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Summary

One of the ways to provide greater coverage and capacity for future wireless networks
is through network densification. This is also one of the drivers for future IEEE 802.11
deployments, aiming not only to improve throughput per link, but the overall network
performance in dense deployments. That said, the IEEE 802.11ax amendment is cur-
rently focusing on addressing the challenges and improving the spectrum efficiency in
dense deployments with hundreds of Access Points (APs) and Stations (STAs). This
work strives to shed some light in the area of spectrum efficiency by trying to under-
stand (i) the operation and the impact of the newly introduced Spatial Reuse feature of
the IEEE 802.11ax amendment and (ii) if it is possible to realise multicast/broadcast
transmissions over Wi-Fi while preserving reliability.

Although the IEEE 802.11ax Spatial Reuse feature, namely BSS Color, offers several
advantages and good potential for improving spectrum efficiency, it also imposes several
challenges. Towards filling the aforementioned gaps and address challenges, particular
contributions were made in this thesis. First, this work presents a performance evalua-
tion of the BSS Color scheme in various scenarios, where its shortcomings are identified.
Second, this work proposes a generic framework to obtain throughput for dense cellular-
like (small-cell) deployments, based on a mathematical model. Third, this work intro-
duces COST, a novel Spatial Reuse technique for improving BSS Color performance by
exploiting the information provided by this scheme and providing throughput gain of up
to 57% while preserving fairness between BSSs. Fourth, this thesis proposes the design
of a rate control algorithm that leverages the BSS Color and COST, providing up to
113% throughput gain in dense deployments when compared to the traditional off-the-
shelf MinstrelHT. Finally, this thesis elaborates a network coding approach to enable
multicast/broadcast transmissions over Wi-Fi, that could enhance throughput perfor-
mance by 20% when compared with the legacy MAC feedback mechanism. The main
goal for this contribution is to provide a means for realising reliable multicast/broadcast
communications by reducing the use of the Wi-Fi feedback mechanism.

The above contributions were evaluated through system-level simulations, emulating
real-world deployments. This work showed that advanced techniques, that exploit all
available information by monitoring the inter-BSS and intra-BSS frames, are required
to support the IEEE 802.11ax Spatial Reuse feature operation and provide throughput
gain while preserve fairness among users. Furthermore, it was shown that the network
coding should carefully be designed and enabled only when it is required, otherwise
throughput loss could be observed due to the transmitted overhead. The scenario and
application’s requirements should also be taken into account (e.g. latency).

Key words: IEEE 802.11ax, Spatial Reuse, BSS Color, Rate Control Algorithms,
Network Coding, Next-Generation WLANs, High-Density WLANs.
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Chapter 1

Introduction

1.1 Overview and Motivation

Emerging services and applications/use-cases, such as autonomous vehicles, remote

health care, smart city etc, along with the proliferation of smartphones have led to

the evolution of the existing (wireless) networks towards more sophisticated systems to

firstly support, and also satisfy users’ needs and requirements. The upcoming wireless

networks aim at improving the Quality of Experience (QoE) of the users in dense het-

erogeneous networks. The need for greater capacity, lower latency, spectrum efficiency,

energy efficiency, reliability and connectivity for a massive number of devices are some

of the requirements that are under the microscope for the operators and vendors. To

address these demands and challenges for the wireless networks, both the Institute

of Electrical and Electronic Engineers (IEEE) and the Third Generation Partnership

Project (3GPP) camps should be and are walking hand in hand towards the realization

of the future networks.

To this extend, new IEEE 802.11 Task Groups (TGs) have been introduced the last

decade to support various use-cases, such as the support for the Internet of Things

(IoT) with the introduction of the IEEE 802.11ah amendment or the need for high data

rates by exploiting the millimeter wave bands with the IEEE 802.11ad/ay for short-

range communications. Of a particular interest is the IEEE 802.11ax amendment that

is introduced to address the challenges in the already congested 2.4/5 GHz bands and

1
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to provide connectivity to users in dense deployments. In contrast to its predecessors,

this amendment aims at not only providing higher data rates per user but also utilise

the spectrum resources by incorporating advanced and sophisticated features.

One of the main advantages that WLANs offer is the uncotrolled and unmanaged de-

ployment of the Access Points (APs), making them a cost-efficient solution that offers

access to the internet, which is also the main reason for their success. At the same

time, these advantages pose some challenges for the smooth operation of the WLANs.

The most significant perhaps, inherent challenge is the high and uncontrolled interfer-

ence level introduced in Overlapping Basic Service Sets (OBSSs) that lies on the way

that IEEE 802.11 networks access the channel. Although, there are a lot of approaches

available in the literature for controlling the interference level and the channel access,

it was not until the IEEE 802.11ax that introduced a mechanism, known as BSS Color,

to cope with the interference level and Wi-Fi’s inherent limitation of not utilising the

spectrum due to the exposed node problem. Although, most of the works were used to

refer to the well known hidden node problem in WLANs and propose solutions for it,

limited work was presented for the exposed node problem. The main reason for this is

due to the nature of the IEEE 802.11 networks, where they had been designed for small

indoor environments.

Wi-Fi’s importance in the 5G era has been acknowledged given that by 2022, the traffic

over Wi-Fi will account for more than 50% of the total IP traffic [1]. Wi-Fi also serves

stationary or nomadic users at a much lower cost than the cellular systems. Of course,

the cellular technologies are necessary for serving high mobile users and providing wide

coverage. Wi-Fi will complement the cellular technology and will support different use

cases (e.g. indoor use cases) [2].

Moreover, Wi-Fi will act as a complementary technology to the cellular in outdoor

scenarios too, by forming ultra dense small networks/ hot-spots for traffic offloading. In

scenarios like these, where the users density is high and multiple BSS are overlapping,

the exposed node problem is even more profound and could lead to poor spectrum

utilisation by most of the WLANs refrain from transmissions, when they should not.

The motivation for this research is to study and understand the potential for the IEEE



1.2. Research Questions 3

802.11ax BSS Color and to develop novel algorithms that build upon this feature for the

future wireless networks. Algorithms that provide throughput gain whilst preserving

fairness for the users is quite challenging in dense networks. This thesis focuses on fill-

ing the gaps that may have not been addressed in this amendment, since many aspects

for the implementation of BSS Color are left to the discrepancy of the manufacturers.

The impact of the rate control algorithms is also exploited in order to take advantage

of the Medium Access Control (MAC) features that have a significant impact on the

performance. The algorithms in this study are designed in such a way that can be

realised in practice without requiring any additional information to be exchanged be-

tween the users. Further, this thesis looks into the reliability aspect and the reduction

of the control frames exchanged in an IEEE 802.11 network. Reliability is considered

as one of the main drivers for the future networks (ultra-Reliable Low Latency Commu-

nications (uRLLC)), where guaranteed services are required, such as in the healthcare,

entertainment, transport industries etc. [3]. Although, only 5G-3GPP is addressing

International Telecommunication Union - International Mobile Telecommunications -

2020 (ITU-IMT-2020) standards, Wi-Fi is working towards this direction, with the low-

latency and high-reliability requirements to be amongst those that need to be further

enhanced for Wi-Fi [4], [5].

1.2 Research Questions

The main objectives of this work are summarised below, in the form of a series of

research questions:

• What are the potentials of the IEEE 802.11ax BSS Color feature and its drawbacks

in various scenarios?

• Is it possible to improve its performance in terms of throughput while preserv-

ing fairness for the users, especially the cell-edge users, without introducing any

additional overhead?

• Is it possible to design a rate control algorithm built on top of the IEEE 802.11ax
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BSS Color that exploits any useful information from the MAC layer and enhances

the network performance in dense deployments?

• Is it possible to provide reliable communications by incorporating Network Cod-

ing in the upper MAC layer for the IEEE 802.11 technology and at the same

time reduce the use of the control frames (i.e. acknowledgments) to enable broad-

cast/multicast communications?

1.3 Key Contributions from this PhD Work

The main contributions of this work can be summarised as follows:

• Development and evaluation of the Spatial Reuse techniques that were initially

proposed as possible candidates for the upcoming IEEE 802.11ax.

• Development of the capture model according to the IEEE 802.11ax guidelines to

emulate the reception in the off-the-shelf devices. The capture effect has significant

impact on the performance since packets may survive a collision that is caused by

hidden nodes or concurrent transmissions.

• Development of an analytical model that captures the behaviour of multiple OB-

SSs operating on the same channel and provides accurate results (in terms of

throughput) when compared with off-the-shelf simulators.

• Development of a novel algorithm that is specifically designed to exploit the IEEE

802.11ax BSS Color and improve its performance without any additional overhead

exchanged between the nodes.

• Design and development of a rate control algorithm that builds on top of the

IEEE 802.11 BSS Color, aiming to exploit any information that can be obtained

from the MAC layer without any additional overhead (transmitted frames) and

improve the performance of well known off-the-shelf algorithms.

• Design, development, and evaluation of a Network Coding scheme for IEEE 802.11

nodes, operating on a shim layer between MAC and Network layers that offers
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reliable communications and reduces the use of acknowledgments. This new shim

layer including the Network Coding scheme is part of the IEEE 802.11ax upper

MAC layer.

1.4 Publications

The publications made for this work, against the main contributions of this PhD thesis

are as follows:

• State of the Art and initial development of the Spatial Reuse techniques for the

IEEE 802.11ax amendment:

? I. Selinis, M. Filo, S. Vahid,J. Rodriquez, and R. Tafazolli, “Evaluation of

the DSC Algorithm and the BSS Color Scheme in Dense Cellular-like IEEE

802.11ax Deployments,” 2016 IEEE 27th Annual International Symposium

on Personal, Indoor, and Mobile Radio Communications (PIMRC ’16), pp.

1-7, 2016.

? I. Selinis, K. Katsaros, M. Allayioti, S. Vahid, and R. Tafazolli, “The Race

to 5G Era; LTE and Wi-Fi,” IEEE Access, vol. 6, pp. 56598-56636, 2018.

? F. Wilhelmi, S. B.-Muñoz, C. Cano, I. Selinis, and B. Bellalta, “Spatial Reuse

in IEEE 802.11ax WLANs,” Submitted in Journal of Network and Computer

Applications (JNCA)

• Development of the capture model and its impact on the IEEE 802.11ax Spatial

Reuse mechanism:

? I. Selinis, K. Katsaros, S. Vahid, and R. Tafazolli, “Exploiting the Capture

Effect on DSC and BSS Color in Dense IEEE 802.11Ax Deployments,” Pro-

ceedings of the Workshop on ns-3 (WNS3 ’17), pp. 47-54, 2017.

• Development of an analytical model that captures the behaviour of the IEEE

802.11ax Spatial Reuse, BSS Color:
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? S. B.-Muñoz, F. Wilhelmi, I. Selinis, and B. Bellalta, “Komondor: a Wireless

Network Simulator for Next-Generation High-Density WLANs,” 2019 IEEE

Wireless Days (WD ’19), pp. 1-8, 2019.

? I. Selinis, C.-H. Foh, S. Vahid, and R. Tafazolli, “An Analytical Model for

the IEEE 802.11ax BSS Color,” To be submitted in IEEE Wireless Commu-

nications Letters

• Development of a novel algorithm that exploits the IEEE 802.11ax BSS Color and

improves its performance:

? I. Selinis, K. Katsaros, S. Vahid, and R. Tafazolli, “Control OBSS/PD Sen-

sitivity Threshold for IEEE 802.11ax BSS Color,” 2018 IEEE 29th Annual

International Symposium on Personal, Indoor and Mobile Radio Communi-

cations (PIMRC ’18), pp. 1-7, 2018.

• Design and development of a rate control algorithm to further enhance throughput

performance in dense deployments, by leveraging the IEEE 802.11ax BSS Color:

? I. Selinis, K. Katsaros, S. Vahid, and R. Tafazolli, “Damysus; A Practical

IEEE 802.11ax BSS Color Aware Rate Control Algorithm,” International

Journal of Wireless Information Networks (Springer), pp. 1-23, 2019.

• Design, development, and evaluation of a Network Coding scheme for IEEE 802.11

nodes:

? I. Selinis, K. Katsaros, S. Vahid, and R. Tafazolli, “Eliminating the Use of

IEEE 802.11 Acknowledgements; A Network Coding Approach,” 2019 IEEE

Wireless Communications and Networking Conference (WCNC ’19), pp. 1-7,

2019.

? V. Sucasas, O. Kebkal, I. Selinis, V. Seiamak, S. Mumtaz, and J. Rodriguez,

“Performance of RLNC for Underwater Broadcasting,” 2020 IEEE Network-

ing Letters, vol. -, no. -, pp. 1-1.

• Benefits of enabling schedulers by exploiting the IEEE 802.11ax BSS Color (Re-

search Directions):
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? I. Selinis, K. Katsaros, S. Vahid, R. Tafazolli, “An IEEE 802.11ax Interference

-Aware MAC Queue,” To be submitted

1.5 Thesis Outline Organisation

The remainder of this thesis is organised as follows. Chapter 2 surveys the existing

literature in Radio Access Network (RAN) for both cellular and IEEE 802.11 systems.

It provides an insight on the technology enablers for the future networks and highlights

the challenges and the potentials for these networks. Chapter 3 shows the potentials for

the Spatial Reuse (SR) techniques as they were proposed (early stage) for the upcom-

ing IEEE 802.11ax. Chapter 4 presents the design of the capture model used in this

study and its impact on the SR features in a small indoor scenario. Chapter 5 presents

an analysis of the behaviour for the IEEE 802.11 cellular-like deployments consisting

of multiple OBSSs, based on Markov chain, whilst showing the potentials of the BSS

Color. It also serves as a driver for designing an algorithm to improve the performance

of the IEEE 802.11ax BSS Color, which is presented in Chapter 6. This novel algorithm

is the first one designed and proposed for improving the IEEE 802.11ax BSS Color that

can be applied in both the stations (STAs) and APs. Chapter 7 proposes a rate control

algorithm that further extends the operation of the mechanism presented in Chapter 6

and leverages the available information that a node holds. Chapter 8 presents a Network

Coding scheme that shows high decoding success rate in order to provide reliable com-

munications in fading channels. It also functions in the absence of acknowledgments,

that add additional delay and overhead in the system. Finally, Chapter 9 concludes

this study and provides future directions regarding this research.
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Chapter 2

Literature Review

The fifth generation (5G) systems will be the first realization in this new digital era

where various networks will be interconnected forming a unified system. With support

for higher capacity as well as low-delay and machine-type communication (MTC) ser-

vices, the 5G networks will significantly improve performance over the current fourth

generation (4G) systems and will also offer seamless connectivity to numerous devices

by integrating different technologies, intelligence, and flexibility. In addition to ongoing

5G standardization activities and technologies under consideration in the Third Gener-

ation Partnership Project (3GPP), the Institute of Electrical and Electronic Engineers

(IEEE) based technologies operating on unlicensed bands, will also be an integral part

of a 5G eco-system. Along with the 3GPP-based cellular technology, IEEE standards

and technologies are also evolving to keep pace with the user demands and new 5G

services.

This chapter provides an overview of the evolution of the cellular and Wi-Fi standards,

two complementary technologies, over the last decade with a particular focus on Medium

Access Control (MAC) and Physical (PHY) layers, and highlights the ongoing activi-

ties in both camps driven by the 5G requirements and use-cases. It initially classifies

the work that has been conducted into three main categories, namely, millimeter wave

(mmWave) mobile communications, operating at above 6 GHz bands, conventional sys-

tems operating in below the 6 GHz frequency bands, and advancements in both Long

Term Evolution (LTE) and IEEE 802.11 for the support of MTC. Each one of these

9



10 2. LITERATURE REVIEW

categories is further organized into LTE and Wireless Local Area Network (WLAN)

systems. Finally, it argues about the current shortcomings in literature with regard to

the upcoming IEEE 802.11 amendments, which will be tackled in this research.

2.1 Introduction

The forecasts for the number of devices connected to internet and the expected traffic

load by 2021 do vary but it is generally agreed that many billions of devices and 49

exabytes of traffic per month, will need to be supported, with most of the traffic expected

to be delivered over wireless networks [1]. To support such massive connectivity and

traffic demands, both the cellular systems and WLANs are evolving [6], [7].

Emerging services, such as remote health care or learning, connected vehicles exchang-

ing safety-critical information and ultra-high resolution video streaming will require

higher data rates and lower latency than is available today. To support the stringent

requirements of the next generation services will be enormously challenging in terms of

capacity and coverage for the next generation networks, a.k.a. 5G. The vision for 5G is

to provide a perception of an unlimited bandwidth to every user, everywhere, anytime.

The time for 5G networks has arrived, considering that approximately every decade,

a new generation is deployed; 1G in 1980s’, 2G in 1990s’, 3G in early 2000’s, and 4G

in 2010s’. Different technologies have been deployed for each generation, to accom-

modate specific/primary use cases. For example, analog Frequency Division Multiple

Access (FDMA) was deployed in 1G systems when voice was the targeting use case,

Time Division Multiple Access (TDMA)/FDMA for voice and text in 2G networks,

Code Division Multiple Access (CDMA) in 3G systems when mobile internet access

was supported, and Orthogonal Frequency Division Multiple Access (OFDMA) is cur-

rently applied in 4G when high data rates and video over internet were the targeting

use cases. However, 5G systems may comprise various waveforms; new or mature access

scheme technologies, to meet requirements in different scenarios.

Some of the 5G requirements described in ITU report [8], back in early 2017, include

20 Gigabits per Second (Gbps) and 10 Gbps peak rates for downlink (DL) and uplink
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(UL), respectively, while DL spectral efficiency of 30 bit/s/Hz and 15 bit/s/Hz for UL

are targeted. Moreover, lower latency requirements, very high density of devices e.g.

1 million devices per km2, and support of various classes of mobility at speeds of up

to 500 km/h are also defined in that draft. According to ITU and 5G - Infrastruc-

ture Public Private Partnership (5G-PPP) [9], 5G network services are classified into

three principal dimensions (also referred to as “use case families”); enhanced Mobile

Broadband (eMBB), massive Machine Type Communications (mMTC), and ultra-high

Reliable and Low Latency Communications (uRLLC). To meet these requirements and

address the challenges of diverse use cases and vertical industries, heterogeneous ultra-

dense networks operating in various frequency bands will be deployed as part of 5G

network [10]. Thus, 5G can indeed be regarded as “a network of networks”.

High frequency spectrum above the 6 GHz band, is likely to be allocated for 5G cellular

to deliver very high data rate services [11]–[15]. Many vendors have already released the

next wave of chipsets with well known names e.g. Intel, Samsung, Qualcomm amongst

them, supporting enormous bandwidths at millimeter wave (mmWave) frequencies [16].

Significant studies and measurement campaigns have also been conducted to provide

better understanding of propagation characteristics and validate the channel models at

mmWave frequencies [17]–[19]. This in turn, will result in identifying the challenges and

technologies that can be used to overcome them.

On the other hand, Sub-1 GHz frequency bands have already been exploited by both

the cellular and more recent WLAN amendments, for applications that require lower

data rates and wider coverage range [20], [21]. However, additional spectrum is incor-

porated as it becomes available, e.g. the spectrum at 700 MHz, allocated for long-range

communication of low-power devices [22]. The unused broadband frequencies, known as

White Spaces, also enable long range communications suitable for applications such as

smart grid or smart cities. The small bandwidths also enable low power consumption,

which is crucial for sensors deployed in areas that are not easily accessible e.g. forests.

Energy efficiency is also one of the requirements defined for future networks [23]–[25].

Green communication networks is not a new concept, however, it is even more critical

now, with the massive number of devices connected to wireless networks [26], [27].
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First Released LTE – Release 8 (4G), 2008 Late 1990s’

Channel Access UEs are allocated with resources after a 

successful preamble contention. 

Different channels are used, depending 

on the traffic and link type.

Access to the medium follows 

CSMA/CA procedure. Transmissions 

occupy the whole channel and occur 

over the same channel. 

Operating Frequency 700 MHz – 6 GHz TVWS / Sub-1,  2.4, 5, and 60 GHz

BS/AP Coordination Yes No

Dual Connectivity Yes No

Deployment Controlled/Managed (Outdoor) Uncontrolled/Unmanaged

Coverage Range Multiple km A few hundred meters

Channel Access Scheme OFDMA / SC-FDMA OFDM

Max. Transmit Power 48 / 24 dBm [macro cell BS / UEs] 20 dBm

Inter-Cell Interference Controlled Uncontrolled

MIMO // MU-MIMO 8x8 DL and 4x4 UL //  DL/UL 8x8 DL/UL (IEEE 802.11ac)  //  DL

Channel BW  // CA 1.4 MHz – 20 MHz  //  up to 32 CCs 20 MHz  //  up to 160 MHz

Peak Data Rate 3 Gbps (DL) & 1.5 Gbps (UL) 6.77 Gbps (DL/UL)

(b)

Figure 2.1: LTE versus IEEE 802.11: a) key technologies and b) high-level comparison.

Energy harvesting is also an approach that researchers are looking to for Internet of

Things (IoT) applications [28], [29].

The introduction of new frequency spectrum for wireless communications, does not

mean that the conventional 2.4/5 GHz licensed/unlicensed bands are not considered for

5G networks. Advancements have also been proposed in both the cellular systems and

the WLANs by the 3GPP and the IEEE standards respectively, to keep pace with the

explosive growth in mobile data traffic, use cases, and user requirements. The unlicensed

technologies will play a significant role on forming the future wireless networks (i.e.

5G) and meeting the requirements, since several technologies were initially used in

IEEE 802.11 networks before adopted by 3GPP (e.g. Multiple-Input-Multiple-Output

(MIMO), channel bonding etc.) [30].

Figure 2.1a depicts the current key and planned features (MAC and PHY layers) in LTE

and IEEE 802.11 technologies. Although, most of the functionalities and operations in

IEEE 802.11 devices are handled locally by the MAC layer, nevertheless, enterprise-level

access controllers that are used to manage networks consisting of multiple APs, can add

intelligence to the system. Figure 2.1b illustrates the similarities and differences of these

technologies at a high level 1.

1Throughout this thesis, the transmit power refers to the output power of the transmitter [dBm]

(note that EIRP = Pt− Lc+Ga where Lc is the Cable Loss [dB] and Ga the Antenna Gain [dBi].))
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2.2 Technologies Designed to Operate at Above 6 GHz

Bands

This section is classified into three parts. The first one presents the potentials, chal-

lenges and the enabling technologies at PHY and MAC layers, for systems operating in

mmWave bands. The 5G New Radio (NR) technology is explained in the second subsec-

tion as part of the 3GPP cellular systems, while the last subsection describes the IEEE

802.11 amendments that have already hit the market or are under active development.

2.2.1 Opportunities, Challenges, and Candidate Technologies

Exploiting the mmWave bands 2 can potentially offer many advantages but at the same

time impose several challenges. Wider bandwidths can offer not only higher data rates

but also lower relative power consumption, provided that the channel is not severely

attenuated [31]. Although, mmWave-based communication systems already exist, e.g.

Local Multipoint Distribution Service (LMDS) [32], operating at 23-32 GHz bands with

range over 1 km, they are not used for mobile communications. The main obstacles for

using those technologies in portable devices, include the size, cost, high losses, and power

consumption of the electronic components (e.g. power amplifiers, mixers, antennas) [33].

The signal in mmWave frequencies can be severely attenuated by absorption due to

atmospheric gases, foliage, and rainfall. However, recent measurements in New York

City [34]–[36], show that cell sizes of 200m radius can provide the required coverage for

mmWave systems; the results of investigations indicate that the signal does not signifi-

cantly attenuate at this distance, even in Non-Line-of-Sight (NLOS) environments. Path

loss however, can be further reduced by enabling highly directional antennas, resulting

in similar or even reduced path loss than the current cellular systems experience.

However, highly directional antennas (e.g. horn, patch, and antenna arrays that em-

ploy directive radiating elements) suffer from limited coverage, due to their very narrow
2The 30-300 GHz band is referred to as mmWave (wavelength 1cm to 1mm approx.). Since radio

waves above the 6 GHz band share similar propagation characteristics with those at 30-300 GHz band,

industry currently considers mmWave as the 6-300 GHz frequency band.
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beams. The coverage can be improved however, by employing beamforming (BF) or

using beam steerable, sectorized or switched beam array antennas at the Base Stations

(BSs) and/or portable devices [37], [38]. This allows the beam to be directed in the

desired direction.Beamforming appropriately weights the amplitude and phase of indi-

vidual antenna signals to create narrowly focused radiation. This makes it possible to

provide better coverage in an indoor environment and at the edge of a cell. Beamform-

ing concentrates energy into smaller areas, and by concentrating the signal, it helps

operators achieve the goal of improving coverage while minimizing interference. BF can

also be used to avoid unwanted interference, since the envisaged beams are typically

very narrow and are directed only towards specific users.

That is, by combining multiple signals from an antenna array, a directional beam is

formed towards a user. Directivity is a function of the number of elements and their

spacing [39]. It improves with the number of elements or spacing. However, the number

and level of side lobes increase with the number of elements, thus reducing antenna’s

gain and directivity [40]. Moreover, when the element spacing increases, the amplitude

of grating lobes increases. This can in turn lead to high interference to or from close-

by-users. Apart from the number of elements and their spacing, unequal power and/or

phase distribution (to the elements) can be applied to alter direction, side lobe level,

and directivity.

Switched beam antenna arrays and beam steerable antennas require multiple Radio-

Frequency (RF) chains, leading to excessive cost and power consumption. At large BS

sites, where size is not a constraint, beam switchable antennas can be deployed. How-

ever, since for portable devices size is an important constraint, switchable antennas are

not a viable option. A beamformer in a directional antenna can give the perception (to

a user) of “full” coverage, by tracking the user and steering the beam toward it.

2.2.2 3GPP LTE Technology - Directions for mmWave Bands

To efficiently support larger bandwidths, deal with the challenges at mmWave bands and

the new use cases, 3GPP has been working on a new Radio Access Technology (RAT)
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and addressing physical and higher layer protocol requirements. Although, the new 5G

RAT is being designed for operation at frequencies from Sub-1 GHz to 100 GHz, this

subsection describes some of its features relating to the mmWave band operations. This

new RAT is not required to be backward compatible with LTE, but forward compatible

in the sense that future evolution is ensured [41].

5G NR is the name of the wireless standard for air interface of the next generation of

mobile networks [42], [43]. BF, Massive MIMO, Orthogonal Frequency Division Mul-

tiplexing (OFDM) scalability, slot flexibility, energy efficiency, and advanced channel

coding are the main case studies that have been considered for the 5G NR. The mm-

MAGIC project [44] that is developed by the European 5G-PPP during Phase 1, has

proposed solutions to coding schemes for providing robustness and higher throughput,

lower complexity for MIMO, and flexible Frequency Division Duplex / Time Division

Duplex (FDD/TDD) frame structure. Multiple contributions have also been submit-

ted to 3GPP and ITU in regards to channel measurements and modelling at frequency

bands over 6 GHz. The BF and Massive MIMO that are strongly related with the

mmWave bands are described in the following subsection.

2.2.2.1 PHY Layer Enhancements

2.2.2.1.1 Beamforming Techniques

BF is a technique that can be applied to reconfigure antenna’s beam in terms of main

beam direction and amplitude. Depending on BF architecture, BF schemes can be

classified into three main categories; Analogue or RF, Digital, and Hybrid, as depicted

in Figure 2.2.

The Analogue BF comprises one RF chain even when substantial number of antenna

arrays is used. It enables low complexity, low power consumption, and operation at

reduced costs if small number of phase shifters is used. The entire phased antenna

array is driven by a single base-band (BB) processing module. It uses Variable Gain

Amplifiers (VGAs), which enable the amplitude of the applied signals to be varied,

along with phase shifters that enable adjustment of the phase of the applied signals.
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Figure 2.2: Beamforming Techniques: a) Analogue/RF, b) Digital/Precoding, and c)

Hybrid.

It is therefore, possible to control both amplitude and phase of the signals applied to

antenna’s elements. Analogue BF is simpler than Digital BF, since it only requires

one RF chain per antenna array, which also reduces power consumption (transmit and

processing power) and overcomes the RF hardware limitations [45], [46]. Analogue BF

provides an effective method of generating high BF gains from substantial number of

antennas. It is cheaper to implement and operate than Digital BF. However, Analogue

beamformers do not provide multiplexing gains, since transmissions on multiple parallel

streams is not supported, resulting in poorer performance than Digital BF.

Digital BF, on the other hand, is achieved using digital precoding, which involves mul-

tiplying a particular coefficient to the modulated BB signal per RF chain. This means

that multiple beams can be supported simultaneously, theoretically as many as the num-

ber of antenna elements, which allows more users to be served at the same time [47].

It offers the ability of sending data in parallel streams, exploiting spatial diversity and

multiplexing. It also provides continuous steering and can be used to enhance perfor-

mance of MIMO systems at the cost of high complexity, especially when using massive

MIMO; since one RF chain per antenna would then be required. In conventional (op-

erating below 6 GHz) systems, precoding is usually done in BB, in order to have better

control over the entries of the precoding matrix [48]. However, the excessive cost, power

consumption of mixed signal components, and complexity (due to Analog-to-Digital

converters) make full digital BB precoding prohibitive for millimeter wave frequencies,

with the currently available semiconductor technologies. The design of the precoding
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matrices in Digital BF usually relies on having complete Channel State Information

(CSI); an overhead that increases with the number of antennas [48] and is difficult to

obtain for substantial number of antennas (e.g. mmWave Systems) [49]. Furthermore,

another reason that CSI is difficult to acquire, is the small Signal-to-Noise ratio (SNR)

associated with the signals before BF is applied [48]. Digital BF provides higher de-

gree of freedom in comparison to Analogue BF that can be used by MIMO systems to

improve system’s performance.

There are however, a number of open issues with this technology, including calibration,

complexity, and cost [50]. The implementation of a dedicated RF chain per antenna el-

ement, makes it unsuitable for cost-limited or small portable power-limited devices [51].

To combine the advantages of both Analogue and Digital techniques, Hybrid BF has

therefore been proposed, reducing both the complexity/power consumption and feed-

back overheads [48], [52], [53].

Hybrid BF offers a trade-off between performance/ flexibility and simplicity/cost [47].

In Hybrid BF, a directive beam is formed through Analogue BF with the aid of phase

shifters and VGAs [53], whereas Digital BF is used to provide the flexibility required

for advanced multi-antenna techniques, such as multi-beam MIMO [54]. Hybrid BF

can overcome the hardware constraints of Analogue-only BF, whilst providing the per-

formance advantages associated with Digital BF, e.g. transmission of multiple parallel

streams. On the other hand, it suffers from certain disadvantages. For example, it

requires multiple RF chains along with a complicated architecture [50] and the require-

ment to obtain CSI for large number of antennas is still another obstacle for Hybrid

BF.

2.2.2.1.2 Beam-Steering Techniques

Beam-steering can be considered to be a variant of Analogue BF technique, which is

applied to reconfigure the directionality of the main antenna’s beam. It mostly offers

only discrete steering and not continuous [55]. It is relatively simple and low-cost

technique, and is considered to be suitable for small power-limited devices, depending

on the structure of the antenna.
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Continuous beam-steering is essential for maintaining the communication link between

two devices, since it can easily be disrupted in high frequencies. For example, narrow

beams are highly affected by wind, which could lead to beam misalignment. However,

robustness can be preserved by the antenna array’s geometric shape; circular antenna

arrays are more robust against small vibrations or angle variations due to axial symme-

try [56]. Continuous beam-steering can be achieved either with phased arrays or with

Electronically Steerable Passive Array Radiator (ESPAR) antennas.

The phase of each element in phased arrays, is controlled through phase shifters [57],

e.g. CMOS, MEMS etc. However, the use of phase shifters imposes some challenges,

such as relatively high-cost, complexity, and high insertion losses in high frequencies.

Nevertheless, such losses can be mitigated, using phase shifters based on MEMS ma-

terials at a price of increased system’s cost. Moreover they are inherently narrowband

(NB) [58].

On the other hand, ESPARs steer the beam through varactors and have lower power

consumption, since only one element of the array is fed by signal power (driven element).

However, they suffer from limited steering range and high parasitic losses of the reactive

loads in high frequencies. It is also challenging to calibrate all the reactive loads for

obtaining the desired steering angle while keeping the antenna acceptably matched [59].

The analysis of these techniques is out of the scope of this study, and the reader can

refer to [60]–[64], for more information.

2.2.2.1.3 Massive MIMO

Massive MIMO is another key technology capable of handling the huge growth in data

traffic and coping with the high path loss of mmWave frequencies (enhanced cover-

age) [65]. Massive MIMO relies on considerable number of antennas to serve multiple

users simultaneously. The short free-space wavelength (λ) at high frequencies, enables

small sized antennas, thus enabling incorporation of larger number of antenna elements

in a given area, compared to centimeter-wave frequencies [66]. However, the shorter

coherence time due to higher Doppler spread in mmWave bands, reduces its spatial

multiplexing gains.
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Moreover, the use of substantial number of antennas provides robustness to transmis-

sions (i.e. better bit error rate for the same SNR level, use of lower Modulation and

Coding Scheme (MCS) with lower SNR requirements whereas targeted data rate is

achieved (spatial multiplexing)), and to failures in one or more antenna units. It also,

averages out noise, small-scale fading, and any hardware imperfections [67]. Hence,

it can be assumed that all OFDM sub-carriers for example, will experience the same

gain. This in turn, will affect the resource allocation algorithms, since users could use

(be allocated) the whole bandwidth or any resource block independently of channel

conditions.

Reduction in transmit power for single-antenna users can also be achieved when com-

bined with a Massive MIMO receiver. Users can scale-down their transmit power pro-

portional to the number of antennas at the BSs with perfect CSI or to square root with

imperfect CSI [68]. On the other hand, computational complexity of precoder increases

with the number of antennas, thus, low complexity precoding methods are required.

Another barrier to fully exploit Massive MIMO, is the pilot contamination issue [69].

The limited number of orthogonal pilots, confines the number of users that can simulta-

neously be served. Pilot reuse, the usage of non-orthogonal pilots, and blind-techniques

for channel estimation are some of the approaches that can be followed to address pilot

contamination.

Furthermore, data processing is also challenging due to the huge-amounts of data sources

that Massive MIMO enables, which will cause high processing complexity at BSs. A

potential solution to deal with the high processing complexity at BSs, is to offload

data processing to a centralized data center (cloud computing) [70]. However, cloud

computing may increase traffic load on the backhaul and latency due to communication

link between BSs and cloud servers, which make it more suitable for applications that

are not delay-sensitive. For applications that require instantaneous response and where

the data volume to be processed is small (e.g. IoT sensors for smart traffic lights),

processing can be realized at the edge of a network, close to the source devices (edge

computing).

Massive MIMO can work in both Line-of-Sight (LOS) and NLOS environments, but the
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main challenge is if it can be used in FDD systems [71]. TDD based Massive MIMO

can support more users due to a lower overhead and provide cell throughput gain of up

to 200% against FDD [72], whereas in FDD systems, channel estimation is required in

both DL and UL bands as they operate in different frequency. Moreover, the channel

coherence (time/bandwidth) that depends on the propagation environment, operating

frequency, and user mobility, severely affect the amount of overhead. Therefore, Massive

MIMO is more suitable for supporting low-mobility nodes operating in low-frequency

spectrum in FDD systems.

2.2.2.1.4 Additional Methods for Enhanced Coverage

In addition to steering and Massive MIMO techniques, two other approaches can be

followed to improve coverage in mmWave bands; Distributed Antenna Arrays and Re-

laying (i.e. Amplify and Forward, Compress and Forward, Detect and Forward, Decode

and Forward) [73]. By employing multiple antenna arrays in predefined locations, cov-

erage, cell-edge performance, and energy consumption could be improved (if there is a

LOS communication link, a lower transmit power could be used) [74], [75]. However,

synchronization of distributed antennas is challenging; Carrier Frequency Offset (CFO)

caused by the mismatch of transceiver oscillators due to Doppler effect [76], phase noise

due to imperfect hardware; oscillators’ instabilities, especially for mmWave frequen-

cies [77], and time synchronization between transceivers’ clocks are the main reasons

for Inter-Symbol Interference (ISI) and degrade system performance [78], [79]. The

use of Separate (independent) or Common Local oscillators also affect phase noise [80].

The former oscillators are mainly applied when the distance between the antennas is

large [81], e.g. Distributed Antenna Arrays. There are several algorithms proposed in

the literature to address the synchronization of distributed antennas [82]–[84]. On the

other hand, Relaying can be used to prevent blockage for low-velocity users.

2.2.2.2 MAC Layer Enhancements

Summarizing the benefits of exploiting mmWave spectrum, it can be stated the follow-

ing: mmWave bands i) provide wider bandwidths enabling high throughput communi-
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cations in the order of Gbps, ii) enable deployment of large number of antennas (packed

into a small area), and iii) inherently support Spatial Reuse (SR) enhancements due to

the propagation characteristics in high frequencies. SR can be further improved by us-

ing directional antennas, lowering down antenna’s height (at BSs), and/or down-tilting

the beam.

The use of directional antennas in mmWave spectrum, poses some challenges at the

MAC layer [85]. Current cellular or Wi-Fi technologies rely on omni-directional commu-

nications and contention-based channel access (mainly), thus, alterations are required

to some Layer 2 functionalities to support the innovative antenna technologies.

First, the use of directional antennas during the initial access is challenging. With

omni-directional antennas acquiring frequency/time synchronization (signals’ detection)

is relatively easy. However, if narrow-beams are used during the scanning and/or syn-

chronization procedures, additional delays may arise. BSs and users need to transmit

and search in various angles/directions until synchronization is achieved.

An overview and comparison of the techniques proposed for the initial access in mmWave

systems (e.g. exhaustive, iterative, and Context-Information search algorithms), is pre-

sented in [86]. Under the exhaustive search category, both users and BSs use a predefined

sectorized antenna, consisting of multiple narrow beams to provide a 360°coverage. The

second category, iterative schemes, comprises algorithms that follow a two-step proce-

dure for the initial access. In the first stage, BSs use a sectorized antenna with wide

beams. Once, a pair of sectors is established, then BSs initiate the second phase, where

they search for a narrower beam within this wide beam sector, to optimize performance.

The Context-Information search techniques, follow a three-step procedure. First, the

macro BSs broadcast the Global Positioning System (GPS) coordinates of all micro BSs

that operate at mmWave frequencies. Secondly, users also get their own GPS coordi-

nates, while in the last step, users select their closest micro BS to connect to. The

exhaustive search approach is more suitable for cell-edge users, since it provides better

coverage (high gain beams) than the iterative search, which comes at the cost of high

discovery delay. On the other hand, iterative search algorithms can be used for users

that are close to a BS, exploiting their good channel conditions and the low-delay chan-
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nel discovery. Context-Information techniques can also be applied in LOS scenarios,

providing low-delay channel discovery but increasing energy consumption due to the

three-stage procedure.

A two-step synchronization method is proposed in [87], aiming at reducing overhead.

In the first stage, users obtain information that is required for switching to the correct

mmWave frequency. This is achieved from the synchronization signals that macrocell

BSs broadcast in the control channel, using low frequencies and omni-directional anten-

nas. Once, users have switched to the mmWave band for the data frame communication,

they extract any additional information from the pilot signals that are periodically sent,

using their multiple antennas.

Secondly, during the random-access phase, users either contend for preamble (contention

-based) or are assigned a specific one (contention-free, e.g. handover) to reduce overhead

and delay. During the contention-based period, a user randomly selects a preamble from

a pool and transmits it to the BS. If the user does not receive an acknowledgement, then

it assumes that either a collision occurred or the signal was too weak to be detected

by the BS. In both cases, the user retransmits the preamble after a random back-off

with higher power. However, if transmitter’s and receiver’s antennas are misaligned,

then none of the above mechanisms seem to resolve the failed transmission (deafness

problem). A mechanism to distinguish the type of failed transmission; misalignment

or preamble collision is presented in [88]. For example, a hard-decision energy detector

may be used to identify if there was a preamble collision (high received energy level)

or that deafness, blockage etc., was the main reason for the failed transmission. Once

the type of failed transmission has been identified, BSs send a MAC frame to inform

users about the collision occurred. The absence of the signal or an acknowledgement

corresponds to deafness or blockage cases, thus, the user scans other angles instead of

performing an unnecessary back-off.

