reinforcement learning in the IoT-edge-cloud network.

The main contributions of this paper are summarized as follows: 
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1	 A computation offloading scheme through mobile vehicles (COTV) in IoT-edge-
cloud network is proposed in this paper, which solves the computation task off-
loading problem for widely deployed sensing devices in the smart city. The COTV 
scheme can find a solution for the computation offloading problem. There are a lot of 
sensing devices deployed in the smart city, it will consume a lot of energy to process 
these tasks. In this paper, we define the computation offloading problem for sens-
ing devices. As many vehicles are moving around the city, we attempt to apply the 
mobile vehicles to communicate with sensing devices. The sensing devices can send 
their tasks to vehicles in a low-cost and energy-efficient way.

2	 The system architecture is studied in COTV scheme, which consists of sensing 
device layer, mobile vehicle layer, MEC server layer and cloud center layer. The tasks 
are computed at mobile vehicle, MEC servers or cloud center. The total system cost 
includes the processes of task collection, task transmission and task execution. The 
energy consumption and latency are jointly considered in our COTV scheme.

3	 The deep reinforcement learning method is adopted to train the model; the reward 
is the total cost of the whole system in a long time period. Through extensive experi-
ments, our COTV scheme achieves better performance than the other compared 
schemes.

The rest of this paper is organized as follows: In Sect. 2, we introduce the related work. 
The network model and problem statement are presented in Sect. 3. Then, the method is 
introduced in Sect. 4. The experiment results of COTV scheme are presented in Sect. 5. 
Finally, Sect. 6 gives the conclusions.

2 � Background and related work
In order to provide low processing delay for devices, MEC is proposed to improve the 
performance of the system [18–20]. The MEC servers can process many tasks. Mean-
while, the MEC servers has smaller distance with devices, thus the processing delay can 
be largely decreased compared with cloud server. The IoT-edge-cloud network can make 
full use of IoT, MEC computing and cloud computing [21–26]. Wang et al. [27] proposed 
a task offloading and resource allocation algorithm in a heterogeneous network. The net-
work divided different MEC servers into multiple layers, the objective was to minimize 
the overall system latency. Through assigning tasks and allocating resources in heteroge-
neous layers, the latency was minimized and the processing rate was improved. In [28], 
the authors aimed at task offloading and service orchestration based on software defined 
network technology, the tasks were offloaded to MEC server or cloud server according 
to the required resource and allowed latency. The service orchestration technology could 
decrease the transmission data amount, the propose scheme can decrease the latency 
and consumed energy. In [29], the authors proposed a task offloading and resource allo-
cation algorithm based on software defined network technology in ultra-dense network, 
the battery capacity of the devices was considered as an impact factor of task offloading 
decision. However, none of these works consider the offloading costs of sensing devices, 
it is better to design a cost-effective way to solve the computation offloading problem for 
sensing devices.
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Mobile vehicles have been used in different kinds of application scenarios [30, 31]. Liu 
et al. [32] took the vehicles as mobile edge servers, which could process the latency-sen-
sitive tasks of some hot spots. The objective was to maximize the number of finished 
tasks. In 5G network, the subchannel assignment and computation offloading gener-
ate new challenging problems for vehicles, the authors in [33] proposed to offload tasks 
through cellular network or vehicle to vehicle according to the estimated transmission 
delay. Hoang et al. [34] studied the task offloading problem in a MEC-vehicular network, 
which considered that the vehicles were random moving. The offloading decision was 
made according to the estimated cost by predicting the vehicle trajectory. Peng et  al. 
[35] proposed a resource management solution based on MEC in autonomous vehicular 
networks. Zhuang et al. [36] surveyed a large number of software-defined networking 
and network function virtualization solutions in internet of vehicles. Misra et  al. [37] 
generated a task offloading problem and a computation results downloading problem 
separately, because the vehicles were continuously moving. A number of road site units 
were selected as the path to transmit the task to the fog server, the vehicle mobility was 
predicted to enable the path selection of downloading the task results.

A large number of sensing devices are deployed in smart city, and they generate a lot 
of tasks. In order to make intelligent decisions, the tasks need to be transmitted to the 
cloud server. However, the sensing devices usually cannot directly connect with cloud 
center. Thus, the sensing devices should find a way to transmit the task to cloud center. 
Recently, some researches proposed to make vehicles as data mules to transmit data. 
Luo et al. [38] proposed a data collection scheme in smart city using vehicles, the sensing 
devices were widely deployed to detect the status of basic infrastructures, the vehicles 
sent sensing data from sensing devices to data center, then the data center could make 
scientific decisions. The authors of [39] proposed to collect data through unmanned aer-
ial vehicle in a trust way, the energy consumption of system was decreased by optimiz-
ing the unmanned aerial vehicle’s trajectory. Liu et al. [40] orchestrated sensing data as 
service in edge-cloud network, which could reduce the service response delay and data 
redundancy. The vehicles were used to transmit services to the base stations. He et al. 
[41] considered the collaboration of cloud computing and local computing and pro-
posed vehicle cloud computing. Through coordinating the computing resources of vehi-
cle cloud and remote cloud, the proposed scheme provided real-time service for users. 
The computation resources of road side units were also considered in the vehicle cloud. 
However, the computation offloading problem in IoT-edge-cloud network is quite com-
plex, none of these researches focus on the IoT-edge-cloud network.

Recently, many researchers adopt machine learning techniques in the computation 
offloading problem. Lu et al. [42] considered the fine-grained task offloading problem in 
the heterogeneous MEC network. The mobile applications can be divided into multiple 
subtasks according to data dependencies, the subtasks can be offloaded to different serv-
ers for execution. The task offloading based on deep reinforcement learning can reduce 
the energy consumption and execution delay. Qi et  al. [43] focused on the internet of 
vehicles and proposed a knowledge-driven offloading scheme based on A3C algorithm. 
In order to solve the cooperative computation offloading problem in blockchain-ena-
bled MEC system, Feng et al. [44] formulated the joint optimization as a Markov deci-
sion process and solved the problem based on A3C algorithm. However, the machine 
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learning solutions adopted in these researches do not consider the computation offload-
ing problem in IoT-edge-cloud network. The computation offloading techniques can be 
further explored considering the blockchain [45, 46] or privacy preserving technique 
[47, 48].