Thirdly, frequent handovers in dense small deployments, is another challenging task for

MAC in mmWave. To achieve smooth seamless handover, a user may enable multiple

simultaneous connections to different BSs, which requires their cooperation or main-

taining a link to a macrocell (operating in low frequencies) for control frames along
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with data plane links to small cells operating at mmWave frequencies [89].

Lastly, the distribution of Resource Units (RUs) to users is very essential. Due to BF

and Massive MIMO, each antenna may simultaneously serve multiple users within a cell.

If each group consists of different number of users with diverse Quality-of-Service (QoS)

requirements, then fairness issues may arise. Hence, sophisticated scheduling algorithms

are required to adjust resources per group, based on the users’ needs. Moreover, it might

not be possible to employ Inter-Cell Interference Coordination (ICIC) mechanisms to

the same extent as in current cellular systems, due to high signal attenuation in mmWave

frequencies.

2.2.3 IEEE 802.11 Technologies Operating in mmWave Bands

Most of the challenges and solutions described in Section 2.2.1 are also applicable to

IEEE 802.11 systems operating in mmWave frequencies. However, the limited capa-

bilities and the size of Access Points (APs) to mainly serve indoor users impose cer-

tain constraints. For example, due to application scenarios, AP’s limited size and low

cost/complexity etc., only a limited number of antennas can be deployed. This section

overviews the IEEE 802.11 amendments related to IEEE 802.11ad and IEEE 802.11ay

standards, that have been introduced or are currently under development, for operation

at mmWave bands.

2.2.3.1 IEEE 802.11ad

Although IEEE 802.11ad [90] (a.k.a. WiGig) was introduced in 2012, initial real-world

deployments started in early 2018 with the first WiGig devices hitting the market.

WiGig capable portable devices are also known as Directional Multi-Gigabit Stations

(DMG-STAs). Operating at 60 GHz band, it enables a plethora of new applications,

such as sync-n-go (file transfer), wireless display, etc., replacing High-Definition Mul-

timedia Interface (HDMI) cables and Universal Serial Bus (USB) flash drivers [91].

Taking advantage of the wide bandwidth (2.16 GHz wide channels), IEEE 802.11ad

offers up to 7 Gbps peak rate over short distances (approx. 10m), although by embed-

ding the radar functionality and modifying the preamble part, the serving range may
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Figure 2.3: IEEE 802.11ad a) Beacon Interval and b) PHY frame structure.

increase up to 200m [92]. Moreover, it supports Fast Session Transfer (FST) between

the 60 and 2.4/5 GHz frequency bands.

IEEE 802.11ad takes advantage of beamforming in azimuth to cope with the high signal

attenuation that 60 GHz frequency bands experience. It uses the concept of antenna

sectors (sectorized antennas); each sector focuses antenna gain to a specific-predefined

direction.

2.2.3.1.1 Access Scheme

In IEEE 802.11ad, prior to data transfer, beamforming training procedure takes place

following an iterative search approach, where a pair of nodes agree on the optimal sectors

that they are going to use. It is a two-stage procedure, where the nodes initially identify

the optimal pair of predefined sectors that optimize performance, known as Sector-Level-

Sweep (SLS) phase. This is achieved by transmitting and receiving training symbols

as they sweep their sectors. Second stage includes the optimization of their link, by

applying antenna weights, known as Association Beamforming Training (A-BFT) [93].

Alterations have been applied to Beacon Interval (BI) to support directional communi-

cations, as depicted in Figure 2.3a. BI duration is advertised in the beacon and can be

changed during operation. It comprises two intervals, namely, Beacon Header Interval

(BHI) and Data Transfer Interval (DTI). BHI starts with Beacon Transmission Interval

(BTI), where the network coordinator, called Personal-Basic-Service-Set Control Point
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(PCP), transmits multiple beacon frames in various directions. In that way, devices that

use directional antennas can detect the presence of PCP. During this period, the first

phase of beamforming training (i.e. SLS), occurs. The second period included in BHI,

is the optional Beam-Refinement phase (A-BFT), where antenna weights are applied to

further optimize a pair of sectors. This is accomplished through Sector Sweep (SSW)

frames and SSW feedback frames. The optional Announcement Transmission Interval

(ATI) comes last in BHI. During the ATI period, management frames (if required) are

exchanged among a PCP and the associated WiGig devices.

The end of BHI period triggers the start of DTI, which comprises Contention-Based

Access Periods (CBAPs) and Scheduled Service Periods (SPs). During CBAPs, DMG-

STAs contend to grant access to the medium following the IEEE 802.11 Enhanced

Distribute Channel Access (EDCA). On the other hand, SPs are assigned to specific

pair of nodes for data transfer. Furthermore, beamforming training is also allowed

during DTI, either by a DMG-STA that has captured the medium through Carrier-

Sense-Multiple-Access with Collision-Avoidance (CSMA/CA) and may begin SLS, or

by a PCP transmitting training parameters.

2.2.3.1.2 PHY Layer

Four different PHY layer formats are defined in IEEE 802.11ad [94]; Control PHY,

Single-Carrier OFDM (SC-OFDM), Low-Power SC-OFDM (LPSC-OFDM), and OFDM.

The first one is used prior to beamforming (BTI and A-BFT periods) for signal detec-

tion and pair discovery, hence, the lowest MCS level is used (i.e. MCS0). The second

structure is mainly used by power-limited DMG-STAs, while the third one is introduced

to further decrease power consumption and complexity. Therefore, Low-Density-Parity-

Check (LDPC) has been replaced with Reed-Solomon. OFDM format is used from the

devices that require high performance, thus, higher MCSs than MCS0 are used. The

PHY structure is depicted in Figure 2.3b and comprises Physical Layer Convergence

Procedure (PLCP) preamble, PLCP header, MAC header, payload, and beamforming

training.

Preamble includes the Short Training Field (STF) and Channel Estimation Field (CEF),
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which are used for packet detection, Automatic Gain Control (AGC), frequency off-

set estimation, synchronization, modulation indication, and channel estimation. PHY

header carries information about the transmitted packet (e.g. MCS, length etc.) while

the MAC header contains information required by that layer, such as source/destination

addresses, type of the frame (e.g. management) etc. Note that MAC layer is responsible

for packets’ reordering due to aggregation/fragmentation, generating and transmitting

acknowledgements, Request-to-Send and Clear-to-Send (RTS/CTS) frames etc. Follow-

ing the MAC header, the data payload is appended and thus the PHY layer payload

comprises PHY header, MAC header, and Data payload. Cyclic Redundancy Check

(CRC) is the last mandatory field that is applied to the whole PHY payload for error-

correction (detecting the errors), while the optional AGC and Training (TRN) fields

might be appended to PHY payload for beamforming reconfiguration after the initial

beamforming training. These two fields are used to improve beamforming training in

DTI (beamtracking in DTI) through AGC gain calculation and channel estimation.

Other DMG PHY characteristics are listed in Appendix A (Table A.1).

2.2.3.1.3 MAC Layer

The IEEE 802.11ad MAC layer supports CBAPs and TDMA schemes for SPs periods

to utilize the whole bandwidth. CBAPs rely either on the Distributed Coordination

Function (DCF) that is based on the CSMA/CA scheme or the Hybrid Coordination

Function (HCF), which is used for scheduled transmission opportunities. On the other

hand, SPs are applicable only to DMG-STAs (not to PCPs) and enable scheduled or

dynamic allocation services. With dynamic allocation, a PCP polls a DMG-STA and

allocates slots based on its needs. The allocated slots might be within the same or

following BI.

Similar to its predecessors, i.e. IEEE 802.11n/ac, in IEEE 802.11ad frame aggrega-

tion at the high or low MAC layer is supported. These are known as Aggregate MAC

Service Data Unit (A-MSDU) and Aggregate MAC Protocol Data Unit (A-MPDU), re-

spectively. The maximum size of transmitted frame is 262143 bytes, while transmission

duration must not exceed 2 ms (PLCP Protocol Data Unit (PPDU) time ≤ 2 ms).
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2.2.3.2 IEEE 802.11ay

To keep pace with user demands and new applications that require capacities of over

10 Gbps (e.g. cellular offload, HDMI, Augmented Reality (AR), Virtual Reality (VR)),

a new IEEE 802.11 Task Group (TG), started its activity in 2015, namely IEEE

802.11ay [95]. The TG is aiming to develop enhancements to the IEEE 802.11ad stan-

dard to enable operation in license-exempt bands above 45 GHz [96]. Even though,

there is still a lot of work to be done until IEEE 802.11ay reaches a stable release, this

subsection overviews some of the basic enhancements proposed so far.

IEEE 802.11ay shares a lot of similarities with IEEE 802.11ad, however, a number of

new features have been proposed and are currently under consideration in this amend-

ment [97], including: i) Channel Bonding and Carrier Aggregation (CA), ii) MIMO

Beamforming, Multi User - MIMO (MU-MIMO) Beamforming, iii) antenna polariza-

tion, iv) TDD, and v) Network Coding.

2.2.3.2.1 PHY Layer Enhancements

IEEE 802.11ay uses 6 different channel bandwidth combinations via channel bonding;

the mandatory 2.16 GHz and 4.32 GHz, and the optional support of contiguous 6.48,

8.64 GHz and non-contiguous 2.16 + 2.16, and 4.32 + 4.32 GHz. Note that there is a

difference between Channel Bonding and CA, i.e. in the former case a single waveform

occupies the whole contiguous bandwidth, whereas in the latter, each channel might

use different waveform [98].

Hybrid or even Digital beamforming architecture might be used in Enhanced DMG

(eDMG) amendment whilst enhancements in TRN design to increase efficiency are also

planned to be introduced. MIMO Beamforming or MU-MIMO Beamforming, comprises

two phases, namely Single-Input-Single-Output (SISO) phase and MIMO phase. During

the first phase that is further divided into three sub-phases, eDMG STAs identify the

potential sectors that will be used during the MIMO phase. The second phase, comprises

four sub-phases and enables the training of the sectors selected during SISO phase.

Antenna polarization is another topic that is being studied in IEEE 802.11ay [99]–
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[101]. The most popular polarization mechanisms used are linear (LP) and circular

(CP) polarizations. LP is considered to be the simplest due to the fact that it requires

a simple feed network and no external polarizer. There are two forms of LP; horizontal,

where the electric field is parallel to Earth’s surface, and vertical, where the electric

field is perpendicular to Earth’s surface. CP is more complicated than LP since a CP

antenna usually requires an external polarizer [102]. It is however more resilient to

multipath and fading and it does not require perfect alignment between the transmitter

and the receiver [103]. These characteristics make CP essential for applications which

involve satellite communications (i.e. portable devices with GPS capability) [104], [105].

LP on the other hand is suitable for applications that have a guaranteed LOS and for

applications that require high gain antennas. However, perfect alignment between the

transmitter and the receiver is essential which limits their practical use. Practically an

antenna is always elliptically polarized since perfect LP or perfect CP are very hard to

be achieved. Depending on the level of elliptical polarization applied, an antenna can

be distinguished as either LP or CP. Polarization reconfigurable antennas are also very

important, as they provide polarization diversity and flexibility [106], [107], meaning

that they can be used in various applications. They can be reconfiguring between LP

and CP or between Right-Hand CP (RHCP) and Left-Hand (LHCP) modes.

To mitigate interference level and address the blocking effect, where the desired packet

is blocked from being detected (a node is locked onto an early packet), the support

of TDD is also being studied in IEEE 802.11ay [108]. TDD may simplify the channel

sounding and improve time fairness between TX and RX periods. However, challenges

as the coordination of the time periods for a network, may arise in TDD systems.

2.2.3.2.2 MAC Layer Enhancements

The IEEE 802.11ay MAC layer follows the IEEE 802.11ad and IEEE 802.11ac standards,

however, modifications have been introduced to support the new features, e.g. TDD.

Relaxation of the Clear Channel Assessment (CCA) thresholds (i.e. aggressive CCA

values) could improve the throughput and be more suitable for directional communica-

tions. Delayed Block-ACK to a following SP and enhancements in the beacon frames to
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ensure co-existence with other mmWave-based technologies (e.g. IEEE 802.11ad, IEEE

802.11ay focused on different use cases) are also under consideration in TGay.

2.2.3.2.3 Relaying Advancements; A Network Coding Approach

To improve multi-hop transmission, relaying will be supported in IEEE 802.11ay amend-

ment (similar to IEEE 802.11ad), based on a network coding technology [109]. The

main objective for network coding is to enable combining of information from separate

flows within an intermediate node (relay), thus increasing the network capacity [110],

[111]. The receiver can, after collecting sufficient information from both links (direct

and relaying), successfully decode the message.

The simplest way to perform network coding is by applying XOR operation to the

input-packet streams [112], [113]. One approach to mixing information makes use of

Linear Network Codes (LNC), where coefficients are selected over a finite field, known

as Galois Field. For example, operations in a finite field of 28 (e.g. numbers ≤ 255) are

performed over bytes, while XOR is performed over the bits. The computational cost

increases with the size of Galois Field. Random LNC (RLNC) [114] is another class

of LNC, where coefficients are randomly selected. In that way, the probability that

a node will receive coded packets, which are linearly independent, remains high. The

main benefit of RLNC is that it can be performed in every hop, protecting the initial

message, by adding redundant information. However, this comes at the cost of high

overhead due to coefficients that need to be transmitted along with the initial message,

otherwise the recipient will not be able to decode the packets. Although, RLNC has

been designed to operate on equal size packets, many application produce frames in a

variable bitrate, hence resulting in unequal packet sizes. The work in [115] proposes a

new way of arranging the raw packets based on coding macro-symbols (fixed-sized part

of a packet) in order to reduce the padding information required for the RLNC.

Two approaches have been widely followed to reduce RLNC overhead, complexity, and

to improve performance; a Systematic approach (S-RLNC) and a concatenation of an

erasure code with RLNC to combine the advantages of both schemes. In S-RLNC [116],

the original packets are transmitted along with the encoded ones. Therefore, if insuffi-
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cient number of packets is received, RLNC decoder is skipped, while the recipient is still

able to retrieve a part or even whole information from the uncoded packets. A two-fold

gain in encoding/decoding throughput is reported in [116] as well as lower overheads

(especially for good-quality links) and lower computational cost (smaller finite field can

be used instead).

There has also been considerable research on concatenation schemes in the litera-

ture [117]–[120]. Concatenated codes mimic the systematic approach, however, the

transmitted systematic packets are encoded, instead. They consist of an outer and an

inner code. The outer code is usually a powerful fountain rateless code (e.g. Luby

Transform (LT) codes), whereas the inner code is RLNC or S-RLNC, used to allow

re-encoding in intermediate nodes. Hence, in case of insufficient number of received

symbols, the inner code is skipped and the outer code tries to decode the message.

BATched Sparse code (BATS) [117], is an example of a concatenated coding scheme

that is under consideration in this task group [109]. The outer code in BATS, operates

at the transmitter, whereas the inner code may reside in any intermediate node, which

linearly combines only packets belonging in the same batch and flow. However, by ap-

plying both outer and inner codes on the same node, a higher performance in terms of

decoding success rate can be observed [118].

The main question that needs to be answered here is, what is the best layer to apply

coding? The application layer is the most convenient layer to apply a network coding

scheme, as there would be no need for the Layer 3/routing and MAC protocols to

be modified. However, this comes at the cost of reduced throughput and robustness

gains (channel conditions are not known to that layer) [121]. By applying a network

coding scheme in Transmission Control Protocol / Internet Protocol (TCP/IP) layer or

above it, there is always the risk of overflowing TCP buffer(s) with encoded packets.

Moreover, delay may increase, since a node must wait until a sufficient number of

encoded packets is received before proceeding to decode. If network coding is performed

at the lower layers (i.e. RAN), higher gains could be achieved. However, if network

coding is applied at PHY layer then additional delays may arise, since information that is

carried in MAC header is now encoded. This means that nodes need to collect a sufficient

number of packets before attempting to decode them and accessing this information,
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e.g. destination address. Moreover, complexity also increases when operating in larger

frames due to headers or frame aggregation schemes, especially if the final recipient is

not the node that has decoded these packets. Another issue for applying it at PHY layer

in an IEEE 802.11 system, is the limited processing time that nodes have, once they

grant access to the medium, e.g. dequeuing a packet from MAC queue and applying

fragmentation or aggregation.

2.3 Technologies Designed to Operate at Below 6 GHz

Bands

This section describes the cellular and Wi-Fi technologies operating at frequency bands

below 6 GHz.

2.3.1 3GPP LTE Technology Evolution

The core network of LTE is the Evolved Packet Core (EPC), introduced in 3GPP

Release-8 (Rel-8), replacing the architecture used in Global System for Mobile Com-

munications (GSM), known as 2G system, and High-Speed Packet Access (HSPA) /

Wideband Code Division Multiple Access (WCDMA) [122]. It is part of the Evolved

Packet System (EPS) and it was designed to enable flat architecture, cost efficiency, and

enhanced performance. EPC comprises the Serving Gateway (S-GW), the Packet-Data-

Network Gateway (P-GW), the Mobility Management Entity (MME), and the Home

Subscriber Server (HSS). Moreover, it separates the user data (U-Plane) and signaling

control (C-Plane), providing more flexibility to vendors and network operators.

2.3.1.1 LTE Channel Architecture & Initial Access

LTE is the access scheme of EPS, which was designed to provide high spectral efficiency,

low delay and overheads, and high peak data rates. LTE Rel-8, was finalized in Decem-

ber 2008 and the first commercial deployments were available in late 2009. It comprises

four layers; the Packet Data Convergence Protocol (PDCP), the Radio-Link Control
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(RLC), MAC, and finally, the PHY. A user may have multiple radio bearers, but only

one PDCP and RLC per bearer. On the other hand, one MAC is supported per user,

but multiple PHYs; one per Component Carrier (CC) when CA is used (from Rel-10).

Those layers are connected through channels; logical channels that connect RLC and

MAC layers, transport channels between MAC and PHY, and physical channels. The

logical channels are split into control and traffic channels. The control channels include,

Paging Control Channel (PCCH), Broadcast Control Channel (BCCH), Common Con-

trol Channel (CCCH) for random access or to set-up a connection, Dedicated Con-

trol Channel (DCCH) for handover or power-control, and Multicast Control Channel

(MCCH). Dedicated Traffic Channel (DTCH), and Multicast Traffic Channel (MTCH)

are also logical channels and defined as traffic channels. The transport channels in-

clude the channels for DL and UL transmissions. The former comprises Broadcast

Channel (BCH), DL-Shared Channel (DL-SCH), Paging Channel (PCH), and Multi-

cast Channel (MCH). The latter category includes UL-Shared Channel (UL-SCH) and

Random-Access Channel (RACH). Finally, transport channels link to the physical ones.

The PHY channels for DL include Physical Broadcast Channel (PBCH), Physical Data

Shared Channel (PDSCH), Physical Control DL Channel (PCDCH), Physical Con-

trol Format Indicator Channel (PCFICH), Physical Hybrid-ARQ Indicator Channel

(PHICH), and Physical Multicast Channel (PMCH). PCFICH identifies the number of

OFDM symbols used for PDCCH that carries information about DL resource scheduling

or UL transmit-power level restrictions. PHICH is used for transmitting a positive or

negative acknowledgement for UL data frames. On the other hand, three channels are

dedicated for UL transmissions, namely, Physical UL Control Channel (PUCCH), Phys-

ical UL Shared Channel (PUSCH), and Physical Random-Access Channel (PRACH).

PRACH has bandwidth of 1.08 MHz and is used to carry random-access preambles

during the random-access procedure. It is used by users (a.k.a. User Equipment -

UE) to initiate data transfer. A UE randomly chooses a preamble sequence out of

a pool containing 64 preamble sequences and transmits it on PRACH. If a UE does

not receive a Random-Access Response in PDSCH, it will increase the transmission

power and will re-send the preamble. The next step is the transmission of Device

Identification Frame in PUSCH by an UE. The last step includes the transmission of
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the Contention-Resolution Frame in PDCCH by a BS (a.k.a. eNodeB), which resolves

preamble collisions due to multiple UEs choosing the same preamble. When a preamble

collision has been detected, a UE restarts the procedure after a random back-off.

2.3.1.2 LTE Link Layer Design

PDCP is responsible for sequence numbering (delivering in order and removing duplicate

data), header compression (only for data frames), ciphering protection against eaves-

dropping, and integrity protection for C-Plane. It also plays a significant role during

handovers.

The role of RLC is to correct any residual errors passed in that layer and missing frames

(gap in sequence) with the Automatic Repeat Request (ARQ) and frames’ segmentation

or concatenation. Frame’s size affects the selection of data rate and overhead. Large

frames reduce the probability of using low-data rates while small frames result in high

overhead due to the headers. ARQ completely discards a packet with an error and

requests for retransmission, whilst maintaining low overheads due to its size and its

infrequent transmission, but it comes at the cost of low reliability [123].

Three types of ARQ are supported. Stop-and-wait, where the reception of a 1-bit

Acknowledgment/ Negative-Acknowledgment (ACK/NACK) indicates if a frame is cor-

rectly or not received. The second type is go-back-N, where all packets with sequence

number larger or equal to the one indicating as not-being received, are retransmitted.

The last type is the selective-repeat, which is similar to the go-back-N technique, but

only the missing packets or these that have been dropped due to an error, are being

retransmitted. Three different modes are supported by RLC: i) the Transparent Mode

that does not add any overhead (RLC header) and does not allow any type of retrans-

missions, ii) the Unacknowledged Mode that supports all functionalities of RLC, but

retransmissions, and iii) the Acknowledged Mode, which supports all features of RLC.

Following RLC, is the MAC layer, which is responsible for random-access, multiplexing

logical channels and mapping them to transport channels, and link adaptation where

the transmission parameters are set based on channel conditions [124]. Hybrid-ARQ

(HARQ) is also part of the MAC layer, a combination of ARQ and Forward Error
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Correction (FEC), that enables fast retransmissions (frequently transmitted), high reli-

ability, and handles with most of the errors. Three diverse types are defined for HARQ;

Type-I, Type-II, and Type-III. The former is similar to RLC ARQ scheme, while Type-

II retransmits parity bits that are combined with the buffered received packets. In

Type-III, every packet is self-decodable, which means that even if one packet is missing,

the decoding procedure does not halt. However, this tremendous advantage of Type-III

comes at the cost of high overheads.

In contrast to ARQ that operates per logical channel, HARQmight retransmit data from

multiple logical channels. Retransmissions in HARQ can occur either on a specific time

after the end of the previous transmission (synchronous) or at any time (asynchronous).

HARQ can also be transmitted in a different format and/or frequency resources if the

adaptive HARQ is supported. The asynchronous adaptive HARQ is supported in DL,

while the synchronous non-adaptive in UL (e.g. retransmissions occur 8 subframes after

the initial transmission).

MAC also, takes care of UL and DL scheduling (requests for resources) or multiplexing

of multiple CCs when CA is used. A structure of a MAC frame is depicted in Figure 2.4.

Packet scheduling is responsible for allocating resources to UEs in an efficient way to

maximize spectral efficiency [125].

Different scheduling approaches can be followed by vendors and network operators,

based on the users’ needs. However, there is a tradeoff between maximizing fairness

and throughput capacity, when scheduling resources to the UEs. There are three
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main scheduling approaches that can be followed: i) Round-Robin, ii) Max-Carrier-to-

Interference (Max-C/I), and iii) Proportional-Fair. Round-Robin distributes the same

amount of resources to UEs, without considering the channel conditions. Therefore, this

scheduling method preserves fairness in terms of resources, but not in terms of QoS. The

second strategy assigns resources to UEs with good channel quality (support of high-

data rates (high SNR)). Although this mechanism maximizes throughput capacity, it

degrades fairness between UEs with high SNR and those with poor channel conditions

(e.g. cell-edge UEs) [126]. To address these fairness issues, Proportional-Fair allocates

resources to UEs based on the average SNR over a period (in a long term), improv-

ing fairness as long as the average Signal-to-Interference-plus-Noise ratios (SINRs) are

uniformly distributed [127].

LTE PHY layer supports both FDD and TDD schemes. TDD has lower cost than

FDD, since it does not require a diplexer to separate/combine the different frequency

bands used for DL and UL transmissions [128]. It is also, preferred by vendors when

the available spectrum is limited and due to the low overheads when it comes to CSI

reports. TDD also, efficiently deals with asymmetric traffic, since the resources in UL

and DL can dynamically be allocated (DL/UL ratio) based on the user needs [129]. On

the other hand, cross slot interference may occur in TDD, hence, larger guard periods

(GPs) than in FDD are used, which affect throughput capacity. In FDD, the GP used

to separate UL and DL in frequency bands, does not have any impact on capacity (i.e.

non-contiguous bands).

Two different frame types are supported; Type-1 for FDD and Type-2 for TDD, illus-

trated in Figures 2.5a and 2.5b. For both types, the frame duration is 10ms and com-

prises 10 subframes (1 ms each subframe). Each subframe consists of 2 slots with dura-

tion of 0.5ms each one. Now, the smallest unit allocated to a user is the Resource Block

(RB) that consists of 12 subcarriers in the frequency domain (12 ∗ (15kHz) = 180kHz)

and one 0.5ms slot in the time domain. However, the smallest physical unit in LTE

is the Resource Element (RE), comprises one subcarrier during one OFDM symbol. A

0.5ms slot can accommodate either 7 OFDM symbols when the normal Cyclic Prefix

(CP) is used or 6 when the extended CP is applied. The useful symbol duration is

66.7µs (1/15kHz), while the normal and extended CP are 4.7µs and 16.67µs, respec-
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tively. When normal CP is used, the CP in the 1st OFDM symbol is longer than 4.7µs

to fill the entire 0.5µs slot. The RBs are defined over one slot and not per subframe due

to distributed DL transmission and UL frequency hopping [123]. Further, the number of

RBs per carrier, ranges from 6 to 110, corresponding to the channel bandwidth (varies

from 1.4 MHz to 20 MHz).

For Type-2; a TDD frame structure, the frame might be divided into two half-frames

of 5ms duration each, prior the subframes. There are 7 different frame configurations

for different DL/UL ratios; from 1/3 to 8/1. There are some common rules for all

configurations, such as the 1st subframe is always a DL one carrying information about

the structure that is to be followed, while the 3rd is an UL subframe. A special subframe

is always used when switching from DL to UL subframe that consists of: i) DL Pilot

Time Slot (DwPTS) that carries control information and reference signals, ii) GP to

control switching from DL to UL, and iii) UL Pilot Time Slot (UpPTS) that is used for

channel sounding and random access.

LTE is based on OFDM, due to the inherent advantages that this technology offers;

resilience to interference, ISI, selective fading etc. It is based on a parallel data trans-

mission and divides the available bandwidth into smaller channels, namely subcarriers

(different frequency per subcarrier), using different modulation scheme for each one.

Thus, based on channel conditions, high order of MCS can be used per subcarrier,

achieving higher data rate. The long OFDM symbol duration along with the use of

CP at the beginning of each symbol, make OFDM resilient to multipath delays and

spread. ISI can be reduced by extending the length of CP, such that the maximum

delay spread is less than the duration of CP. However, a very long CP reduces the data

throughput, while a small one may cause strong ISI. CP is also used for synchronization

by identifying the start and end points of a symbol [130].

Further, OFDM improves spectrum efficiency by tightly placing the subcarriers (sub-

carriers are not separated but ovelapped), that do not interfere to each other due to

their orthogonality. If orthogonality is missed (inadequate CP) due to frequency mis-

match in the transmitter and receiver oscillators, Inter-Carrier Interference (ICI) may

occur. This mismatch may occur due to lost synchronization or the Doppler effect.
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Figure 2.5: LTE a) FDD structure and b) TDD structure.

To mitigate ICI, several techniques have been proposed (e.g. Minimum Mean Squared

Error (MMSE)), but they are out of the scope of this research. OFDM also suffers from

high Peak-to-Average-Power ratio (PARP) that occurs because several subcarriers are

transmitted with extremely higher power than the average power level used throughout

the subcarriers. This requires Analog-to-Digital (A/D) and Digital-to-Analog (D/A)

converters capable of handling this range, which may degrade transmitter’s power am-

plifier efficiency. Traditional methods dealing with the high PARP, include clipping and

filtering, which suffer from the high Bit Error Rate (BER) due to the distortion they

cause in the transmitted signals [131].

An alternative access scheme to OFDMA, used in DL, is realized for UL traffic, due

to the power-limited mobile devices (power consumption). Therefore, Single-Carrier

FDMA (SC-FDMA) is the scheme used in UL, because of the low PARP compared

to OFDMA, since the signal is transmitted over a single carrier. On the other hand,

SC-FDMA has certain disadvantages against OFDMA that prevent its usage for DL

transmissions (e.g. higher computation cost at the receiver, lower spectral efficiency

especially for high SNRs, channel estimation using pilots is harder due to the lack of

orthogonal data on each frequency bin etc.).

2.3.1.3 LTE Evolution; An Overview through Releases

In this section, we overview the main techniques and advanced technologies introduced

throughout 3GPP LTE Releases. We start from the first LTE Releases; Rel-8/9 through
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to the current Rel-14. We describe the potential directions and advanced technologies

that 3GPP LTE community is looking at in Rel-15, which is under active development.

The evolution of LTE through releases is also depicted in Figure 2.6.

2.3.1.3.1 A walk through Releases 8-12

Even from the first releases (Rel-8/9), a lot of attention has been given paid to ICIC

mechanisms, where messages are exchanged among eNodeBs through the X2 interface,

aiming to improve not only the average cell capacity but cell edge users’ performance.

MIMO and MU-MIMO in both UL and DL directions were among the features in-

troduced in the first release, supporting 4x4 MIMO in DL and one-layer transmission

in UL to maintain low complexity, initially. Power control in the UL direction and

soft/hard Fractional Frequency Reuse (FFR) are also supported to mitigate interfer-

ence [132]. Soft FFR refers to the case where eNodeBs do not transmit on specific

resources, whereas hard FFR to the case where eNodeBs use lower transmit powers on

certain resources. Soft FFR improves spectral efficiency, since the UEs close to eN-

odeBs that experience high SINR can be allocated to those power-limited resources.

Two diverse types of relaying schemes, e.g. Amplify-and-Forward in Layer 1, where the

signal is amplified along with the noise and Decode-and-Forward in Layer 2, where noise

is not forwarded but higher latency to the system might be introduced, are also sup-

ported in the very first releases [133]. The support of broadcasting/multicasting of the

same content over multiple co-channel cells with Multicast/Broadcast Single-Frequency

Network (MBSFN) is also initially proposed in Rel-8/9. MBSFN is an advancement

on the Multimedia Broadcast Multicast Services (MBMS), a feature that was initially

introduced in 2004 in Universal Mobile Telecommunications System (UMTS) Rel-6,

that requires a tight frequency and time synchronization among the cells that partic-

ipate in those transmissions. With MBSFN, multiple cells transmit at the same time

and frequency (synchronised transmissions), using the same waveform. These multiple

concurrent transmissions are perceived as a single transmission by the UEs and giving

rise to constructive interference when tight synchronization among the cells is achieved

(if signals are received within the CP period). Discontinuous Reception (DRX) and

Discontinuous Transmission (DTX) functionalities for reducing power consumption in
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Figure 2.6: An overview of 3GPP LTE evolution.

mobile devices and advancements in positioning (i.e. position estimation by monitoring

the relative time of arrival of some special signals from multiple cells) are among other

features incorporated into Rel-8/9 specifications.

To meet the targets for 4G networks, 3GPP released LTE-Advanced (a.k.a Rel-10)

specifications in 2011. The support of higher order MU-MIMO configurations in both

directions, CA [134], and heterogeneous networks, can help to boost the peak data rates

to 3 and 1.5 Gbps in DL and UL, respectively, in LTE Rel-10 [135]. At the same time

a two-fold higher spectral efficiency than Rel-8 was realized. To preserve backward

compatibility, the transparent relaying mode was introduced for in-band or out-band

relays [136].

CA in Rel-10, allowed up to 5 CCs using the same duplex scheme, forming channel

bandwidths up to 100 MHz, while the number of CCs in UL should be less than or equal

to that in DL. The Primary Cell (PCell) is used for radio monitoring, re-establishing

Radio Resource Control (RRC) connection, maintaining continuous communications

due to mobility etc, whereas the rest of the CCs (Secondary Cells (SCells)) are used

to provide additional resources. Moreover, each SCell has its own HARQ, implying

that most HARQs are transmitted over the same SCell as the original data, while an

ARQ (at RLC level) may be sent over different SCell, since CA is invisible above MAC.
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Three diverse types of CA, namely, intra-band contiguous, intra-band non-contiguous,

and inter-band were also specified. The use of different MCS and/or transmit power per

CC or non-contiguous CA, especially inter-band CA, and the flexibility of scheduling

PDCCH on different CCs (cross-carrier scheduling) can improve system’s coverage and

reduce inter-cell interference. Two different queuing structures can be used for CA;

Joint Queue Scheduler (JQS), where one queue per UE for all CCs is realized or Disjoint

Queue Scheduler (DQS), with one queue per CC per UE [137]. It is shown in [138] that

JQS outperforms DQS in terms of spectral efficiency as packets can use all RBs in all

CCs and not only the one that a queue belongs to. The scheduling of CCs is a new

functionality of Radio Resource Management (RRM) in Rel-10 and is based on channel

characteristics, QoS requirements, and traffic conditions (e.g. Random, Circular, and

Least Selection techniques). On the other hand, implementation complexity and power

consumption increase as the number of supported CCs increases [139]. Among the three

CA configurations, the non-contiguous has the highest complexity, as the RRM and the

RF implementation complexities in the terminal have to take into account the different

Doppler shift and path loss that different frequencies experience [140].

The two main foci in Rel-11, were techniques for improving energy efficiency by reducing

RAT’s capabilities while other RATs providing support [141], and reducing inter-cell

interference. Inter-cell interference remains the main obstacle to achieving data rates

close to the theoretical bounds. Common Reference Signals (CRS) cancellation [142] and

Coordinated Multipoint (CoMP) for constructive interference are among the features

introduced in Rel-11, in support of higher capacity.

CoMP allows either a single transmission/reception through multiple eNodeBs with one

eNodeB enabled each time, or a joint transmission/reception from multiple eNodeBs.

A joint transmission could be of two types; non-coherent where each eNodeB individ-

ually and independently from the rest eNodeBs calculates the precoding matrix for a

transmission and coherent where multiple eNodeBs act like a single virtual eNodeB.

The latter, requires the sharing of data and messages between eNodeBs through the X2

interface. One message defined for DL ICIC, namely Relative Narrowband Transmit

Power (RNTP), provides information for specific RBs. RNTP is indeed, a proactive

tool that tries to prevent transmissions scheduled in RBs with low SINR. On the other
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hand, two types of messages are defined for UL transmissions; High-Interference Indi-

cator (HII) and Overload Indicator (OI). The former, works in a similar way to RNTP,

while OI indicates the interference levels for different RBs, such that a neighboring eN-

odeB to re-schedule UEs in order to mitigate interference. Requirements on low-latency,

high-capacity backhaul and the tight synchronization in time and frequency domain of

eNodeB are the main challenges associated with the CoMP technology [143].

In early 2015, almost two years after the introduction of Rel-11, the Rel-12 was launched.

It was the era that made operators and researchers to take into consideration and tackle

the emerging issue of energy emissions by the mobile networks due to the support of mas-

sive number of portable devices, and seek solutions for improving energy efficiency [144]–

[146]. For example, higher MCS might be more efficient than a lower one, considering

the energy consumed by the RF components (i.e. power amplifier, circuit, feed losses

etc.). The main goals for Rel-12, apart from energy efficiency, were to provide higher

Quality of Experience (QoE) and support diverse types of traffic and services [147].

The support of higher order modulation (256-QAM), small cell On/Off based on the

traffic demand, and dual connectivity for non-ideal backhaul links were the major fea-

tures introduced in Rel-12 to enhance per user throughput, reduce signaling load and

power consumption, and improve mobility robustness in heterogeneous networks [148].

Although, small cell On/Off technique reduces network’s energy consumption and sig-

naling load, there is always the risk of reduced coverage or increased scanning/discovery

delay for the UEs, thus, its use was restricted to SCells only. Enhanced Interference Mit-

igation and Traffic Adaptation (eIMTA) feature was introduced in this release, aiming

to dynamically adjust resources for DL and UL (Dynamic TDD), utilizing resources per

link. Dual connectivity was introduced for non-ideal backhaul, operating on the same

or not frequency band, aiming at improving mobility support whilst reducing signaling

overheads during handovers.

CA between TDD and FDD was also supported in Rel-12, whereas enhancements for

MBMS when an interface fails and MBMS operation on demand were also proposed for

enabling seamless MBSS connectivity. Advanced (higher order) MIMO schemes were

also introduced, while the study for 3D MIMO was also started. Furthermore, a new
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category of UE receivers, capable of Network Assisted Interference Cancellation and

Suppression (NAICS), new Device-to-Device (D2D) and Machine-to-Machine (M2M)

scenarios were also part of Rel-12.

The motivation of enabling D2D Proximity Services (ProSec) communications was to

support Public Safety (i.e. police, fire, and ambulance) communications [149]. Up

to that time, Public Safety communications were using the Terrestrial Trunked Radio

(TETRA) system, developed back in 90s’ with limited capabilities. Although, Public

Safety applications can use Wi-Fi or Bluetooth technologies in an ad-hoc manner, these

technologies are characterized by limited range, inability to provide an adequate level of

security and integrity, and independent operation from the cellular systems. Therefore,

in Rel-12, 3GPP identified three main scenarios for D2D; the in-coverage, where eN-

odeBs control the resources, the out-of-coverage, where UEs use predefined resources,

and the partial-coverage [149]. The last scenario refers to the case where one UE is in-

coverage while the second device is out-of-coverage. The communication link between

the devices (PC5 interface) is known as sidelink used in UL subframes by both TDD

and FDD modes. Two operational phases have been introduced, namely Discovery and

Communication. The former is used for broadcasting short messages and discovering

devices in close proximity [150], [151]. For example, a device may transmit a message

declaring its presence or requesting what devices are within its range. The latter dis-

covery phase, uses the Physical Sidelink Discovery Channel (PSDCH) and was initially

supported only for the in-coverage scenario. Prior the discovery phase, synchronization

between the devices is required. Synchronization uses the Physical Sidelink Broadcast

Channel (PSBCH) and can be achieved either through eNodeBs or the transmission of

Sidelink Synchronization Signals (SLSSs) for the out-of-coverage scenario. Communi-

cation mode, on the other hand, uses the Physical Sidelink Shared Channel (PSSCH)

and was initially supported only for the out-of-coverage case.

2.3.1.3.2 3GPP LTE-Advanced Pro - Release-13

3GPP Rel-13, also known as LTE-Advanced Pro, continued the study and work on D2D,

M2M, and Narrow-Band IoT scenarios, CA enhancements (up to 32 CCs), and more
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importantly the new features such as densification (LTE in unlicensed spectrum and

dual connectivity enhancements), and advanced MIMO (Full-Dimension MIMO) [152]–

[154]. From a system point of view, two are the main objects to highlight here; the

study of core network virtualization [155], which is a mature technology that could be

incorporated by 3GPP and the study of critical communications [156].

The first step for enabling substantial number of antennas in a 2D antenna array (FD-

MIMO), thus, enabling beamforming in both azimuth and elevation, was the study of

new 3D channel models and then an evaluation of FD-MIMO’s potential benefits [157].