Many researchers proposed many task offloading researches. However, most 
researches focused on the task offloading problem of edge devices in MEC or cloud 
computing, the task offloading problem of sensing devices is not discussed. Different 
from these works, we propose a task offloading scheme through mobile vehicles. Our 
research focuses on the IoT-edge-cloud network, there are many sensing devices in het-
erogeneous network. The computation tasks are intensive, and the tasks require low 
latency. There are three different platforms that can be selected to offload, which are 
mobile vehicles, MEC servers and cloud center, respectively. Thus, this problem is quite 
different from other existing researches.

3 � The system model and problem statement

3.1 � The energy consumption model

The network model contains IoT devices, MEC servers and cloud center. As Fig. 1 shows, 
our COTV model contains three layers. 

1	 IoT Device Layer (IDL). The IDL layer contains sensing devices and mobile vehi-
cles. The sensing devices upload computation tasks. The sensing devices are usually 
deployed all over the city, such as the intelligent trash can, streetlamp. These sensing 
devices sense and collect data in the city, and upload data to cloud center, the cloud 
center makes scientific decision based on these data. However, as the sensing devices 
are widely deployed in the city, and it will result a large cost to deploy a communica-

Fig. 1  The structure of COTV
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tion network for these sensing devices. The mobile vehicles are moving along the 
roads. The vehicles can process the computation tasks locally, or they can upload the 
computation tasks to the MEC servers. The mobile vehicles act as the task mules to 
receive the computation tasks of sensing devices. The vehicles move in the city as its 
predefined route, which can cover most areas of the city, and they can receive the 
computation tasks effectively. We assume that the vehicles are integrated with short 
range communication module and wireless communication module. When the vehi-
cles communicate with sensing devices, they use short range communication which 
consumes smaller energy. When the vehicles communicate with MEC servers or 
cloud center, they use wireless communication.

2	 Mobile Edge Computing Server Layer (MSL). The MSL layer contains MEC servers. 
The MEC server can process the computation tasks. The MEC servers close to the 
vehicles, which can process the latency-sensitive tasks, and they contain wireless and 
wired communications. When the MEC servers communicate with vehicles, they use 
wireless communication, when they communicate with cloud center, they use wired 
communication.

3	 Cloud Center Layer (CCL). The CCL layer contains one cloud center. The cloud 
server has large computation power and can process large number of computation 
tasks. The cloud center is far away from the vehicle, thus it needs longer time to pro-
cess the task.

3.2 � The computation offloading model

In this paper, we propose a computation offloading scheme through vehicles (COTV) 
in IoT-edge-cloud network. In IoT-edge-cloud network, there are many IoT device and 
mobile vehicles in IoT, which generate a large number of computation tasks. However, 
the devices in IoT have small computation power. The cloud can provide large computa-
tion resources, which can help process the computation tasks. However, the data trans-
mission of long distances will result in some delay. In addition, the edge can provide 
low-delay computation resources for IoT devices.

In our computation model, mobile vehicle can receive, process and transmit computa-
tion tasks. Assume that there are some computation tasks. For each task, the vehicles 
should make a computation offloading decision, the task can be processed in the vehicle, 
MEC server, or cloud center. The computation offloading operation is made based on the 
deep reinforcement learning algorithm.

3.3 � Problem statement

The overall objective is to design a computation offloading scheme through vehicles. 
Each task is executed in the vehicle, MEC server or cloud center. Different from the 
other optimization problems, we consider the overall energy consumption and delay of 
the task in our optimization problem. We design a utility function to improve the qual-
ity of service, which is the weight sum of the energy consumption and delay. Assume 
that the total energy consumption is E, which includes the communication energy con-
sumption and task execution consumption. The total latency is D, which includes the 
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communication latency and task execution latency. Our optimization objective is to 
minimize the total energy consumption and latency. Thus, the total optimization func-
tion is defined as

4 � Methods
4.1 � The design of COTV scheme

In this paper, we propose a computation offloading scheme through vehicles (COTV) 
in IoT-edge-cloud network. We consider a network consisted of sensing devices, mobile 
vehicles, MEC servers and cloud center. The sensing devices can transfer the compu-
tation tasks to mobile vehicles. We propose to use vehicles to make computation off-
loading decisions, the mobile vehicles receive the tasks from sensing devices through 
opportunistic communication. In this paper, we propose the computation offloading 
scheme through mobile vehicles in IoT-edge-cloud network. The tasks can be processed 
in the vehicle, MEC server or cloud center. 

1	 The sensing devices transmit the tasks to the vehicles through opportunistic com-
munication. The vehicles should make task decisions when they receive tasks. We 
assume that the task is an independent object, which can only be fully processed by 
vehicle, MEC server or cloud center. The task cannot be divided into several parts.

2	 The task is processed in the vehicle. The vehicle first receives the task from the sens-
ing device, if the vehicle decides to process the task locally, the task is added into the 
cache queue. When the task is processed locally, the final results of the tasks are sent 
to the cloud center.

3	 The task is offloaded to the MEC server. If the vehicle decides to offload the task to 
the MEC server. Then, the vehicle needs to select one MEC server to offload the task, 
and sends the required resource to the MEC server. After selecting the object MEC 
server, the vehicle offloads the task to it. Finally, the task results are sent to the cloud 
center.

4	 The task is offloaded to the cloud center. If the vehicle decides to offload the task to 
cloud center, the vehicle transmits the required resource to cloud center, the task is 
added into the cache queue of cloud center. Then, the task is processed in the cloud 
center. Finally, the cloud center obtains all the processing results of the tasks.