The substantial number of antennas (massive MIMO) could save at least an order of

magnitude in transmit power, average out the effects of small-scale fading and thermal

noise. On the other hand, complexity, energy consumption, and control overhead (pilot

contamination) increase with the number of antennas [49]. To address pilot contami-

nation, usage of MIMO in TDD along with lean communications were proposed [158],

[159]. A four-fold gain for both cell-average and 5th percentile user throughputs were

observed in [160], when both elevation and azimuth are exploited (FD-MIMO). More-

over, higher order of MU-MIMO can be realized with FD-MIMO, while maintaining the

same SINR level per UE if the number of antennas increases at the same rate as the

number of co-scheduled UEs [161]. In addition, MIMO is more susceptible to CFO due

to multiple simultaneous data streams transmitted, thus, data-aided or blind estima-

tion (e.g. Gardner’s non-data-aided) methods are used. However, the first approach is

shown to provide better performance at the cost of higher overheads.

To meet the projected traffic demands, 3GPP Rel-13 also studied the case of using

unlicensed spectrum in DL along with other technologies (i.e. Wi-Fi). Two different

approaches were proposed by the vendors; either a vendor deploys a Wi-Fi infrastruc-

ture and a communication link inter-operates between LTE and Wi-Fi or makes use

of the unlicensed spectrum through a single network. The second approach reduces

operational cost and provides better QoE, since LTE deals with the communications in

the unlicensed spectrum.

The main benefits of using unlicensed spectrum are: i) increased capacity, ii) higher

number of users served, and iii) enhanced system coverage [162]. On the other hand,
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the main challenges arising from the coexistence of a synchronous and an asynchronous

technology relate to: i) the access control, ii) traffic scheduling, iii) interference miti-

gation, and iv) fairness issues. Operation of LTE in the unlicensed band is based on

CA, with PCells operate always in licensed spectrum, while SCells in both licensed and

unlicensed bands. This is because in unlicensed spectrum, QoS is not guaranteed and

interference cannot easily be controlled due to the unmanaged/ unplanned deployment

of APs. SCells in unlicensed band are usually used to support low-mobility UEs, forming

small-cell deployments. Thus, before enabling CA in the unlicensed spectrum, traffic

load and channel information must be considered [163]. The two main techniques used

in LTE to access the unlicensed spectrum are: Carrier Sensing Adaptive Transmission

(CSAT) and Listen-Before-Talk (LBT).

CSAT is used in countries where there are no LBT requirements (LTE-U), e.g. USA,

South Korea, and China. It is based on the Dynamic Frequency Selection (DFS), where

the devices search for low-loaded channels. They also, continuously sense the medium in

order to identify the channel status (BUSY or IDLE). In case that a channel is used by

a higher priority technology (e.g. radar), then UEs vacate this channel within a certain

period, but are able to use it after a specific time. With CSAT, eNodeBs identify and

access channels based on a duty cycle that is adjustable, based on channel’s activity.

On the other hand, LBT mechanism (Licensed Assisted Access - LAA) uses CCA to

access the medium. Based on CCA, an LAA device monitors the channel for a period of

at least 20µs and applies the Energy Detection (CCA/ED) threshold (i.e. -72 dBm) to

identify channel’s status. If within that period, energy level exceeds CCA/ED, then the

channel is considered BUSY and the transmission is postponed. In that case, the Al-

most Blank Subframe (ABS) technique may be applied, where LTE transmits subframes

carrying vital information (e.g. control, synchronization signals but no user-plane traf-

fic). If the channel is sensed IDLE, devices proceed to a transmission. However, the

maximum channel occupancy time is up to 10ms. In case that a transmission exceeds

the maximum channel occupancy duration, DTX is performed. This, however, comes

at a price of affecting frequency/time synchronization, CSI measurements, and AGC.

Since, CSAT is not CCA-based, collision overheads and latency (channel sensing dura-
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tion of up to 200ms) is higher than in LBT. Moreover, it is usually, more aggressive and

less fair than LBT because of the different approach followed, compared to Wi-Fi [164].

However, by utilizing CSAT On/Off periods based on traffic load, Wi-Fi performance

and fairness can be preserved.

Enhancements to MBMS (eMBMS) are also introduced in this release. Single-Carrier

Point-to-Multipoint (SC-PTM) uses the same system architecture as MBMS, support-

ing broadcast/multicast services, multiplexed over a single cell through PDSCH, instead

of PMCH. It reduces the latency of MBSFN and improves radio efficiency by dynam-

ically assigning resources to a group of UEs, based on real-time traffic load. Indoor

positioning was also one of the priorities for 3GPP Rel-13, aiming at improving po-

sition accuracy [165], [166]. The requirements for indoor positioning were issued by

Federal Communications Commission (FCC) to gradually improve accuracy for pub-

lic and safety services/calls within a period of 6 years. In particular, until 2021, an

accuracy of 50 meters for at least 80% of the calls is required to be achieved [167].

2.3.1.3.3 3GPP LTE-Advanced-Pro - Release-14

The recent 3GPP release, Rel-14, is generally considered as the last release before

entering the era of 5G. This release mainly focused on enhancing LAA to support

dual connectivity in UL (eLAA), and enhanced LTE-WLAN Aggregation (eLWA) in

UL, FD-MIMO, M2M, and MBMS. At the same time, reduced latency and support

of critical Video/Data and Vehicle-to-Everything (V2X) services were also among the

items studied in Rel-14 [168].

Extending LAA to UL transmissions is challenging due to the scheduling requests,

processing delay, and overhead. UEs transmit the scheduling requests in PUCCH, while

eNodeBs respond to PDCCH after performed CCA (in case of LBT). When access is

granted, UEs will again perform CCA to ensure that the channel is still available. This

delay results in unused subframes between DL and UL transmissions. To cope with the

high delay and overhead, CCA time reduction or unscheduled access in UL; similar to

Wi-Fi access scheme, could be applied [169].

Limitations of FD-MIMO in 3GPP Rel-13, such as limited number of antenna ports
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and no support for providing robustness for high-speed UEs, were studied and ad-

dressed in 3GPP Rel-14. The number of antenna ports increased from 16 to 32, while

enhancements were also proposed on CSI reports to improve efficiency of MU spatial

multiplexing [170]. Moreover, features for better CSI accuracy and robustness due to

inter-cell interference and high speed, are also included in that release. A possible

enhancement for FD-MIMO in the next release, could be the distributed FD-MIMO

(D-FD-MIMO) [171]. Further study on MIMO performance requirements for UEs was

also performed [172]. As new operating bands are continuously added to 3GPP speci-

fication, the implementation of a common radio supporting simultaneous transmission

and reception of multiple bands, is a feature under consideration [173]. Benefits of ap-

plying this feature at eNodeBs include dynamic power sharing among different bands

and reduced installation complexity and insertion losses for multi-band antenna sharing

since a single eNodeB will be capable of supporting multiple bands with no combiner

required.

Another area studied in 3GPP Rel-14, was the latency reduction [174]. Random-Access

and Scheduling Request procedures, the fixed duration of Transmission Time Interval

(TTI), the data processing delay, and the high handover latency (approximately 47 ms

for 3GPP Rel-8/9) are the main obstacles for improving performance of applications

such as gaming, real-time (e.g. VoLTE, video conference), and augmented reality which

have stringent low-delay requirements. Viable solutions for reducing latency include: i)

increasing the frequency of Semi-Persistent Scheduling (SPS), ii) dynamically skipping

of UL Grants by eNodeBs, iii) reducing RACH procedure delay during handover in a

synchronized network, and iv) reducing transmission and processing delay. The latter

can be achieved by reducing TTI, however, control and reference signal overheads may

increase.

Advancements in MBMS were also considered, to support the reception of non-collocated

multi-carrier MBMSs to deal with the high demands of diverse types of TV services and

mobile video streaming [175]. In particular, advancements in radio interface include

high spectrum efficiency for larger Inter-Cell Distance (ICD) by applying a larger CP,

the support of new subframe type to reducing overheads, and shared eMBMS broad-

cast where operators can share content, avoiding broadcasting the same content over
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different networks. Free-to-air services, receive-only mode (ROM), upgraded codecs

for supporting Ultra-High-Definition (UHD) television require a new Application Pro-

gramming Interface (API) to simplifying eMBMS procedures, and a new transparent

delivery mode so that TV formats can be of a wide range are some of the enhance-

ments introduced for eMBMS, in 3GPP System Architecture Working Group (SA). A

study was also performed and provided recommendations on the mission critical video/

data services that require high availability, low latency, security etc. (e.g. new protocol

additions and security functionality). On the other hand, the use of larger CP poses

a restriction for supporting high data capacity for UEs with high velocity (i.e. higher

than 100 km/h). The lack of feedback in eMBMS, prohibits the use of Closed-Loop

MIMO with SC-PTM and MBSFN. Due to the static resource allocation, adaptation

to traffic load when QoS characteristic variations are limited, service continuity (e.g.

during handover) is achieved through the unicast channel or by overlapping MBSFN

areas.

LTE’s rival standard for supporting Vehicle-to-Vehicle (V2V) communications i.e. Ve-

hicular Ad-hoc Networks (VANETs), was introduced in 2010, namely IEEE 802.11p [176].

Similar to most of the IEEE standards, IEEE 802.11p is a low-cost solution that is eas-

ily deployed. However, it suffers from scalability issues, limited range, low data rates,

and most importantly, QoS is not guaranteed [177]. Considering all the latest advance-

ments in LTE and the challenges that V2X communications face, LTE enhancements

for vehicular communications were also proposed in Rel-14. Twenty-seven use cases

and three distinct types of V2X services; V2V, Vehicle-to-Infrastructure (V2I), and

Vehicle-to-Pedestrian (V2P) were considered initially.

LTE cellular V2X is based on D2D communications for supporting vehicle communi-

cations when they are in-coverage or out-of-coverage. Moreover, D2D communications

(for V2V services based on sidelink PC5) can enable fast transmissions among vehicles

when they are in the proximity of each other [178]. To maintain low PARP, SC-FDMA

with normal CP is used in PHY layer, while the number of Demodulation Reference

Signals (DMRSs) increased from 2 to 4 in a subframe to cope with the high-speed and

Doppler effects. To deal with synchronization issues in D2D links, the Global Navigation

Satellite System (GNSS) is used, instead of eNodeBs [179].
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2.3.1.3.4 3GPP LTE in 5G era - Release-15

Rel-15 is the first release to introduce the 5th Generation of wireless communications.

The main requirements on performance targets and capabilities for 5G were approved

on March 2016 [180]. Performance targets vary, depending on the environment and

application. For example, per user data rates of at least 1 Gbps and 500 Mbps in DL and

UL for indoor hotspot environments and 20 Gbps in DL and 10 Gbps in UL for eMBB,

whilst latency less than 4ms and 1ms for eMBB and URLLC, respectively, are required.

Larger bandwidths and higher-order modulation are used to achieve high data rates

in small cells. Enhancements to the legacy 4G protocol stack for reducing processing

delays have also been introduced, given that the lion’s share of latency is contributed

by PDCP operations (i.e. de-ciphering, robust header compression etc.) [181].

Moreover, the new network will be characterized by: i) optimizing signaling, ii) reducing

energy consumption, iii) network flexibility (optimized service provision based on slicing

and flow re-routing concepts in core network), iv) traffic steering through different RATs,

and v) enhancing data rate, position accuracy, and further reductions in latency. To

meet the requirements of the new use cases, new features and enhancements in both the

access and the core network segments have been introduced in Rel-15 and the follow-up

releases.

In the first phase, enhancements in LAA and LWA due to their inherent good poten-

tials [182], involve service pricing by making the core network able to identify the route

of packets (licensed/unlicensed) and the support of 3.5 GHz band. Moreover, there is a

focus on V2X services and studies of new scenarios, such as remote driving and vehicle

platooning [183]. According to the 5G Automotive Association (5GAA) future V2X ser-

vices will need to provide support for: i) Safety, ii) Convenience, iii) Advanced Driving

Assistance, and iv) Vulnerable Road Users. The safety related use cases aim to reduce

the frequency and the severity of accidents by warning drivers of accidents and collision

risk through an intersection [184]. Software updates fall into the second use case group,

whereas those use cases focusing on improving traffic congestion, high definition maps,

road conditions, weather alerts etc., fall within the scope of the third group. The last

category comprises those use cases that support communication between vehicles and
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non-vehicle road users, aiming at detecting and warning drivers about their presence.

The support of up to 5 CCs is also under consideration for V2X services in Releases

15/16 [185]. The 5G-PPP Phase 2 Project, 5GCAR [186] works on optimizing V2X

connectivity in terms of latency and reliability, whereas improvements in positioning

accuracy for both road users and vehicles are also considered. Furthermore, Future

Railway Mobile Communication Systems (FRMCS) is currently being studied for fu-

ture releases [187], [188]; probably after Rel-15 [189], to support seamless connectivity,

low latency, and high data rates for the railway users and the safety-related applications

(real-time train tracking).

Further advancements to eMBMS for supporting TV services are also expected to be

introduced in 5G releases, probably in Rel-16. The 5G-XCAST [190], a 5G-PPP Phase

2 Project, works on addressing the limitations of the current eMBMS systems and

developing broadcast and multicast point to multipoint capabilities for 5G networks (e.g.

for scenarios such as IoT, Public Warning Systems, etc.). Seamlessly and dynamically

switching between different transmission modes (i.e. unicast, multicast, broadcast) or

using them in parallel are among the main priorities of 5G-XCAST.

The study of mission critical services continues in Rel-15, where one of the enhancements

includes the ability of distributing mission-critical information to a group of users.

Further enhancements in D2D and relays for IoT or wearable devices to support diverse

types of traffic and services with reduced power consumption and complexity, are also

under the microscope [191].

2.3.1.3.4.1 PHY Layer Enhancements

As part of 5G NR, subcarrier scaling has been included in the standards [192], [193],

due to the particularly detrimental impact of white noise on mmWave based commu-

nications, resulting in requirement for smaller symbol durations. Different subcarrier

spacing values are also supported, based on the scenario, operating frequency, etc, re-

sulting in alterations in CP length with various sizes to be supported. Multiple access

schemes are also supported by the 5G NR, subject to application type and require-

ments. The main challenge is how to ensure the inter-operability of the existing mature
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technology (i.e. OFDMA, SC-FDMA) with Non-Orthogonal Multiple Access (NOMA)

schemes [194] that are deemed more suitable for M2M communications. Therefore, one

of the first tasks for Rel-15 was the study of dual connectivity of the current LTE-A Pro

as PCell and 5G NR as SCell, with up to 4 CCs in DL for LTE-A Pro (4-DL/1-UL and 1

NR) and two MAC entities per UE [195]. Frequency localization to reduce in-band and

out-of-band emissions, lower power consumption by utilizing SC-FDMA for UL trans-

missions, and slot flexibility to support multiple services with different requirements on

the same frequency are also part of the 5G NR [196]. The ONE5G [197], a 5G-PPP

Phase 2 Project, has already started working on the next release (a.k.a. 5G advanced

(pro)) by identifying and addressing the challenges that 5G NR will face for supporting

various vertical use-cases in multiple scenarios. The objectives for ONE5G include: i)

further studies and enhancements on massive MIMO, access schemes, and provisioning

of wireless services to improve user experience.

Channel coding is one of the fundamental areas that is being studied for the 5G NR.

There has been a lot of discussions about replacing the mature coding schemes used in

the previous generations e.g. Turbo codes, with LDPC or Polar codes [198]–[202]. The

recently proposed, Polar codes [203], has been approved by 3GPP as the coding scheme

to be used for 5G NR DL/UL control plane for eMBB, and LDPC coding for the data

channel. The main reasons for replacing Turbo codes are the higher complexity and

inferior performance in scenarios where high throughputs are expected. However, it

is shown in [204] that by redesigning Turbo codes at software and hardware level, 5G

requirements can be met, whilst maintaining backward compatibility.

2.3.1.3.4.2 MAC Layer Enhancements

CA, dual connectivity, and CoMP are three technologies that could be used for sup-

porting connection on different/same carrier frequencies from various RATs, also known

as inter/intra frequency multi-connectivity schemes [205], [206]. Utilization of CA to

reduce delay, UL data compression and signaling reduction (e.g. due to paging and han-

dover), tight interworking to support efficient and high-performance mobility between

NR and LTE, and continuing the studies to address the challenges to support aerial UEs

(e.g. mobility and DL/UL interference) are amongst the work items for RAN 2 [207]–
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[210]. A challenging task in supporting multi-RAT operations is the identification of the

radio protocol layer where the aggregation of the different technologies should occur.

Aggregation at RRC and PDCP layers seems to be the most convenient place, since

these layers do not need to be time-synchronized with the lower protocol layers [211].

However, since these layers do not participate in real-time radio resources utilization

or medium access, inter-RATs’ coordination is limited. On the other hand, RLC and

MAC layers are not fully time-synchronized with PHY layer, resulting in packet and call

drops when synchronization is lost [9]. Moreover, since information splits in MAC layer

for CA, tight synchronization among CCs is required. However, if tight synchronization

is achieved between MAC and PHY layers, then inter-RATs’ coordination and resource

allocation utilization becomes possible. Aggregation of multi-RAT technologies at the

PHY layer might achieve higher gains in terms of aggregated throughput and reduced

latency [212], but the requirements and delays associated with different air interface

technologies may prove very challenging to implement. Moreover, coordination among

multiple Layer 2 entities (i.e. multiple RLC entities) is essential, i.e. for retransmissions

due to different HARQ configurations based on the service requirements.

A three-layer RAT switching envisioned in [213], for supporting various RAT technolo-

gies (i.e. mmWave RAT with a microwave one). The lower layer (MAC-Low) will

be responsible for transmission mode switching, while the 2nd one (RRM/MAC) will

be handling control information for several air interfaces. The higher one (Network),

will be enabling the slice or interface switching in the Internet Protocol (IP) layer. A

three-layer protocol stack to support multi-RAT 5G scenarios is also presented in [214],

developed by the European 5G-PPP during Phase 1, SPEED-5G project [215]. MAC-

Low is responsible for real-time operation (i.e. multiplexing/demultiplexing), whereas

High-MAC deals only with the control plane and those functions that real-time exe-

cution is not required. Multi-Path TCP is also used in the 3rd layer to realize the

support of multi-RAT, where traffic is redirected through multiple RATs. Clustering

of multiple eNodeBs or APs, is another enabling technology that can be applied along

with Machine Learning (ML) techniques, to improve networks’ efficiency, such as energy

efficiency [216], transmission time reduction [217], load balancing [218], and increased

reliability [219], which is one of the main targets for high-velocity scenarios.
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2.3.1.3.4.3 Core Network Concepts

Other complementary technologies that will be incorporated in future releases, capable

of providing networks with flexibility, control, and reconfigurability are described in the

following paragraphs. Although, they might not directly be related to the RAN segment

(for the time being) nevertheless, modifications (or even adoption of similar concepts

e.g. slicing in RAN [220]) in the lower layers will be required for supporting them.

Network Slicing will also provide networks with flexibility and scalability [221], by shar-

ing resources; spectrum sharing [222] and processing power or storage [223]. The slices,

also known as Slice/Service Type (SST), are classified based on the features and services

supported into three (standardized) categories; eMBB, URLLC, and mMTC [224]. The

first one aims at supporting high data rates and high capacity for fast large file trans-

fers, high quality video streaming etc. from multiple users. The second one, URLLC,

is mostly for industrial automation and remote-control systems, while the last one for

supporting massive number of IoT devices. Users will be able to simultaneously con-

nect to multiple SSTs. However, it will also be challenging to support handovers for

high-speed users or manage the various levels of QoS, security, and integrity between

the services [225]. Multiple MAC/RLC/PDCP entities might be needed to handle and

support the diverse SSTs where inter-coordination among them might be inevitable.

The control and management of vertical slices in real-world deployments is the main

focus for the SLICENET Project [226] from 5G-PPP Phase 2.

Five other technologies/concepts ([227]–[231]) that will be incorporated in future re-

leases, include: i) Software Defined Networks (SDNs), ii) Network Function Virtualiza-

tion (NFV), iii) Virtual Network Function (VNF), iv) Mobile Edge Computing (MEC),

and v) enhancing CoMP using the Self-Organizing Networks (SONs) technology. The

former refers to the case where network objects (e.g. routers) are deployed in an au-

tomated manner, while the second technology enables SDN functions to be hardware

platform-independent (e.g. load balancing in a cloud), enabling reduced energy con-

sumption and complexity at the eNodeBs. VNF is deployed on top of NFV, while MEC

is built on the concept of enabling cloud computing at the edge of cellular network

(e.g. eNodeBs), which is considered an important technology especially for V2X ser-
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vices where the huge volume of data needs to be processed and delivered to the vehicles

in real-time [184], [232]. The 5G-PPP Phase 2 Project, 5G ESSENCE [233] continues

the work of the 5G-PPP Phase 1 Projects focusing on SDN/SON (i.e. SELFNET [234],

CHARISMA [235]) and envisions a multi-RAT infrastructure where MEC is enabled at

a cluster of small cells that are being managed by a centralized controller.

SONs are also studied as the technology that will allow a self-based CoMP manage-

ment and operation on the fly, based on user and network traffic conditions [236], [237].

The concept of SONs is not new and is based on self-awareness, self-configuration and

optimization [238], characteristics that require systems with advanced intelligence for

proactive decisions regarding the efficient management of spectrum [239] or the utiliza-

tion of the new technologies (e.g. Massive MIMO) [240]. SON concept is also to be

applied for enhancing Network Slicing operation and management by (re-)configuring,

optimizing, and healing a Network Slicing Instance. The ability of identifying the fail-

ures and applying corrective actions on the fly is essential for maintaining a stable

desired state for the network.

A new group was recently formed by ITU, focusing on ML for future networks, including

5G [241]. ML techniques can be used for predictions and dealing with many issues that

wireless systems face. ML is, thus, a proactive tool that enables smart radio devices by

adding artificial intelligence mainly in the core network [242]–[244]. For example, ML

can be applied to Massive MIMO for channel estimation, finding the optimal handover

solution or clustering, which is very challenging in 5G networks due to the diverse cell

sizes, technologies, etc. They are categorized into three classes; supervised (labeled

samples), unsupervised (unlabeled), and deep learning.

2.3.2 IEEE 802.11 Technology

Similar to the 3GPP cellular technology, new amendments are being developed by the

IEEE 802.11 standards working groups to address the demands for high data rate and

wide coverage in the unlicensed 2.4/5 GHz spectrum (and mmWave and Sub-1 GHz

bands). The introduction of IEEE 802.11n [245], in late 00’s, was revolutionary. It was

a huge milestone for IEEE 802.11 family of standards and it incorporated advanced
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Figure 2.7: An overview of IEEE 802.11 evolution (PHY/MAC amendments).

mechanisms at the PHY and MAC layers. The IEEE 802.11n supports data rates of

hundreds Mbps, MIMO, channel bonding, frame aggregation, wider coverage, and dual

band support. Following the success of IEEE 802.11n, a new amendment was launched

in late 2013, namely IEEE 802.11ac. In contrast to IEEE 802.11n, this new amendment

operates only at 5 GHz frequency band, exploiting the benefits of wider bandwidth

channels (channel bonding support to channel bandwidths of up to 160 MHz) in the

5 GHz band. By further enhancing channel bonding, MIMO, and the support of 256-

QAM along with MU-MIMO in DL, IEEE 802.11ac can boost the peak link-rates to

over 6 Gbps.

Although, IEEE 802.11ac can offer high data rates, it has one major drawback; it is

designed, as its all predecessors, for small indoor network deployments. Therefore,

Task Group IEEE 802.11ax (TGax) was formed in 2014 with the first Wi-Fi 6 capable

devices just recently hitting the market. In contrast to preceding IEEE 802.11 stan-

dards aiming at enhancing link throughput, the IEEE 802.11ax amendment focuses on

improving spectrum efficiency and area throughput in dense WLAN scenarios, while

further reducing power consumption of mobile devices. Moreover, IEEE 802.11ax com-

pliant APs/STAs will operate in 2.4 and 5 GHz frequency bands initially, but they

could also operate in the bands between 1 and 7 GHz as they become available. Fur-



55

thermore, backward compatibility is one of the main requirements in IEEE 802.11ax,

since heterogeneous devices are expected to be operating in the same frequencies.

This subsection initially provides a description of IEEE 802.11 access schemes and the

most important enhancements that various amendments applied to the MAC and PHY

layers, over the last 12 years. It continues with a detailed overview of the (under

active development) IEEE 802.11ax amendment by introducing its new features with

a particular focus on the SR techniques. Finally, it concludes with the overview of

the IEEE 802.11af [246], an amendment that operates in Television/TV White Spaces

(TVWS) bands and was introduced to provide seamless wireless connectivity in rural

environments. The evolution of the IEEE 802.11 amendments at the MAC and PHY

layers, is illustrated in Figure 2.7.

2.3.2.1 Basic Access Scheme

In contrast to the 3GPP LTE standard, the IEEE 802.11 is an asynchronous technol-

ogy/standard, in the sense that it relies on random-access methods for granting access

and transmissions over the shared medium. It also differentiates from LTE in the way

that there are no dedicated channels for data, control, and DL/UL frames; all trans-

missions can be over the same channel. Moreover, preambles precede the transmission

of data/control or management frames.

Prior to data transmissions, STAs have to establish a connection with an AP. This

procedure comprises three stages: i) detection, ii) authentication, and iii) association,

as illustrated in Figure 2.8a. STAs can passively or actively scan the available channels

to detect any APs. When passive scanning is used, STAs monitor a channel for a

certain period of time, waiting for beacon frames, before they try another channel.

Beacon frames are regularly sent by APs, and carry information about their capabilities

e.g. supported MCSs, traffic load, and settings for MAC layer. If active scanning

is enabled, STAs transmit a probe request frame to trigger an AP, which responds

with the probe response frame. During the authentication stage, STAs establish their

identity with an AP. The latter decides if STAs can or cannot access the network.

Four different types of authentication exist: i) Open System Authentication, ii) Shared
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Figure 2.8: IEEE 802.11 a) connection establishment among STAs and an AP and b)

data transmission after association setup.

Key Authentication (i.e. Wired Equivalent Privacy (WEP)), iii) Fast Basic Service Set

(BSS) Transition of Fast Roaming Authentication, and iv) Simultaneous Authentication

of Equals. The last stage is the association of a STA with an AP (typically based on

Received Signal Strength Indicator (RSSI))), where their capabilities are exchanged

along with the Association ID (AID). AID is assigned to every STA and represents the

16-bit ID of a STA. Re-association is invoked during a handover or when association

attributes need to change.

When association between a STA and an AP is established, data frames can be ex-

changed. In IEEE 802.11, access to the medium relies on DCF or Point Coordination

Function (PCF). DCF refers to the case where unscheduled transmissions occur, while

PCF is used for scheduled transmissions between beacon frames. For example, PCF

comprises two periods: the Contention-Free-Period and the Contention-Period. In DCF

mode, every node senses the channel if it is BUSY or IDLE, before initiating a trans-

mission. In the remainder of this section we mainly focus on the DCF, since is the

mechanism most commonly used in Wi-Fi networks.

The channel state is determined by two factors; the energy level detected in the channel

and the Network Allocation Vector (NAV). In the former case, the CCA threshold is

used, which determines a channel as BUSY when the energy level is above a thresh-

old, IDLE otherwise. CCA comprises both Carrier Sensing (CCA/CS) and CCA/ED

mechanisms. CCA/CS indicates a channel as BUSY with probability greater than 90%
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within 4µs for any Wi-Fi signal detected equal or larger than the minimumMCS receiver

sensitivity (i.e. MCS-0), which is -82 dBm for 20 MHz channel bandwidth, according

to the standard. However, most products exceed this specification by 5-10 dBs [247],

[248]. When the preamble is missed (i.e. nodes not being able to successfully decode

all fields), the CCA/ED kicks in and the channel is considered BUSY if energy level de-

tected in the channel is at least 20 dB above the minimum MCS receiver sensitivity (i.e.

-62 dBm for 20 MHz channel bandwidth). In some cases, where spectrum-sharing takes

place, CCA/ED is applied. CCA/ED sets channel’s status based on the energy level

of any signal (i.e. at -72 dBm is specified for 20 MHz channel bandwidth). Note that

there is always the possibility of a false alarm, even if those conservative standardized

values are used. For example, false alarm rate increases with the reduction of CCA/ED

(more sensitive CCA/ED). On the other hand, NAV is updated based on the value in

the Duration field of any frame received. In that way, a channel is considered IDLE

when the NAV timer is expired.

Once the channel is determined to be IDLE for a certain period of time, denoted as

DCF Interframe Spacing (DIFS, DIFS = SIFS + 2 * Slot) or Arbitration Interframe

Spacing (AIFS) for QoS nodes [249], the Binary Exponential Back-off (BEB) counter

is enabled to prevent collisions, as depicted in Figure 2.8b. It decrements by one for

every IDLE slot, freezes when a BUSY slot has been detected, and then resumes from

that value after the channel being declared IDLE for DIFS/AIFS period. Transmissions

occur when this counter expires. After a successful transmission, the back-off counter is

reset and a node randomly chooses a new back-off counter within a Contention Window

(CW) (i.e. CWmin) for the next transmission. If an ACK for a transmission is not

received, then the node assumes that a collision has occurred, it doubles the CW size and

retransmits the frame. Note that the maximum size that CW can have is 2m ∗CWmin

(i.e 1024), where m is the retransmission state.

At the other end of the link, the nodes that have detected a frame with RSSI above

CCA/CS lock onto it and reception procedure starts. The first part of a frame, legacy

preamble, includes the STF that is used for AGC, frequency correction, and time acqui-

sition, the Long Training Field (LTF) for fine timing/frequency correction and channel

estimation, and lastly, the Legacy Signal Field (L-SIG) carrying the length and rate in-
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formation. The legacy preamble ensures inter-operability between different IEEE 802.11

technologies. However, this comes at a price of lower throughput, especially when

an IEEE 802.11b preamble format is used as we explain in the following paragraph.

The non-legacy part, called High-Throughput (HT), Very-High-Throughput (VHT) or

High-Efficiency (HE) in IEEE 802.11n/ac/ax amendments, respectively, follows a legacy

preamble and carries any additional information needed for the correct reception of a

packet (i.e. channel width). Note that the fields that follow STF/LTF, and precede

MAC header, form the PLCP header. When the reception of an MPDU finishes, then

the recipient of this frame will transmit an ACK after SIFS. Two different SIFS timings

are used for IEEE 802.11 technologies, based on the operational frequency; 10µs and

16µs in 2.4 and 5 GHz, respectively. In the case that reception was not successful, then

a node defers its transmission not by DIFS, but by the Extended Interframe Spacing

(EIFS). EIFS is longer than DIFS and is used to protect any ACK transmission (EIFS

= SIFS + DIFS + ACK).

2.3.2.2 IEEE 802.11 Mechanisms for Legacy Inter-operability

There are four protection mechanisms to address coexistence of various IEEE 802.11

technologies, operating at the same frequency bands. The first one, is the preamble for-

mat, as already described. The IEEE 802.11b standard comprises two different formats;

Long preamble with duration of 192µs and Short preamble of 96µs. A ten-fold and five-

fold increase in preamble duration can be observed when the IEEE 802.11b preamble

is applied, compared to the IEEE 802.11a/g preamble (duration of 20µs). The IEEE

802.11n employs three different preamble formats; Non-HT format, HT-Mixed format,

and HT-Greenfield format (rarely used). The former is used to allow coexistence with

IEEE 802.11b devices, the second format is used in the absence of IEEE 802.11b de-

vices, while the latter is used only when IEEE 802.11n devices exist in the network. On

the other hand, IEEE 802.11ac employs only one format, namely VHT format, which

ensures coexistence with IEEE 802.11a/n devices. A second mechanism for preserving

inter-operability with IEEE 802.11b devices, is the RTS/CTS scheme. The RTS/CTS

control frame is transmitted at the lowest data rate i.e. 1 Mbps, used by IEEE 802.11b

devices. Lastly, CTS-to-Self can also be employed by a non- IEEE 802.11b device, oper-
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ating at 2.4 GHz i.e. IEEE 802.11g/n, for protecting its transmissions. This CTS frame

contains identical addresses in the source and destination fields, while setting the value

in Duration field, equal to the duration of data and ACK frames exchange. A fourth

mechanism that is used by the IEEE 802.11n devices, is the L-SIG Transmission Op-

portunity (TxOP) protection. It allows for the protection of frames transmitted during

a TxOP period by setting the length of the Duration field equal to the duration of the

total transmission. In particular, once an IEEE 802.11n has granted a TxOP by using

one of the first three mechanisms, it uses the HT-Mixed format to transmit the frames

under TxOP. However, all the aforementioned mechanisms increase the overheads and

severely affect network’s performance. Note that coexistence in the 5 GHz band does

not require the use of RTS/CTS or CTS-to-Self to ensure inter-operability, due to the

absence of IEEE 802.11b devices. However, RTS/CTS may be applied to address other

common issues in the wireless medium, as described in the following section.

2.3.2.3 IEEE 802.11 Hidden/Exposed Node Problem

The main shortcoming of IEEE 802.11 technology is that frame collisions may occur due

to hidden nodes, while transmission opportunities are reduced due to exposed nodes.

Hidden nodes are the nodes that are out-of-CS range of other nodes and their transmis-

sions may interfere with another ongoing transmission. In other words, hidden nodes

may sense the channel as IDLE, whilst there is another transmission taking place. Al-

though, the strongest signal may survive a collision, resulting in a phenomenon known

as capture effect [250], [251], transmissions by hidden nodes can severely affect network

performance under moderate or heavy traffic conditions [252]. On the other hand, ex-

posed nodes lead to poor spectrum efficiency [253], by refraining from transmissions

(channel erroneously declared as BUSY), even though, their recipients may well be

located sufficiently far away so no interference would have been caused, had the trans-

mission taken place. The exposed node problem is more pronounced in scenarios where

multiple co-channel Overlapping Basic Service Sets (OBSSs) coexist in an area. The

CCA/CS and Transmit Power Control (TPC) are two mechanisms that are used to ad-

dress the hidden/exposed node problems. However, it is almost impossible to eliminate

both hidden and exposed nodes at the same time within a network, but there is a trade-
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off that can be reached between them that maximizes throughput performance [254].

Another IEEE standardized (though optional) feature that was proposed to ameliorate

hidden/exposed node problem is the four-way RTS/CTS handshake. It was initially in-

troduced to tackle this issue, but can also be applied to ensure inter-operability among

the different IEEE 802.11 technologies, as described earlier. However, RTS/CTS not

only does not solve the hidden/exposed node problem [255], since a node updates NAV

on the reception of at least one of those frames (RTS or CTS), but also adds signifi-

cant overhead [256], especially when small-sized packets are transmitted. Both factors,

severely degrade network throughput in high density deployments [257].

2.3.2.4 IEEE 802.11e - The QoS Amendment

Enhancements in support of QoS and specification of the original coordination functions

were introduced in IEEE 802.11e-2005 amendment [249]. A new coordination function

(HCF) was proposed, aiming at prioritizing traffic at the MAC layer. HCF comprises

the HCF Controlled Channel Access (HCCA) and is used for scheduled transmissions,

similar to PCF, and EDCA for supporting QoS when operating in DCF mechanism.

Although, HCCA may provide better performance, EDCA is the mechanism that has

gained wider acceptance. Both methods define 8 different classes for the traffic with

different priority each one. These traffic ids (TIDs) are categorized into 4 Access Classes

(ACs), namely Background (AC_BK), Best Effort (AC_BE), Video (AC_VI), and

Voice (AC_VO).

Each AC is characterized by different AIFS (AIFS replaces DIFS for QoS nodes) and

CW values, which define the priority of each AC. For example, AC_VO and AC_BK

has the highest and lowest priority, respectively. Based on their type, packets are

tagged with the AC they belong, and placed in the correct MAC queue. If two or

more packets with different TID are simultaneously dequeued, then only the packet

with the highest priority is transmitted. This procedure is known as internal collision

and applies only for QoS nodes. TxOP is another feature introduced in IEEE 802.11e,

allowing data transmission in burst mode. TxOP defines the maximum duration that

frames belonging in the same AC can be exchanged in burst mode. AC_VO and
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AC_VI use a TxOP value of 1.504ms and 3.008ms, respectively, while the other ACs

use a value of 0. When TxOP is 0, then only one MSDU can be transmitted at a time.

To further reduce control overhead, Block-Ack was also introduced in this amendment,

as an optional feature. Instead of acknowledging every single MPDU, a Block-ACK

frame can acknowledge up to 64 MPDUs.

2.3.2.5 IEEE 802.11n - High Throughput Amendment

Enhancements in Block-ACK scheme and new technologies, such as frame aggregation,

are introduced in IEEE 802.11n. This amendment supports operation in both 2.4 and 5

GHz frequency bands. On top of the IEEE 802.11e Block-ACK, known as normal Block-

ACK, IEEE 802.11n proposed the use of Compressed Block-ACK when fragmented

MSDUs are not transmitted, and the Multi-TID Block-ACK for acknowledging MP-

DUs belonging on different TIDs. Moreover, two polices were defined for Block-ACKs;

immediate Block-ACK, and delayed Block-ACK. Transmissions under the Block-ACK

scheme comprise three phases: the set-up, data frame exchange, and tear-down phases.

During the first phase, capability information, such as buffer size, policy etc., are being

exchanged between a pair of nodes. Once Block-ACK agreement is established, then

data frames are transmitted along with Block-ACKs. The last phase is initiated with

the transmission of a DELBA frame by the originator, used to terminate the Block-ACK

agreement between the nodes.

Frame aggregation was also first introduced in this amendment, where multiple frames

belonging in the same TID can be aggregated into a single one [258]. Two types of frame

aggregation have been defined in the standard; A-MSDU and A-MPDU. A-MSDU ag-

gregation takes place on the upper MAC layer and allows MSDUs frames that contain

the same source and destination addresses to form a single MPDU, thus, one MAC

header per A-MSDU is used. The maximum A-MSDU length is defined to 7935 bytes

when the A-MPDU aggregation is disabled, 3839 bytes otherwise. A-MPDU aggrega-

tion takes place in the lower MAC and supports the combining of up to 64 MPDU

frames, each one with its own MAC header. The maximum A-MPDU size is limited by

the number of frames (64) or length (∼ 65 KB). The A-MPDU aggregation outperforms



62 2. LITERATURE REVIEW

A-MSDU aggregation due to the larger allowable size, especially for high data rates,

while it is resilient in lossy channels due to the MAC header per MPDU [259]. Note

however that a missed A-MSDU results in the retransmission of all aggregated frames,

whereas in A-MPDU only the frame that has been lost, is retransmitted. The maxi-

mum PPDU time is limited to 5.484ms and 10ms for the HT-Mixed and HT-Greenfield

formats, respectively. This means that with low data rates, A-MPDU is more likely

to be restricted due to the maximum PPDU duration rather the maximum number of

frames (64) or size (∼ 65 KB). A Two-Level aggregation mechanism is also supported in

the amendment, where A-MSDU and A-MPDU schemes are both applied. Two-Level

aggregation is more beneficial for small MSDUs sizes [260].

The optional Reverse Direction Protocol (RDP), an advancement to TxOP, is also

defined in the IEEE 802.11n. RDP allows two nodes to exchange data frames within

the same TxOP. In particular, a node that grants TxOP access by setting the Reverse

Direction Grant (RDG)/ More PPDU subfield of the HT Control field in MAC header

to 1, thus granting permission to the recipient for responding to the transmission with

data frames. However, the first PPDU of the recipient must contain a Block-ACK and

the transmission duration must not exceed the remaining TxOP. In that way, overheads

are reduced as devices do not have to contend to grant access to the medium.

Furthermore, two different Guard Intervals are defined; 400ns and 800ns. Channel

bonding, where up to 2 channels can be concatenated, forming a channel bandwidth of

up to 40 MHz, is also supported by the IEEE 802.11n devices. Even though, channel

bonding was initially proposed for the 5 GHz frequency band, it is now also supported

in the 2.4 GHz too. With channel bonding, the legacy fields along with the HT Signal

fields (HT-SIG1/2) in the PLCP preamble and header, are duplicated over the channels;

primary channel and secondary. The rest of the fields and MPDU frame are sent across

the entire bandwidth channel. Although, channel bonding can potentially double the

throughput, it comes at a price of reducing coverage range. This is because larger

power amplifier is needed to maintain the same output power, which is costly and power

consuming [247]. A good rule of thumb is that CCA/CS threshold should increase by

3 dB when the bandwidth doubles. Two FEC codes are also supported; the mandatory

Binary Convolutional Code (BCC) and the LDPC as an optional feature.
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One of the most impactful techniques to improve throughput and coverage, is the MIMO

technology. IEEE 802.11n supports two MIMO modes, namely Space-Time Block Cod-

ing (STBC) and Spatial-Division Multiplexing (SDM). STBC enables the transmission

of multiple copies of single data stream across multiple antennas, hence, enhancing range

and link robustness. The most common STBC scheme, the Alamouti scheme, is the one

used in this standard. For example, two data streams are combined and sent from two

antennas over two-time slots. On the other hand, with SDM, independent data streams

are transmitted over different antennas. The maximum data rate increases with the

number of independent data streams, which is based on the number of Tx and Rx an-

tennas. In other words, data rate increases by min(Tx_ant,Rx_ant, data_streams).

Up to 4 antennas are supported in IEEE 802.11n, boosting the peak data rate to 600

Mbps, assuming that channel bonding and short Guard Interval are enabled.

2.3.2.6 IEEE 802.11ac - Very High Throughput Amendment

The support of higher order modulation (256-QAM), number of spatial streams (up

to 8), and wider channel bandwidths (up to 160 MHz) has pushed the peak data rate

close to 7 Gbps in IEEE 802.11ac [261]. Five configurations for channel bonding are

supported in IEEE 802.11ac, including also non-contiguous frequency channels to form

a wider channel bandwidth (e.g. 80 + 80 MHz). The 80 MHz channel bandwidth is

formed by two 40 MHz channels and is a mandatory feature for the IEEE 802.11ac

devices. This can provide a two-fold increase in data rate compared to IEEE 802.11n,

by keeping a single spatial stream [262].

Although, beamforming is also supported in the IEEE 802.11n amendment, most ven-

dors did not include this capability in their products. The main reason was that many

beamforming techniques were included in the standard, which could increase imple-

mentation complexity (as both communicating nodes must agree on the same method

to use). Thus, to avoid this, the IEEE 802.11ac standard mandates only one method,

called Null Data Packet (NDP) sounding, supporting only one feedback format i.e. non-

compressed immediate feedback. Moreover, MU-MIMO only supported in the DL was

included in this amendment. DL MU-MIMO is based on SDM, where an AP with mul-
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tiple antennas, simultaneously transmits independent data streams to multiple users.

Those transmissions are overlapped in the time-frequency domain. A thorough study

of MIMO and MU-MIMO is presented in [263], [264].

At the MAC layer, the maximum A-MSDU and A-MPDU sizes are further increased to

11406 bytes and 1048575 bytes, respectively, due to the support of higher data rates.

Furthermore, Partial AID (PAID), a power-saving feature was also included in this

amendment. It is built upon IEEE 802.11n AID feature, but its value is not unique for

every STA. Moreover, the relevant Information Element (IE) is carried in the PLCP

header, allowing a STA to quickly identify and abandon reception when packets are not

intended for it. In that way, a STA may switch to sleep or doze state for the duration

of that transmission. Along with the reduction in power consumption, throughput gain

can also be observed due to the EIFS impact.

2.3.2.7 IEEE 802.11ax - High Efficiency Amendment

The rapid growth of portable devices and the plethora of new applications and scenar-

ios [265], [266], was the motivation for IEEE 802.11ax [267]. Even though, WLANs

were originally developed for small indoor environments, nowadays they can be found

everywhere; from apartments, offices to outdoor venues e.g. public transport, stadiums,

outdoor hotspots etc. To meet the demand for high data rates in those deployments,

IEEE 802.11ax defines 5 scenarios for the assessment of the new technologies; a residen-

tial, an enterprise, and indoor small (19 BSSs with 17.32m ICD), a large outdoor (19

BSSs with 130m ICD), and a combination of a residential with an outdoor deployment.

Along with the new scenarios, advanced features are also introduced in both MAC and

PHY layers, allowing peak data rates close to 10 Gbps.

2.3.2.7.1 PHY Layer Enhancements

Following the paradigm of LTE i.e. OFDMA and channel sharing among multiple

users, the IEEE 802.11ax amendment adopts this same technology for both DL and UL

transmissions. It is a mandatory feature for the IEEE 802.11ax devices that requires

their tight synchronization in frequency and time domain, especially in UL direction.



65

Legacy Preamble HE Preamble DATA PE

L-STF L-LTF L-SIG

8μs 8μs 4μs

4μs Variable durations per HE-LTF symbol

RL-SIG HE-SIG-A HE-STF HE-LTF HE-LTF

8μs 4μs

HE-SU Preamble

RL-SIG

4μs

HE-SIG-A

16μs

HE-STF HE-LTF

4μs Variable durations per HE-LTF symbol

HE-ER-SU Preamble
HE-LTF

HE-MU Preamble
RL-SIG HE-SIG-A HE-SIG-B HE-STF HE-LTF HE-LTF

4μs 8μs
4μs 

per symbol 4μs Variable durations per HE-LTF symbol

Figure 2.9: HE-Preamble structure for the IEEE 802.11ax.

Therefore, transmission resources and users participating in UL-OFDMA are announced

through the Trigger frame, sent by APs. It is also used for UL MU-MIMO or to reduce

power consumption when Target Wake Time (TWT) operation is used. The minimum

RU is defined as 26 subcarriers that are distributed among the users, accommodating up

to 9 users per 20 MHz channel bandwidth. IEEE 802.11ax also supports a higher order

of modulation, i.e. 1024 QAM, as an optional feature, intended for indoor environments.

To improve robustness and performance in fading environments, larger Fast Fourier

Transform (FFT) is used. This results in longer symbol duration Ts and a smaller sub-

carrier frequency spacing. Various Ts are supported for the HE-LTF symbols, whilst only

one Ts for the data field. For example, Ts = FFT/ChannelWidth = 256/(20MHz) =

12.8µs, while the subcarrier frequency spacing is 1/(12.8µs) = 78.125 kHz. Two other

techniques for improving robustness in large outdoor deployments, include: i) Extended

Range (ER) support and ii) Frequency Selective Scheduling (FSS). With ER, fields in

HE preamble are repeated, which along with a 3 dB power boosting of some training

fields, may result to 5-6 dB better preamble performance [268]. Some of the frame

structures supported by IEEE 802.11ax, are illustrated in Figure 2.9. FSS technique

has been extensively studied in TGax, aiming at improving OFDMA performance by

selecting specific RUs for a user, based on CSI reports [269]–[271]. Furthermore, both
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Figure 2.10: MAC efficiency a) per amendment (highest data rate for 20 MHz band-

width, 1 spatial stream, and 1500 bytes size) and b) with respect to the transmitted

packet size (20 MHz, 1 spatial stream, and HE-MCS 11).

BCC and LDPC FEC codes are supported by IEEE 802.11ax devices. However, BCC is

used for spatial streams less than or equal to 4, MCS less than 10, and is mandatory for

RU sizes less than 484-tone. On the other hand, LDPC is mandatory for MCS-10/11,

RU sizes greater than 242-tone, and channel bandwidths larger than 20 MHz.

UL MU-MIMO is also introduced in IEEE 802.11ax, to exploit the advantages of MU-

MIMO in UL direction. In that way, nodes with limited number of antennas; 1 or 2,

supporting low data rates, do not degrade performance by occupying the channel for

long periods. As in OFDMA, a Trigger frame is used to coordinate users.

2.3.2.7.2 MAC Layer Enhancements

MAC performance decays as higher data rates per STA are used, as seen in Fig-

ure 2.10a, for constant frame sizes. Overheads, such as legacy preamble, IFS etc, make

the application-level throughput to significantly vary from the theoretical one. Thus,

many enhancements have been proposed to improve MAC efficiency, whilst others are
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intended to enhance the performance of existing features.

MU-EDCA is used by an AP to adapt to changes in traffic load. Two sets of EDCA

parameters are employed; one for all STAs and one for improving efficiency of UL MU

capable STAs. These new parameters are carried in selected beacon frames and in all

Probe/Association/Re-association responses. However, the APs are not expected to

change these values/settings very often. A Multi-STAs Block-Ack control frame is also

defined to enable concurrent acknowledgement to multiple STAs after UL MU operation,

thus reducing the transmission delay of multiple Block-ACKs. MU-RTS/CTS is also

proposed to protect MU-PPDUs, where STAs can simultaneously respond (CTS) to an

MU-RTS from their AP.

The maximum PLCP Service Data Unit (PSDU) size is also extended to 6500631 bytes,

compared to that in the IEEE 802.11ac, to further improve efficiency when advanced

technologies are used (e.g. Channel Bonding, MIMO). The impact of transmitted

frame’s size and for different IEEE 802.11 amendments is depicted in Figure 2.10.

Multi-TID A-MPDU is introduced to aggregate frames with different TID values to

the same user, utilizing the scheduled RUs. MU-AMPDU is also under consideration,

where frames destined to multiple recipients are aggregated into a single frame [272].

This feature further reduces MAC overhead, especially for short-length frames. MU-

AMPDU applies to users that experience similar channel conditions (i.e. similar MCS)

only if aggregation rules allow it (i.e. length, duration). Moreover, ACKs or Trigger

frames can also be concatenated with data frames. However, Trigger frames aggregation

with data frames is mandatory.

Two types of frame fragmentation are also introduced; the legacy or static fragmen-

tation and the dynamic one. The latter is proposed to improve efficiency in UL MU

operation by filling the empty space with data bytes, instead with padding (static frag-

mentation). Fragments may have different length, while the first one must be equal or

greater than the minimum fragment size threshold. To further improve efficiency for

UL MU transmissions, a new frame namely NDP short feedback is introduced - not

to be confused with the NDP for channel sounding. It allows APs to collect feedback

from a large number of STAs in an efficient way. That feedback frame is sent without
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data payload. Further to NDP short feedback, STAs transmit the Buffer Status Report

(BSR) frames to APs to allocate the right amount of resources in each STA.

Even though, dual beacon was introduced in IEEE 802.11n (STBC beacon) to extend

BSS range, it was not implemented by no one. It is shown in [273] that longer CP is

needed for robustness, which legacy non-HT PPDUs are not able to provide. Therefore,

dual beacon was replaced with the ER beacon mechanism, since ER exploits OFDMA

(i.e. longer CP) [274]. To protect STA-to-STA communications, STAs request from an

HE-AP to schedule quite periods to allow STAs communicate directly. Furthermore, a

tighter management for association or roaming procedures is also under consideration.

It is network’s responsibility to inform STAs what is the best AP to associate or when

roaming should happen. This is beneficial, especially for cell-edge users, which listen

multiple APs at similar RSSI levels.

2.3.2.7.3 Power-Saving Advancements

Power management has been part of IEEE 802.11 standard since its first release. The

power-save techniques have been evolving the past years to reduce power consumption

in portable devices. Power Save Mode (PSD) was the first technique to be introduced

in IEEE 802.11. Nodes sleep for a specific period of time and wake up every X beacons

to listen if there are packets buffered in the AP for them. If there are packets, then

STAs send a Power Save Poll Frame (PS-Poll) to the AP, requesting for the buffered

packets. Automatic Power Save Delivery (APSD) was later introduced to support TxOP

and an extension of it, namely Power Save Multi-Poll (PSMP), was proposed in IEEE

802.11n amendment. TWT is proposed for IEEE 802.11ax that was adopted from

IEEE 802.11ah [275]. With TWT, STAs wake at specific times to exchange frames with

other STAs or an AP. This time or times are agreed in advance between a STA and

an AP. TWT also allows STAs not to listen to beacons, which further reduces power

consumption.
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2.3.2.7.4 Spatial Reuse Techniques

A completely new mechanism has also been added in the IEEE 802.11ax amendment,

namely the introduction of Spatial Reuse (SR) techniques. The main objective is to

increase the number of concurrent transmissions within a given area, thus, enhancing

both area throughput/capacity and spectrum efficiency. Dynamic Sensitivity Control

(DSC) [276], a technique used for tuning CCA thresholds, has been proposed for IEEE

802.11ax devices, where STAs tune CCA thresholds based on beacons’ RSSI (received

from the associated AP), using a moving average scheme. DSC does not require any

additional overhead to be exchanged and it aims at increasing probability of successful

transmissions for cell-edge users. The cell-edge users can thus use low CCA thresholds,

expanding their carrier range, to reduce the number of hidden nodes. However, an

extremely conservative value may lead to spectrum inefficiency due to the exposed node

problem and higher probability of a false alarm. The main drawbacks of DSC are that

transmission opportunity for cell-edge users further decays due to the extended carrier

sensing range and the increased probability of a false alarm. DSC has been extensively

studied in residential [277] and small indoor [278] scenarios. An extension of DSC

operating on APs, is presented in [279], where the APs tune the CCA threshold based

on the RSSI of the inter-BSS frames and the intra-BSS frames. Nevertheless, the way

that this algorithm operates may increase the outage probability, where users are out

of coverage of the APs.

The second spatial reuse technique that is currently included in the IEEE 802.11ax

standard, is BSS Color [280]. This feature has been adopted from the IEEE 802.11ah

and is based on the PAID feature, aiming at the early identification of the BSS that

a frame is transmitted from. The BSS Color scheme uses a 6-bit value carried in HE-

SIG field along with the UL_Flag (1-bit value) that identifies the link direction of a

frame (i.e. DL/UL), illustrated in Figure 2.11. Its value ranges from 1 to 63 and a

value of 0 indicates that BSS Color is not used, thus, frame reception follows the legacy

procedure. Nodes can abandon reception if a colored frame (Color 6= 0) is transmitted

by a neighboring BSS, and based on the RSSI, to initiate a transmission to their AP. BSS

Color is distributed to STAs during the association stage, while it may change during
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Figure 2.11: Frame structure for the a) HE-SU packet and b) management frames (HE

operation Element).

operation, if color collision is detected. Both BSS Color and UL_Flag features can also

be considered power-saving mechanisms, since a color or a link direction mismatch may

result to the abandoning of the reception.

To assure smooth SR operation (BSS Color) two different approaches have been in-

troduced in the IEEE 802.11ax; the OBSS / Preamble Detection (OBSS/PD) -based

operation and the SRP-based operation. The latter approach is based on the transmis-

sion of a Trigger frame to initiate a data transmission from a STA for the duration of the

current (ongoing) PLCP Protocol Data Unit (PDU ) transmission [281]. In that case,

the APs control the transmission opportunities for the associated STAs. This work
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focuses on the OBSS/PD-based operation, which may function in a distributed way

and does not require the exchange of control frames. An overview of the advancements

proposed to enhance spectrum efficiency and the BSS Color operation is presented in

this subsection.

First, the IEEE 802.11ax nodes are expected to maintain two NAVs; one for intra-BSS

(intra-BSS NAV) and one for inter-BSS frames or those frames that cannot be identified

(basic NAV). If both NAV timers are zero, the channel is identified as IDLE, BUSY

otherwise.Although, the use of two NAVs is beneficial, especially in dense deployments,

it does not fully offer protection to the ongoing transmissions. For example, in the case of

Multi User (MU) operation, a hidden AP to the ongoing inter-BSS packet transmission

may transmit a trigger frame to a STA for a solicit response (e.g an upcoming MU

transmission with an MU-RTS). The STA then has to reset NAV timers and respond

with a CTS, otherwise if the NAV reset schemes from an AP are ignored by the STAs, the

NAV would overprotect AP’s TxOP and would degrade the network performance [282].

Secondly, the OBSS/PD threshold is introduced to control the transmission opportuni-

ties for a node based on the inter-BSS frames’ RSSI. If the inter-BSS frame’s RSSI is

above the OBSS/PD threshold, the node will sense the channel as BUSY, will update

basic NAV, and will defer its transmission, otherwise the node may initiate a transmis-

sion (i.e. intra-BSS NAV timer is zero). In that way, the interference level introduced

by multiple simultaneous transmissions (with the BSS Color) can be controlled.The

OBSS/PD threshold ranges between the sensing range threshold (i.e. CCA/CS) and

the CCA/ED threshold that is greater than the minimum MCS by 20 dB [245].

CCA/CS ≤ OBSS/PD ≤ CCA/ED (2.1)

where CCA/CS equals to -82 dBm and CCA/ED to -62 dBm for a 20 MHz channel,

according to the IEEE 802.11 standards. A good rule of thumb is that CCA/CS and

CCA/ED thresholds should increase by 3 dB when the bandwidth doubles.

Thirdly, the Spatial Reuse Group (SRG) is another concept where multiple BSSs with

different BSS Color values form a group. The nodes in an SRG can apply different rules

(e.g. OBSS/PD threshold) to the inter-BSS/intra-SRG packets and to those transmitted



72 2. LITERATURE REVIEW

O
B

SS
/P

D
 T

h
re

sh
o

ld

TxPwr

OBSS/PDmax

OBSS/PDmin

TxPwrRef

𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑂𝐵𝑆𝑆/𝑃𝐷

Figure 2.12: The adjustment rule for the OBSS/PD threshold and the transmit power.

from a different SRG (i.e. inter-BSS/inter-SRG). The SRG operation is more suitable

for networks that are being managed by wireless access controllers or by operators that

may agree beforehand on the BSS Color policies that will be using, e.g. the OBSS/PD

threshold or the boundaries for the OBSS/PD etc.

Fourthly, the adjustment of the OBSS/PD threshold in conjunction with the transmit

power is also proposed in the amendment to reduce the in-band emission interference

to the OBSSs, thus improving the spectrum efficiency and network performance.The

OBSS/PD threshold that can be applied under the OBSS/PD-based operation in rela-

tionship with the transmit power (TxPwr) is defined as:

OBSS/PD ≤ max(OBSS/PDmin,min(OBSS/PDmax, OBSS/PDmin

+(TxPwrRef − TxPwr))) (2.2)

where TxPwrRef = 21 dBm for STAs and APs with less than 2 Spatial Streams (SSs )

and TxPwrRef = 25 dBm for APs with SS ≥ 2. The OBSS/PD threshold decreases

with the increase of the transmit power level. For example, OBSS/PD ≤ −76 dBm

when a STA transmits at 15 dBm. Alternatively, a node may adjust the TxPwr level
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Figure 2.13: IEEE 802.11ax BSS Color a) cell-layout and b) simple flow chart.

based on the OBSS/PD threshold, such as:

TxPwrmax = TxPwrRef − (OBSS/PD −OBSS/PDmin) (2.3)

when OBSS/PDmin < OBSS/PD ≤ OBSS/PDmax, otherwise it is unrestricted.

Although, a low TxPwr level may reduce the interference level, it could also result to

a low SINR, thus a careful selection of the transmit power level is required. The rule

applied for adjusting the transmit power with the OBSS/PD is illustrated in Figure 2.12.

A simple flow chart of BSS Color preamble reception procedure is illustrated in Fig-

ure 2.13.

Last, due to the absence of a specific mechanism in the amendment on how a node (e.g.

STA) should select the OBSS/PD threshold, DSC was proposed to dynamically adjust

the OBSS/PD level based on the beacons’ RSSI [283], [284]. The OBSS/PD threshold,

according to the DSC proposal is set to:

OBSS/PD = min(OBSS/PDmax,max(OBSS/PDmin, (RSSIbeacon

−Margin))) (2.4)

where the value of Margin (in dBs) is transmitted by the APs and is carried in a subfield

of the SR parameter set element (when Equation 2.4 is applied, otherwise the subfield

is not incorporated). Even though, the authors in [284] showed that by adjusting
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Margin throughput gain can be achieved, their study is based on various assumptions

that severely affect the performance. For example, they do not take into account the

interference level and the Packet Error Rate (PER). Nevertheless, DSC does not fully

exploit the BSS Color information and may also deteriorate the fairness among the

cell-edge users and the rest users in terms of the transmission opportunities (reducing

transmission opportunities for cell-edge users).

In contrast to the IEEE 802.11ax SR scheme, which makes decisions based on a binary

identification of the detected OBSS frame, learning-based approaches have also been

proposed to further improve SR and the spectrum efficiency [285], [286]. However,

these schemes may increase complexity, data processing, and OPEX, hence may not be

a suitable solution in residential deployments.

2.3.2.8 IEEE 802.11af - TVWS Amendment

Although, the IEEE 802.11af amendment is launched before the IEEE 802.11ax (late

2013), it is included after the IEEE 802.11ax due to its: i) different operating frequency

(TVWS) and ii) main focus; seamless connectivity in rural environments and low power

consumption.

It was introduced as a complementary amendment to IEEE 802.11n that takes ad-

vantage of the propagation characteristics of the TVWS spectrum and the additional

bandwidth from the unused spectrum of broadcast TV services. One of the main chal-

lenges for the IEEE 802.11af amendment (a.k.a. White-Fi) is to guarantee that licensed

services are not interfered by its operation [287]. Therefore, new entities were defined in

the standard to support the coexistence of IEEE 802.11af (54 MHz - 698 MHz in USA,

and 470 MHz - 790 MHz in Europe) and TV broadcast services.

First, a Geolocation Database (GDB), containing the allowed frequencies and the op-

erating settings for the White Space Devices (WSDs) has been introduced in the IEEE

802.11af amendment. The available frequency bands along with the operating parame-

ters are subjects to country/location specifics. GDB operation can be either open-loop

or closed-loop. The former is mainly used in USA, where GDB provides scheduling in-

formation every 48 hours, thus, conservative transmit power levels are considered. The
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latter is used in Europe and provides updates about the channel availability every 2

hours.

Secondly, the purpose of the Registered Location Secure Server (RLSS) is to maintain

and provide the GDB information for a smaller area, e.g. small BSS.

Lastly, the Geolocation Database Dependent Entities (GDD) has been defined, which

includes the APs and STAs, known as GDD-Enabling STAs and GDD-Dependent STAs,

respectively.

The White Space Map (WSM) contains information about the available channels and

the maximum transmit power that can be used in each one, based on the location. It

is shared between the GDD-Enabling STAs and GDD-Dependent STAs through the

Registered Location Query Protocol (RLQP), enabling STAs to effectively select the

allowed channels, bandwidth, transmit power etc. GDD-Dependent STAs can also

request this information (RLQP) from the RLSS, by sending a Channel Availability

Query (CAQ) frame. On the other hand, the GDD-Enabling STAs request for the

Channel Scheduling Management (CSM) either from RLSS or other GDD-Enabling

STAs to obtain information about the available channels. Contact Verification Signal

(CVS) is transmitted by the GDD-Enabling STAs to identify any GDD-Dependent STAs

in their proximity. Moreover, the CVS allows the GDD-Dependent STAs to ensure that

the signal was transmitted by a valid GDD-Enabling STA.

The GDD-Enablement is called the procedure where GDD-Enabling STAs transmit bea-

cons in the available channels to establish a communication link with GDD-Dependent

STAs. Three states are defined for the GDD-Dependent STAs; Unenabled, Attempt-

ing GDD-Enablement, and GDD-Enabled. In the Unenabled state, WSDs passively

scan the available channels to detect a beacon. A WSD enters the Attempting GDD-

Enablement state during authentication/association procedure, while it becomes GDD-

Enabled when the association with the corresponding GDD-Enabling STA has been

established. The last mechanism defined in the standard is the Network Channel Con-

trol, which allows WSDs to exchange information about nearby transmitters and their

emissions footprints.

IEEE 802.11af adopts most of the IEEE 802.11ac features in PHY and MAC layer [288],
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[289]. It is interesting to mention that three Basic Channel Units (BCUs) have been

defined in IEEE 802.11af, depending on the country and spectrum availability.

2.4 Technological Solutions for M2M Communications

The ability of objects to communicate through internet without requiring human inter-

action, is referred as Internet of Things (IoT). The direct communication among these

devices is known as Machine-Type-Communications (MTC) or M2M communications.

The needs of market and industry to automate most of their process (i.e. real-time

monitoring) has led to the exponential growth of the number of devices connected to

internet. Emerging services, such as remote health care or learning, smart grid, and

smart cities where information is efficiently collected through sensors (e.g. traffic condi-

tions, waste collection etc.) are some of the new scenarios considered for 5G networks.

MTC will enable a plethora of applications and increase the number of devices connected

to internet to millions or even more, with most of them require adequate coverage and

low bandwidths to transmit small sized packets. Various standardization bodies e.g.

IEEE, Internet Engineering Task Force (IETF), and 3GPP, have defined technologies to

support IoT networks, with Long-Range (LoRa) [290], SigFox [291], IEEE 802.15.4g/e,

IEEE 802.22 (Wi-Far), NB-IoT, IEEE 802.11ah etc. among the most well-known stan-

dards. In the following paragraphs, we provide a brief description of the technologies

developed outside 3GPP and IEEE 802.11, for supporting MTC. A detailed overview

of the efforts in 3GPP and IEEE 802.11x driven by MTC is presented in the next two

subsections.

LoRa Wide Area Network (LoRaWAN) is a Low-Power Wide Area Network (LPWAN)

technology specified to wireless battery-operated devices [292]. It operates in the Sub-1

GHz band and supports rates of up to 50 kbps and supports up to 10k devices with a

single BS [293], providing up to 10 km coverage. On the other hand, SigFox, supports

up to 1 million devices and provides coverage up to 50 km in suburban areas. It also,

enables low energy consumption in the Sub-1 GHz spectrum. However, it provides even

lower data rates than LoRaWAN (below 1 kbps).
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Wi- Smart Utility Networks (Wi-SUN) consortium, established in 2011, and uses the

IEEE 802.15g/e for PHY and MAC, respectively, to enable efficient management of

utility services; water, gas, electricity. The Wi-SUN standard PHY layer supports

three different formats; Multi-Rate Frequency Shift Keying (MR-FSK), MR- Offset

Quadrature Phase Shift Keying (MR-O-QPSK), and MR-OFDM for higher data rates

(i.e. from 2.4 up to 800 kbps [294]), capable of accommodating thousands of users.

The IEEE 802.15.4m is another/competing standard, enabling data rates of up to 2

Mbps. It operates between the 54 and 862 MHz frequency spectrum and supports

three PHY formats; FSK, OFDM, and NB-OFDM. Since most of the channels in those

frequencies (TVWS), are 6 to 8 MHz wide, NB-OFDM allows the support of multiple

users by dividing channels into sub-channels. Another IEEE (other than IEEE 802.11x)

technology, using the TVWS bands is the IEEE 802.22, known as Wi-FAR. It is a

standard for Cognitive Radio-based Wireless Regional Area Networks (WRANs) for

providing broadband wireless access over large areas. It offers rates of up to 28 Mbps

for an 8 MHz channel bandwidth and is suitable for use cases, such as cellular offloading,

small office/home office, homeland security etc [295].

The main drawbacks of the aforementioned technologies are: i) only able to offer low

data rates and operate in unlicensed bands, which makes them susceptible to interfer-

ence and ii) unable to meet QoS requirements, such as high reliability and high energy

efficiency. On the other hand, cellular systems can overcome those issues due to the

controlled access that they offer. Moreover, LTE is a technology widely developed, of-

fering wide coverage, high capacity, and flexibility [296], [297]. However, the enormous

number of devices and diverse traffic types pose some challenges for cellular systems, as

we explain in the following section.

2.4.1 3GPP LTE Enhancements for M2M Communications

Although, a first study for MTC in 3GPP, began in 2007 [298], standardization activ-

ities only started in 2010 with Rel-10 (System Architecture Group 2 (SA2) focused on

MTC initially). At about the same time, the European Telecommunications Standards

Institute (ETSI) and other standardization bodies (e.g. OMA, ATIS, CCSA) started



78 2. LITERATURE REVIEW

studying MTC with respect to service architecture [299].

Two types of MTC scenarios were initially defined in 3GPP; device to server and device

to device through a cellular network. However, only the former was originally covered in

3GPP Rel-10. MTC services are characterized by static/low-mobility nodes, infrequent

small size data transmissions, and secure connections.

Right from early stages it was realized that the main challenges for MTC services

were the signaling overhead and network congestion due to massive number of devices.

Therefore, 3GPP focused on addressing the overhead in C-Plane, since congestion in U-

Plane is more unlikely to occur due to the advanced technologies used (i.e. CA, MIMO

etc.). Approaches that are followed to tackle signaling overhead, include: i) infrequent

Tracking Area Updates (TAU), due to low-mobility, ii) pull-based scheme to trigger

MTC devices, iii) grouping MTC devices based on their features, iv) aggregating short

messages for delay-tolerant services or when groups of MTC devices are formed, and v)

support of grant/forbidden periods.

An overview of scheduling techniques used to cope with the massive number of devices,

especially for UL transmissions, is presented in [300]. Although, General Packet Radio

Service (GPRS) can be used for M2M communications, when voice users are active in

a cell, the number of MTC devices that can be accommodated is limited. To cope with

the limited resources in RACH, a new frame structure is presented in [301], supporting

10x more devices/nodes per cell than the standardized LTE/LTE-A frame structure.

One of the first schemes considered and described in 3GPP Rel-10 for addressing the

substantial number of devices contending for a preamble, is the Access Class Barring

(ACB) [302]. A device generates a random number is compared against an access

probability number that is transmitted by the eNodeB. If the device generated number

is higher than the access probability, then a device will access the channel. In that

way, eNodeBs can control congestion by tuning the access probability i.e. a high access

probability setting leads to low congestion but high delays, whilst a small one may result

in consecutive preamble collisions that may in turn cause in extensive delays.

Other mechanisms that have been studied by 3GPP, include: i) Extended Access Barring

(EAB), where delay-tolerant MTC devices do not contend for preamble, ii) dedicated
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slots in RACH for MTC devices, iii) Prioritized Random Access (PRA), where each

group of MTC devices applies different back-off, iv) dynamic allocation of Random

Access resources, which may result to low data rates, and v) only the leaders from the

groups to collect traffic and contend for access in the medium [303]. Furthermore, the

importance of prioritizing Human Type Communications (HTC) during the Random

Access has also been studied [304].

Two new entities have been defined in 3GPP to support M2M communications; Service

Capability Servers (SCS) that connect MTC application servers to a 3GPP network

and MTC-Inter-Working Function (MTC-IWF) that resides in the Home Public Land

Mobile Network (HPLMN) and forwards or translates signaling protocols to enable spe-

cific functionalities in PLMN [305]. An MTC-IWF can be connected to multiple SCSs.

The support of D2D communications and NFV, allowing virtual machines to carry the

burden of high complexity, can be used to further enhance MTC communications.

New MTC scenarios and a new device category, namely UE category 0, were introduced

in 3GPP Rel-12. To further reduce complexity and power consumption, UE Cat-0 was

the only UE category to allow the support of single antenna. However, the improved

efficiency in power consumption, comes at the cost of worse performance (approx. 5

dB) [305]. A new type of Half-Duplex operation (Type-B) is also considered for UE

Cat-0 to further lower the cost and complexity of MTC devices. In particular, devices

that belong to that category, are not allowed to skip the last OFDM symbol when

switching from DL to UL transmissions as LTE devices do, due to time advance. In that

way, MTC devices can reuse oscillators between receptions and transmissions. Power-

Saving Mode (PSM) allows devices to remain registered in the network even when they

cannot be reached by the network. It is similar to powering off, allowing devices to

re-establish connectivity with eNodeBs, only when they have data to transmit. Further

enhancements for MTC are also provided in the releases following 3GPP Rel-12. In

particular, Rel-13 introduced enhanced MTC (eMTC), aiming at further reducing the

device cost, extending coverage, and improving energy consumption. Only the minimum

LTE carrier bandwidth, i.e. 1.4 MHz with 6 RBs of 180 KHz was supported. Moreover,

repetition in DL and UL (PUSCH) subframes was used to improve coverage [306]. Data

or control channels can be repeated for multiple subframes. Moreover, Power Spectral
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Density (PSD) boosting in UL and relaxing the requirement on probability of missed

detection for PRACH, were introduced to improve coverage [307]. Reduced maximum

transmit power and support for simultaneous reception of multiple transmissions were

also part of that release. Retransmissions are asynchronous and rely on HARQ, while

frequency hopping among narrowband channels and longer transmission time that allows

additional energy to be accumulated at the receiver were also included in Rel-13.

Narrowband IoT (NB-IoT) is an LPWAN technology introduced in Rel-13. Operating

on a 180 kHz channel bandwidth, NB-IoT is characterized by peak data rates of less than

200 kbps, and limited mobility, an even lower power consumption and component cost.

NB-IoT only supports FDD (unlike eMTC) and supports three types of communications;

in-coverage, outside-coverage by using GSM carriers, and guard-band, where NB-IoT

channel is placed in the Guard Band of LTE-A channels. The narrow bandwidth enables

multiplexing more users in the same bandwidth in UL direction.

On the other hand, the minimum resource allocation unit is set to one subcarrier for

NB-IoT nodes. Moreover, two subcarrier spacing are supported in UL; short (3.75

kHz) and the one used also in DL (15 kHz), while frequency hopping is also supported

in PRACH. To meet the requirements for extended battery life (over 10 years), DRX

cycle for NB-IoT devices, is extended from 2.56 seconds to approximately 3 hours [308].

A comparison between the in-coverage and outside-coverage was conducted in [309],

showing that the latter scenario outperforms the former one, in terms of battery life

extension, latency, and coverage.

Positioning enhancements, support of new UE categories with even lower power con-

sumption, increased voice coverage for LTE MTC, single-cell multicast, and mobility

improvements for enhancing service connectivity were the main advancements proposed

in 3GPP Rel-14. Due to the power-consumption constraints, achieving less than 50m

accuracy is challenging, especially in dense deployments where the low signal strength

and high interference level make it even more difficult to obtain a good resolution of

the time of arrival [310]. Frequency hopping was also studied for enhancing position

accuracy, a scheme that can provide accuracy below 50m for a small number of hop

impairments [311]. Multicast transmissions improve networks’ efficiency and add more
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flexibility for use cases where multiple devices require synchronous control, firmware

upgrades etc.

Advancements for improving power efficiency by reducing the time that UEs moni-

tor DL channels in idle mode, new use cases including wearables devices, and support

for standalone operation are under consideration for 3GPP Rel-15 [312]. Further en-

hancements for mMTC scenarios that are under development for Rel-15 include: higher

spectral efficiency, TDD support, latency support of at least 10 seconds, coverage en-

hancements, and support of 1 million devices per square km [313]. The support of

additional bands for UE categories M2 and NB2 [314], while coverage enhancements

in UL include the support of higher transmit power level in cases such as emergency

services in rural environments [315] are under consideration in Rel-15. One of the latest

techniques proposed in 3GPP, is the Early Data Transmission (EDT) [316]. It aims

to reduce latency by allowing data transmissions in UL, even before RRC connection

setup is complete (i.e. during Random Access). However, EDT may fail if radio quality

changes, due to lack of channel estimation. The FANTASTIC-5G [317] is also a project

developed by 5G-PPP Phase 1, focusing on massive MTC access and connectivity solu-

tions. New access-scheme protocols for reducing signaling overhead and waveforms for

asynchronous transmissions in UL were proposed in that project and contributed to the

5G standardization framework.

2.4.2 IEEE 802.11 Enhancements for M2M Communications

To support IoT applications, IEEE 802.11 family introduced the IEEE 802.11ah amend-

ment (Ha-Low) in the Sub-1 GHz band (755 MHz - 928 MHz) [275]. IEEE 802.11ah

takes advantage of the favorable propagation characteristics that low frequencies offer,

to provide long-range communications with low power consumption, in order to satisfy

one of the requirements for IoT applications.

The IEEE 802.11ah looks more like a legacy Wi-Fi technology due to the absence of

licensed-spectrum services in those frequencies. It supports even smaller bandwidths

than IEEE 802.11af; 1 / 2 / 4 / 8 / 16 MHz with 1 and 2 MHz most common in

Europe, while an offset of 0.5 MHz in channelization is used in South Korea to prevent
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interference with other wireless systems [318]. The main aim of this technology is to

fill the gap of WPAN and LPWAN systems by providing adequate coverage (up to 1

km) and high data rates (peak data rates of 347 Mbps). Therefore, IEEE 802.11ah

facilitates the support of various wireless technologies, by acting as backhaul network.

2.4.2.1 PHY Layer

The PHY layer specification in IEEE 802.11ah follows the IEEE 802.11ac amendment

but with a down-clocked operation. For example, channel bonding is supported for 1

MHz channels to form 2 / 4 / 8 or 16 MHz (in USA) channel bandwidths. The main

usage of 1 MHz channel is to extend range, thus, repetition is also considered (MCS10)

to further improving coverage [319]. Even though, the channel bandwidth is doubled,

the data subcarriers per OFDM symbol is more than double, due to the removal of the

redundant guard band when channel bonding in contiguous bands is performed. Other

PHY characteristics and a comparison of PHY characteristics between different IEEE

802.11 technologies are listed in Appendix A (Table A.1).

2.4.2.2 MAC Layer

Since inter-operability with legacy IEEE 802.11 is not required, the MAC header size

in IEEE 802.11ah is reduced (by up to 20 bytes), by replacing address fields with AID

values and moving some fields to PLCP header or completely removing them. One of

the fields that has been removed is the Duration field, which enables a new mechanism

to replace NAV when short header is used. The Response Indication Deferral (RID)

mechanism, works similar to NAV, but instead of providing accurate duration for an

ongoing transmission, it estimates duration from the information included in the PLCP

header.

Moreover, ACKs may be sent without a MAC header, but include some useful infor-

mation in their PLCP header. Those ACKs are known as NDP MAC frames [320].

Bidirectional TxOP is a feature based on the IEEE 802.11n RDP, allowing two nodes to

exchange data frames within the same TxOP. However, it differs from the RDP, as the

nodes may respond with data frames instead of ACKs, further reducing overhead. In
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particular, all PPDU frames are marked as frames that do not need to be acknowledged,

but the last one. The last PPDU may require an immediate response, where in that

case, the recipient must respond with an ACK.

2.4.2.3 Power Consumption Efficiency

To reduce power consumption for STAs, the IEEE 802.11ah amendment enhances the

power-saving mechanisms of legacy IEEE 802.11, by introducing TWT (described for

the IEEE 802.11ax amendment). IEEE 802.11ah also extends the maximum idle period

of the devices to further improve energy efficiency. In legacy IEEE 802.11, the maximum

idle period where a node can be inactive before the AP disassociates it, is a 16-bit field,

corresponding to (216−1)∗1000∗TimeUnit = 18.64 hours, where TimeUnit is 1024µs.

In IEEE 802.11ah, the two most significant bits of that field identify the scaling factor,

while the remaining 14 bits are used as in the legacy one. The maximum idle period

equals to ((214 − 1) ∗ 1000 ∗ TimeUnit) ∗ ScalingFactor = 46600 hours, where the

values of ScalingFactor are 00, 01, 10, and 11 corresponding to 1, 10, 1000, 10000,

respectively.

The main challenge is how to accommodate all this information in a beacon frame, make

it available to STAs. To address this issue, IEEE 802.11ah enhances the Traffic Indica-

tion Map (TIM) mechanism by introducing the page segmentation. Now, APs split the

whole information (partial virtual bitmap) into consecutive beacons. For example, APs

include the buffer status of grouped packets in the first beacon (Delivery TIM – DTIM),

and afterwards they include the TIM information specific to a group of STAs, in the

beacons. However, STAs that do not support TIM (non-TIM STAs) may stay in doze

state for longer and wake whenever they have packets to transmit. Color scheme (also

described for IEEE 802.11ax) was initially introduced here, but is restricted to a 3-bit

value due to the need of small overhead and sporadic traffic. Moreover, APs may assign

Multicast-AIDs to different user groups, to address the issue of energy consumption

when all nodes stay awake to listen to broadcast messages.