4.2 � Tasks transferring through vehicles

In the smart city, the sensing devices are widely deployed in the basic infrastructures. 
The sensing devices are responsible for generating different kinds of tasks. These tasks 
need to be offloaded and processed in an appropriate platform. We assume that each 
sensing device generates a task, the processing results of these tasks are aggregated in 
the cloud center. The cloud center is responsible for making scientific decisions based on 
task results.

Assume that all the sensing devices are partitioned into different areas, each area 
contains some sensing devices, the sensing devices in the same area can communicate 

(1)min(F) = min(�E + (1− �)D).
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with each other. The sensing devices in one area can be divided into two categories: 
direct sensing devices and indirect sensing devices. For the direct sensing devices, they 
are within the communication range of the vehicles, and they act as the relay to help 
other sensing devices to transmit tasks. When the vehicles passing by the direct sensing 
devices, they can transmit the tasks to the vehicles through short range communication. 
For the indirect sensing devices, they need to transmit their tasks to the direct sensing 
devices through multi-hop communication. Each indirect sensing device needs to know 
the next-hop sensing device. The task transmission will cause the route cost. However, 
the computation cost is much larger, thus we do not consider route cost in our COTV 
scheme.

Many sensing devices cannot connect to Internet; some sensing devices do not have 
wifi adaptor due to economic considerations. In addition, it consumes a lot of energy 
when transmitting tasks through wireless communication, which leads to the death of 
the sensing devices. The sensing devices are equipped with short range communication 
module, which consume smaller energy through opportunistic communication. There 
are many vehicles moving in the city, which are equipped with short range communica-
tion modules.

The sensing devices do not process the tasks; we make full use vehicles to receive and 
process tasks. The vehicles are moving along the roads, when the vehicle is within the 
communication of the vehicle, the sensing device transmit its task to the vehicle through 
short range communication. Let T be the duration time, which can be divided into mul-
tiple time slots. At time slot t, we assume that each sensing device has one computation 
task St = {lt, xt} . lt is the needed input data to process the task, such as the program code 
and input parameters. xt is the computation resources needed to finish the computation 
task. lt and xt can not only obtain the basic attributes of task, such as the computation 
and communication requirements, but also simplify the evaluation of execution delay 
and energy consumption.

We adopt mobile vehicles to receive the computation tasks from sensing devices. The 
vehicles can communicate with MEC servers and cloud center, the MEC servers can 
communicate with the cloud center. When the vehicle receives the task, the vehicle 
should make the offloading decision. The task is processed in the vehicle, MEC server or 
cloud center, and transmit the task to the cloud center. Finally, the cloud center gathers 
all the task processing results and makes scientific decision. In this paper, we focus on 
the total cost of the task from the sensing device to the cloud center.

4.3 � Energy consumption and delay modeling

The execution delay and energy consumption are very important. In the offloading pro-
cess, we mainly consider two main steps: (1) transfer the input data, (2) compute tasks. 
The main objective of our approach is: minimize the energy consumption and execution 
latency. Hereafter, we will evaluate with close formulas the above parameters. 

1	 Sensing device computation model

The sensing devices contain the trash can, streetlamp, and so on. In our network, the sens-
ing devices are responsible for generating tasks. The sensing devices locate at the first level 
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of the network. Each sensing device generate one task, the sensing device is not responsible 
for process task.

The sensing device transfers its computation task to the vehicle through opportunistic 
communication. The task is denoted as St = {lt, xt} . The delay of computation task St in 
the sensing device level is denoted as Ds,v

t  , the data uplink transmission rate from the 
sensing device to the vehicle is denoted as αs,v

t  . Thus, the delay Ds,v
t  is the time of upload-

ing computation tasks from sensing device to vehicle, which is computed as

The consumed energy Es,v
t  is the transmission cost of uploading computation tasks from 

sensing device to vehicle, Es,v
t  is given by

where Cs,v is the transmission power consumption from sensing device to vehicle per 
unit time. 

2.	 Vehicle computation model

The vehicles play very important roles in the network. First, the vehicle layer is between 
the sensing layer and MEC server layer, the vehicles can receive the tasks from sens-
ing devices in a low-cost and effective way. Then, the vehicles can make full use of its 
own computation power and compute some part of tasks for sensing devices. Finally, the 
vehicles transmit the processing results to the cloud center.

If a vehicle receives task St = {lt, xt} , the vehicle decides to compute the task locally. 
The delay of the computation task is denoted as Dv

t  , the delay contains two parts: (1) the 
delay of processing tasks in the vehicle, (2) the delay of uploading results from vehicle to 
cloud center.

We denote fv as the computation power of the vehicle, the computation power is 
the CPU cycles in one second. Thus, the delay of processing tasks in the vehicle Dv,p

t  is 
denoted as

Assume the amount of processed results is xt,p , the data uplink transmission rate from 
vehicle to cloud center is denoted as αv,c

t  . The delay of uploading results from vehicle to 
cloud center Dv,u

t  is denoted as

Thus, the total delay in the vehicle is given by

The consumed energy Ev
t  includes the computation cost in the vehicle and transmission 

cost of uploading computation results from vehicle to cloud center, Ev
t  is denoted as

(2)Ds,v
t = lt/α

s,v
t .

(3)Es,v
t = Cs,vD

s,v
t ,

(4)D
v,p
t = xt/fv.

(5)Dv,u
t = xt,p/α

v,c
t .

(6)Dv
t = D

v,p
t + Dv,u

t .

(7)Ev
t = Ca

vDt
v,p + Cu

vD
v,u
t ,
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where Ca
v is the computation power consumption of vehicle per unit time, Cu

v  is the 
transmission power consumption from vehicle to cloud center per unit time. 

3.	 MEC computation model

The MEC server layer is between the vehicle layer and cloud center level, the MEC 
servers bring the computation resources to the edge network. The computation power 
of MEC server is larger than the vehicle, but smaller than the cloud center. The MEC 
server can share the responsibility of vehicles, because the vehicles have smaller com-
putation power. The MEC servers can communicate with vehicles and cloud center 
through wireless communication. After receiving the computation task from the vehi-
cles, the MEC server sends the task to the cloud center. As the MEC servers are closer 
to the vehicles and sensing devices, thus it takes smaller time to transmit the task 
from vehicle to MEC server than cloud center.

If the vehicle chooses to offload the task to a MEC server, the delay of the compu-
tation task is denoted as Dm

t  , the delay contains two parts: i) the delay of processing 
tasks in the MEC server, ii) the delay of uploading results from MEC server to cloud 
center.

We denote fm as the computation power of the MEC server, the computation power 
is the CPU cycles in one second. Thus, the delay of processing tasks in the MEC server 
D
m,p
t  is denoted as

Assume the amount of processed results is xt,p , the data uplink transmission rate from 
MEC server to cloud center is denoted as αm,c

t  . The delay of uploading results from MEC 
server to cloud center Dm,u

t  is denoted as

Thus, the total delay in the MEC server is denoted as

The consumed energy Em
t  includes the computation cost in the MEC server and trans-

mission cost of uploading computation results from MEC server to cloud center, Em
t  is 

given by

where Cβ
v  is the computation power consumption of MEC server per unit time, Cǫ

v is the 
transmission power consumption from MEC server to cloud center per unit time. 

4.	 Cloud computation model

The cloud center can receive and process the tasks from the vehicles through wireless 
communication, and the computation power of cloud center is the largest in all the 
layers.

(8)D
m,p
t = xt/fm.

(9)Dm,u
t = xt,p/α

m,c
t .

(10)Dm
t = D

m,p
t + Dm,u

t .

(11)Em
t = Cβ

v D
m,p
t + Cǫ

vD
m,u
t ,
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If the vehicle chooses to offload the task to a cloud center, the delay of the computa-
tion task is denoted as Dc

t  , the delay only includes the time of processing tasks in the cloud 
center.

We denote fc as the computation power of the cloud server, the computation power is the 
CPU cycles in one second. Thus, the total delay in the cloud center Dc

t  is denoted as

The consumed energy Ec
t  includes the computation cost in the cloud center, which is 

denoted as

where Cγ
v  is the computation power consumption of cloud center per unit time.

The cloud center also receives the task processing results from vehicles and MEC servers. 
Based on all the processing results, the cloud center can make scientific decisions. 

5.	 Total cost optimization model

The overall objective is to design a computation offloading scheme for IoT sensing devices 
through vehicles. Each task is executed in the vehicle, MEC server and cloud center. Our 
optimization objective is to minimize the total energy consumption and latency.

The offloading policy of task is at = {avt , a
m
t , a

c
t } , in which at = {avt = 1, amt = 0, act = 0} 

denotes that the task is processed in the vehicle, at = {avt = 0, amt = 1, act = 0} denotes 
that the task is offloaded to MEC server, at = {avt = 0, amt = 0, act = 1} denotes that the 
task is offloaded to cloud center.

The total latency is Dt , which includes the transmission latency and task execution 
latency. Dt is computed as

Assume that the total energy consumption is Et , which includes the transmission energy 
consumption and task execution consumption. Et is computed as

The total optimization function is defined as

where � is a parameter to dynamic change the weight between delay and energy con-
sumption in the optimization function.

Thus, the goal and constraints are defined as:

(12)Dc
t = xt/fc.

(13)Ec
t = Cγ

v D
c
t ,

(14)Dt = Ds,v
t + avtD

v
t + amt D

m
t + actD

c
t .

(15)Et = Es,v
t + avt E

v
t + amt E

m
t + actE

c
t .

(16)Ft = �Dt + (1− �)Et,

(17)

min
∑

t∈T

Ft

s.t. C1 : a
v
t , a

m
t , a

c
t ∈ (0, 1)

C2 : a
v
t + amt + act = 1,
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where C1 and C2 means that each task can be processed at vehicle, MEC server or cloud 
center.

4.4 � Computation offloading algorithm

Assume that the sensing devices generate multiple tasks, the sensing devices transfer 
tasks to vehicles. The vehicles determine the offloading decisions of these tasks. The 
tasks can be processed in vehicle, offloaded to MEC server or cloud center. The system 
information is transferred to the agent to obtain the feedback of the offloading strategy. 
In the task offloading process using deep reinforcement learning, the reward is obtained 
after taking an action. We will introduce the state, action and reward as follows.

State st : The state st is defined to describe environment state for the task of vehicle 
in time slot t, which includes the vehicle information, MEC server information and 
cloud server information. When the agent generates a computation task in time slot t, it 
records the task status as well as the available computational resource information. The 
MEC server information is the computation capacity. Hence, we use st = {lt, xt, fm, fc} to 
represent the vehicular edge computing state. The status contains the following: 

1	 Vehicle information {lt, xt} : lt is the input data of task, xt is the needed computing 
resource for executing the task.

2	 MEC server information fm : fm is the computation capacity of MEC server.
3	 Cloud server information fc : fc is the computation capacity of cloud server.

Action at : The agent takes an action at at time slot t according to the current state st , the 
computation policy π implies that the vehicle computes the task locally, or offloaded to 
the MEC server, or offloaded to the cloud center.

Reward rt : For each step, the agent will get a reward rt in a certain state st after exe-
cuting each possible action. In general, the reward function should be related to the 
objective function. Consequently, the objective of our optimization problem is to get 
the minimal sum cost and the goal of deep reinforcement learning is get the maximum 
reward, so the value of reward should be negatively correlated to the size of the sum 
cost, we define the immediate reward as normalized rt , where A1 and A2 are constants. rt 
is computed as

The task offloading environment has many system states, which needs to be determined 
by the current situation of the system. However, it is difficult to use traditional method 
to solve this complex task. Asynchronous advantage actor-critic (A3C) is a novel deep 
reinforcement technique, which can receive high dimensional data and output optimal 
operation for each input data. A3C has a good performance in solving high-dimensional 
state and action decision. Compared with the other deep reinforcement learning algo-
rithms, such as actor-critic and Q-learning, A3C takes the advantages of these two 
algorithms. As A3C uses asynchronous participants to learn, which can accelerate the 
learning speed and make the training strategy more diverse. 