In case that a BSS operates in a large bandwidth channel, while some STAs support

smaller bandwidth channels due to energy consumption, IEEE 802.11ah defines the Sub-
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Figure 2.14: IEEE 802.11ah Restricted Access Window (RAW).

channel Selective Transmission (SST) mechanism. SST allows nodes to use subchannels

instead of the whole bandwidth. It also provides flexibility to STAs, as they can select

which subchannel is the best for them, which is achieved by periodic transmissions of

sounding frames from APs. Multi-hop transmissions (relays) are also supported in this

standard, but the number of hops is currently limited to 2. By using this technique,

further reduction in power consumption is achieved. To cope with the increased delay

and overhead that a relaying scheme introduces (a frame is sent over two channels),

the concept of TxOP sharing was introduced. According to that feature, a relay in-

stead of transmitting an ACK back to a STA after SIFS, it sends the data frame after

SIFS, directly to the AP. The source-STA that detects this data frame (omnidirectional

transmissions), will identify by the PAID value that its transmission was successful.

2.4.2.4 Advanced Technologies for Supporting Massive Number of Devices

To support enormous number of users, the AID feature has been enhanced in IEEE

802.11ah. In legacy IEEE 802.11 technology, the maximum number of users that can

be accommodated is limited to 2007 due to AID range [1-2007]. By using a hierarchical

AID, IEEE 802.11ah can support up to 8191 users. It comprises different fields corre-

sponding to different STA groups. The amendment also describes two access schemes;
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legacy EDCA and Restricted Access Window (RAW), illustrated in Figure 2.14. The

latter is used to reduce collisions due to large-number of STAs and provide support to

densely deployed IoT scenarios [321]. It is based on TDMA, where slots are specifi-

cally defined for different users or group of users. In each slot, STAs contend following

EDCA procedure, hence, two different sets of EDCA are used; one backoff counter for

outside RAW and one for RAW period. To better utilize channel resources, APs may

allow transmissions to exceed a RAW slot. Long RAW slot durations lead to higher

throughput, but also increase latency, as users need to wait longer time for their slot to

come [322]. However, a dynamic RAW slot duration based on the number of STAs in

each group and their requirements could improve both throughput and latency [323].

Fast Association and Authentication were also specified in IEEE 802.11ah standard,

to cope with the case where thousands of users need to re-establish connectivity with

an AP, after a power outage. Two methods are defined; the centralized authentication

control and the locally authentication control. In the former case, an AP randomly

selects a number from the range [1, 1023], called Authentication Control Threshold,

and includes it in a beacon. STAs compare the Authentication Control Threshold to a

number that they have randomly chosen from the range [1, 1022]; if the number is lower

than the Authentication Control Threshold, they proceed to authentication, otherwise

they defer their transmission. In the latter one, STAs randomly draw two number

that correspond to a beacon interval and a slot, respectively, where the authentication

process will be initiated (following EDCA rules). Apart from RAW scheme to group

users, IEEE 802.11ah defines an alternative approach with lower complexity, namely

Group Sectorization. During this operation, APs transmit sectorized beacons following

the IEEE 802.11ad procedure. Those advancements in IEEE 802.11ah can lead to

low energy consumption, high reliability and throughput, low delay, and capability of

accommodating hundreds of users, which make it suitable for indoor or outdoor MTC

scenarios [324].
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2.5 Summary

High throughput, low latency, and improved network performance for all users, espe-

cially for the cell-edge ones are three of the requirements for the next generation of

wireless communications. There are multiple ways for providing high capacity for the

5G applications. The most straightforward approach might be the exploitation of new

available spectrum, where large bandwidth can be used for the transmissions. In par-

ticular, mmWave frequency bands offer large and unexploited bandwidth which can be

utilised for short-range communications and applications that require high throughput,

whereas the use of the Sub-1 GHz bands could act as the enabler for offloading traffic for

specific verticals (e.g. IoT). The use of high number of antennas is also an enabler for

boosting the throughput and the overall network performance, even under poor channel

conditions. Last but not least, higher MCS (e.g. 1024 QAM) could potential improve

the data rate by 25%.

The drivers for reducing the latency for the cellular systems include the introduction of

various numerologies (i.e. different slot configurations; 1, 2, 4, 8, 16, 32 slots) smaller

delay for the resource allocation schemes. On the other hand, for the WLANs, the

latency can be reduced by decreasing: i) the time that a channel is idle (by increasing

the transmission opportunities), ii) the number of packet collisions, and iii) the over-

head introduced by the headers and/or the use of control frames. Furthermore, all the

aforementioned techniques could also improve the cell-edge users’ performance, along

with the CoMP and/or adaptive MAC mechanisms (e.g. CCA) for the IEEE 802.11

nodes.

The contribution of this literature review that discussed and analysed in a critical man-

ner existing works and the enabling technologies in both cellular and WLAN camps for

the next generation of wireless communications, led to the identification of 4 significant

gaps in respect to the IEEE 802.11 technology:

• The lack of an accurate and up to date simulator to assess the performance of

the new amendments and features, such as the IEEE 802.11ax Spatial Reuse

technique.
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• The requirement of a mathematical model to accurately capture the behaviour of

a dense deployment, showing the importance of the IEEE 802.11ax SR.

• The absence of any mechanism in the literature that exploits the Spatial Reuse

feature along with other MAC functionalities and enhances the performance in

dense deployments.

• The need of a mechanism to address the high MAC overhead and compensate for

the packet errors under fading channels.

The aforementioned gaps of the literature study will drive the research of this thesis and

will tackle each of the above significant gaps. Four distinct solutions are presented in the

next four chapters, addressing each of the identified gaps. Chapters 3 and 4 present an

accurate and up to date simulator that is designed and developed as part of this research.

It integrates the IEEE 802.11ax MAC features, including the Spatial Reuse mechanism

and a capture model for capturing the packet reception behaviour of real-world drivers

and according to the TGax guidelines. Chapter 5 presents an accurate model derived

from a mathematical analysis, for assessing the performance and the potential of the

BSS Color scheme in IEEE 802.11 cellular-like dense deployments. Chapter 6 proposes

a novel technique, one of the first that exploits the BSS Color information, for adjusting

the OBSS/PD threshold for the BSS Color scheme, while Chapter 7 presents a novel rate

control algorithm for dense deployments that is based on the technique for adjusting

the OBSS/PD, presented in the previous chapter. Finally, a Network Coding approach

to cope with the high overhead (e.g. retransmissions) over fading channels is designed

and developed in Chapter 8.
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Chapter 3

On the Performance of the IEEE

802.11ax Spatial Reuse Features

This chapter presents a performance assessment of the IEEE 802.11ax SR technique

(i.e. BSS Color) in dense deployments. It also shows the design and development of the

SR feature as the IEEE 802.11ax amendment evolves. An insight into the BSS Color

operation and its potential to enhance network performance is given and simulations are

carried to assess its performance under various dense deployments. The evaluation of

the BSS Color and the advancements introduced in the simulation tool aim to identify

the drawbacks of the SR feature and give an introduction into the novel SR algorithms

for the BSS Color that are presented in later chapters.

3.1 Introduction

The interference levels in dense WLAN deployments are expected to increase, thus

severely affecting the network performance. The authors in [257] study and present

an interference analysis in dense networks. They argue that due to densification, the

number of packet collisions, interference from neighbouring Basic Service Sets (BSSs),

and the hidden/exposed node problem significantly degrade the network performance.

There are several approaches that have been proposed in the literature in order to

118
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enhance the network throughput by improving the spatial reuse. The main two tech-

niques proposed are the TPC and tuning the Physical Carrier Sensing (PCS) threshold.

TPC is essential for decreasing the energy consumption in a station and reducing the

interference level to the neighbouring nodes. However, it requires a sufficient number

of power transmit levels [325], and coordination among the users, otherwise the SINR

at the receiver could be extremely low, leading to outage. Furthermore, the maximum

transmit power is constrained by the regulatory bodies e.g. Federal Communications

Commission (FCC). A PCS scheme could also be an effective way to enhance the spatial

reuse in a network, whilst it does not require any modifications to the hardware or the

IEEE 802.11 standard.

Even though there is a considerable amount of work in the literature (e.g. [326], [327]),

performance of PCS in dense networks, has not been adequately evaluated, in the past.

The DSC and the BSS Color scheme are the two main schemes under consideration by

the IEEE 802.11ax working group, for improving spectral reuse, due to the potential

gains they can provide. To the best of our knowledge, the performance of these schemes

in such dense deployments along with the PAID [261], feature of IEEE 802.11ac, have

not been yet fully evaluated in the literature.

This chapter presents an evaluation of the aforementioned schemes in a high density

wireless network, using ns-3 simulation tool [328] assuming multi-cell deployment sce-

narios, identified in the IEEE 802.11ax standard [329]. Furthermore, a design where

the aforementioned schemes are enabled together is also proposed and presented here.

The rest of the chapter is organized as follows. Section 3.2, overviews the spatial reuse

approaches that have been proposed in the literature. Section 3.3, describes the DSC

algorithm, the PAID feature, and the BSS Color scheme as were initially proposed and

developed, while Section 3.4 presents the simulation scenario and Section 3.5 analy-

ses the simulation results. Finally, Section 3.6 concludes this chapter where the need

for further developing and advancing the ns-3 tool as the IEEE 802.11ax amendment

continues to evolves is also identified.
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3.2 Background

This section discusses about the related works for the SR presented in the TGax. It

initially presents the IEEE 802.11 carrier sensing mechanisms and the equations describe

them. Then it overviews the related works that have been proposed in the literature and

DSC is based on. Finally, the SR features that were designed and developed following

the TGax guidelines, while in their initial stage, conclude this section.

The carrier sensing mechanism in IEEE 802.11, supports two schemes; the mandatory

PCS and the optional Virtual Carrier Sensing (VCS), which sets the NAV on the MAC

layer, based on the RTS/CTS frames. The former scheme, which is also known as

CCA, determines whether the medium is IDLE or BUSY. CCA monitors the chan-

nel for preambles and returns BUSY when the received energy from the concurrent

transmissions is above a certain threshold (CCA/EDth), and can be expressed as:

k∑
n=1

TxPwrn,ir ≥ CCA/ED (3.1)

where k is the number of the total interferers to the node i and Prn,i is the received

power from the transmitter n to the node i. The received power at a distance d ,

assuming that the ratio of the antenna gain to the antenna loss is equal to 1, in both the

transmitter and receiver, and only the signal attenuation due to path loss is considered,

then the received power is:

TxPwrr =
TxPwr

dα
(3.2)

where α is the path loss exponent (typical values 2-4) and TxPwr the transmit power of

the transmitter. It is assumed that the transmission power is the same for all nodes. The

carrier sensing range is the minimum distance that allows two concurrent transmissions

and occurs when Pr = CCA/ED. Specifically, from Equation 3.2, the energy sensing

range can be expressed as:

CCA/EDrange =
( TxPwr

CCA/ED

) 1
α (3.3)
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However, in a dense network due to the accumulative interference, the CCA/EDrange

must be equal to the distance between the intended transmitter (i) and its furthest

interferer node (ri), in order for the node i to initiate a transmission and not cause any

interference to the ongoing transmissions. Let A = (TxPwrn,ir )kn=1 be the set of the

received powers from the interferers of the node i. Assuming that α is the same for all

nodes and each of them experiences the same channel conditions, the minimum received

power corresponds to the furthest interferer node. If Equation 3.1 holds, then:

CCA/EDi
range =

(TxPwr
minA

) 1
a (3.4)

A node can detect and decode (with high probability based on the MCS) a signal, if

the RSSI is above a threshold named receiver sensitivity (or Signal Detection or Carrier

Sensing). The maximum transmission range where a Wi-Fi signal can be detected, can

be derived from Equation 3.3:

CCA/CSrange =
( Pt

CCA/CS

) 1
α (3.5)

As mentioned in Section 2.3.2.1 CCA/ED > CCA/CS with the values of -62 and -82

dBm defined in the standard. If RSSI ≥ CCA/CS it does not mean that the channel

will set as BUSY, unless the duration field is successfully decoded orRSSI ≥ CCA/ED.

That is, the higher the CCA/ED is, the smaller the CCA/EDrange is, and the nodes

are more aggressive in accessing the medium. An extremely low CCA/ED increases

the number of exposed nodes in a network. On the other hand, a very high threshold

increases the number of hidden nodes. It has been shown that these nodes severely affect

the spatial reuse [330], reducing the network capacity. The authors in [254], [331] show

that the optimal CCA/ED, which maximizes the network throughput allows a certain

number of hidden end exposed nodes to exist. Furthermore, they argue that there is

a balance between these nodes and the capacity which can be achieved by tuning the

CCA thresholds.

The authors in [332] introduce the K-APCS algorithm that incorporates the IEEE

802.11k radio resource management to obtain the metrics needed to tune the CCA
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threshold. The CDPCS algorithm presented in [333], adjusts CCA based on the area

that a particular node is. It requires the use of the RTS/CTS frames to define the area.

Both algorithms, however, introduce overheads in order to tune CCA.

The authors in [334], propose a decentralized approach for setting CCA, based on the

beacon’s RSSI, similar to the DSC scheme. However, DSC differs from the algorithm

in [334], as it uses a moving average to compute the threshold, and it also decrements

it after X consecutive missed beacons. The authors in [277] evaluate the DSC scheme

in a multi-floor residential building, considering only uplink transmissions, and tuning

only the CCA/CS.

The authors in [335] study the performance of the DSC and the BSS Color scheme

for uplink transmissions. The same authors in [336] evaluate the performance of the

BSS Color scheme if a 2nd threshold is used when color mismatched occurs. In both

cases, DSC outperforms over the BSS Color technique, however they argue that the

throughput gain increases when these two techniques are combined. However, they

consider a 19-cell deployment with spatial reuse factor 3 in their simulations. They

do not consider the wrap-around scheme, which can potentially lead in overestimating

the network performance. On the contrary, this chapter evaluates both schemes in a

high density deployment with spatial reuse factor 1 (with wrap-around) for both uplink

and downlink transmissions. Furthermore, the joint tuning of the CCA/CS and the

CCA/ED and also its combination with the BSS Color scheme.

3.3 Description of the schemes

This section provides an overview of the DSC algorithm, the PAID feature, and the

BSS Color scheme as was initially conceived. The DSC algorithm, tunes the carrier

sensing range and the transmission range in every STA, locally. In particular, it does

not require any information from the neighbouring STAs, thus it does not introduce

any overhead. The main idea derives from the fact that stations at the edge of a cell

should use lower CCA than those placed close to their associated AP. This is because

the cell-edge nodes should increase their sensing range to eliminate the hidden nodes,

increasing the probability of correct transmissions. On the other hand, STAs placed
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close to an AP have higher probability of a successful transmission due to their short

distance to the AP. The DSC algorithm sets an UpperLimit that corresponds to the

maximum CCA that a node can have, to prevent the stations placed close to an AP

to gain access more often than the others. It also sets a decrement value by which

the threshold decreases, after X consecutive missed beacons. DSC records the beacons’

RSSI and calculates the thresholds using a moving average over the last x RSSI recorded

values, according to CCA = RSSI − Margin. The value of the Margin must be

carefully selected. In particular, an extremely small value could increase the number

of disassociations (high CCA/CS) or the number of collisions (high CCA/ED). On the

other hand, an extremely big value could degrade the network performance due to the

increased number of exposed nodes (or failure transmissions, as a STA might lock onto

frames from neighbouring BSSs).

PAID is a power-saving feature, built on AID of the IEEE 802.11n. Contrary to the

AID feature, PAID value is not unique for every STA and is carried in the PLCP header.

In that way, a STA quickly identifies and drops large frames not intended for it. This

allows a STA to reduce its power consumption by switching to sleep or doze mode for the

duration of the transmission. Although the initial intention of PAID was to reduce the

power consumption, the most important benefit is that the likelihood of an erroneous

reception following a successful preamble reception reduces. In particular, a node uses

the EIFS to initiate a transmission following an erroneous reception, instead of DIFS,

where EIFS = DIFS+SIFS+ACKTxTimeLowestMandRate. For a transmission from

a STA to an AP, the PAID is the last 9 bits of the BSSID, while for the reverse link,

PAID combines the AID and the BSSID.

Due to ambiguity issues (a STA might decode a frame destined to an AP), the authors

in [280] proposed the BSS Color, as an extension of the PAID feature. According to

the BSS Color technique every PLCP header, carries the color id and the uplink id.

The former id, is used only in a downlink transmission to assist a station in identifying

the BSS from which a frame was sent. The uplink id (Uplink Indication) identifies the

type of link. Specifically, a value of 1 corresponds to an uplink transmission, while 0 to

a downlink transmission. Moreover, the color id values range from 0 to 7, identifying

groups of (at most) 8 BSSs and is given to a STA, during the association stage. The
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Table 3.1: Simulation parameters

Parameter Value

Scenario / Channel Outdoor (SR1) / TGax channel model ([337])

Number of APs / STAs 127 / 1431

Number of Rings 6 (Wrap-Around [338])

STA density 770 STAs per km2

Shadowing Disabled

Inter AP distance 130 m

Mobility Disabled

AP / STA Tx Power 20 / 15 dBm

AP / STA antenna gain 0 / -2 dBi

Number of antennas (AP, STA) 1 (SISO)

Noise figure 7 dB

PHY rate Minstrel [339] (IEEE 802.11g)

Traffic UDP, Full buffer

RTS/CTS Disabled

Max number of retransmissions 10

Packet 1464 bytes

Beacon Interval 102.4 ms

CCA/CS, CCA/ED -82 dBm, -62 dBm

procedure that an AP has to follow to select the color id is not specified in [275], leaving

the developers to make this decision.

3.4 Simulation Setup

The outdoor dense scenario (Scenario 4), specified in IEEE 802.11 TGax [329] is consid-

ered. Furthermore, a large enough simulation time and number of runs were conducted,

in order to get more accurate results. The aforementioned schemes are evaluated under

full buffer conditions in both directions; using only Uplink or only Downlink traffic.

All STAs share the same MAC and PHY characteristics, apart from the DSC and BSS

Color schemes, which are enabled only for the IEEE 802.11ax nodes. It is assumed that

the additional color or PAID info are carried in the PLCP header without increasing

their transmission time and are used in all unicast frames (including ACKs). Moreover,

there is no BSS Color Collision, and the OBSS/PD threshold is equal to -82 dBm.

Furthermore, a STA is disassociated from its AP when the packet delivery ratio is more

than 99% (referred as disassociation mechanism). The MAC and PHY parameters are

listed in Table 3.1. The reader can refer to Appendix D for more information about
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Figure 3.1: Simulated scenario where the axes units are in meters (approximately 1.85

km2).

ns-3 and the Wi-Fi module used in this work.

Moreover, a wrap-around technique [340] is applied, so that BSSs located at the outer

rings experience a similar interference as those at the inner rings. The original hexagonal

network is extended to a cluster of 6 virtual copies of the original layout. These virtual

copies are placed around the original network. In that way, a small fraction of a larger

deployment can be studied instead of the entire large network. If wrap-around is not

used, then the performance only of the simulated layout and not the entire network

can be assessed. The optimal number of rings required (for the simulation scenarios

considered), is determined according to [338]. It is also assumed that all nodes establish

the Block Ack Agreement instantly and disassociation do not occur (Missed Beacons is

set to infinite). Figure 3.1 illustrates a layout of the simulation scenario.

3.5 Simulation results

This section presents the performance of a) the DSC algorithm, b) the BSS Color scheme

with and without the PAID feature in order to study the impact of EIFS in terms of

throughput, and c) a combination of the aforementioned techniques normalised per km2.
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3.5.1 DSC performance

First, the DSC algorithm for different settings is evaluated, in a specific scenario where

all STAs are assumed to be IEEE 802.11ax (SR is enabled), to reveal the values

that utilize the network throughput. The values used for the DSC are: UpperLimit

(−35,−40,−45) in dBms, Margin(5, 10, 15, 20, 25) in dB, and Decrement(1, 3, 5) in

dB. The DSC is evaluated in the DL and the UL case, while only the CCA/CS and the

CCA/ED is tuned at a time. In particular, in the DL case, the CCA/CS has greater

impact than the CCA/ED on the performance, as the STAs do not contend for channel

access and thus, are not required to sense the channel. In UL case, as most of the trans-

mitted frames are on the uplink direction, the STAs sense the channel before initiating a

transmission. That is, in that scenario, the CCA/ED severely affects the performance.

Figure 3.2a illustrates DSC’s throughput against various settings. Only the results for

different Margin values are presented, as the throughput does not vary significantly

for different values of the UpperLimit or the Decrement. The highest throughput in DL

and UL scenarios, is achieved for different values of Margin; 5 in downlink 5, while 25 in

uplink. The closer the CCA/CS value is to the RSSI from the associated AP, the higher

the probability a STA may drop any received frame originated by a neighbouring AP.

That is, the probability of a successful transmission from the associated AP increases.

On the contrary, larger values of Margin for the CCA/ED, lead to larger carrier sensing

ranges, decreasing the number of hidden nodes. However, this might come at the cost

of decreasing fairness among the users due to the lower CCA/ED.

Figure 3.2b depicts the impact of the Margin value on overheads. Note that “Other”

represents the transmitted probes, association requests/responses and the retransmit-

ted data, normalised over the total transmitted traffic. Overheads decrease with the

decrease (increase) of the Margin value for the CCA/CS (CCA/ED) in the downlink

(uplink). However, even a very high Margin value (e.g. 25) is not sufficient enough to

compensate for the large number of frame retransmissions in the UL case (approx. 70%

of the total transmitted traffic is due to retransmissions).

To measure the system fairness for each setting, in terms of transmitted traffic (UL

case) and throughput (DL case), the Jain’s Fairness Index (JFI ) [341], is applied where
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Figure 3.2: DSC metrics for various Margin values.

it ranges from 0 to 1, with its maximum value being when all users receive the same

allocation. Figure 3.2c depicts the results for the JFI. The red asterisk stands for the

Legacy mode in uplink, while the green for the different settings of DSC. The light blue

and the dark blue stand for the legacy and DSC mode, respectively, in downlink. Note

that first the Decrement value is gradually increased, then the Margin and lastly the

UpperLimit. For example, the first leftmost DSC asterisk corresponds to DSC(-45,5,1)
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while the last rightmost to DSC(-35,25,5), where DSC(UpperLimit,Margin,Decrement).

An important outcome is that for small Margin values, the JFI is close to the legacy’s

one, while for large values, the UpperLimit and RSSI Decrement parameters affect the

fairness index. A low value of the CCA/CS or CCA/ED leads the cell-edge users to lock

onto frames originated by neighbouring APs or defer their transmissions more frequently

than the others nodes. As a result, fairness issues emerge between the cell-edge users

and those located close to their associated AP.

An evaluation of DSC in the presence of legacy STAs, when DSC jointly tunes the

CCA/CS and CCA/ED, is presented in Figure 3.2d. In particular, a value ofMargin =

5 is applied for the CCA/CS, while 20 and 25 for the CCA/ED. It can be observed

that as the number of the IEEE 802.11ax nodes increases, the network throughput

increases too. The CCA/ED values for the IEEE 802.11ax nodes range from -60 (or

-65 when Margin = 25) to -82 dBm, reducing the number of hidden nodes (better

channel quality). By comparing the 75% to 100% cases in uplink, it can be seen that

high Margin values favour the legacy nodes, as the throughput slightly drops. The

throughput gain for Margin = 25 compared to the case when Margin = 20 is due to

the reduced number of overhead, as it is depicted in Figure 3.2e.

Even though, the throughput gain increases for Margin = 25, it comes at the cost of

decreased fairness (in terms of transmitted bits) in uplink, compared to Margin = 20,

Figure 3.2f. In downlink, DSC improves the legacy performance as well, due to the

higher Packet Delivery Ratio (PDR). The results only for the 50% case (50% of the

STAs are legacy) are presented in Figure 3.2f.

After closely analysing the DSC performance in both DL and UL transmissions, it is

recommended different Margin values for the CCA/CS and the CCA/ED. In particular,

it is recommended values of 5 and 25 (or 20 for preserving fairness) as the values for

tuning the aforementioned thresholds, UpperLimit = −40, and Decrement = 5 show

high throughput gain and may preserve fairness among the users. In order to use a small

Margin for the CCA/CS, the DSC algorithm should use a large value for the Decrement

parameter (e.g. 5) to result in smaller number of consecutive missed beacons (X ≤ 10).
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3.5.2 BSS Color performance

Five cases are considered for the BSS Color scheme; Legacy, 0%, 25%, 50%, 75%, and

100%. In the former case all APs and STAs operate in the legacy mode, while in

the other cases, the percentage of the nodes operating in the IEEE 802.11ax mode is

gradually increased. In line with the IEEE specification, it is considered that the legacy

nodes process only the frames transmitted by or destined to legacy nodes (we refer to

them as legacy frames). They also, drop the colored frames and set CCA IDLE when

the predicted duration based on the TxTime has elapsed. It should be noted that an

IEEE 802.11ax node processes not only the frames destined to it, but the legacy frames

too.

(a) Throughput. (b) Impact on overheads.

(c) Ecdf (averaged) for Rx and Tx traffic. (d) PLCP reception stats.

Figure 3.3: BSS Color ( & BSS Color w/o PAID) metrics.

Figure 3.3a depicts the performance of the Color scheme in the presence of legacy STAs

when PAID is used in the unicast frames transmitted by the APs and when it is not

(w/o PAID on the DL frames). The results for the BSS Color w/ PAID only for

the UL case is presented, as for the DL the performance is similar to the BSS Color
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w/o PAID. This is due to the fact, that STAs benefit from the PAID only when they

transmit frames. To clarify, in the UL case, a STA drops every ACK originated by its

associated AP and destined to another STA. In that way, a STA initiates a transmission

following a successful reception of the ACK preamble using DIFS instead of EIFS, thus

improving the performance. In the DL case an AP has to process all frames (ACKs in

the DL scenario) originated by its associated STAs, and drop all the other frames (PAID

carries a different BSSID) originated by a neighbouring BSS. In that case, a STA drops

a data frame intended to a different STA and it transmits an ACK only if the frame

was intended to it. A potential throughput gain of PAID could also be observed in a

mixed-traffic (UL and DL transmissions) scenario, however in this work such a scenario

is not considered.

In the UL case, it can be observed that the performance gradually improves with the

increase in the percentage of the IEEE 802.11ax STAs. This is because the likelihood of

at least one transmission per BSS increases. Furthermore, PAID enhances the through-

put by improving the PDR (Figure 3.3b, “Color” bar), which validates the previous

argument about the benefits of PAID.

Although, BSS Color increases the number of concurrent transmissions within a network

as depicted in the Figure 3.3a, it can be seen that when the number of legacy nodes is

more than the IEEE 802.11ax in downlink, the network throughput slightly degrades

compared to the legacy mode. This might be due to the high number of disassociated

STAs (edge-cell users) for the legacy mode, improving the network throughput or an

AP drops all the colored frames originated by neighbouring BSSs, while it locks onto

all legacy frames with RSSI greater than the CCA/CS. As the percentage of the IEEE

802.11ax nodes increases, the likelihood an AP to lock onto a legacy frame originated by

a neighbouring BSS drops. That means that an AP might sense the channel as IDLE,

initiating a transmission to a node (legacy or not) which has already been locked onto

a legacy frame. In the above example, the RSSI of the legacy frame is not sufficient

enough to trigger one of the CCA thresholds and block the AP from transmission,

while one of the colored frames might be above the CCA/CS but still not to satisfy

Equation 3.1. The only difference as the number of IEEE 802.11ax increases, is that

the likelihood of a legacy frame transmission drops. Note that when there is a balance
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between the number of legacy and IEEE 802.11ax STAs, the network throughput is

similar to the “Legacy” case. Moreover, the PDR for these two cases is the same, while

it further increases as the IEEE 802.11ax are more than the legacy, Figure 3.3b. BSS

Color preserves the fairness among the legacy and the IEEE 802.11ax STAs, as it can

be seen in Figure 3.3c for the 50% case (in DL). However, as the number of concurrent

transmissions increase, the Color favours the nodes located close to the associated AP,

due to the high interference that the edge-cell users face, from neighbouring APs. This

is validated by observing the steep incline of the slope “DL 11ax 100%”.

Note that the 5 leftmost ecdfs in Figure 3.3c, stand for the throughput in downlink,

whereas the 4 rightmost ecdfs for the transmitted bits in uplink when PAID is used

and when it is not. It is worth noting that PAID feature enhances the fairness between

the users in terms of transmission opportunities. If an error occurs at the payload,

following a successful reception of a preamble will not affect a STA if it is not the

intended recipient of that frame. In that way, the group of STAs that will initiate a

transmission after EIFS reduces, preserving fairness among the users of the same BSS.

Moreover, in UL case, as expected the color technique favors the STAs that use it,

increasing their transmission opportunities. This can be observed by comparing the

throughput per legacy and IEEE 802.11ax STA in UL for the 50% case (Figure 3.3c).

Figure 3.3d illustrates the successfully received PLCP headers over the total detected

preambles. “Suc PLCP RA” represents the percentile of the correctly received PLCP

headers that are destined to that node, whilst “Suc PLCP not-RA” the percentile of the

successfully received PLCP headers that are intended for a different node. In particular,

the percentile of these two categories represents the percentage of the frames that a node

locks onto. “UL - mism” stands for the case where the Uplink Id is not correct. It occurs

whenever an AP correctly receives a frame from another AP, or a STA from another

STA from the same BSS. “Clr - mism” stands for the Color Mismatched, namely the

successfully received PLCP headers that are sent by a neighbouring BSS, while the

Uplink Id is correct. “ClrUl - mism” shows the percentage of the correctly received

PLCP headers by a STA that are originated by a STA belonging to a neighbouring

BSS. To summarise, a node is interested only in the “Dark blue” PLCP headers.
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Three important conclusions can be drawn from that figure in downlink. First, the

interference caused by neighbouring APs (“UL - mism” for the APs and “Clr - mism”

for the STAs). Second, the significant high percentage of “Clr - mism” in an AP,

compared to “Suc PLCP RA”, which indicates the importance of the color field in both

directions (in UL the color corresponds to the PAID). Lastly, the amount of frames that

a STA proceeds which are not destined to it (“Suc PLCP not-RA”). The throughput

gain of BSS Color scheme against BSS Color w/o PAID derives from the fact that a

STA will drop these packets (due to PAID).

Due to the fact that the transmission probability per BSS increases, an AP mostly locks

onto frames transmitted by its associated STAs. This can be observed in Figure 3.3d

for the uplink transmissions. Furthermore, it can be seen that a STA experiences the

same “interference” from the STAs belonging on the same and neighbouring BSSs.

3.5.3 Combining the BSS Color with the DSC

In this section an evaluation of the DSC scheme and the BSS Color when applied to-

gether is presented, in order to compensate for the high interference that the latter tech-

nique introduces (especially in the UL case). The following settings for the DSC scheme

are used; DSC (-40, -5, -20, 5) and DSC (-40, -5, -25, 5), where DSC(Upperlimit,

Margin− CCA/CS,Margin− CCA/ED,Decrement).

Figure 3.4a illustrates the performance of the BSS Color, when it is used along with

the DSC algorithm. By tuning the CCA/CS and the CCA/ED accordingly, the total

network throughput increases (compared to Figure 3.3a), and the PDR (Figure 3.4b)

too. In the DL case, the throughput gain is much lower compared to the UL case,

because in BSS Color scheme an IEEE 802.11ax node drops all colored frames originated

by a neighbouring BSS. Thus, DSC additionally drops only a small number of frames

(i.e. broadcasts with RSSI below CCA/CS) from the neighbouring BSSs. However, the

network throughput in the DL case, is still lower than the one when only DSC is applied

(Figure 3.2a). When only DSC is used, a transmission from an AP might prevent the

neighbouring APs from transmitting, as the DSC applies only at the STAs. On the

contrary, the BSS Color scheme does not block its neighbouring APs from transmitting,
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increasing the interference levels.

A lower CCA/ED achieves higher throughput gain in uplink compared to the cases

where the spatial reuse schemes are used individually. This is due to the higher car-

rier sensing range, resulting in less hidden nodes. However, that comes at the cost of

deteriorating the fairness among the users.

(a) Throughput. (b) Impact on overheads.

(c) Ecdf (averaged) for Tx traffic (50% IEEE

802.11ax).

(d) Disassociated STAs.

Figure 3.4: BSS Color along with DSC, metrics.

Also, it can be observed in Figure 3.4c that as the number of the IEEE 802.11ax

increases, the fairness among the users deteriorates, while the throughput per station

increases. On the contrary, the legacy performance slightly improves, compared to the

BSS Color scheme where the DSC mechanism is not used. This is mainly, due to the

lower CCA/ED for the IEEE 802.11ax STAs. A value of 25 for the Margin improves

the legacy performance, due to the lower CCA/ED for the IEEE 802.11ax STAs and

the higher PDR.

Figure 3.4d presents the number of the disassociated STAs in the UL case, for the first
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40 seconds of the simulation. Only the UL case is presented, because it is the worst case

in terms of contention. It is interesting that when the data traffic starts (30th second),

the number of the disassociated stations increases. In particular, more than 25% of

the STAs disassociate from their APs in the Legacy mode. On the contrary, when

DSC is applied, the stations mostly lock onto frames originated by their associated

APs, leading to less disassociations. Another important outcome is that a Margin

value of 20 for the CCA/ED is not enough to compensate for the high interference

level introduced by the BSS Color scheme. When Margin = 25, the number of the

disassociated STAs throughout the simulation remains constant. However, the high

number of the disassociated STAs for the legacy case, may be due to the use of the

disassociation mechanism.

After analysing the results, it can be concluded that the BSS Color scheme with the

DSC algorithm can significantly enhance the network throughput, and the spatial reuse.

It is recommended 25 as the optimal value for the Margin of the CCA/ED (DSC(-40,

-5, -25, 5)). However, this might come at the cost of slightly decreased fairness among

the users. In order to compensate for the high interference that the cell-edge users

experience, especially in the UL case, a TPC algorithm should be used in the APs and

IEEE 802.11ax STAs.

3.6 Conclusion

This chapter investigated the performance of DSC algorithm, BSS Color scheme, PAR-

TIAL -AID feature, and a combination of the aforementioned techniques. They were

evaluated in both uplink and downlink transmissions, in a dense outdoor network with

IEEE 802.11ax and legacy nodes. By utilizing the DSC scheme and using different

Margin values for the CCA/CS and the CCA/ED, the network throughput improves

and the fairness between the nodes can be preserved. It also showed that only when the

number of the IEEE 802.11ax STAs is higher than the legacy, the BSS Color technique

enhances the network performance. The performance of PAID feature was also assessed,

which improves the throughput by reducing the erroneous received frames. By jointly

using the aforementioned techniques, it was showed that the network throughput can
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be further improved, especially for the uplink transmissions.

The development of the IEEE 802.11ax features and the simulation scenarios constitute

the first step towards understanding the potential of the SR mechanism and the chal-

lenges that the future WLANs will face. However, as the IEEE 802.11ax amendment

evolves, there is a need for the simulation tools to keep pace with this evolution to

correctly assess the performance of the active amendment. Apart from the new features

and advancements that are keeping introduced by the TGax, the lack of ns-3 to correctly

capture the behaviour of the off-the-shelf devices could have significant implications on

the assessment of the IEEE 802.11 performance. The Physical Layer Capture (PLC)

has been shown that has a significant impact on throughput and may cause fairness

issues between the nodes [250], [342], [343].
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Chapter 4

Exploiting the Capture Effect on

the IEEE 802.11ax Spatial Reuse

Features

Understanding the behaviour of real-world devices can provide valuable insights into

developing mechanisms to address the challenges of the future WLANs. That requires

to continuously advance the simulator tools that can give a first taste of the performance

and behaviour of the mechanisms proposed for the upcoming technologies. Simulation

tools can steer the research to the right direction by identifying the needs and challenges

of the current technologies. The early identification of the issues and the continuous

assessment of the newly proposed features are crucial and are considered to play major

role in the formation of the new amendments, before they are finalised and commercial

products hit the market. For example, the IEEE 802.11ax BSS Color has been advanced

since it was initially conceived, with a lot new features to support its smooth operation.

This chapter overviews the latest advancements proposed to support the BSS Color op-

eration. It also, presents a PLC model developed according to the TGax guidelines and

integrated into the ns-3. It then, shows the impact of PLC on the network performance

in terms of throughput and fairness in simple scenarios where it can more easily be

assessed. Finally, an evaluation of the PLC model and its impact on the IEEE 802.11ax

138
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SR features is presented in an indoor deployment.

4.1 Introduction

The main reason why WLANs are a commodity to our daily lives is their inherent

advantages against other technologies, such as their cost efficiency and easy deployability

in diverse environments, including residential apartments, offices, public transportation,

outdoor hotspots etc. as illustrated in Figure 4.1, and the fact they can provide ever

increasing high data rates. In scenarios, where multiple APs are deployed and hundreds

of STAs associate with them, it is inevitable transmissions not to interfere with OBSSs.

Of a particular interest, is the case of the already congested 2.4 GHz band where there

are only three non-overlapping 20 MHz channels and yet most of the devices continue

operate in this frequency.

Fortunately, in most of the cases STAs associate with the strongest APs, which means

that the received signal will be stronger than the interfering ones. The ability of a

receiver to lock onto the strongest signal and may successfully decode it, it is very

beneficial for the devices, especially in dense deployments. According to the IEEE

802.11 standard, once a receiver locks onto a packet, it shall continue receiving it for

the duration of the transmission. This means that the devices will not try to decode

or lock onto a different preamble. However, the receive state machine implemented by

many vendors, differentiates from what it is described in the standard [344].

Figure 4.1: Scenarios for the future WLANs.
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In the case of a stronger signal arriving during the reception of a frame, instead of

losing both packets due to collision, the receiver could re-synchronize to the stronger

one, as it has higher probability of surviving the collision. Thus, the system throughput

could increase, whilst unfairness among the cell-edge and the rest users could aggravate.

Although, PLC is implemented on the off-the-shelf devices, the effects of PLC have not

been yet fully evaluated in the literature and most of the studies are based on the

assumption that both packets are lost in a collision [345]. Due to its implications on

the network performance and the impact on the SR mechanisms, PLC was described

in TGax and was incorporated in the [346] where the simulation scenarios and the

methodology for evaluating the new features are overviewed.

This chapter presents the development of the PLC in ns-3, according to the TGax

guidelines and its evaluation in terms of throughput and fairness on simple scenarios.

Furthermore, it overviews the latest developments on the IEEE 802.11ax SR schemes

that were also integrated in ns-3. Finally, the impact of PLC on the two SR schemes,

DSC and BSS Color, in a dense indoor (hexagonal-like) deployment is also presented

here.

The rest of the chapter is organised as follows. Section 4.2 presents related work and de-

scribes the PLC. Section 4.3 presents the simulation scenario, while Section 4.4 analyses

the simulation results. Finally, Section 4.5 concludes this chapter.

4.2 Background

Although, SR mechanisms could reduce the probability of frame collisions, there might

still be occasions due to the nature of the wireless medium and CSMA/CA mechanism

that packets collide. Especially, in dense deployments the probability of users initiating

a transmission at the same time slot increases. In the event of a collision, the receiver

might still be able to successfully decode the strongest signal, even if it arrives later

than the weaker signals. This event is known as PLC [347].

The works in [342], [348] show the fairness issues caused by PLC and investigate the

performance of different capture models. Experimental studies of PLC are also pre-
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sented in [251], [349]. The authors in [251] show the relationship between the packet

arriving time and collided packet that could be successfully decoded, whereas in [349]

a technique to detect and recover the collided frames is presented. In [250] the authors

analyse the fairness issues among the nodes caused by PLC, and its impact on MAC

protocol, whereas a simulation-based study in [350] shows that PLC favors all users,

especially the cell-edge users which are more likely to detect an OBSS transmission

and lock onto. The authors in [351] propose to mitigate unfairness introduced by PLC,

through adjusting the MAC parameters. They show that fairness can be restored by

tuning the retransmission limit, the contention window, the TxOP, and the AIFS.