(18)rt =
A1

A2 + Ft
.
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Algorithm 1 : A3C Algorithm in Task Offloading
1: Set global parameters θ,θv
2: Set parameters θ′,θ′v
3: Set shared counter T = 0
4: Set counter t = 1
5: repeat
6: Reset global gradients dθ = 0, dθv = 0
7: Synchronize parameters θ′ = θ, θ′v = θv
8: tstart = t
9: Observe from Env and obtain state st
10: repeat
11: Perform at according to π(at|st; θ′)
12: Receive reward rt and obtain next state st+1
13: t = t+ 1
14: T = T + 1
15: until st terminal or t− tstart = tmax

16: if st is the terminal state then
17: R = 0
18: else
19: R = V (st|θ′v)
20: end if
21: for i ∈ {t− 1, · · · , tmax} do
22: R = ri + γR
23: Compute gradient θ′ : dθ = dθ +�θ′ log π(ai|si; θ′)(R− V (si|θ′))
24: Compute gradient θ′v : dθv = dθv + (∂(R− V (si|θ′v)))2/∂θ′v
25: end for
26: Asynchronous update θ using dθ
27: Asynchronous update θv using dθv
28: until T > Tmax

The data center can collect status from each vehicle and MEC server. Meanwhile, 
the data center combines the information into the system state. In addition, the data 
center sends the state to the agent and receives the feedback of the optimal policy, 
then the data center selects appropriate server to offload task. In A3C algorithm, 
the task offloading experiences are stored in the replay. Algorithm 1 shows the asyn-
chronous advantage actor-critic algorithm in task offloading. In order to obtain the 
optimal policy in task offloading, we should determine the reward, state and action 
in A3C algorithm.

5 � Results and discussion
In the simulation settings, we consider a scenario as follows. The real vehicle data-
set of Rome city is used in the experiment for verification. The network contains 
100 sensing devices, 6–20 vehicles, 50 MEC servers and 1 cloud center. The sensing 
devices are randomly deployed, the vehicles are moving around along the roads, the 
MEC servers are randomly deployed within 100–1000 meters from the cloud center. 
The maximum bandwidth of MEC server is 2.5 MHz, the capability of MEC server is 
6.5 GHz. About the training parameters, the actor’s learning rate is 0.001, the crit-
ic’s learning rate is 0.01. The CPU is Intel Core i5-8400 with 32G memory. The deep 
reinforcement learning environment is implemented on Python. The experimental 
parameters are shown in Table 1.

We compare our solution with two other solutions. The two comparison schemes are 
described as follows. 

1	 Actor critic: the scheme that uses actor critic algorithm as the deep reinforcement 
learning algorithm to train the model and offload computation tasks.

2	 Nearest neighbor: the scheme that uses nearest neighbor algorithm to offload com-
putation tasks.
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5.1 � Analysis of the reward

Figure  2 illustrates the impact of learning rounds on the reward performance of 
COTV scheme and actor critic scheme. From the figure, we can see that COTV out-
performs the actor critic scheme in the reward performance. COTV has a higher 
reward than actor critic scheme after 30 learning rounds. We can observe that the 
reward increases as the learning rounds increase, and the reward performance con-
verges gradually. In the learning rate performance, we do not compare the perfor-
mance of nearest neighbor scheme. The reason is that the nearest neighbor scheme 
selects the MEC server or cloud server to offload computation tasks based on the 
distance, the vehicles select the nearest server to offload tasks and do not have the 
training process. The COTV scheme’s training performance is better than actor critic 
algorithm, because the A3C algorithm used in COTV scheme can utilize asynchro-
nous mechanism to accelerate the training process.

Figure  3 compares the reward performance of three algorithms in different num-
ber of vehicles. The vehicles change from 5 to 20, the day is fixed as the 30th day. As 
we can see from the figure, the reward increases with the increase of the number of 
vehicles in general. Because the reward is the total reward of the whole system, thus 

Table 1  Experimental parameters

Parameter Value

Number of sensing devices 100

Number of vehicles 6–20

Number of MEC servers 50

Number of cloud servers 1

The maximum bandwidth of MEC server 2.5 MHz

The capability of MEC server 6.5 GHz

Fig. 2  Reward versus learning round
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the number of vehicles is an important factor to determine the total reward. Thus, we 
choose to fix the number of vehicles as 20 in the follow-up experiments.

Figure 4 shows the impact of days on the performance of reward. The three algo-
rithms are compared when the number of vehicles is 20. The real Rome dataset 
contains vehicles’ trajectory of 30 days, we select 7 representative days to illustrate 
the impact of days on the reward performance. As we can see from the figure, the 
reward performance of COTV scheme keeps very stable in different days. The nearest 

Fig. 3  Reward versus number of vehicles

Fig. 4  Reward versus days
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neighbor scheme has a greater change compared with our COTV scheme. The experi-
ment results show that our COTV scheme has a stable performance.

5.2 � Analysis of the number of packets

Figure  5 compares the packets of three algorithms in different number of vehicles. 
Compared with actor critic scheme and nearest neighbor scheme, COTV scheme 
sends more packets. The number of packets increase with the increase of the number 
of vehicles, because the whole system can send and process more packets with more 
vehicles.

Fig. 5  Packets versus number of vehicles

Fig. 6  Packets versus days
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Figure 6 shows the performance comparison of packets in different days. The figure 
shows that COTV’s packets are similar in different days, which indicates that the train-
ing process can make the packet performance better than the untrained nearest neigh-
bor scheme.

5.3 � Analysis of the delay

Figure 7 shows the performance comparison of delay on different days. Delay is a very 
important factor for the computation offloading of the tasks. If the delay time is larger 
than the maximum tolerable time, the task may not be able to offload to the other plat-
forms. The vehicles are continuously moving on the road, it is very important to select 
an efficient scheme to offload the computation tasks. Our scheme performs better than 
the nearest neighbor scheme and actor critic scheme. The experiment results show that 
our COTV algorithm can choose the appropriate server to offload tasks. From the fig-
ure, we can see that our COTV scheme performs best at the 5th day in 30 days.

Figure 8 compares the delay time of three algorithms in different number of vehicles. 
The delay time of our COTV scheme is the smallest in three compared schemes. As 
the number of vehicles increase, the delay time increases. Thus, the number of vehicles 
should be selected appropriately if the task is delay-sensitive. In general, the delay time is 
totally acceptable.

The experimental results show that our scheme is better than the existing scheme. We 
can see that our performances on reward, packets and delay are better compared with 
the comparison schemes. The reason of our scheme is better than the compared schemes 
is illustrated as follows. We model the computation offloading process as a reinforce-
ment learning process, and we use A3C algorithm to perform computation offloading. 
The A3C algorithm uses multiple threads for asynchronous parallel processing, which 
can speed up the convergence, improve learning efficiency, and enhance performances.

Fig. 7  Delay versus days
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Since the IoT-edge-cloud network is heterogeneous and there are many devices in 
IoT, the computation offloading problem of IoT devices is very difficult. When select-
ing a platform for computation offloading, the computation offloading decisions are 
very important. In this article, we propose to use vehicles to support computation 
offloading of IoT devices, and make computation offloading decisions based on A3C 
algorithm. The proposed computation offloading framework can be widely applied to 
the computation offloading of IoT devices in smart city. In the future, we are inter-
ested in exploring more complex offloading models, such as partial offloading. In 
addition, we can combine technologies such as blockchain and privacy protection to 
further enhance the security of computation offloading.

6 � Conclusion
In smart city, there are many sensing devices deployed in the basic infrastructures. 
The sensing devices need to transmit the task results to the cloud center for deci-
sion making. However, some sensing devices cannot connect to the Internet, and it 
consumes a lot of money to deploy wireless network for these devices. In this paper, 
we propose a computation offloading scheme through vehicles in IoT-edge-cloud net-
work. Through introducing mobile vehicles and offloading the tasks of the sensing 
devices, the energy consumption of sensing devices can be decreased. The tasks can 
be processed in the vehicles, MEC servers or cloud center. In our proposed algorithm, 
the task offloading cost considers the computation cost and the task delay. Through 
comparing the offloading costs of the vehicles, MEC servers and cloud center, we 
select the platform using deep reinforcement learning algorithm. In our experiment, 
we compare our proposed scheme with the other schemes, our algorithm can achieve 
maximum reward.

Fig. 8  Delay versus number of vehicles



Page 20 of 21Long et al. J Wireless Com Network        (2020) 2020:244 

Abbreviations
MEC: Mobile edge computing; IoT: Internet of things; AR: Augmented reality; COTV: Computation offloading scheme 
through mobile vehicles; IDL: IoT device layer; MSL: Mobile edge computing server layer; CCL: Cloud center layer.

Acknowledgements
This work was supported in part by the National Natural Science Foundation of China under Grant 61772554, in part by 
the Key Technology Research and Development Program of Hunan Province under Grant 2018GK2052.

Authors’ contributions
JL is the main author of the current paper. YL contributed to the conception and design of the study. XZ, EL and MH 
commented the work. All authors read and approved the final manuscript.

Funding
National Natural Science Foundation of China under Grant (61472450, 61772554), the Key Technology Research and 
Development Program of Hunan Province under Grant 2018GK2052.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 School of Computer Science and Engineering, Central South University, Changsha 410083, China. 2 Network Resources 
Management and Trust Evaluation Key Laboratory of Hunan Province, Central South University, Changsha 410083, China. 
3 School of Mathematics and Statics, Central South University, Changsha 410083, China. 4 School of Electronics and Infor-
mation Engineering, Hunan University of Science and Engineering, Yongzhou 425199, China. 

Received: 14 July 2020   Accepted: 21 October 2020

References
	1.	 K. Xie, X. Ning, X. Wang, D. Xie, J. Cao, G. Xie, J. Wen, Recover corrupted data in sensor networks: a matrix completion 

solution. IEEE Trans. Mob. Comput. 16(5), 1434–1448 (2017)
	2.	 X. Liu, P. Lin, T. Liu, T. Wang, A. Liu, W. Xu, Objective-variable tour planning for mobile data collection in partitioned 

sensor networks. IEEE Trans. Mob. Comput. (2020). https​://doi.org/10.1109/TMC.2020.30030​04
	3.	 X. Liu, T. Qiu, B. Dai, L. Yang, A. Liu, J. Wang, Swarm intelligence-based rendezvous selection via edge computing for 

mobile sensor networks. IEEE Internet Things J. (2020). https​://doi.org/10.1109/JIOT.2020.29668​70
	4.	 S. Huang, A. Liu, S. Zhang, T. Wang, N. Xiong, Bd-vte: a novel baseline data based verifiable trust evaluation scheme 

for smart network systems. IEEE Trans. Netw. Sci. Eng. (2020). https​://doi.org/10.1109/TNSE.2020.30144​55
	5.	 T. Wang, Z. Cao, S. Wang, J. Wang, L. Qi, A. Liu, M. Xie, X. Li, Privacy-enhanced data collection based on deep learning 

for internet of vehicles. IEEE Trans. Ind. Inf. 16(10), 6663–6672 (2020)
	6.	 H. Teng, K. Ota, A. Liu, T. Wang, S. Zhang, Vehicles joint uavs to acquire and analyze data for topology discovery in 

large-scale iot systems. Peer-to-Peer Netw. Appl. 13(5), 1720–1743 (2020)
	7.	 Y. Ren, Z. Zeng, T. Wang, S. Zhang, G. Zhi, A trust-based minimum cost and quality aware data collection scheme in 

p2p network. Peer-to-Peer Netw. Appl. (2020). https​://doi.org/10.1007/s1208​3-020-00898​-2
	8.	 Y. Zhao, T. Wang, S. Zhang, Y. Wang, Towards minimum code dissemination delay through uav joint vehicles for 

smart city. IET Commun. (2020). https​://doi.org/10.1049/iet-com.2019.1205
	9.	 M. Peng, W. Liu, T. Wang, Z. Zeng, Relay selection joint consecutive packet routing scheme to improve performance 