A more recent work with respect to the PLC is presented in [344]. The authors studied

the impact of the PLC on various off-the-shelf devices, deployed in a testbed. The

findings of this work can be summarised in: i) all the devices (from those studied, i.e.

Broadcom, Intel, Qualcomm) support the PLC during the preamble reception and ii)

only in a few Qualcomm devices, PLC is realised during the payload. The former is

beneficial for the case when nodes grant access to the channel at the same time slot

(BackOff counter is zero), whereas the latter is for the case of hidden nodes where

transmissions can be initiated during the whole duration of a packet.

The capture model implemented in this work follows the procedure described in [346].

In particular, a receiver captures the strongest signal detected within a capture window.

This capture window has a duration of 800ns and it starts at the first arrival frame with

RSS above the Rx Sensitivity. At the end of the capture window, the receiver locks onto

the strongest signal whose preamble is to be decoded. If a frame arrives after the end

of the capture window and within the preamble duration of the strongest signal, it is

considered as interference. Following a successful reception of the preamble, the capture

phase starts again. This time, the window, a.k.a. Pre-emption Window, has duration

equal to the duration of the frame whose preamble has been successfully decoded. If a

new frame arrives during the Pre-emption Window, the receiver will lock onto it, if its

RSS is at least XdB above the RSS of the current reception (RSSnew ≥ (RSScur+X)).

X is known as the capture threshold, and a value of 10 dB is used [346]. Then, the

current reception terminates, the receiver captures the newly arrived frame, and the

capture procedure starts again. The starting time and duration of the capture and
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Figure 4.2: Duration of capture and pre-emption window.

pre-emption window with respect to a receiving frame, are illustrated in Figure 4.2.

4.3 Simulation Setup

To test fairness and throughput performance of WLAN with the effect of capture model,

three scenarios are created: two small-scale ad-hoc topologies, illustrated in Figure 4.3.

In the small-scale scenarios, each circle represents the carrier sensing range of each node.

In the former case (Case 1 ), there is only one receiver (R) and two hidden senders (S1,

S2) which are equidistant from the receiver. Whilst, in the latter test case (Case 2 ),

there are two senders (R0, R1) hidden from each other, transmitting traffic destined to

S0 and S1, respectively. S1 node is an exposed node, since both R0 and R1 are within its

carrier sensing range. That means, S1 could lock to a frame originated by R0 or R1, and

could transmit a frame when both R0 and R1 do not transmit any frame. Moreover, S1

is placed closer to R1 than to R0, such that RSS_R1 = RSS_R0+0.11 when both R0

and R1 transmit at the same power level. In both simulations, the senders are hidden

from each other, hence can transmit simultaneously, whereas the capture threshold is

set equal to 0.1 dB to capture the ideal case where a receiver is capable to detect any

signal stronger than the current one that is locked to. Both Broadcast and Unicast

traffic are considered in order to study the impact of PLC on MAC layer.

Then, the performance of DSC and BSS Color in a dense deployment consisted only of

11ax nodes (nodes that support DSC or BSS Color) is evaluated. The APs are placed

in fixed location, whilst STAs randomly placed in a reference area, as illustrated in

Figure 4.3c. In particular, this reflects to Scenario 3 from the list of TGax baseline sce-

narios [329], an indoor small deployment. The wrap-around technique is also applied,

while it is assumed that all nodes establish the Block Ack Agreement instantly and dis-
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Figure 4.3: Simulation Scenarios: a) hidden nodes (packets to the same receiver), b)

hidden nodes (packets to different receivers), and c) SCE3 (SR3 and Rings 2).

association do not occur (Missed Beacons is set to infinite). The simulation parameters

used in this study are listed in Table 4.1.

DSC is also implemented following [276] with the addition of two Margin values for

CCA/ED and RxSensitivity (CCA/CS) as described on the previous section. On the

other hand, no color collisions are assumed and the Color id is carried on the PLCP

header without increasing its transmission time, since the IEEE 802.11ac physical layer

is used. Specifically, it is included in the HE-SIG-A1 field, that means it is the first field

following the legacy portion of the preamble. In ns-3 the whole preamble is for now

considered as a standalone sub-frame. However, part of the development in this work

includes the separation of the preamble reception based on the fields included in it, to

gradually incorporate (correctly) the IEEE 802.11ax features and BSS Color fields. In

that way, a node may identify a color mismatched earlier instead of waiting until the end

of the whole preamble. Furthermore, if a field is not successfully detected, then a node

sets CCA threshold or the channel as BUSY according to PHY receive state machine

flowchart [245]. Lastly, once receivers successfully decode a preamble, they lock onto

that transmission until the last A-MPDU frame, which also means that Pre-emption

window’s duration extends until the end of the last A-MPDU frame.
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Table 4.1: Simulation parameters

Parameter Value

Scenario / ICD [m] / Rings / SR SCE3 / 17.32 / 2 / 3 (Wrap Around)

Frequency band [GHz] TGax SCE3 / 5 (Bandwidth 20MHz)

Number of APs/STAs 19/197

Shadowing Disabled

AP/STA Tx Power [dBm] 20/15 , unless otherwise specified

AP/STA antenna gain [dBi] 0/-2

Antennas (AP, STA) 1 (SISO)

Noise figure [dB] 7

PHY rate [data/control frames] VHT-(MCS5/MCS0), unless otherwise specified

Traffic per BSS [Mbps] 100 (UDP)

RTS/CTS Disabled

Max retransmissions 10

Packet at APP Layer [bytes] 1472, unless otherwise specified

Max A-MPDU [frames] 32 or 5.484ms, unless otherwise specified

Beacon Interval [ms] 102.4

CCA/CS, CCA/ED [dBm] -82, -62, unless otherwise specified,

Simulation Time per run [s] 50 (40 Runs)

4.4 Simulation Results

This section presents the performance evaluation of a) PLC, b) DSC, and c) BSS Color

schemes in the aforementioned small and large-scale scenarios, in terms of fairness,

average user and aggregated throughput. The fairness for the small-scale scenarios is

defined as the user throughput ratio, whereas in the large-scale scenario can be observed

from the gradient of the cumulative distribution function (cdf) lines. The aggregated

throughput in the large-scale deployment is per channel (20MHz) and normalised per

km2 due to the use of wrap-around.nNote that for the assessment of PLC, two different

packet sizes has been applied as representative of small and large packet sizes, whilst

for the DSC and BSS Color performance the packet size is set according to the TGax

guidelines.

4.4.1 PLC Impact

First, the impact of PLC is studied in the scenarios Case 1 and Case 2 with data

rate VHT-MCS0. Figures 4.4a to 4.4c present the impact of PLC in terms of user

and aggregated throughput for broadcast and unicast traffic for Case 1, depicted in
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Figure 4.3a. The x-axis represents the difference of the Transmit Powers between S2

(STA2) and S1 (STA1); TxPwr_S2−TxPwr_S1. As S2 increases its Transmit Power,

fairness deteriorates since S2 throughput improves whereas that of S1 reduces. It is also

observed that fairness between S1 and S2 further deteriorates with PLC (CapWin: 1,

i.e. PLC is enabled), especially for small packet sizes. Smaller packet sizes have higher

probability of successful reception with or without PLC. Thus, when a receiver locks

onto a small packet, the transmission will be most probably successful. However, this is

not the case for large packets as they have lower probability of successful transmission.

This is the main reason, PLC has more impact on smaller packets in terms of throughput

and fairness. Unfairness is even higher in unicast traffic due to MAC retransmissions and

Contention Window size. It is only presented the aggregated throughput for broadcast

traffic, as for unicast traffic throughput gain ≈ 1% for PLC.

Figures 4.4d to 4.4f depict the results obtained for Case 2, illustrated in Figure 4.3b.

In that case, fairness improves since throughput of S1 approximates this of S0 when

PLC is modelled. The aggregated throughput gain is significant higher than in Case 1,

as PLC increases the number of successful concurrent transmissions. That is, PLC can

improve throughput and fairness, especially for the cell-edge users in specific scenarios.

The impact of PLC in a dense deployment is assessed, for various packet size, data

rate, capture threshold, and transmission link; DL only and UL only. Since the signal

strength difference required for PLC depends on MCS and there are techniques to tune

PLC properties [352], [353], three different capture thresholds are applied, namely: 1,

5, and 10 dB [348]–[350].

Figure 4.5 illustrates the aggregated and gain throughput of PLC against various data

rates and packet sizes. Figure 4.5a presents the impact of different data rates when

capture threshold is set to an extremely large value (PLC is disabled). As it is expected,

throughput improves as higher data rate is used, even for large frame sizes. That means

SINR is sufficient for successful transmissions in that specific case. In Figure 4.5b

the throughput gain of various capture thresholds is depicted. It can be observed

that throughput gain further improves as the frame size increases. This is due to the

combination of low data rate which is more robust to interference and the duration
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(a) Broadcast traffic (Case 1).
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Figure 4.4: Impact of PLC in terms of aggregated throughput or throughput per STA

[notated as aggregated throughput or throughput, respectively] and fairness.

of PLC windows. Especially, the ratio of PLC windows and the time window between

them, that PLC is not used (No PLC). As the frame size increases, the ratio of PLC and

No PLC window increases, which means that the probability of a frame arriving within

the PLC windows increases. Two important outcomes can be derived from Figure 4.5c.

First, the gain decreases as data rate increases, since higher data rates require higher

SINRs for successful transmissions. Second, as data rate increases, a higher capture

threshold results in a higher throughput gain.

On the other hand, in UL case, high data rates and large packet sizes result in a poor
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performance, Figure 4.5d, since they are more susceptible to low SINR. The number

of nodes, now, competing to grant access to channel is 10x times than in DL case,

increasing interference. This is also, the main reason that throughput gain is higher for

smaller frame sizes, as illustrated in Figure 4.5e.

A throughput loss can be observed in Figure 4.5f for large frame sizes and high data

rates due to the strong interference (see Appendix D for the packet reception model).

After, closely analysing that behaviour it was found that the loss is due to max A-MPDU

number, due to longer transmitted packets (hence, longer transmission times), resulting

in more packets being lost due to insufficient SINR (and the preceding packets before

the PLC kick in). By restricting the number of A-MPDU to 1 frame for VHT-MCS7

and setting the capture threshold to 5, a gain could be observed. Let us assume a STA

that initiates a transmission (Tx0 ) to AP. If the packet preamble is successfully decoded

by all STAs within the BSS then they will defer their transmissions until the end of the

ongoing transmission. In case that at least one STA fails to decode preamble, then it

might initiate a transmission (Tx1 ) after a specific number of time slots, depending on

the interference level and CCA/ED threshold. Tx1 may interfere with Tx0 depending

on the transmission duration of the latter one. Now, the AP will lock onto the newly

arrived frame based on the capture threshold. In case that capture threshold is set to

a small value, SINR might not be sufficient enough to successfully decode the newly

arrived packet or even its preamble. This could result both STAs to transmit Block-Ack

requests or even retransmit all their frames even though some of them might have been

correctly received. If PLC is disabled, then the AP would acknowledge the first STA

and inform it about the number of successfully received frames, reducing the overhead

of retransmissions.

The throughput gain of PLC in DL case is mainly due to the fact that STAs drop

frames transmitted by OBSSs when a stronger signal arrives, as in Case 2. Whilst, in

UL case, there are multiple senders that could be hidden to each other, transmitting

to the same receiver which could result to a throughput loss in specific cases. In such

cases, appropriate CCA thresholds could eliminate the concurrent transmissions within

the same BSS.
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1 5 10 1 5 10 1 5 10
0

1

2

3

4

5

6

7

8

Capture Threshold (dB)

A
g
g
r
e
g
a
t
e
d
 
T
h
r
o
u
g
h
p
u
t
 
G
a
i
n
 
(
%
)

 

 

DL − VHT−MCS0 (1472B)

DL − VHT−MCS5 (1472B)

DL − VHT−MCS7 (1472B)
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(d) Aggregated Throughput UL (No PLC).
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Figure 4.5: Impact of PLC in terms of aggregated throughput and aggregated through-

put gain in SCE3.

4.4.2 DSC Evaluation

DSC is evaluated now, for 5 different Margin values, whereas UpperLimit is set to -40

for all cases. The Margin values are depicted in Figure 4.6a, while a capture threshold

of 10 dB is used. In DL case, only CCA/CS is tuned whereas a Margin value of 20

is used for CCA/ED. In UL, a similar approach is followed but this time, CCA/ED is

tuned whilst a Margin value of 5 is used for CCA/CS. It can be observed in this figure,

that different values of Margin have negligible impact on throughput in DL case. The

throughput gain in that case is marginal (≤ 1%) due to PLC. Specifically, even if a node
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locks onto a signal originated by an OBSS, it may abandon this reception if detects a

stronger signal which was possibly transmitted by its associated AP, unless that frame

arrives between Capture and Pre-emption window. Since the duration between Capture

and Pre-emption window is small compared to the total duration of those windows, the

probability of receiving a stronger frame within that duration is extremely small, hence

the low throughput gain. A potential higher throughput gain could be observed though,

in a bi-directional case when a STA has also frames to transmit. In UL case, as Margin

increases, carrier sensing range also expands, increasing the probability of successful

transmissions, eliminating the concurrent transmissions of STAs within the same BSS.

However, an extremely low Margin results in a negative throughput gain compared to

Legacy one, due to the hidden node problem.

Legacy 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Margin (dB)

A
g
g
r
e
g
a
t
e
d
 
T
h
r
o
u
g
h
p
u
t
 
(
M
b
p
s
/
k
m
2
)

 

 

DSC Downlink

DSC Uplink

(a) Aggregated Throughput.

Leg_DL Leg_UL 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Margin (dB)

T
o
t
a
l
 
t
r
a
n
s
m
i
t
t
e
d
 
t
r
a
f
f
i
c
 
(
n
o
r
m
a
l
i
s
e
d
)

 

 

App. data 

Beacons

ACKs

Other

(b) Impact of DSC on overheads.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Throughput per STA (Mbps)

F
(
x
)

 

 

Legacy

DSC Margin: 20dB

DSC Margin: 25dB

(c) Ecdf for UL transmissions.

Figure 4.6: DSC metrics.

Figure 4.6b depicts the impact of Margin on overheads. The first bar represents the

DL case, whereas Other the retransmitted data. Only one bar for DL is presented,

since the results do not significantly vary for different Margin values. In UL case, a

high percentage of ACKs transmissions and retransmissions for small Margin can be

observed due to the extremely small carrier sensing range. One important outcome,
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is the packet delivery ratio (PDR) that can be derived from this figure. A value of 20

offers an almost two-fold better PDR than the legacy does, whereas whenMargin = 25,

PDR further improves.

Figure 4.6c presents the average throughput per STA in UL case. Three important

conclusions can be drawn from that figure. First, throughput has been generated by

less than 20% of the total STAs. Second, the throughput gain ofMargin = 20 is due to

a small fraction of the STAs (≈ 3%) that takes advantage of the smaller carrier sensing

range. They are located close to the APs as their signal should be strong enough to

trigger PLC and also survive collisions. Lastly, a value of 25 favours a bigger portion

of the STAs, not only those located very close to an AP. However, it can be argued

that fairness deteriorates for these STAs due to the gentle slope. After closely analysing

the results, a Margin value of 25 for CCA/ED seems more suitable for the specific

scenario, whereas a small one for CCA/SD could potentially increase the transmission

opportunities for a STA assuming low-mobility in a bi-directional (DL and UL) scenario.

4.4.3 BSS Color Evaluation

On the other hand, BSS Color is evaluated for different OBSS/PDthr and transmit

power levels, while a capture threshold of 10 dB is used. In particular, a specific transmit

power for a node is set, while OBSS/PDthr is adjusted using Equation 2.2. Figure 4.7a

illustrates BSS Color performance in terms of throughput for DL and UL cases. The

x-axis represents the transmit power for APs and STAs, (TxPwr_AP, TxPwr_STA).

For example, when (TxPwr_AP, TxPwr_STA) = (20, 15), then the threshold is

(OBSS/PDAP
thr , OBSS/PD

STA
thr ) = (−81,−76). In DL case, it can be seen that for the

(20, 15) and (17, 12) cases throughput slightly decreases compared to Legacy, whereas a

further reduction in transmit power results in extremely low throughput. First, reduc-

ing transmit power might improve spatial reuse by increasing the number of concurrent

transmissions, which could lead to higher interference level. In addition, BSS Color

increases the transmission opportunities which could result in low SINR that is not suf-

ficient enough for successful transmissions. A similar behaviour is observed in UL case.

However, this time throughput decreases more rapidly as transmit level reduces. In
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addition to high interference level from OBSSs, in UL case, due to the high CCA/ED

there are hidden nodes within the same BSS that could further increase the probability

of collisions or decrease SINR.

Figure 4.7b presents the impact of BSS Color on overheads. The four left-hand bars

stand for DL case, whereas the rest four for UL. Two outcomes can be derived from

this figure. First, PDR decreases with the transmit power. Secondly, as transmit power

reduces, the ACK portion increases, indicating the high number of retransmissions.

Especially, in UL case, the high number of acknowledgements could be due to PLC as

described in Section 4.4.1.

Figure 4.7c depicts the average throughput per STA in UL case. Even though BSS Color

increases the transmission opportunities, especially for the cell-edge users that could lock

onto a frame originated from an OBSS, it can be observed that the throughput of these

nodes dramatically drops. Their performance becomes even worse as OBSS/PDthr

increases. This is due to lower transmit power, which could reduce interference level to

OBSSs but it might increase the number of hidden nodes within the BSS.
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Figure 4.7: BSS Color metrics.
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To cope with the hidden node problem, BSS Color is now applied along with DSC. DSC

reduces the probability of concurrent transmissions within a BSS through CCA/ED

and the probability of a node locking onto a preamble originated by an OBSSs through

CCA/CS. On the other hand, the main advantage of BSS Color is blocking the re-

ception of OBSS frames and increasing transmission opportunities through OBSS/PD

and CCA/ED. The Margin values used in that case are; 5 for CCS/CS and 20, 25 for

CCA/ED.

Figure 4.8a illustrates the performance of BSS Color along with DSC algorithm in DL

transmissions. The results when Margin = 20 for CCA/ED are presented, since the

results for a value of 25 dB do not vary significantly. It can be observed that DSC has

a negligible impact in that case. This is because, DSC is only applied on STAs, which

means that it does not block APs from transmitting. The small deviation in throughput

gain observed in that case, is due to the expanded carrier sensing range for the STAs

and the small share of the traffic transmitted in the UL link (Block-Acks).

On the other hand, in UL case, as most of the traffic is transmitted from STAs, DSC

highly affects the system performance as depicted in Figure 4.8a. Two important out-

comes can be drawn from this figure. First, the great impact of adjusting the carrier

sensing range compared to the case where only BSS Color is used. Secondly, a Margin

value of 20 dB achieves higher throughput gain than 25 dB, compared to the case where

only DSC is applied with the same values. This is because BSS Color blocks all OBSS

frames, whilst DSC does not and due to transmission opportunities through OBSS/PD

and CCA/ED. A very low CCA/ED will force a STA to defer its transmission, even

if the received signal of an OBSS frame is below OBSS/PD. This is the main reason

that throughput gain is approx. 10% and 1% for a value of 20 and 25 dB, respectively,

compared to DSC.

After analysing the results, it can be argued that DSC outperforms over BSS Color,

whereas by combing these schemes, a higher throughput gain can be observed. The main

difference between BSS Color and DSC is that the latter scheme does not distinguish

the packets (i.e. inter-BSS or intra-BSS packets), treating them equally, which means

that inter-BSS transmissions may block STAs from transmitting if the energy detected
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is above the CCA/ED threshold. On the other hand, BSS Color blocks the STAs

from transmitting only when inter-BSS packets are detected, which may lead to packet

collisions due to hidden nodes within the BSS. The poor performance of BSS Color

could be due to PLC in addition to small ICD and low SINR for the data rate used in

this study.

Leg DSC (20,15) (17,14) (14,9) (20,15) (17,14) (14,9)
1900

2100

2300

2500

2700

2900

3100

A
g
g
r
e
g
a
t
e
d
 
T
h
r
o
u
g
h
p
u
t
 
(
M
b
p
s
/
k
m
2
)

 

 

Legacy

DSC

BSS Color

BSS Color & DSC

(a) DL transmissions.

Leg M:20 M:25(20,15)(17,12)(14,9) (20,15) (17,12) (14,9)
0

500

1000

1500

2000

2500

3000

3500

4000

4500

A
g
g
r
e
g
a
t
e
d
 
T
h
r
o
u
g
h
p
u
t
 
(
M
b
p
s
/
k
m
2
)

 

 

Legacy

DSC

BSS Color

BSS Color & DSC M:20

BSS Color & DSC M:25

M: 20 M: 20 M: 20

M: 25 M: 25 M: 25

(b) UL transmissions.

Figure 4.8: BSS Color along with DSC.

4.5 Conclusion

This chapter investigated the performance of DSC, BSS Color, and a combination of

these schemes when the PLC is modelled. PLC is not mentioned in the IEEE 802.11

amendments and it breaks some of the IEEE 802.11 reception rules, but it is a mecha-

nism used in most off-the-shelf devices. First, an overview of the PLC model is presented

and a study of the PLC developed in ns-3, in a small and large-scale scenario. The fair-

ness issues caused by PLC can be observed, reported also in previous works, but a case

where PLC improves fairness is also introduced. Following that, an evaluation of the

performance of DSC and BSS Color in a large deployment for both downlink and uplink

transmissions is presented. It is showed that, by utilizing DSC, the system throughput

enhances, whereas the reasons of BSS Color’s poor performance in the specific scenario

are listed. By jointly applying the aforementioned schemes, network throughput can be

further increased.

The throughput loss observed by the use of BSS Color in this chapter, it opens the door

to the research community to contribute toward the IEEE 802.11ax SR enhancements.



154 4.EXPLOITING THE CAPTURE EFFECT ON THE IEEE 802.11AX SPATIAL

REUSE FEATURES

Further, a mechanism for setting the OBSS/PD threshold has not yet been defined in

the amendment and was left to the discretion of the IEEE 802.11 drivers and chipsets

manufacturers. A naïve approach would be to integrate DSC as the algorithm that

defines the OBSS/PD threshold. DSC has been extensively studied for adjusting the

CCA thresholds in various scenarios and it is a well known technique in the TGax

community. However, the two main drawbacks for DSC are: i) fairness issues for the

cell-edge users and ii) does not take into account the interference level from the OBSSs,

where theOBSS/PD is based on. Nevertheless, the potentials for the BSS Color scheme

are still unknown, hence an analysis of this scheme is presented in the next chapter.
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Chapter 5

An Analytical Model for the IEEE

802.11ax BSS Color

Previous chapter presented the advancements introduced in the ns-3 tool being in line

with the TGax recommendations. This chapter strives to shed some light on the poten-

tials of BSS Color by analysing its performance based on Markov chains in small-cell

scenarios. First, it shows an extended model of the one presented in [345] by taking into

account the busy duration of the states in a multi-BSS scenario. Finally, an evaluation

of the model is presented against ns-3 in various scenarios.

5.1 Introduction

In the case of a single BSS, Bianchi [345] presented a model based on a Discrete Time

Markov Chain (DTMC) to assess the performance of the network in terms of throughput.

The model is based on the assumption that hidden and exposed nodes do not exist in

the network and that transmissions are not exposed to BER and therefore packet losses

occur only due to packet collisions. In a scenario like that, there are not asynchronous

transmissions and therefore one Markov chain can describe the whole network. Bianchi’s

model is mostly for a single BSS scenario and is shown to give accurate results based

on these assumptions.

156
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Analysing scenarios with multiple OBSSs operating on the same channel is challeng-

ing. To capture the interactions between the OBSSs, Continuous Time Markov Chain

(CTMC) has been proposed in [354]–[356]. However, the number of possible states in a

CTMC is a function of the number of OBSSs. This means that constructing the CTMC

is challenging and a complex task, as the number of possible states grows rapidly with

the number of OBSSs. In order to reduce complexity, this study focuses on a DTMC

model, and tries to provide an accurate model in a scenario with multiple OBSSs.

The rest of the chapter is organised as follows. Section 5.2 presents the analytical model,

while Section 5.3 provides the performance analysis in various topologies. Finally, Sec-

tion 5.4 concludes this chapter.

5.2 Throughput Analysis

The analytical model described in this section is based on the assumption of small cells,

where the STAs are located close to the APs and experience good channel conditions,

hence the transmission are always considered successful (i.e. no collisions) and the APs

have always packet to transmit (saturation conditions). In the analysis, DL traffic is

only considered with multiple APs, whilst each AP associates with one STA. Further, an

aggressive CCA/ED threshold is applied, which means that when the packet preamble

is missed it will not trigger busy channel. Finally, the physical capture model described

in the previous chapter is also applied in this analysis, and only the basic access is

considered.

5.2.1 Bianchi’s model

Under saturation conditions, each node has always a packet to transmit, but each packet

has to wait for DIFS and a random backoff interval as described in the previous section.

The state of each node; idle, busy, transmit and the backoff stage are illustrated in

Figure 5.1. Note that the state of busy probability is also included in the figure, in

contrast to Bianchi’s model.
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Figure 5.1: Markov chain for for the backoff window size.

Let q be the busy probability, where a node senses the channel busy due to an ongoing

transmission. In that case, the backoff freezes and resumes once the channel is sensed

idle. Let m be the maximum backoff stage such that CWmax = 2mW , where W is the

minimum Contention Window. The backoff window in an i backoff stage is therefore

given as Wi = 2iW , with i ∈ (0,m).

After a packet collision, the node will increase its backoff stage (e.g. move from i to

i+1) and will select a random backoff interval from the new stage with a probability of

p/Wi+1, where p is the collision probability. The transition probabilities are given by:



P{i, k | i, k + 1} = 1 - q, k ∈ (0,Wi − 2) and i ∈ (0,m)

P{0, k | i, 0} = (1− p)/W0, k ∈ (0,Wi − 1) and i ∈ (0,m)

P{i, k | i− 1, 0} = p/Wi, k ∈ (0,Wi − 1) and i ∈ (1,m)

P{m, k | m, 0} = p/Wm, k ∈ (0,Wm − 1)

(5.1)

The first case in Equation 5.1 stands for the fact, that in each slot a node decrements its

backoff counter, with probability of 1− q or in other words the backoff counter freezes

with probability q. The second case accounts for the case when a randomly backoff
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counter is selected following a successful transmission (stage 0). The two other cases

stand for the selection of the backoff counter after a collision at the stage i− 1 and m,

respectively. This study focuses on the first two cases to analyse the network perfor-

mance in the absence of collisions, given that the STAs are located close to their APs

where the increased interference that BSS Color may introduce (due to the concurrent

transmission of inter-BSS packets) does not severely affect these STAs.

Let τ be the transmission probability, that can be expressed as the sum of the left-most

states (when a transmission happens):

τ =
m∑
i=0

bi,0 (5.2)

In the absence of collisions, Equation 5.2 can be simplified and be rewritten as:

τ = b0,0 (5.3)

Let bt be the stochastic process representing the backoff time counter for a given station.

Now, b0,0 can be found by making use of the following equation and given that p = 0:

Wi−1∑
k=0

b0,k = 1 (5.4)

where the probability of b0,k is expressed in relationship to b0,0 as:


b0,k = q · b0,k + b0,0 · (1/W0), with k =W0 − 1

b0,k = q · b0,k + b0,0 · (1/W0) + (1− q) · b0,k+1, with k ∈ (1,W0 − 2)

(5.5)

Finally, the transmission probability by using Equations 5.3 - 5.5 is given as:

τ =
2 · (1− q)

2 · (1− q) +W0 − 1
(5.6)
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Figure 5.2: Network with exposed node and the possible states.

The only unknown in Equation 5.6 is the probability q, which is the probability that

in a given time slot, at least one of the remaining nodes within the sensing range will

transmit and its transmission will be seen by the node of interest:

q = 1− (1− τ)n−1 (5.7)

where n− 1 is the number of remaining nodes withing the sensing range.

5.2.2 Modifications to Bianchi’s model

However, Equation 5.7 holds if there are no exposed and hidden nodes. In the presence

of exposed nodes, the probability q for these nodes, should be higher than the one

obtained from Equation 5.7 to account for the asynchronous transmissions due to the

hidden nodes. In other words, the exposed node will remain in the busy state (q) for

longer compared to the rest of the nodes.

A simple scenario with an exposed node is depicted in Figure 5.2, where the states for

this scenario are also illustrated to visualise the impact of the extended busy duration.

Note that for the exposed node, the transition probability from state C to A given
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that the system was previously in AC because of BSSA initially granting access to

the medium, needs to be found. Let u be this transition probability, defined as the

probability that the exposed node (i.e. B) will stay longer in the busy state due to a

transmission from A or C. In particular, when the system transits from the idle state

to state A, then due to the fact that BSSA and BSSC are hidden, it will evolve to AC

and finally to C (similar behaviour is observed when the system transits from idle to

C ).

The transition probability u can be defined as the probability for the BSSA recapturing

the channel, with BSSB staying in the busy state due to the late and asynchronous

transmission from BSSC . In order for BSSB not to have the opportunity to identify

the channel as idle and compete for it, BSSA has to grant access to the medium before

the end of BSSC ’ transmission. Let P{A} be the probability of the following event:

BO′A < BOC − x (5.8)

where BO′A is the newly selected backoff for BSSA and BOC the one that used by

BSSC for its late transmission and x is expressed in terms of slots with x = DIFS/slot.

Apart from the P{A}, the probability u is also affected by the data duration, that is

also expressed as y = DIFS/Data. Finally, u is given as:

u = y · P{A} (5.9)

Lastly, by making use of Equations 5.7 and 5.9, the busy-period probability converts

to:

q′ = (1− (1− τ)n−1 + l · u)/k (5.10)

where l is the number of asynchronous transmissions that will extend the busy duration

for the exposed node that is locked on an ongoing transmission and k is the total

number of asynchronous transmissions that can occur in the deployment based on the

assumption that a transmission is not seen once its preamble is missed. Further, τ is the
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transmission probability for the nodes within the sensing range. For example, l = 1 and

k = 2 in the case of Figure 5.2, which means that only half of the transmission will be

detected by the exposed node given that it uses a very aggressive CCA/ED threshold.

Now, the throughput can be expressed as the ratio:

S =
E[payload information transmitted in a time slot]

E[length of a time slot]
(5.11)

with the numerator (E[P ]) being the average payload information transmitted in a

time slot, and the denominator the average length of a time slot. The former is equal

to Ptr · Ps · E[P ], since the probability of a successful transmission in a time slot (Ps)

is Ptr · Ps, where Ptr is the transmission probability (i.e. τ). The latter is calculated

considering that a slot is idle with probability (1−q′)·(1−Ptr), busy with probability q′,

contains a successful transmission with probability Ptr·Ps, and collision with Ptr·(1−Ps).

Therefore Equation 5.11 becomes:

S =
Ptr · Ps · E[P ]

slot · (1− q′) · (1− Ptr) + q′ · Ttr + Ptr · Ps · Ts + Ptr · (1− Ps) · Tc
(5.12)

where all variables in regard to time are expressed in the same units. Since in this study,

collisions 3 are not considered, Equation 5.12 can be simplified to:

S =
Ptr · Ps · E[P ]

slot · (1− q′) · (1− Ptr) + q′ · Ts + Ptr · Ps · Ts
(5.13)

Now, the only unknown variable to obtain throughput is Ts, which for the basic access

scheme is found as:

Ts = H + E[P ] + SIFS + δ +ACK + δ +DIFS (5.14)

with H being the packet header and equal to H = PHYhdr + MAChdr, and δ the

propagation delay.

3The modeling of collisions is not a trivial task due to complex SNR model that ns-3 uses.
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The throughput for BSS Color can be obtained based on two cases: i) if the inter-BSS

packet’s RSSI is above OBSS/PD, then the previous equation can be used 4 and ii)

if the inter-BSS packet’s RSSI is above the receiver’s sensitivity but below OBSS/PD

threshold then Equation 5.13 is expressed as:

S =
Ptr · Ps · E[P ]

slot · (1− q′) · (1− Ptr) + q′ · Tb + Ptr · Ps · Ts
(5.15)

where Tb is the time required for a node to drop a frame due to the color mismatched.

This is the busy interval for the BSS Color, which is equal to the time interval that is

required for a node to detect the BSS Color field (HE-SIG-A1). Furthermore, l for this

case is equal to the number of the maximum transmissions that a node can sense (e.g.

l = n− 1), whilst k = 1 since now the packets are dropped and the node considers the

channel as idle. In that case, the node starts sensing the channel activity for a duration

of DIFS and then the BO mechanism is triggered again.

5.3 Model Validation and Performance Evaluation

This section presents a validation of the model against the results obtained from ns-3.

The simulation settings and parameters values used in the analytical model are listed

in Table 5.1. Figure 5.3 illustrates the initial scenarios to validate the analytical model.

Figure 5.4 illustrates an evaluation of the analytical model against the simulation results,

obtained from ns-3. Due to the different interactions that the outer and the inner BSSs

experience, different τ and q should be applied to capture these interactions. Since

the inner BSSs behave similarly, based on the assumption of symmetric networks, one

Markov chain is required for the inner BSSs and one for the outer BSSs. The four lines

represent the simulation results for the four cases, depicted in Figure 5.3, whilst the

markers are for the results obtained by the analytical model. Note that the packet size
4Even though the packet is dropped, the node remains in the busy state until the end of the ongoing

transmission.
5Lock to the strongest signal during PHY Preamble and PHY HDR, whilst the Preemption Window

is set to 10 dB.
6AIFS replaces DIFS for QoS nodes, and DIFS = AIFS = 3 · slot, for AC_BE traffic.
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Table 5.1: Simulation Parameters

Parameter Value

Channel Model / Shadowing TGax SCE3 / Disabled

Number of APs / STAs varies / 1 per AP

Frequency Band [GHz] / Bandwidth [MHz] 5.58 / 20

Physical Capture Model Enabled 5

AP/STA Tx Power [dBm] 20/20, unless otherwise specified

AP/STA Antenna Gain [dBi] 0/0 (SISO)

Noise Figure [dB] 7

PHY rate [data, control] [HE-MCS0, HE-MCS0]

Guard Interval [us] 0.8

Traffic UDP and full buffer

RTS/CTS Disabled

Retransmissions Disabled

Contention Window [min,max] varies

Packet at APP Layer [bytes] 1458, unless otherwise specified

Max A-MPDU [no. of frames] 1

Beacon Disabled

CCA/SD, CCA/ED, OBSS/PD [dBm] -82,50, (-82,-62)

slot, SIFS, DIFS [us] 9, 16, 27 6

Busy interval (BSS Color) [us] 32

at the MAC layer is 1500 bytes, including the MAC header, which is 34 bytes. The

analytical model shows good match with the simulation results for various CW values,

as depicted in Figure 5.4. Even for Case (d), where the analytical results differ from

the simulation ones by approx. 2 Mbps, on per node basis analytical results are within

a range of 0.4 Mbps compared to the simulation results.

Finally, Figure 5.6 shows the performance of BSS Color against the legacy scheme for

the scenario illustrated in Figure 5.5, where the ISD varies. The analytical results are

also included in the figure for various packet sizes, indicated by the markers. Similar

here, two Markov chains are applied, one for the central BSS and one for the outer

ring. That said, only the values for l and k are accordingly set and the number of nodes

within the sensing range. For convenience, the equations are listed below:



τ0 =
2·(1−q0)

2·(1−q0)+W0−1

τ1 =
2·(1−q1)

2·(1−q1)+W0−1

q0 = (1− (1− τ1)n0−1 + l · u)/k

q1 = (1− (1− τ0) · (1− τ1)n1−1 + l · u)/k

(5.16)
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Figure 5.3: Validation Scenarios: a) non-overlapping (l = 0 and k = 1), b) partial-

overlapping with one exposed node (l = 1 and k = 2), c) partial-overlapping with two

exposed nodes (l = 1 and k = 2), and d) partial-overlapping with one exposed node

and four hidden nodes (l = 1 and k = 2).

where [τ0, q0] and [τ1, q1] correspond to the [transmission probability, busy probability]

for the central and outer BSS, respectively. Further, n0 and n1 stand for the nodes

within the sensing range for the central and outer BSSs, respectively. In particular,

the values for [l, k, n0, n1] as the ISD decreases are [0, 1, 0, 0], [2, 3, 6, 2], [1, 2, 6, 4], and

[0, 1, 6, 5]. In order to get the maximum from the BSS Color scheme in an ideal scenario,

the OBSS/PD threshold should always be higher than the inter-BSS packet’s RSSI,

when applicable, such that a node to drop and ignore the OBSS packet and to access the

channel. Therefore, the Pt for BSS Color is tuned such that OBSS/PD > RSSIOBSS ,

with OBSS/PDmax = −62.
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Three conclusions can be drawn from Figure 5.6. First, the analytical model provides

good match with ns-3 under the various cases, with the accuracy improving as the packet

size and/or CW increase. Secondly, it can clearly be seen that with BSS Color the

throughput curve shifts to the right, meaning that the high throughput is maintained

for smaller ISD, given the ideal conditions. This is the advantage of BSS Color for

using OBSS/PD threshold and tuning the transmit power accordingly. Finally, the

throughput gain for BSS Color is affected by the busy period that is sensed by the
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nodes, which drops with the size of CW and increases with the length of packet. To

capture the BSS Color performance, one can set [l, k] according to the sensing range

(i.e. [1, 1] for both partial-overlapping scenarios).

5.4 Conclusion

This chapter provided an analytical model based on UDP traffic, which can be used as

a generic framework to describe the performance of a network consisting by multiple

OBSSs. The model is shown to provide good accuracy with simulation results for

small cell deployments, where the nodes experience good channel conditions. The same

model can also be applied to obtain the throughput for the BSS Color, by taking into

consideration the OBSS/PD threshold and transmit power with respect to the sensing

range. Moreover, the good potentials for the BSS Color under ideal channel conditions

were observed, showing throughput gain over 100% in some cases, highlighting the

importance of this SR feature on improving network performance.

Note that to accurately capture the impact of TCP on the IEEE 802.11 performance,

the probability distribution functions of the TCP data segments and TCP ACK packets

need to be derived. However, based on the simplified framework presented in [357], the

aggregated throughput achieved by the TCP flows would be n times lower than the one

achieved by n UDP flows, and is independent of the total number of persistent TCP

connections.

Although, the analytical model provides good accuracy with the complex ns-3 tool, it

needs to be further extended to account for packet collisions that nodes may experi-

ence, especially in large cell deployments. Furthermore, packet losses due to channel

conditions need also to be accounted for, to obtain correct throughput for a network,

as the increased number of concurrent transmissions that this SR feature introduces

may severely affect the BSS Color performance. Also, the importance for tuning the

OBSS/PD threshold is highlighted in this section that could boost network performance.

To address the inherent limitations of DSC and to exploit the information carried in the

BSS Color field, a new mechanism for adjusting the OBSS/PD threshold is introduced

in the next chapter.
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Figure 5.6: Throughput analysis in 1-ring deployment for various ISD and packet size

(including MAC HDR): a) 200 bytes, b) 500 bytes, and c) 1500 bytes.
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Chapter 6

Control OBSS/PD Sensitivity

Threshold for IEEE 802.11ax BSS

Color

Previous chapter presented an analytical model and the good potentials for the BSS

Color. However, static settings for the MAC features (e.g. CCA) have proven to provide

poor performance, similar to what was observed for the BSS Color in the previous

chapter. This chapter presents a novel algorithm for adjusting the OBSS/PD threshold

for the IEEE 802.11ax devices, by considering the channel conditions. The chapter gives

significant insight into the operation of the algorithm and presents design rules that

offer the flexibility of re-using and integrating the algorithm along with other MAC

features. The operation and performance of the mechanism are evaluated through

extensive simulations in a TGax scenario under various cases.