for wake-up radio-enabled wsns. Wirel. Commun. Mob. Comput. (2020). https​://doi.org/10.1155/2020/72305​65
	10.	 X. Liu, A. Liu, T. Qiu, B. Dai, T. Wang, L. Yang, Restoring connectivity of damaged sensor networks for long-term 

survival in hostile environments. IEEE Internet Things J. 7(2), 1205–1215 (2020)
	11.	 Z. Li, Y. Liu, A. Liu, S. Wang, H. Liu, Minimizing convergecast time and energy consumption in green internet of 

things. IEEE Trans. Emerg. Top. Comput. 8(3), 797–813 (2020)
	12.	 X. Zhu, Y. Luo, A. Liu, W. Tang, M.Z.A. Bhuiyan, A deep learning-based mobile crowdsensing scheme by predicting 

vehicle mobility. IEEE Trans. Intell. Transp. Syst. (2020). https​://doi.org/10.1109/TITS.2020.30234​46
	13.	 X. Wang, Z. Liu, Y. Gao, X. Zheng, Z. Dang, X. Shen, A near-optimal protocol for the grouping problem in rfid systems. 

IEEE Trans. Mob. Comput. (2019). https​://doi.org/10.1109/TMC.2019.29621​25
	14.	 X. Liu, H. Song, A. Liu, Intelligent uavs trajectory optimization from space-time for data collection in social networks. 

IEEE Trans. Netw. Sci. Eng. (2020). https​://doi.org/10.1109/TNSE.2020.30175​56
	15.	 T. Li, M. Zhao, K.K.L. Wong, Machine learning based code dissemination by selection of reliability mobile vehicles in 

5g networks. Comput. Commun. 152, 109–118 (2020)
	16.	 J. Ge, B. Liu, T. Wang, Q. Yang, A. Liu, A. Li, Q-learning based flexible task scheduling in a global view for the internet 

of things. Trans. Emerg. Telecommun. Technol. (2020). https​://doi.org/10.1002/ett.4111
	17.	 Y. Ren, T. Wang, S. Zhang, J. Zhang, An intelligent big data collection technology based on micro mobile data cent-

ers for crowdsensing vehicular sensor network. Pers. Ubiquitous Comput. (2020). https​://doi.org/10.1007/s0077​
9-020-01440​-0

https://doi.org/10.1109/TMC.2020.3003004
https://doi.org/10.1109/JIOT.2020.2966870
https://doi.org/10.1109/TNSE.2020.3014455
https://doi.org/10.1007/s12083-020-00898-2
https://doi.org/10.1049/iet-com.2019.1205
https://doi.org/10.1155/2020/7230565
https://doi.org/10.1109/TITS.2020.3023446
https://doi.org/10.1109/TMC.2019.2962125
https://doi.org/10.1109/TNSE.2020.3017556
https://doi.org/10.1002/ett.4111
https://doi.org/10.1007/s00779-020-01440-0
https://doi.org/10.1007/s00779-020-01440-0


Page 21 of 21Long et al. J Wireless Com Network        (2020) 2020:244 	

	18.	 J. Tan, W. Liu, T. Wang, M. Zhao, A. Liu, S. Zhang, A high-accurate content popularity prediction computational mod-
eling for mobile edge computing using matrix completion technology. Trans. Emerg. Telecommun. Technol. (2020). 
https​://doi.org/10.1002/ett.3871

	19.	 T. Wang, L. Qiu, A.K. Sangaiah, A. Liu, M.Z.A. Bhuiyan, Y. Ma, Edge-computing-based trustworthy data collection 
model in the internet of things. IEEE Internet Things J. 7(5), 4218–4227 (2020)

	20.	 T. Wang, Y. Liang, Y. Yang, G. Xu, H. Peng, A. Liu, W. Jia, An intelligent edge-computing-based method to counter 
coupling problems in cyber-physical systems. IEEE Netw. 34(3), 16–22 (2020)

	21.	 Q. Liu, Y. Tian, J. Wu, T. Peng, G. Wang, Enabling verifiable and dynamic ranked search over outsourced data. IEEE 
Trans. Serv. Comput. (2019). https​://doi.org/10.1109/TSC.2019.29221​77

	22.	 X. Zhu, J. Wu, W. Chang, G. Wang, Q. Liu, Efficient authentication of multi-dimensional top-k queries. IEEE Access 7, 
4748–4762 (2019)

	23.	 Q. Liu, G. Wang, X. Liu, T. Peng, J. Wu, Achieving reliable and secure services in cloud computing environments. 
Comput. Electr. Eng. 59, 153–164 (2017)

	24.	 H. He, H. Shan, A. Huang, Q. Ye, W. Zhuang, Edge-aided computing and transmission scheduling for lte-u-enabled 
iot. IEEE Trans. Wirel. Commun. (2020). https​://doi.org/10.1109/TWC.2020.30172​07

	25.	 Y. Xu, J. Ren, Y. Zhang, C. Zhang, B. Shen, Y. Zhang, Blockchain empowered arbitrable data auditing scheme for 
network storage as a service. IEEE Trans. Serv. Comput. 13(2), 289–300 (2020)

	26.	 Q. Liu, Y. Guo, J. Wu, G. Wang, Effective query grouping strategy in clouds. J. Comput. Sci. Technol. 32(6), 1231–1249 
(2017)

	27.	 P. Wang, Z. Zheng, B. Di, L. Song, Hetmec: latency-optimal task assignment and resource allocation for heterogene-
ous multi-layer mobile edge computing. IEEE Trans. Wirel. Commun. 18(10), 4942–4956 (2019)

	28.	 M. Huang, W. Liu, T. Wang, A. Liu, S. Zhang, A cloud-mec collaborative task offloading scheme with service orchestra-
tion. IEEE Internet Things J. 7(7), 5792–5805 (2020)

	29.	 M. Chen, Y. Hao, Task offloading for mobile edge computing in software defined ultra-dense network. IEEE J. Sel. 
Areas Commun. 36(3), 587–597 (2018)