6.1 Introduction

Adaptive CCA thresholds and TPC have drawn increasing attention by both the re-

search and industry communities. Nevertheless, only the usage of TPC is so far stan-

dardised by IEEE 802.11h-2003. In particular, IEEE 802.11h-2003 defines the rules

170
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for the maximum transmit power in a region. However, TPC is selfless, meaning that

nodes that applying TPC will not benefit from it (may experience low SINR), but the

neighbouring nodes that do not use it (transmit at the maximum power level), will

directly be at an advantage [358]. This is the main reason that TPC is not widely

used in the networks and it is only applied on APs with wireless controllers. On the

other hand, tuning the carrier sensing threshold would be beneficial for all nodes in a

network [359], but has not been standardised due to the restrictions imposed by the

IEEE 802.11 standards (i.e. reception rules and false alarm).

AP1 AP2

STA1

STA2
-62dBm

-45dBm

STA4-82dBm

STA3

-60dBm

Margin: 20 dB
UpperLimit: -42 dBm

(a)

AP1 AP2
STA1

STA2
-62dBm

-32dBm

Margin: 20 dB
UpperLimit: -42 dBm

STA3
-x dBm
(Interference)

(b)

Figure 6.1: DSC limitations a) first case and b) second case.

Although, DSC was originally proposed in TGax as an SR technique for tuning CCA

thresholds, it was also, recently proposed for tuning OBSS/PD [284], [360]. The main

drawback for DSC is that STAs close to the AP have higher probability of accessing

the medium due to higher RSSI that results into smaller carrier sensing range [278].

This case is illustrated in Figure 6.1a, where STA2 transmits only when STA4 does not

transmit, even though a concurrent transmission from these STAs could be successful.

Moreover, assuming that DSC is applied for OBSS/PD, then in a scenario such as the

one depicted in Figure 6.1b, STA1 initiates a transmission to AP1 whereas STA2 must

defer its transmission due to lower OBSS/PD. Assuming that SINR at AP1 is the same

from both STA1 and STA2 (i.e. Tx_PWRSTA1 = 1dBm, Tx_PWRSTA2 = 21dBm),

then by applying Equation 2.3 or DSC, it becomes obvious that transmission opportu-

nity for cell-edge users further decreases for the same SINR level and the probability of

a false alarm increases too. Lastly, DSC applies only at STAs and does not take into
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account any changes on the OBSSs, hence it does not fully exploit BSS Color. An iter-

ative algorithm is developed that leverages BSS Color information and the interference

level measured at a node. The algorithm is able to adjust the OBSS/PD threshold and

adopt to channel conditions and the interference level, by continuously monitoring the

channel and recording the RSSI and interference levels.

The rest of the chapter is organised as follows. Section 6.2 presents the proposed

algorithm, Control OBSS/PD Sensitivity Threshold (COST), while Section 6.3 presents

the simulation scenario. Section 6.4 analyses the simulation results. Finally, Section 6.5

concludes this chapter.

6.2 Control OBSS/PD Sensitivity Threshold (COST)

To overcome DSC’s limitations, the Control OBSS/PD Sensitivity Threshold (COST)

algorithm is presented, which sets OBSS/PD based on the inter-BSS and intra-BSS

RSSI. COST is designed to operate at both APs and STAs. The main goals for COST

are: i) protecting ongoing transmissions, ii) preserving cell-edge users from starvation,

and iii) preserving fairness for all nodes in terms of channel contention (roughly the same

probability of transmission for all nodes). A flow chart of COST algorithm is depicted in

Figure 6.2. COST is initialised following a conservative approach (OBSS/PD is set to its

minimum value) for detecting majority of nodes in its vicinity. Its basic functionalities

are highlighted below.

The first step (A) is to check BSS Color value in the HE-SIG-A field and identify

whether the frame is intra-BSS (BSS) or inter-BSS (OBSS). This step is also included

in the HE frame reception, nevertheless, nodes now (steps B1, B2 ), record the RSSI

before abandoning or continuing the reception. In steps C1, C2, nodes accumulate

the recorded RSSI for BSS and OBSS frames using any moving average scheme, such

as Exponential Moving Average (EMA). The WindowSize defines the window size for

the moving average scheme. If the elapsed time has exceeded UpdatePeriod, COST

proceeds to step E, otherwise it awaits for the next frame to be received. For example,

UpdatePeriod could be equal to N beacon intervals.
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Figure 6.2: Flow chart of COST algorithm operating at both APs and STAs.

In step E, the following equation is applied:

Diff = BSS_RSSI −OBSS_RSSI (6.1)

The main idea behind Equation 6.1 is the identification whether BSS STAs are closer

to or not to OBSS interferers rather their BSS recipient(s), an information that is used

in step G. Step F is essential to avoid a division by zero in step G, where Marginnew

is calculated according to:

Marginnew =
Margin

Diffalpha−1 +Margin (6.2)
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where alpha is an integer value that is introduced to further increase Margin value.

Note that Margin operates in a similar manner as in DSC (the concept of using Margin

derives from DSC). In some cases, a higher Margin might be required for a successful

transmission to a cell-edge user or when high data rates are used. Thus, instead of the

APs advertising the new Margin values, they can tune alpha instead, hence reducing

the overhead transmitted over the channel. Figure 6.3a presents the MarginFactor =

1/Diffalpha
−1 , whereas Figure 6.3b the Marginnew value for various alpha and Diff

values. Four outcomes can be observed from these Figures. First, a high alpha value

results to highMarginnew in respect to the advertised Margin even for large Diff values

(Marginnew > 1.8 · Margin). Secondly, as alpha increases, the Diff value has low

impact on the final Marginnew value. Thirdly, high Diff values have negligible effect

on Marginnew irrespective of alpha and Margin. This can be observed by comparing

the yellow and purple lines in Figure 6.3b. Lastly, the higher Margin is, the higher the

difference of two Marginnew values for different Diff values.

Due to the nature of the wireless deployments, OBSS STAs’ RSSI might be higher than

BSS STAs’ RSSI at an AP, either because they are closer or due to shadowing. APs

must ensure that BSS STAs will successfully receive the frames in the presence of OBSS

STAs, hence the following calculation is performed in step H :

OBSS/PDtmp = min(BSS_RSSI,OBSS_RSSI)−Marginnew (6.3)

Before setting OBSS/PD, the threshold is confined between the minimum and maximum

OBSS/PD thresholds, which can be seen in step I. Note that, to reduce implementation

complexity whilst preserving most of the gains that COST algorithm offers, some steps

can be skipped for COST operating at STAs. For example, the recording of RSSI

from BSS frames and step G can be skipped, while BSS_RSSI can be replaced with

OBSS_RSSI in step H.

An additional (optional) step at STAs for setting the minimum OBSS/PD threshold

could also be deployed for preserving transmission opportunity for cell-edge users. A

cell-edge user can benefit from a higher OBSS/PD threshold than a user not located at

the cell-edge, when roughly the same interference level is sensed by the two users. The
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Figure 6.3: COST parameters: a) an example for Margin Factor, b) an example for

Marginnew, c) a scenario example for the optional feature of COST at STAs, and d)

an example of OBSS/PDmin.

main idea is to define a function that preserves cell-edge users from using an extremely

conservative threshold, which could lead to extremely low transmission opportunities.

For example, the following equation can be followed for setting the minimum OBSS/PD

threshold:

OBSS/PDmin = OBSS/PDdef +
Diffmax

1 + exp(b · x− c)
(6.4)
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where OBSS/PDdef is the default minimum value for OBSS/PD (i.e. -82 dBm for

20 MHz channel bandwidth), Diffmax is the maximum value that can be subtracted

from OBSS/PDdef . Parameter x could be either the average beacons’ RSSI from

the associated AP or Diff. Diff tends to zero as a user moves away from the AP, since

interference level inclines whereas RSSI from the AP decays, assuming that neighbouring

BSSs exist. Moreover, the parameters b and c can be adjusted accordingly, based on

the decay rate or threshold we need to achieve. An example of the decrement factor of

Equation 6.4 for Diffmax = 20 dB and x = Diff is illustrated in Figure 6.3d. Diff

shall be zero if OBSS_RSSI > BSS_RSSI. Note that the values for b and c highly

affect the decline rate and the breakpoint.

6.3 Simulation Setup

The scenario illustrated in Figure 6.4 is considered, to evaluate BSS Color, DSC, and

COST schemes in terms of throughput and fairness. In particular, this scenario corre-

sponds to the Box 5 scenario from the list of TGax baseline scenarios. Four different

cases are considered, including both DL and UL traffic and different patterns of the

BSSs that are being enabled, following the procedure as described in [361]–[363]. In

particular, the first three cases (i.e. DL/DL, DL/UL, UL/UL) refer to the scenarios

when only BSSs A and B are enabled, whereas the last case (DL/DL/DL) refers to the

scenario when all the BSSs are enabled. It is also assumed no color collisions, which

means that BSS Color is unique for each BSS. Preamble reception and capture effect are

also modelled, following the procedure described in Chapter 4. Two different data rates

are used, the robust High-Efficiency Modulation and Coding Scheme 0 (HE-MCS0) and

HE-MCS5, whereas the propagation model is the one defined for Scenario 3 (SCE3) in

TGax. The simulation parameters used in this study are listed in Table 6.1. Note that

when DSC is enabled, Equation 2.2 is applied at the APs, since DSC operates only at

STAs. Moreover, a warm-up period is also considered, hence, the statistics are collected

from the last 50 seconds per simulation run.
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Figure 6.4: Simulation Scenario (Box 5).

Table 6.1: Simulation Parameters

Parameter Value

Scenario / Channel model Indoor (Box5) / TGax SCE3

Number of BSSs 3

Frequency Band [GHz] / Bandwidth [MHz] 2.4 / 20

Shadowing [dB] 5

Physical Capture Model 800ns/10dB

AP/STA Tx Power [dBm] 20/15

AP/STA Antenna Gain [dBi] 0/-2

Number of Antennas 1

Noise Figure [dB] 7

PHY rate [data] HE-MCS0, HE-MCS5

PHY rate [control] HE-MCS0

Traffic Full Buffer

RTS/CTS Disabled

Max Retransmissions 10

Contention Window [min,max] [15,255]

Packet at APP Layer [bytes] 1472

Max A-MPDU [no. of frames] 32

TxOP [ms] 5.484 (AC_BE)

Beacon Interval [ms] 102.4

CCA/SD, CCA/ED [dBm] -82,-62

OBSS/PD (min, max) [dBm] (-82, -62)

Simulation Time per run [s] 200 (20 Runs)
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6.4 Simulation Results

This section presents the performance evaluation of a) DSC and COST for various

Margin values and b) against BSS Color (enabled and disabled) in terms of fairness

and aggregated throughput. For the fairness, the Jain’s Fairness Index (JFI) [341] is

considered and is based on the average user throughput per BSS.
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Figure 6.5: Aggregated throughput for various Margin values of: a) DSC for HE-MCS0,

b) DSC for HE-MCS5, c) COST for HE-MCS0, and d) COST for HE-MCS5.

Figure 6.5 illustrates the aggregated throughput of DSC and COST schemes for various
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Margin values. It can be observed that COST outperforms DSC in all cases, especially

when a DL flow is enabled, since DSC operates only at STAs. The highest throughput

for both COST and DSC when HE-MCS0 is used, is achieved for aggressive OBSS/PD

thresholds (Margin = 0 ). On the other hand, when higher MCS is applied (HE-MCS5),

the highest throughput is not always achieved for an aggressive OBSS/PD threshold.

This is due to the higher SINR requirement for HE-MCS5, where a more conservative

threshold might be required for protecting transmissions. For example, if the DL/DL

case is compared, it can be seen that two concurrent DL transmissions can be successful

when HE-MCS0 is applied, but not when HE-MCS5 is used.

Figure 6.6 depicts a comparison of the highest throughput achieved for COST and DSC

with the default BSS Color and BSS Color disabled performances. Six important con-

clusions can be drawn from that Figure. First, with BSS Color ON, a throughput gain

can be observed compared to BSS Color OFF. However, it is highly affected by the traf-

fic type and scenario, since the use of a conservative OBSS/PD threshold might have

no impact on network performance as it can be seen for the DL/DL case. Secondly, a

higher throughput gain can be achieved by tuning OBSS/PD threshold. Thirdly, COST

achieves the highest throughput gain in all the cases among the aforementioned tech-

niques, with the exception of the UL/UL scenario. In particular, up to 57% throughput

gain can be observed for the DL/DL case when COST is applied, compared to DSC, BSS

Color ON, and BSS Color OFF techniques. Fourthly, throughput loss for the UL/UL is

observed when BSS Color is enabled. This is due to the high number of contending STAs

in BSS A, as it is explained in the next paragraph. Fifthly, fairness is highly affected

due to the enabling of BSS Color as it can be observed in Figure 6.6c. Apart from the

UL/UL case, in all other simulated cases, fairness among BSSs improves by the use of

COST, as transmission probability among BSSs is roughly the same (e.g. DL/DL/DL).

Note that JFI is presented only for HE-MCS0, since it does not vary significantly for

HE-MCS5. Lastly, the small throughput gain in DL/DL for HE-MCS5 when BSS Color

is enabled, is due to Extended Interframe Spacing (EIFS) that is applied after a failed

reception for protecting the transmission of ACKs. In particular, when BSS Color is

enabled and after a color mismatch, a node abandons the reception and does not expe-

rience EIFS. Note that EIFS has no impact in throughput when HE-MCS0 is used, as
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that data rate is more resilient to low SINR.

The UL/UL case is now studied when the aforementioned techniques are applied, Fig-

ure 6.6d. When BSS Color is enabled, the number of contending STAs in BSS A

increases compared to BSS Color OFF, especially for COST algorithm. On the other

hand, when BSS Color is disabled, the STAs in BSS A that are located in between BSS

A and BSS B may sense the channel as BUSY when an UL transmission in BSS B

occurs, reducing the number of contending STAs in BSS A. An efficient way to reduce

the collision rate in BSS A is by tuning the contention window along with CCA for

intra-BSS frames. However, since tuning contention window size and CCA threshold

are out of the scope of this section, the contention is decreased by reducing the number

of STAs in BSS A. In particular, the number of STAs in BSS A to 6 (STAs (1, 2, 5, 7,

25, 26)) and to 4 (STAs (5, 7, 25, 26)) is reduced. A Margin value of 0 for both DSC

and COST is used, while Equation 6.4 is also applied to limit the OBSS/PDmin value.

The values used for adjusting OBSS/PDmin are: OBSS/PDdef = −82, b = 3/29, and

c = 3. As the number of STAs within BSS A decays and the contention decreases, BSS

Color performance improves. DSC outperforms COST due to the fact that the former

algorithm reduces transmission opportunity for the cell-edge user, resulting in lower

contention. However, when the OBSS/PDmin is accordingly adjusted (contention may

reduce), then throughput gain for COST is higher and outperforms DSC when the

number of STAs in both BSSs is roughly the same.

Finally, COST is evaluated in the scenario described in [284], against the DSC algorithm

for adjusting the OBSS/PD threshold, Figure 6.7. To be fair, a fixed MCS was applied

for all schemes (i.e. conventional color, COST, DSC) as it was outlined in that docu-

ment. It can be seen that COST outperforms DSC, but both schemes show throughput

loss against the conventional HE (BSS Color is disabled). This is due to the increased

interference along with the (high) fixed data rate (i.e. HE-MCS5) that cannot cope

with the interference level.

After analysing the results, it can be argued that OBSS/PD threshold should be ad-

justed similar to CCA in order to improve network performance and to fully exploit

BSS Color. The value of Margin for tuning OBSS/PD is an important parameter for
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Figure 6.6: Comparison of BSS Color ON/OFF with DSC and COST schemes in terms

of throughput and fairness: a) aggregated throughput for HE-MCS0, b) aggregated

throughput for HE-MCS5, c) JFI for HE-MCS0, and d) study of UL/UL case for dif-

ferent BSS A STA density.

both the DSC and COST algorithms and has significant impact on throughput gain.

COST achieves higher throughput gain than DSC in most of the cases (up to 57%

for DL/DL case), as it takes into account changes occurring in OBSSs. On the other

hand, by preserving fairness for users in a BSS, contention among them increases, hence,

the throughput loss observed in Figure 6.6a for the UL/UL case. However, contention
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Figure 6.7: Performance evaluation of COST and DSC in a dense deployment.

among users can be managed by other means specifically designed to cope with it (i.e.

CCA, contention window etc.).

6.5 Conclusion

This chapter investigated the performance of a newly introduced IEEE 802.11ax feature,

i.e. BSS Color and the impact of OBSS/PD threshold in various cases. COST, an

algorithm for adjusting OBSS/PD at both APs and STAs that does not require major

modifications in MAC layer is also proposed and introduced here. In particular, the

main modifications required on MAC layer to support the COST algorithm include: i)

signalling of RSSI and interference level from PHY to MAC layer and ii) an internal

signalling to update the OBSS/PD threshold. Due to the use of alpha, the Margin value

could be advertised only with the beacons sent by the APs, therefore the overhead can

be considered negligible.

COST adjusts OBSS/PD based on the interference level observed and the RSSI from the

associated recipient(s). It was also compared against DSC, an algorithm that was ini-

tially proposed for adjusting CCA, but was also proposed in TGax for OBSS/PD thresh-

old adjustment. It was showed that COST outperforms the aforementioned schemes (up

to 57% in terms of throughput gain) in most of the simulated cases, while preserving

fairness among the users. On the other hand, COST increases the transmission oppor-
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tunities for STAs (roughly the same probability for all users within a BSS), resulting

in higher contention level too. However, user contention can be managed by other

means that are specifically designed to deal with it, such as the CCA threshold and the

contention window size.

Although, COST improves the performance in terms of throughput and fairness, the

main challenge is to correctly set the Margin value based not only on the interference

level but on the MCS. The rationale behind this is the different SNR (SINR) require-

ments for the various MCSs. The higher the MCS is, the higher the Margin value should

be to protect the transmission. This means, the nodes should be capable of selecting

the Margin locally, based on the available information and the rate they use. To this

extend, a new novel rate control algorithm that incorporates COST, is developed and

presented in the next chapter.
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Chapter 7

Damysus; A Practical IEEE

802.11ax BSS Color Aware Rate

Control Algorithm

Previous chapter presented a novel algorithm, namely COST, for dynamically adjusting

the OBSS/PD threshold based on the interference level. Although, COST could improve

throughput and fairness for the nodes, it does not completely operate locally. The value

of Margin may significantly affect the performance, was left to the discretion of the

manufacturers. This means that either a static value could be set based on the type

of a node (i.e. AP or STA) or the value could be obtained from the APs (information

carried on the header of the management frames, e.g. beacons). Either way would

result in un-utilised spectrum and overhead.

This chapter presents Damysus, an algorithm proposed here to cope with the additional

overhead that COST may introduce. Damysus is a rate control algorithm that functions

in a completely local way by incorporating COST mechanism for tuning the OBSS/PD

threshold. Along with the OBSS/PD threshold, Damysus determines Margin based on

the rate used for a transmission. The operation and performance of Damysus are ex-

plained and evaluated through extensive simulations in various TGax scenarios against

other off-the-shelf rate control algorithms.
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7.1 Introduction

The main motivation to advance COST and to develop a rate control algorithm is due

to the diverse environments, each one with different challenges and requirements. This

chapter introduces Damysus, a rate control algorithm that operates hand in hand with

the BSS Color scheme and leverages the SR features.

The rest of the chapter is organised as follows. Section 7.2 presents related work with

respect to the available rate control algorithms. Section 7.3 overviews the concept

and design of the proposed rate control algorithm for further improving the network

performance in the presence of BSS Color, while Section 7.4 analyses the simulation

results in various scenarios. Finally, Section 7.5 concludes the chapter.

7.2 Background

Multirate selection algorithms are an efficient approach to improve network perfor-

mance. The IEEE 802.11 standard does not mandate the use of a specific rate selection

algorithm, which is left to the discretion of the IEEE 802.11 drivers and chipsets man-

ufacturers. This has led to the design of various rate selection algorithms that follow

different strategies to adapt the rate.

These strategies fall into two categories; the packet loss-based and the SNR-based ap-

proaches. There are in general, two possible causes of packet loss: i) packet collisions

due to the hidden nodes problem and ii) weak received signal due to channel fading (low

SNR) or strong interference (low SINR). There have been proposed a few schemes that

aim to differentiate the cause of packet loss and they mainly rely on the use of control

frames (i.e. RTS/CTS). The SNR-based algorithms adapt the rate based on the RSSI

measurements. However, there might be an up to 14 dB uncertainty of estimating the

SNR due to multipath and link asymmetry (i.e. DL and UL) [364]. This uncertainty can

be addressed by incorporating the IEEE 802.11k amendment where nodes can request

for the Radio Management capability Information Element in the beacon (e.g. RSSI

measurements).
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The first rate selection algorithm ever introduced for the IEEE 802.11 WLANs is the

Auto Rate Fallback (ARF) [365]. The ARF scheme is an easy to implement algorithm

that selects the rate based on the number of successful transmissions. In particular,

ARF moves to the next highest rate after X successful transmissions (where the default

X = 10) or to the next lowest rate after a packet transmission failure. The Adaptive

ARF (AARF) [366], is a variant of the ARF algorithm that was introduced to improve

the network performance in stable environments. AARF uses the history of the channel

to adapt the threshold of the successful transmissions before selecting a higher rate.

Similar to the ARF algorithm, the AARF reduces the rate after an unacknowledged

transmission, while it doubles the threshold when the first transmission with the new

selected rate fails (i.e. 2 ·X). Otherwise, the threshold is reset to its default value. In

that way, the AARF algorithm produces fewer rate fluctuations than the ARF scheme

and enhances the performance under stable channels [367]. Although, these approaches

(ARF variants) offer low complexity and are easy to implement, they provide poor

performance as they do not differentiate the packet losses (collision or not), thus a

lower rate may increase the probability of packet loss due to the longer transmission

time (i.e. in the presence of hidden nodes).

Onoe [368] is a well known algorithm that was the first developed and integrated into

the MadWifi drivers (Linux kernel drivers for WLANs). Onoe is a credit-based algo-

rithm that adapts the credit threshold at the end of each cycle (i.e. 1 seconds), based

on the transmission statistics collected in this cycle. The rate is deducted when at least

1 retransmission on average (for each packet) has occurred and is increased when the

credit exceeds a predefined threshold (e.g. 10). Now, the credit is increased when less

than 10% of the packets required a retransmission. Although, Onoe is less sensitive

to packet failures than the ARF algorithm, it is more conservative and shows slow re-

sponsiveness to changes in the channel conditions (i.e. it will take up to 10 seconds to

increase the rate). In contrast to Onoe, the SampleRate [369] algorithm selects the rate

based on the number of successful transmissions, the number of failures, and the trans-

mission time. It calculates the success probabilities using the Exponential Weighted

Moving Average (EWMA) and selects the rate that provides the highest throughput.

SampleRate periodically also transmits packets on a different rate to estimate their per-
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formance (training). The main drawback of SampleRate is its slow response to changes

in the channel (mobile or fast-fading), as the training phase may take up a few seconds

(approximately 30 seconds).

Minstrel [339] can be considered as an advancement to the SampleRate algorithm that is

based solely on the acknowledgment feedback and its historical data for a specific rate. It

was developed for the MadWifi drivers to address the slow responsiveness and reliability

issues of SampleRate. Although, it was introduced more than a decade ago, it is the

one that is currently used in most of the devices (i.e. Linux distros, mobile devices etc.).

Note that rate control algorithms are not part of the IEEE 802.11 standardisation, but is

left to the discrepancy of the manufacturers. Nevertheless, Minstrel has been extended

to support the IEEE 802.11n/ac rates (i.e. Minstrel HT), which is its current status.

Minstrel also makes use of the EWMA mechanism to smooth the probability estimation

and uses a smoother function than SampleRate for the throughput estimation [370]. To

avoid excessive sampling, only 10% of the frames are used for sampling new rates and

the transmission of two consecutive probes is prohibited. Minstrel also supports a multi-

rate retry chain to quickly respond to channel changes. First, it transmits on the data

rate that achieves the highest throughput for a specific number of attempts (e.g. c0).

If the transmissions are not successful, then it will select a random rate and will try

for c1 times (min(random, highestthroughput)). The third rate to be selected if none

of the aforementioned have succeeded is the one with the highest successful rate (c2

attempts) and the last in the list is the lowest available rate (c3 attempts). However,

Minstrel’s tendency to select high data rates has one major drawback: it shows a poor

performance when the channel conditions deteriorate and the RSSI falls from high to

low values [371].

Collision-Aware Rate Adaptation (CARA) [372] relies on RTS/CTS to differentiate

packet losses (i.e. due to the channel conditions or due to packet collisions). Although,

CARA is introduced for IEEE 802.11 WLANs with multiple nodes, the use of the

control frames has a significant impact on the network performance and only partially

eliminates the hidden node problem. The authors in [373] propose a joint TPC and

rate control algorithm for improving the spatial reuse and the network throughput in

dense deployments. It requires the explicit coordination among the APs for setting
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the same transmit power level due to the selfless behaviour of the TPC schemes. The

work in [374] presents the Rate Selection for Industrial Networks (RSIN) algorithm,

aiming at minimizing the Packet Error Rate (PER), while taking into account the delay

restrictions on per-packet basis. RSIN can be considered as an optimisation problem

that relies on the SNR value that is attached as an additional field on the packets’

header, the PER for a specific rate and SNR, and the delay requirements.

The proposed algorithm, Damysus was conceived by observing i) the lack of most rate

control algorithms to integrate fundamental MAC functionalities and incorporate new

techniques introduced in the recent amendments and ii) the throughput loss for Minstrel

when the BSS Color is enabled (Minstrel could not cope with the higher interference

level).

7.3 The Damysus Algorithm

The development of Damysus is based on the observation that most of the available

control algorithms do not fully exploit the MAC features (e.g. CCA adaptation) and

the available information that can be extracted from the IEEE 802.11 packets. Further-

more, existing approaches provide poor performance under various dense deployments

as they were initially designed for simple (small) indoor scenarios and they offer limited

flexibility when it comes to integrating features introduced in the latest amendments

(e.g. IEEE 802.11ax).

To address these challenges, Damysus attempts to select a rate that is characterised

by high delivery probability, given the network conditions (e.g. SNR, interference level

etc.). It also exploits the SR mechanism of the IEEE 802.11ax by integrating the COST

scheme, introduced in the previous chapter, that adapts the OBSS/PD threshold and

jointly adjusts the transmit power level. The main goals for Damysus are: i) select an

appropriate rate close to the maximum achievable one that also provides stable results,

ii) show robustness when channel conditions deteriorate (e.g. reduce the rate by selecting

a lower one) where Minstrel fails and ameliorate the network performance in the presence

of BSS Color, iii) select the rate without any additional overhead introduced, and iv)
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exploit the SR mechanism of the IEEE 802.11ax to improve efficiency and network

throughput in dense deployments.

The first step for Damysus is to construct a table and map the SNR with the MCS

and the PER. This step is optional and can be disregarded from Damysus to reduce

complexity. Further, the algorithm records the RSSI from the recipient node (e.g. the

associated AP/STA) and accumulates the recorded value, using any moving average

scheme, such as the Exponential Weighted Moving Average (EWMA) used for the DSC

algorithm. The estimation of the path loss can be obtained by incorporating the TPC

feature of the IEEE 802.11h that defines the maximum transmit power level for the

specific BSS. The IEEE 802.11h specifies two ways to obtain the TPC information [375]:

i) advertising the maximum transmit power in the management frames (i.e. beacons

and probe responses) and ii) requesting the TPC Report element, a frame that holds

information about the transmit power and the link margin. Note that the control and

managements frames are all sent using the highest allowable transmit power level and

all the statistics obtained are held on per associated node-basis.

When the algorithm initiates its first transmission (e.g. after an association), if it does

not possess any statistics, it will make use of the next highest available rate that the

control frames (e.g. association frames) were transmitted (i.e. HE-MCS1). Further-

more, based on the selected rate, Damysus will tune the transmit power level to protect

inter-BSS transmissions while the SNR requirement is satisfied. To cope with the SNR

uncertainty due to the multipath, a margin is added to the path loss estimation (e.g. 9

dB).

Damysus also exploits the IEEE 802.11ax BSS Color by distinguishing the inter-BSS

and intra-BSS frames and recording the corresponding RSSI values. Those values are

used to estimate the interference level, an information that is applied for adjusting the

OBSS/PD threshold according to the COST algorithm.

Now, focusing on the rate selection, Damysus uses two thresholds (i.e. succThres and

failThres) that correspond to the minimum number of consecutive successful and failed

transmissions respectively, before the selection of a new rate. The rationale for using

those two thresholds is to achieve stability and prohibit Damysus from using an inap-
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propriate rate. A transmission is considered successful when it is acknowledged for the

case of non A-MPDU and when a sufficient number of packets have been successfully de-

livered in the case of the Block-Ack mechanism (under aggregation and TxOP). For the

latter case, the ampduSucces variable is defined, that specifies the success rate threshold

(in %), which determines the outcome of the transmission under a Block-Ack (success

or not). For example, if 10 packets are aggregated and 8 of them have been correctly

received, with ampduSucces = 70 the transmission will be defined as successful.

Furthermore, Damysus keeps the historical data for a specific rate per node (i.e. recip-

ient that associates with) and calculates per interval (e.g. 100ms) and per cycle (where

cycle > interval, e.g. 1sec when the OBSS/PD is updated) the following:

• intervalRateSuccess, the number of packets succeeded per interval,

• intervalRateTxFrames, the total number of the packets transmitted per interval,

• numRateTxFrames, the number of packets transmitted per cycle,

• numRateTxAttempts, the total number of transmission attempts per cycle (aggre-

gated frame transmission is considered as 1),

• throughput, based on the packets transmitted and the success rate per interval

and smoothed out with a moving average scheme,

• ewmaProb, the success rate probability based on the success rate per interval and

smoothed out with the EWMA.

The throughput and ewmaProb variables are initialized to zero during the associa-

tion/dissociation or after long periods of inactivity. The ewmaProb is calculated based

on the Equation 7.1:

ewmaProb =
succProbTrans · (100− ewmaLevel) + ewmaProb · ewmaLevel

100
(7.1)

where the ewmaLevel is the EWMA (e.g. ewmaLevel = 75) and

succProbTrans = 100 · intervalRateSuccess

intervalRateTxFrames
(7.2)
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Apart from the metrics per node related to rate, Damysus maintains statistics also per

node unrelated to rate, such as:

• nSuccess, the number of successful transmission attempts,

• nFail, the number of failed transmission attempts,

• lastMcs, the last MCS used for a specific recipient,

• avPL, the path loss per recipient,

• lastTxPwr, the last transmit power level used for a specific recipient,

• TxPwrFlag, determines whether the transmit power level can be decreased and

the minimum power level.

The TxPwrFlag variable is set to false when the transmit power level has been increased

after a few failure attempts in order to prevent an immediate deduction of the power

level after a few successful transmissions. It is also set to true and the TPC is allowed,

only when the current rate statistics are sufficient good (e.g. high ewmaProb).

After the succThres condition is triggered, the algorithm will either select a higher rate

(if certain conditions are met) or keep the current rate and may adjust the transmit

power level and/or the OBSS/PD threshold. Damysus maintains the same rate when

the current rate has good properties (i.e. high ewmaProb that is also higher enough

than the next highest rate’s) and both the current and the next highest rates have a

sufficient number of attempts per cycle. In that case, Damysus will report (internally)

a high interfering OBSS signal (i.e. RSSI = OBSS/PDmax) to influence the selection

of the OBSS/PD threshold towards a more aggressive threshold and may decrease the

transmit power level by a specific value (e.g. TxPowerStep) if the new transmit power

is sufficient enough for the given rate.

On the other hand, the rate is increased in two cases: i) when both the current and

the next highest rates are characterised by good properties or the latter rate has a

low number of packet transmissions and attempts or never used before, and there is

a transmit power level for the next rate (that does not exceed the maximum allowed
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transmit power) and ii) when a non suitable transmit power level has been found for

the next highest rate, Damysus will search among a few higher rates and will select the

one (if any) that meets the following criteria: it has high ewmaProb and is the highest

among the rates that are being looked at or it provides the highest throughput. A more

detailed description of the Damysus operation in the case of the succThres is given in

the Appendix B. Furthermore, the upper limit for the rates range that Damysus will be

looking at in the (ii) case, is restricted by the following equation:

UpperMCS = round(
(MaxGroupMCS − 1)− lastMcs

4
) (7.3)

where round will return the nearest possible integer value that is greater than or equal to

a given argument and MaxGroupMCS is the maximum number of MCSs supported for

a specific group of rates (i.e. 12 MCSs are supported per group for the IEEE 802.11ax).

For example, the space that Damysus will search for a new rate (under condition (ii))

when lastMcs = 0 is [MCS1, MCS3]. Note that round could be replaced with ceil to

make Damysus more aggressive in choosing higher rates.

In the case that the failThres condition is triggered, i.e. after X failed transmissions,

Damysus will undergo the recovery operation for selecting a lower rate or searching for a

rate that is characterised by good properties. To prevent Damysus from slowly adapting

the rate, especially when the failThres is set to a high value, the algorithm will first

try to address the packet losses by increasing the transmit power level and reducing

the OBSS/PD threshold, thus improving SINR. If the number of failed transmissions

has reached the 30% of the failThres, Damysus will increase the transmit power level

exponentially and influence the selection of the OBSS/PD threshold towards a more

conservative value. The transmit power level for that case is set according to:

TxPwr = min(TxPwr + ceil(e(TxPwrstep+ceil(0.3·failed))), TxPwrmax) (7.4)

where TxPwrstep is the step for tuning the transmit power level and failed is the number

of failed transmissions. If the rate for failed is above 30% and the failed number below



194 7.DAMYSUS; A PRACTICAL IEEE 802.11AX BSS COLOR AWARE RATE

CONTROL ALGORITHM

the failThres, the transmit power level is defined as:

TxPwr = min(TxPwr + (factor · TxPwrstep), TxPwrmax) (7.5)

where factor = failThres − failed. If the transmit power level is tuned according to

one of the Equations 7.4 and 7.5 then the TxPwrFlag is set to false.

Once the failThres is triggered, there are three cases in respect to the rate: i) use of

a lower rate, ii) set the rate based on the statistics collected, and iii) maintain the

same rate. First, Damysus will check whether the current rate has few tries and bad

properties (i.e. ewmaProbc < ewmaTemp). If so, it will search for potential rates

based on the TxPwrmax and the interference level according to:

rateinterf = min(max(mcsc −max(mcsc − diff, 0), 0), 11) (7.6)

where rateinterf is confined between [0, 11] that is the range for the HE-MCS, mcsc is

the current rate, and diff is given from:

diff = 6− min(|Interference−OBSS/PDmax|, 20)
4

(7.7)

where Interference is the recorded interference level based on the color mismatch.

The parameter diff is confined between [1, 6] to avoid high fluctuations on the rate

selection. If Interference > OBSS/PDmax then diff is deducted by 1 to account for

the high interference level. The ratePwrMax that was selected based on the TxPwrmax,

is adjusted based on the:

ratePwrMax = min(max(ratePwrMax · ewmaProb, 0), 11) (7.8)
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The rate selected under this first condition is finally given by the:

rate =



max(rateinterf , ratePwrMax), if nSuccess ≥ 0.6 · succThres

max(rateinterf , ratePwrMax)− 1, if nSuccess ≥ 0.4 · succThres

min(ceil(((rateinterf + ratePwrMax)/2),

max(rateinterf , ratePwrMax)− 1), 0), otherwise

(7.9)

The constant values 0.6 and 0.4 that define the thresholds, have been found to provide

good performance in various scenarios. In particular, if a conservative value is used (i.e.

> 0.9, the node will never try (in most of the real-world scenarios) a higher MCS. On

the other hand, an extremely low constant value would result to higher probability for

Damysus of using the higher MCSs, falling into the same pitfalls that MinstrelHT does.

The second condition that will be checked against, accounts for the case wheremcsc = 0

with quite a few tries on that rate and bad properties. In that case, the rate will not

change, whilst the transmit power level will be set to its maximum value and the

OBSS/PD threshold will be reduced (influencing the selection of the threshold).

If none of the above two conditions are true, Damysus will search all available rates for

a potential rate, based on the statistics collected. If less than two rates have been tried

in the last interval whilst the statistics for the ewmaProb and throughput are not yet

available, Damysus will reduce the rate by 1 for the new set of transmissions due to

the uncertainty about the channel conditions. If the statistics for more than 4 rates are

available and ewmaProbbest < 50 then the new rate will be set according to:

rate =
mcsbest · 0.1 + ewmaMcsbest · 0.1 +mcsc · 0.2 + ratePwrMax · 0.6

4
(7.10)

where mcsbest is the rate with the highest throughput and ewmaMcsbest the rate with

the highest ewmaProb. Else if the current rate has either high ewmaProb or high

interval success rate, it will be maintained the same for the next transmissions. Finally,

if Damysus fails to trigger one of the above conditions, it will select the mcsbest or the
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ewmaMCSbest based on their properties. A more detailed description for the case of

the failThres is given in Appendix C.

Apart from the rate and the TPC, Damysus also controls the OBSS/PD threshold

by using the core functionality of the COST algorithm. However, Damysus advances

COST’s functionality by adapting the Margin value, specific to channel conditions and

the rates used. The rationale for this operation is to protect the transmissions in the

presence of high interference and/or when high MCS is to be used, by enabling a more

conservative OBSS/PD threshold (i.e. higher Margin). Hence, the following equations,

operations, and the constant variables for adapting the Margin are defined.

In particular, Damysus calculates the channel occupancy of the inter-BSS packets based

on the BSS Color by using any moving average scheme. It also records the channel

occupancy (for the inter-BSS packets) for the downlink transmissions by exploiting the

UL_Flag feature and computes the first potential Margin as:

Marginfirst =


chanocc

10 + 3, if chanDL
occ > chanUL

occ + 3

chanocc

10 , otherwise
(7.11)

where chanocc is the channel occupancy for the inter-BSS packets. In the case that

inter-BSS DL packets dominate the channel, an additional 3 dB value is added in the

Marginfirst to protect the transmissions to the STAs. Note that in the literature [376]–

[378], a value of between 1-4 dB is typically considered as the minimum SNR required

for a Wi-Fi signal to be detected (preamble), hence the value of 3 dB. Equation 7.11 is

applied only when chanocc > limitThres, where it is set limitThres = 20 ∗ 0.6 = 12,

for 60% MAC efficiency and 20% occupancy from the OBSSs. The second Margin value

is calculated based on the recorded inter-BSS and intra-BSS RSSI. First, the Margin

for the intra-BSS RSSI is calculated as:

Marginsecond = beta · (|RSSI|−alpha)3 + ceta (7.12)

where alpha is a constant variable confined in the space [42 82]. The default values

of alpha are 42 (aggressive value) and 62 (moderate value) for the STAs and APs,

respectively. Note that a power of 3rd is applied, due to the properties of x3. In
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particular, when a STA is located close to an AP, the term (|RSSI|−alpha)3 would

result in a very low value, hence a small Marginsecond, meaning that the STA could

use an aggressive Marginsecond for the inter-BSS packets. On the other hand, as the

STA moves further from the AP, theMarginsecond would gradually increase, after some

point where the increase would be exponential (i.e. cell-edge STA). The variable beta

is given by the Equation 7.13:

beta =
Marginmax

(RSSmax − alpha)3 − (RSSmin − alpha)3
(7.13)

with RSSmax = 82, RSSmin = 42, andMarginmax = 12. The ceta argument is defined

according to the following equation (following the same principle of Equation 7.12):

ceta = −1 · beta · (RSSmin − alpha)3 (7.14)

with its value acting as a guard for the Margin calculation (e.g. given the values

described earlier, higher guard value will be applied for the APs due to alpha, in order

to protect transmissions to cell-edge STAs).