	30.	 T. Li, W. Liu, T. Wang, Z. Ming, X. Li, M. Ma, Trust data collections via vehicles joint with unmanned aerial vehicles in 
the smart internet of things. Trans. Emerg. Telecommun. Technol. (2020). https​://doi.org/10.1002/ett.3956

	31.	 M. Huang, K. Zhang, Z. Zeng, T. Wang, Y. Liu, An auv-assisted data gathering scheme based on clustering and matrix 
completion for smart ocean. IEEE Internet Things J. (2020). https​://doi.org/10.1109/JIOT.2020.29880​35

	32.	 Liu, Y., Li, Y., Niu, Y., Jin, D.: Joint optimization of path planning and resource allocation in mobile edge computing. 
IEEE Trans. Mob. Comput. 19(9), 2129–2144 (2019)

	33.	 Z. Ning, X. Wang, J.J. Rodrigues, F. Xia, Joint computation offloading, power allocation, and channel assignment for 
5g-enabled traffic management systems. IEEE Trans. Ind. Inf. 15(5), 3058–3067 (2019)

	34.	 V.H. Hoang, T.M. Ho, L.B. Le, Mobility-aware computation offloading in mec-based vehicular wireless networks. IEEE 
Commun. Lett. 24(2), 466–469 (2019)

	35.	 H. Peng, Q. Ye, X. Shen, Spectrum management for multi-access edge computing in autonomous vehicular net-
works. IEEE Trans. Intell. Transp. Syst. 21(7), 3001–3012 (2020)

	36.	 W. Zhuang, Q. Ye, F. Lyu, N. Cheng, J. Ren, Sdn/nfv-empowered future iov with enhanced communication, comput-
ing, and caching. Proc. IEEE 108(2), 274–291 (2019)

	37.	 S. Misra, S. Bera, Soft-van: mobility-aware task offloading in software-defined vehicular network. IEEE Trans. Veh. 
Technol. 69(2), 2071–2078 (2019)

	38.	 Y. Luo, X. Zhu, J. Long, Data collection through mobile vehicles in edge network of smart city. IEEE Access 7, 
168467–168483 (2019)

	39.	 B. Jiang, G. Huang, T. Wang, J. Gui, X. Zhu, Trust based energy efficient data collection with unmanned aerial vehicle 
in edge network. Trans. Emerg. Telecommun. Technol. (2020). https​://doi.org/10.1002/ett.3942

	40.	 Y. Liu, Z. Zeng, X. Liu, X. Zhu, M.Z.A. Bhuiyan, A novel load balancing and low response delay framework for edge-
cloud network based on sdn. IEEE Internet Things J. 7(7), 5922–5933 (2020)

	41.	 Y. He, N. Zhao, H. Yin, Integrated networking, caching, and computing for connected vehicles: a deep reinforcement 
learning approach. IEEE Trans. Veh. Technol. 67(1), 44–55 (2017)

	42.	 H. Lu, C. Gu, F. Luo, W. Ding, X. Liu, Optimization of lightweight task offloading strategy for mobile edge computing 
based on deep reinforcement learning. Future Gener. Comput. Syst. 102, 847–861 (2020)

	43.	 Q. Qi, J. Wang, Z. Ma, H. Sun, Y. Cao, L. Zhang, J. Liao, Knowledge-driven service offloading decision for vehicular 
edge computing: a deep reinforcement learning approach. IEEE Trans. Veh. Technol. 68(5), 4192–4203 (2019)

	44.	 J. Feng, Yu F. Richard, Q. Pei, X. Chu, J. Du, L. Zhu, Cooperative computation offloading and resource allocation for 
blockchain-enabled mobile-edge computing: a deep reinforcement learning approach. IEEE Internet Things J. 7(7), 
6214–6228 (2020)

	45.	 Y. Xu, C. Zhang, G. Wang, Z. Qin, Q. Zeng, A blockchain-enabled deduplicatable data auditing mechanism for net-
work storage services. IEEE Trans. Emerg. Top. Comput. (2020). https​://doi.org/10.1109/TETC.2020.30056​10

	46.	 Y. Xu, C. Zhang, Q. Zeng, G. Wang, J. Ren, Y. Zhang, Blockchain-enabled accountability mechanism against informa-
tion leakage in vertical industry services. IEEE Trans. Netw. Sci. Eng. (2020). https​://doi.org/10.1109/TNSE.2020.29766​
97

	47.	 S. Zhang, G. Wang, M.Z.A. Bhuiyan, Q. Liu, A dual privacy preserving scheme in continuous location-based services. 
IEEE Internet Things J. 5(5), 4191–4200 (2018)

	48.	 S. Zhang, X. Mao, K.-K.R. Choo, T. Peng, G. Wang, A trajectory privacy-preserving scheme based on a dual-k mecha-
nism for continuous location-based services. Inf. Sci. 527, 406–419 (2020)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1002/ett.3871
https://doi.org/10.1109/TSC.2019.2922177
https://doi.org/10.1109/TWC.2020.3017207
https://doi.org/10.1002/ett.3956
https://doi.org/10.1109/JIOT.2020.2988035
https://doi.org/10.1002/ett.3942
https://doi.org/10.1109/TETC.2020.3005610
https://doi.org/10.1109/TNSE.2020.2976697
https://doi.org/10.1109/TNSE.2020.2976697

	Computation offloading through mobile vehicles in IoT-edge-cloud network
	Abstract 
	1 Introduction
	2 Background and related work
	3 The system model and problem statement
	3.1 The energy consumption model
	3.2 The computation offloading model
	3.3 Problem statement

	4 Methods
	4.1 The design of COTV scheme
	4.2 Tasks transferring through vehicles
	4.3 Energy consumption and delay modeling
	4.4 Computation offloading algorithm

	5 Results and discussion
	5.1 Analysis of the reward
	5.2 Analysis of the number of packets
	5.3 Analysis of the delay

	6 Conclusion
	Acknowledgements
	References