The calculation for the inter-BSS RSSI Margin follows the Equation 7.12, but this

time alpha = 72 and 42 for the STAs and APs, respectively and it is combined with

the Marginfirst:

Marginfirst =Marginconst − (Marginfirst +Marginsecond) (7.15)

whereMarginconst = 15 and 10 (in dB) for the STAs and APs, respectively. The values

for Marginconst were defined in a way to confine the Margin between [3, 21] for the

APs and [6, 21] for the STAs. This means thatMargin will never be 0, hence to protect

any inter-BSS transmissions and will be no higher than 21 dB (i.e. based on the values

that have been found for Margin when applied on DSC [284], [335] and the equation

provided in [267] where transmit power is inversely proportional to OBSS/PD with a

value of 21 being used as a reference). Finally, the value of the Margin is defined as:

Margin = max(Marginfirst,Marginsecond) +Marginmcs (7.16)
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where Marginmcs is the additional Margin due to the MCS used. In particular, this

extra Margin is applied to ensure that low OBSS/PD threshold is used with high MCSs

and it is given as:

Marginmcs =MCS · ( OBSS/PDstep

OBSS/PDstep + 0.5
) (7.17)

From the Equation 7.16 the minimum Margin can be derived for the APs and STAs,

which are 3 dBs and 6 dBs, respectively. The maximum Margin is approximately 21

dBs, given that the highest MCS is used (i.e. MCS = 11, HE-MCS11).
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Figure 7.1: Performance of Damysus against MinstrelHT for a user moving from: a)

high to low RSSI and b) low to high RSSI.

42 50 58 66 74 82
0

2.5

5

7.5

10

12

M
ar

gi
n se

co
nd

 (
dB

)

alpha = 42
alpha = 62
alpha = 72

Figure 7.2: Impact of the various alpha values on teh caluclation of Marginsecond

An assessment of Damysus against MinstrelHT 7, as a user moves from high to low
7MinstrelHT is the Minstrel variance for the IEEE 802.11n/ac, whilst it was developed to also
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and from low to high RSSI values is illustrated in Figure 7.1 (with succThres = 10

and failThres = 10). For this simulation, the BSS Color is not enabled and there is no

interference, thus Damysus is semi-functional as many of its functions and Equations

described earlier do not apply now. Four important conclusion can be drawn from this

figure. First, the validation of MinstrelHT’s poor performance when the RSSI falls

from high to low values, as also reported in [371]. Secondly, Damysus outperforms

MinstrelHT in most of the locations (Figure 7.1a) as the channel conditions deteriorate.

Third, the slow start of Damysus under poor channel conditions when most of the

rates have not been probed. Although, Damysus will try transmitting on higher rates,

the use of succThres and failThres thresholds along with the absence of interference

and the BSS Color affect Damysus’s response. In particular, high values for both of

the threshold, will provide stability and prevent Damysus from fluctuating. On the

other hand, lower values will make Damysus more aggressive and may provide higher

throughput when the channel conditions improve. Finally, even though Damysus was

more stable than MinstrelHT during the multiple runs, its sawtooth behaviour is due to

the use of TPC (can be seen when the STA is close to the AP) along with the thresholds

for the consecutive successful or failed transmissions. Figure 7.2 shows the impact of

the different values for the alpha parameter on the calculation of Marginsecond.

7.4 Simulation Setup

The scenarios as defined in the IEEE 802.11ax document [329] and in [379] are con-

sidered, to evaluate the performance of Damysus against MinstrelHT. The scenarios

(layout and propagation models) are developed according to the IEEE 802.11ax guide-

lines and are integrated into the ns-3 and correspond to a residential, an enterprise, a

small indoor, and a large outdoor scenario, each one with the propagation model as

defined in the same document. Two different cases are considered per scenario, one for

DL traffic and one for the UL. To assure full buffer conditions, User Datagram Pro-

tocol (UDP) traffic is generated in a constant bit rate of 40 Mbps per BSS. It is also

assumed no color collisions (apart from the scenarios where BSSs > 64), which means

support the IEEE 802.11ax rates.
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Table 7.1: Simulation Parameters

Parameter Value

Frequency Band [GHz] / Bandwidth [MHz] 2.4 / 20

Shadowing [dB] 5 (SCE1/2/3) and 3/4 (SCE4 LOS/NLOS)

Physical Capture Model 800ns/10dB

AP/STA Tx Power [dBm] 20/15 (max. TxPwr for Damysus too)

AP/STA Antenna Gain [dBi] 0/-2

Number of Antennas 1

Noise Figure [dB] 7

Guard Interval (GI) [ns] 1600 (SCE1/2/3) and 3200 (SCE4)

PHY rate MinstrelHT / Damysus

Traffic UDP - Full Buffer (40 Mbps per BSS)

RTS/CTS Disabled

Max Retransmissions 10

Contention Window [min,max] [15,1023]

Packet at APP Layer [bytes] 1472

Max A-MPDU [no. of frames] 64

TxOP [ms] 5.484 (AC_BE)

Beacon Interval [ms] 102.4

CCA/SD, CCA/ED [dBm] -82,-62

OBSS/PD (min, max) [dBm] (-82, -62)

Damysus (succThres, failThres) (10, 10)

Damysus ampduSucces 80%

Simulation Time per run [s] 32 (40 Runs)

that BSS Color is unique for each BSS. Moreover, only the OBSS/PD-based operation

is considered, which means that the same rules are applied in all OBSSs (the SRG-based

operation is not considered). Preamble reception and capture effect are also modelled,

following the procedure in Chapter 4. The common simulation parameters used in this

study for all the scenarios are listed in Table 7.1. Finally, a sufficient large period

is allowed for the STAs’ association, whereas the block acknowledgment agreement is

instantly established with the association. Also, a warm-up period is also considered,

hence, the statistics are collected from the last 8 seconds per simulation run.

7.4.1 Residential Scenario

This subsection presents the performance evaluation of MinstrelHT and Damysus in a

residential environment as illustrated in Figure 7.3a. This multi-floor building comprises

5 floors with 2x10 apartments per floor, each one with size of 10m x 10m x 3m. One

AP and five STAs are randomly placed in each apartment in an unplanned fashion

(at 1.5m above the floor). Although, TGax defines 2 STAs per AP, a more recent

study [380] showed that a higher number of STAs per apartment should be considered
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(5 to 6 devices) based on the data collected from real environments. Moreover, each

AP is randomly assigned in one of the 3 non-overlapping 20 MHz channels. Figure 7.3b

presents the path loss model used for the residential scenario, that is defined as:
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Figure 7.3: Residential scenario (SCE1): a) topology, b) path loss model, c) aggregated

throughput, and d) packet delivery ratio.

PLsce1(dB) = 40.05 + 20 · log10(
fc
2.4

) + 20 · log10(min(d, dBP )) + 18.3 · ( d

NF
)

d
NF

+2

( d
NF

+1)−0.46

+ 5 · d

NW
+ 1(d > dBP ) · 35 · log10(

d

dBP
) (7.18)

where fc is the frequency in GHz, dBP is the breakpoint in meters with dBP = 5, d

is the 3D distance (in meters) between two nodes, NF the number of floors, NW the

number of walls per floor, and 1(d > dBP ) the indicator function equal to 1 if d > dBP
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and 0 otherwise. The number of walls is given by:

NW = ((NA · 4)− (NA − 1)) + ((NL − 1) · (NA · 3)− (NA − 1)) (7.19)

where NL is the number of apartment rows per floor (e.g. 2 in our scenario) and NA is

the number of apartments per floor and NL (e.g. 10 in our scenario).

Figure 7.3c presents the total aggregated throughput for the three algorithms in DL

and UL. It can be observed that BSS Color has negative impact on the performance

for the MinstrelHT algorithm for DL (channel conditions deteriorate due to the higher

interference), whereas the performance does not significantly vary for the UL case. On

the other hand, Damysus achieves slightly higher throughput against MinstrelHT in

both directions. The presence of the BSS Color along with the unmanaged deployment

of the APs (i.e. random position and random channel) increase the interference level. A

similar behaviour observed also in [381], where different BSSs react very differently to

specific settings in the residential scenario. Figure 7.3d depicts the impact of the algo-

rithms on the overhead. Note that Other represents the transmitted probes, association

requests/responses, and the retransmitted data. Two conclusions can be drawn from

that figure. First, overheads increase with the use of BSS Color when the MinstrelHT

is applied, which is due to the higher interference. Secondly, Damysus achieves better

Packet Delivery Ratio (PDR) against MinstrelHT- Color as it takes into account the

interference level.

7.4.2 Enterprise Scenario

The second TGax scenario (SCE2), an office environment is presented in Figure 7.4a. It

comprises a floor with 8 offices, each one covering an area of 20m x 20m and containing 64

cubicles. Each cubicle has size of 2m x 2m and contains 4 STAs that are randomly placed

at height of 1m. Furthermore, 4 APs are installed per office, in predefined locations,

on the ceiling (i.e. 3m above the floor). There are in total 32 APs with 64 STAs per

AP. Three non-overlapping channels in the 2.4 GHz band are assigned for this scenario,

with the following allocation (per office): AP0 ← Channel 1, AP1 ← Channel 6,

AP2 ← Channel 11, AP3 ← Channel 11, AP4 ← Channel 1, AP5 ← Channel 6,

AP6 ← Channel 11, and AP7 ← Channel 11.
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Figure 7.4: Enterprise scenario (SCE2): a) topology, b) path loss model, c) aggregated

throughput, and d) packet delivery ratio.

Figure 7.4b presents the path loss model for this specific scenario, where the number of

walls has been found to be 1558. The model for the path loss is given by the following

equation:

PLsce2 = 40.05 + 20 · log10(
fc
2.4

) + 20 · log10(min(d, dBP )) + 7 · d

NW

+ 1(d > dBP ) · 35 · log10(
d

dBP
) (7.20)

where dBP = 10 (m).

Figure 7.4c illustrates the aggregated throughput of the rate control algorithms for the

Enterprise scenario. It can be observed that Damysus takes advantage of the good
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link between the AP and the associated STAs and outperforms MinstrelHT (w/wo the

Color) in both links with over 50% throughput gain in DL and 113% for UL. The

poor performance of MinstrelHT is not because of the low RSSI but due to the high

interference level and packet collisions (UL case). The PDR can also be observed in

Figure 7.4d. Although, it remains fairly high in DL for all algorithms, it rapidly degrades

when it comes in UL transmissions. The main reason behind this degradation is the

high contention among the STAs, which is even higher for Damysus due to the adaptive

OBSS/PD threshold, resulting in lower PDR.

7.4.3 Indoor Small BSSs Scenario

A more challenging case is that of crowded places; i.e. a stadium or dense indoor

deployments (i.e. airport, train station, auditorium), where thousands of people are

concentrated in a small area. In such deployments, hundreds of APs are needed to

serve a large number of STAs. For example, the traffic density for a medium size

stadium is expected to be over 1 Tbps, mostly in uplink [382], with spectators sharing

High-Definition (HD) video to social media. For this case, TGax has defined SCE3. The

APs’ deployment is planned in a hexagonal layout with Inter Cell Distance (ICD) of

17.32m. A frequency reuse pattern is also considered with SR3 to be more representative

than SR1, even though, SR1 should also be considered as some regions might have very

low available bandwidth. In this study, SR3 is considered, whereas the APs and the

STAs are placed at a height of 3m and 1.5m, respectively. For both SR patterns, 19

co-channel cells are considered with one AP per cell, forming a 2-ring deployment, as

depicted in Figure 7.5a. Moreover, 570 STAs are randomly placed inside the hexagonal

area illustrated in Figure 7.5a and associate to the strongest RSSI from the APs. This

means that 30 STAs on average, associate with each AP.

Figure 7.5b illustrates the path loss model defined in TGax for SCE3 and used in this

study. The path loss model for this specific scenario is defined as:

PLsce3 = 40.05+20 · log10(
fc
2.4

)+20 · log10(min(d, dBP ))+1(d > dBP ) ·35 · log10(
d

dBP
) (7.21)

where dBP = 10 (m).
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Figure 7.5: Indoor Small BSSs scenario (SCE3): a) topology, b) path loss model, c)

aggregated throughput, and d) packet delivery ratio.

Figure 7.5c depicts the aggregated throughput of Damysus and MinstrelHT in SCE3.

Two conclusions can be drawn from this figure. First, Damysus achieves higher through-

put against the MinstrelHT - Color for both DL and UL cases, with a gain of approx.

20% and 66%, respectively. Secondly, the impact of BSS Color in both MinstrelHT and

Damysus. The increased transmission opportunities with the BSS Color result to more

packet collisions. Although, SCE2 and SCE3 are quite similar in terms of the path loss

models and the high number of STAs per BSS, they differ in one major thing: the STAs

in SCE3 associate with the strongest AP which is not necessarily the closest one and

they are placed in a wider area that could introduce hidden nodes. Those two reasons

are the main causes of the throughput loss observed in the UL case and the failure of

both algorithms to cope with that. The PDR achieved by Damysus is equal to or higher
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than the MinstrelHT - Color, as illustrated in Figure 7.5d.

7.4.4 Outdoor Large BSS Scenario

WLAN technology is expected to be extensively used in urban outdoor scenarios, e.g.

outdoor hotspots. In that case, the AP deployment is more likely to be managed and

used for offloading traffic through Wi-Fi. To capture an outdoor cell deployment where

the distance between APs is high and the cell-edge users experience low SNR, SCE4

was formulated by the TGax. The ICD is 130m and 19 APs are placed at 10m height,

forming again hexagonal cells (Figure 7.5a). In contrast to the indoor scenario (SCE3),

SR1 is more suited here, whilst 950 STAs are randomly placed now in the hexagonal

area, that corresponds to 50 STAs (on average) per AP. Similar to SCE3, the STAs

associate with the strongest AP.

Figure 7.6a shows the Line-of-Sight (LOS) probability for the Urban Micro-cell (UMi)

and Urban Macro-cell (UMa) deployments. The LOS probability for the UMi and UMa

deployments is given by the following equation:

LOSprob =

min(
18
d , 1) · (1− e

−d
36 ) + e

−d
36 , UMi

min( 18d , 1) · (1− e
−d
63 ) + e

−d
63 , UMa

(7.22)

In this study, it has been considered the UMi channel model as it is the one preferred by

the TGax group and does not take into account the building height and street width.

The path loss model is depicted in Figure 7.6b for both the LOS and non-LOS (NLOS)

cases. Note that the LOS-adv and NLOS-adv are the models applied in our study (the

UMi LOS and UMi NLOS can be found in [329]) and are defined as:

PLLOS
sce4/UMi =



21 · log10(
√
d2 + (TXz −RXz)2) + 32.4 + 20 · log10(fc), d ≤ dBP

40 · log10(
√
d2 + (TXz −RXz)2) + 32.4 + 20 · log10(fc)

− 9.5 · log10((dBP )
2 + (TXz −RXz)

2), d > dBP

(7.23)
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Figure 7.6: Outdoor Large BSS scenario (SCE4): a) Line-of-Sight (LOS) probability,

b) path loss model c) aggregated throughput, and d) packet delivery ratio.

where TXz, RXz is the height (in m) of the transmitter and receiver, respectively, d is

the 2D distance now, and the Breakpoint distance (in m) is given by:

dBP =
4 · (TXz − 1) · (RXz − 1) · (fc · 109)

C
(7.24)

where C is the speed of light (299792458 m/s) and the fc is in Hz that time (only for

the Equation 7.24). For more details in respect to the UMi and UMa channel models,

the reader can refer to [383] (Table A1-2) and [384] (Note 1 in Table 7.4.1-1).

In contrast to SCE3, where the STAs experience high SNR, in SCE4 there will be a

lot of STAs experiencing poor channel conditions (i.e. low RSSI and high interference).

Two conclusions can be drawn from Figure 7.6c. First, Damysus’s capability of sensing
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the channel and recording the RSSI along with the interference level result in better

performance. In particular, Damysus achieves up to 44% higher throughput gain than

the MinstrelHT - Color in DL and 16% for the UL case. Secondly, MinstrelHT fails to

adapt to the low SNR conditions (one of the main drawbacks for Minstrel) that many of

the STAs will experience, resulting in poor performance. Moreover, Damysus improves

PDR for the DL case whereas maintains a similar level of PDR for the UL. Note that

PDR for the UL case is approximately 20%, which means that approx. 4 out of 5

transmitted data were retransmissions, which is due to the high number of contending

STAs (high number of hidden nodes) along with the poor channel conditions.

Figure 7.7 illustrates the throughput per STA in DL and UL for the 4 scenarios described

earlier. It is interesting to see that in all scenarios, the percentage of STAs that could

not get served is quite high. Note that only for SCE1 and SCE4 there are STAs that

cannot associate with the APs (approx. 11% and 3% of the STAs for SCE1 and SCE4,

respectively). Almost in all cases, Damysus improves the throughput perceived by the

STAs against MinstrelHT Color, for those experiencing lower SINR and those that are

close to the APs. Throughput loss for Damysus can be observed in SCE3 (UL case) for

the cell-edge users, whilst a significant throughput gain is achieved for the users located

closer to the APs and experience higher SINRs. This could be due to the hidden nodes

(compared to SCE2, where a similar propagation model is applied) as explained earlier.

Table 7.2 presents the statistics collected for the three algorithms in all the scenarios,

including all nodes (i.e. APs and STAs). Note that Average Tx packet size may be

below the data packet size because it accounts for all transmitted traffic. Moreover,

each cell holds the statistics per algorithm for all 4 scenarios and link directions (i.e.

DL / UL).
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Figure 7.7: Throughput per STA for a) SCE1, b) SCE2, c) SCE3, and d) SCE4.

Table 7.2: Statistics on key performance metrics’ results

Parameter MinstrelHT MinstrelHT Color Damysus

Average Rate [Mbps]

56.3 / 55.0

38.9 / 13.7

32.4 / 18.9

22.3 / 15.2

54.1 / 45.0

37.1 / 09.4

28.2 / 13.7

19.7 / 12.3

63.3 / 53.6

64.5 / 64.5

45.4 / 46.2

25.6 / 30.7

Average Tx packet size [bytes]

3375 / 1386

9708 / 2040

9823 / 4863

3969 / 1168

3145 / 2052

8797 / 1301

7494 / 3455

3348 / 1106

2816 / 1815

10961 / 2664

8341 / 3744

3762 / 1722

Average Tx Power [dBm]

17.7 / 17.1

18.0 / 16.4

17.9 / 17.1

18.3 / 16.0

17.7 / 16.9

18.0 / 16.1

17.9 / 16.9

18.2 / 15.8

16.5 / 16.7

18.0 / 15.8

17.8 / 16.8

18.2 / 15.7

Average OBSS/PD [dBm]

N/A / N/A

N/A / N/A

N/A / N/A

N/A / N/A

-78.7 / -78.5

-79.0 / -77.1

-78.9 / -77.9

-79.2 / -76.8

-80.4 / -80.0

-80.5 / -77.7

-79.5 / -71.8

-81.8 / -81.3
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7.5 Conclusion

This chapter assessed the performance of Spatial Reuse mechanism in various dense

deployments when MinstrelHT is applied. By enabling BSS Color, it was found that

network performance degrades due to the higher interference level introduced in the

channel. MinstrelHT is a well known off-the-shelf rate control algorithm that can pro-

vide near optimal performance in the absence of interference. However, the inability

of MinstrelHT to accurately select a rate when channel conditions deteriorate and in

the presence of interferers have led to the introduction of a new rate control algorithm.

Damysus is a rate control algorithm that was developed and proposed in this chapter to

cope with the challenges that dense deployments face and address the poor performance

of MinstrelHT. Damysus exploits the Spatial Reuse mechanism and adjusts the rate by

taking advantage of the available information that the Spatial Reuse mechanism pro-

vides. It also uses a TPC and adjusts the OBSS/PD threshold based on the interference

level observed and the RSSI from the associated recipient(s).

Damysus was also compared against MinstrelHT in four different scenarios identified

by the IEEE 802.11ax Task Group (i.e. Residential, Enterprise, Indoor Small BSS,

and Outdoor Large BSSs) and in all of them outperformed MinstrelHT (up to 113%

throughput gain). However, Damysus increases the transmission opportunities due

to the adaptive OBSS/PD threshold that it uses, resulting in higher contention level

inside a BSS. To ameliorate its performance and control the contention and interference

levels, the use of RTS/ CTS might be inevitable for some scenarios. Furthermore, a

mechanism for adjusting the CCA thresholds accordingly to cope with the high number

of hidden nodes is required. However, such a mechanism should be carefully designed

and incorporated into Damysus as it may significantly affect some of its operations (e.g.

the selection of the OBSS/PD) and/or break some of the rules defined in the IEEE

802.11ax amendment. Finally, the SRP-based operation and the SRG concept should

also be investigated, especially in the scenarios where throughput loss due to the BSS

Color is observed.

Apart from the aim for higher throughput, reliable communications is another aspect

of interest for the research and industry communities. In the environments where the
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channel conditions rapidly change, e.g. due to mobility, packet retransmissions will take

the lion’s share of the available resources (spectrum and transmission time). Also, in

the event of static users it was found in this chapter that most of the packets trans-

mitted were retransmissions. In most of the scenarios, the PDR was relative low that

indicates that resources are wasted to retransmitted packets and hence, control frames

(Block-ACKs, ACKs). One approach to provide reliable communications, that was also

discussed in Chapter 2 is the Network Coding. The next chapter presents a network

coding scheme that was developed and was integrated in ns-3 for the IEEE 802.11

module.
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Chapter 8

Reducing the Use of IEEE 802.11

Acknowledgements; A Network

Coding Approach

Network Coding is an efficient concept to improve the network capacity under lossy

channels. This chapter presents a scheme based on Serially Concatenated Code (SCC)

that has been proposed in the literature and comprises an outer fountain code and

Random Linear Network Coding (RLNC) as an inner code to allow intermediate nodes

to re-encode the information. We have placed SCC in a shim layer between the MAC

and Network layers where the (de-)coders operate. Furthermore, a header for the SCC

scheme was also introduced that carries the information required for decoding the in-

formation. Simulation results in a fading IEEE 802.11 channel and an analysis based

on the IEEE 802.11 basic access scheme, show that SCC can indeed improve the perfor-

mance when it is carefully designed and can provide a means of enabling robust com-

munications without the use of ACKs and retransmissions (i.e. multicast/broadcast

communications).

214
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8.1 Introduction

In WLANs, packets may be lost due to the poor channel conditions (e.g. high interfer-

ence, weak received signal etc.), degrading the achievable throughput. Existing network

protocols rely on packet retransmissions based on feedback provided to cope with packet

losses and guarantee reliable communications (i.e. TCP).

The use of erasure codes [385]–[390] is another approach that can be followed to compen-

sate for the channel errors. Erasure codes break the data into smaller blocks (chains),

and encode them (data blocks) by adding redundant information for fault tolerance.

In particular, they are considered Forward Error Correction (FEC) codes under the

assumption of bit erasures. Erasure codes are used not only in the telecommunications

to protect the original data when transmitted over lossy (wireless/wired) channels, but

also in storage. For example, data replication provides a robust solution against data

losses by ensuring that the data are available in more than one server. However, repli-

cation is expensive in terms of storage resources, hence, many providers rely on the use

of erasure codes.

A class of erasure codes that has gain a lot of attention by the research community

is that of fountain codes (e.g. Luby Transform (LT) [385] and Raptor [386] codes),

where the transmitter sends the encoded packets at a receiver without any knowledge

of which packets have been received. Fountain codes are suitable for multicast and

broadcast transmissions, as they do not require feedback, they are rateless and are

characterised by low overhead and low complexity. The authors in [391] show that

an LT-code approach can provide up to 20% throughput gain when compared to a

traditional ARQ scheme. On the downside, fountain codes’ performance significantly

degrades with the number of hops (i.e. multihop topology), since the intermediate nodes

just forward the received frames without re-encoding them [120]. The destination node is

able to decode (with high probability) the original message only after collecting sufficient

information (typically, it is slightly larger than the original message) irrespective of

which packets are arrived.

On the other hand, Network Coding (NC) is considered to be an enabling technique
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to cope with the packet losses over multihop wireless erasure networks. It relies on

the pioneering work of Ahlswede et al. [110] showing that by combining and coding

information from different flows at an intermediate node, instead of simply routing or

encoding (e.g. amplify-and-forward) can significantly improve the network throughput,

energy efficiency, and provide high-reliability communications [111]. By combining a

fountain code with RLNC has shown to provide higher performance in terms of decoding

success rate, as it was discussed in Chapter 2.

This chapter presents a comprehensive simulation-based study on the performance of

the serially concatenated code (SCC) presented in [118], in a single-hop IEEE 802.11

network over fading channel. Furthermore, an analysis of the NC scheme against the

legacy IEEE 802.11 based on the access method (i.e. transmission duration, interframe

spaces etc.) is presented here. The ns-3 simulation tool is used to carry out this study,

wherein the NC scheme is implemented.

The rest of the chapter is organised as follows. Section 8.2 overviews the concept and

design of the framework applied in an IEEE 802.11 system, while Section 8.3 presents

the simulation scenario. Section 8.4 provides and analyses the simulation results in

various scenarios. Finally, Section 8.5 concludes the chapter.

8.2 Serially Concatenated Codes: Design

This section presents the design of the Serially Concatenated Codes (SCCs) used in this

work 8. In contrast to the analytical work in [118], here, the SCC scheme is studied in

a more realistic environment by using the well known ns-3 simulator and taking into

consideration the IEEE 802.11 characteristics.

The SCC mechanism lies on top of the higher MAC due to advantages that this layer

offer, as explained earlier. SCC scheme also supports operation of LT, RLNC, and

systematic RLNC as stand alone schemes. The outer code is LT, a rateless fountain

code, whereas the inner code is RLNC to incorporate the benefits of NC into our system.

8Part of the code developed for this study was applied in a real environment for the SWARMs

project (http://www.swarms.eu/).
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The major modification required on MAC to enable SCC would be to stream the flows

of data through this shim layer (i.e. from the upper and lower layers) and a signalling

mechanism to inform the lower MAC whether an ACK mechanism should be used or

not. In this work, SCC signals the lower MAC to completely disable the use of an

ACK, hence MAC could mimic multicasting/broadcasting modes. Furthermore, the

APs should include their SCC capabilities on beacon’s header to inform the STAs,

whilst during the initial association handshake, STAs could inform whether or not SCC

is supported.

Network Layer
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Aggregation/Fragmentation etc.)
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Figure 8.1: SCC design a) layer overview and b) coding procedure.

Packets received from the higher layers in the SCC shim layer are buffered in the SCC

queue and are sent to the LT encoder once a threshold has been reached (a sufficient

number of packets has been buffered). This queue is used to provide SCC with the

flexibility to adapt the number of input symbols into LT accordingly. The architecture

of the SCC mechanism is illustrated in Figure 8.1a.
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Figure 8.2: The SCC header.

Let us consider now, that Kp packets are sent in the LT encoder, where each packet

consists of l symbols in Fq (finite field, with q = 2m), hence every symbol has lm bits.

First, the Kp × l matrix (K symbols) of the input packets is then transformed into a

single-column (Kp ·l)×1 matrix and is sent to the LT encoder. Secondly, the LT encoder

produces an Np × l matrix (N symbols), which is sent to the inner code (where Np is

the outgoing packets from LT). The RLNC now, multiplies the incoming symbols with

coefficients selected from a finite field and attaches the coefficient vector at the headers

of the encoded packets. Since we use a systematic approach, the product of the encoding

procedure, consists of the LT coded packets and a specific number of the RLNC coded

packets, as depicted in Figure 8.1b. Note that the identity matrix attached to the LT

packets, is not transmitted but it is generated only for the decoding process.

At the receiver, once the number of the frames buffered in the queue (belonging in

the same batch) is sufficient (i.e. frames received ≥ K, the higher the number of

the frames received, the higher the probability of recovering the initial information),

the decoding procedure initiates with the frames sent to the RLNC decoder (identity

matrix is attached to the LT coded frames only). In the case that the number of linearly

independent frames received is not sufficient, then the RLNC decoder is skipped and

the frames (only the LT coded frames) are sent straight to the LT decoder.

At the receiver in order to decode the frames, a header that is attached to each coded

frame has been created, as illustrated in Figure 8.2. It is a 2-byte header that carries

the batch id (e.g. 6-bit), the packet id (e.g. a 6-bit value that identifies each packet
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in the batch) used to prevent packet duplication and help with packet ordering (i.e.

re-sequencing performed during the LT decoding procedure), and 3 bits that identify

whether LT, RLNC, systematic are enabled. Furthermore, the SCC scheme can be

used either in acknowledgment mode or in the multicast/broadcast mode where the

acknowledgement is disabled. This information is also included in the SCC header (1-

bit). If the SCC-ACK is used, then the recipient transmits an SCC-ACK informing

the transmitting node that a specific batch has been decoded and no additional frames

(belonging in the same batch) are required. In that way, any coded frames left in the

queues (i.e. SCC, MAC) are discarded. Note that a mapping between the transmitting

node MAC address and the batch id is also required for supporting multiple SCC users.

Moreover, the SCC header might be used to accommodate the information required

for designing the degree distribution of the LT codes in both the transmitter and the

receiver (i.e. seed number), that would require one more field.

8.3 Simulation Setup

First, the degree distribution for the LT codes is analysed and designed, since their

performance is highly affected by the degree distribution. Although, there are quite a

few optimisations and designs for the degree distribution in the literature, the Robust

Soliton Distribution (RSD) that was originally introduced in [385], is applied here.

A good degree distribution should provide a sufficient number of degree-one symbols (i.e.

symbols that depend only on one neighbour), meaning that during the decoding process,

the decoder can retrieve the information of its unique neighbour. The set of the degree-

one symbols that have not yet processed are called the ripple. The decoding process

stops when the ripple set is empty (i.e. the decoder cannot decode further symbols). The

decoding is considered successful when all symbols are retrieved and failure otherwise

(i.e. there are still symbols that cannot be recovered). Hence, the objective is to

design a degree distribution that i) as few encoding symbols as possible will be required

for successful recovery of the original information (keep the overhead low) and ii) the

number of symbol operations to recover a symbol is as low as possible (i.e. average

degree per symbol). RSD is a degree distribution that satisfies the aforementioned
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Table 8.1: Simulation Parameters

Parameter Value

Scenario IEEE 802.11 Single-hop

Channel TGn Channel B [392] (slow fading)

Number of APs/STAs 1/1

Frequency Band [GHz] 5 (20 MHz at channel 36 (i.e. 5.18 GHz)

Guard Interval [ns] 3200

AP/STA Tx Power [dBm] 16/16

Number of Antennas 1

Noise Figure [dB] 7

PHY rate [data/control] [HE-MCS0/HE-MCS0]

Traffic Full Buffer (Constant Bit Rate), Video [393]

RTS/CTS Disabled

Max Retransmissions 10 (Legacy only)

Contention Window [min,max] [15,1023]

Packet at APP Layer [bytes] [128/484/1024]

Max A-MPDU [no. of frames] 1

Beacon Interval [ms] 102.4

CCA/SD, CCA/ED [dBm] -82,-62

Simulation Time per run [s] 10 (20 Runs)

constraints as described in [385].

The next step is to evaluate SCC performance against LT, RLNC and S-RLNC, where

a burst erasure channel is considered. In particular, a matrix of symbols (each symbol

is considered a byte) is created and then errors are randomly introduced to mimic a

burst erasure channel. Further, the matrix is sent to the decoder (i.e. LT or RLNC)

that tries to retrieve the original information. The above procedure is performed for a

large number of iterations (i.e. 106) to get accurate results.

Secondly, an analysis based on the IEEE 802.11 access scheme (CSMA/CA) is provided,

to show the benefits of applying an NC scheme (SCC in our case) to compensate for

the channel errors. That is, it is shown when an NC scheme is beneficial based on the

packet error rate, packet size, MCS and interframe spaces (i.e. frequency band).

Finally, SCC is evaluated in a IEEE 802.11 fading channel, where the RSSI fluctuates

during the simulation. The Doppler spread and the coherence time (Tc = 0.423/fd)

used in this simulation are 3 Hz and 141ms to mimic a slow walking device (1.35

Km/h). Furthermore, the MAC-ACK has been completely disabled when coded packets

are transmitted and we study SCC in the multicast/broadcast mode. The simulation

parameters used for the study of this last case are summarised in Table 8.1.
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8.4 Simulation Results

This section presents a) a performance evaluation of the coding schemes used in this

study, in terms of decoding rate, b) an analysis of an NC (based on SCC) scheme against

the legacy access scheme, and c) a performance evaluation of SCC in a fading channel.

8.4.1 Decoding Rate of the Coding Schemes

There are two important parameters in RSD, namely delta and c, which greatly af-

fect the performance of the LT codes in terms of decoding capabilities and complexity

(especially for small length packets due to the inherent limitation of LT codes, i.e. per-

formance is optimised for large block sizes). The former parameter represents the failure

probability of the decoding process, whereas the latter one is a positive constant usually

smaller than 1. Both parameters influence the overhead required, the average degree

per symbol, and the ripple size (R = c · lnK/delta ·
√
K). We can observe from the

Figure 8.3, that as delta and c increase, the complexity (average degree per symbol,

i.e. operations per symbol) and the overhead required to recover the original informa-

tion decays. However, the failure probability for the decoding also inclines as delta

increases. We believe that delta < 1 and c < 0.1 can offer a good trade off between

complexity/overhead and decoding probability for our case study.

The coding schemes used in this study are evaluated and compared in terms of decoding

capabilities. The packet size for this simulation is 156 bytes (to be inline with the results

in Figure 8.3), whereas the number of input and outgoing packets from the LT encoder

are 3 and 4/5, respectively (i.e. K = 468, N = 624 and N = 780). Figures 8.4a and 8.4b

depict the decoding rate for the LT codes, as burst errors are artificially introduced in

the matrix sent to the decoder. Three important conclusions can be drawn from these

two figures. First, it can be observed how the values of c and delta greatly affect the

decoding capabilities of the LT codes. Secondly, it can be seen that the values of 0.01

and 0.9 for c and delta, respectively, achieve the highest decoding rate among the rest.

Lastly, as the overhead (i.e. outgoing packets) is increased from 4 to 5, LT decoding

capability greatly improves. Figure 8.4c illustrates the decoding rate for the RLNC
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Figure 8.3: Impact of the delta and c parameters (Robust Soliton Distribution) on the

average degree per symbol as a) c varies and b) delta varies and on the overhead (Z)

as c) c varies and d) delta varies for K = 468 and N = 780.

and S-RLNC schemes. By adding additional overhead, it can be observed that RLNC

performance improves, whilst S-RLNC does not provide any significant gains. Finally,

when the systematic SCC mechanism is used, where the benefits of the both LT and

RLNC are combined, the error probability for the decoder can be maintained at or close

to 0, as illustrated in Figure 8.4d.

8.4.2 Benefits of NC in an IEEE 802.11 environment

IEEE 802.11 is an asynchronous technology that relies on the CSMA/CA protocol.

According to CSMA/CA, every node senses the channel prior a transmission; if the

channel is sensed as idle then it proceeds to the transmission of a frame, otherwise

the transmission is deferred. Further, to minimize the probability of frame collisions,

where nodes initiate a transmission to the same recipient at exactly the same time slot

(hidden nodes are not assumed), a node randomly draws a number within a window (i.e.
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Figure 8.4: Comparison of the coding schemes for various burst erasure probabilities:

a) LT for K = 468 and N = 624, b) LT for K = 468 and N = 780, c) RLNC and

S-RLNC for [InPackets, OutPackets] = [3,4] and [3,5], and d) SCC and sysSCC.

CW) indicating the number of time slots that it has to wait before it transmits. This

procedure is known as back-off mechanism and is characterised by the size of the CW

that doubles for every retransmission whilst resets to its initial size after a successful

transmission. The basic access scheme for IEEE 802.11 is illustrated in Figure 8.5a. If

the channel is sensed busy during the back-off, then the counter freezes and resumes

when the channel is sensed idle for a DIFS. The successful reception of a data frame

is followed by the transmission of an acknowledgment from the recipient to the initial

sender (ACK is transmitted after the SIFS). A failure in the transmission of the frame

is triggered after an ACK timeout and the node then doubles its CW size for the

retransmission. On the other hand, under the SCC scheme, a node follows the basic

access scheme to grant access to the medium, but instead of retransmitting a frame after

a failed transmission, it transmits a sufficient number of coded frames to compensate for

the frame losses. A comparison of the legacy basic and SCC access schemes is illustrated

in Figure 8.5b.
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Figure 8.5: Basic Access Scheme for IEEE 802.11 a) conventional and b) compared to

SCC access scheme.

Based on the access schemes for the conventional and SCC mechanisms, the SCC ap-

proach could provide gains compared to the conventional on the following cases: i)

when the access probability is small and transmissions occur under an aggregation

scheme or the TxOP mechanism (e.g. dense deployments), ii) when M · (DIFS+BO+

CodedData) < Kp · (DIFS + BO +Data + SIFS + ACK), where M is the number

of the transmitted coded packets required to recover the original Kp packets, and iii)

when the time for frames to be correctly received is higher than the time required for

the coded packets due to retransmissions (e.g. lossy channels). This study focuses on

the second and third cases, as for the first case, the access probability per node decays

with the number of nodes (under full buffer conditions). A single STA and a single AP

is the scenario investigated here.

For example, if the second case under ideal channel conditions where no retransmissions



225

take place is considered and the systematic SCC with [Kp, Np,M ] = [3, 4, 5] is used, the

transmission duration of the CodedData would be:

CodedData <
SIFS + (3 ·ACK)− 2 · (BO + 2 · TimeSlot)

2
(8.1)

where DIFS = SIFS + 2 · TimeSlot, ACK = 44 µs ([328]), CodedData ≈ Data. It

can clearly be seen from Equation 8.1 that under the ideal scenario with M = 5, the

systematic SCC can never outperform the legacy (CodedData can never be below 0).

However, considering that only 4 packets are required to successfully decode the batch

(systematic SCC [3,4,4]) then the transmission duration of the CodedData is given by:

CodedData < 2 · (SIFS − TimeSlot) + (3 ·ACK)−BO (8.2)

This time Equation 8.2 gives CodedData < 83µs (5GHz bands). In the case of [3,4,5]

and under the acknowledgment mode, the transmission duration of the CodedData

should be less than 23µ in order to outperform the legacy operation (legacy ACK

applied). Note that 20µs out of the 83µs is for the physical preamble, whilst the HE

physical header is 20µs (at least 20µs since it depends on the number of HE-LTF), which

implies that SCC under acknowledgment mode is impossible to outperform the legacy

operation (given the ideal conditions and settings described earlier). For example, it

would require the MCS2 (i.e. 26 Mbps) or MCS11 to transmit 68 and approx. 500 bytes

(including MAC headers), respectively, for the SCC to outperform the conventional

IEEE 802.11ax (SCC [3,4,4]). The useful payload after removing all headers would

be less than the values mentioned earlier. Note that the IEEE 802.11ax amendment

(a.k.a. High Efficiency (HE)) supports data rates of up to 143 Mbps for a 20 MHz

channel bandwidth with Guard Interval (GI) of 800ns in a SISO system and operation

on the 5 GHz bands.

Figure 8.6 presents the performance of systematic SCC compared to the conventional

IEEE 802.11ax operating on the 5GHz band, for the third case when GI of 3200ns is

used. This figure illustrates the achievable throughput for the systematic SCC when the

settings of Figure 8.4d are used, against the legacy IEEE 802.11ax where retransmissions
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Figure 8.6: Comparison of the systematic SCC against conventional IEEE 802.11ax

operating at 5GHz band when aggregation is disabled (GI=3200ns) for a) HE-MCS0,

b) HE-MCS5, and c) HE-MCS11.

occur. Note that Legacy-Best and Legacy-Worst correspond to the cases where all

the corrupted frames (unsuccessful transmissions in the first attempt/transmission) are

successfully received in the first retransmission and for the case that the maximum

number of retransmissions is required to correctly receive the frame(s). For example,

if 20 frames transmitted are assumed and the burst erasure probability is 0.25 (i.e.

burst errors introduced based on the Burst Error model in ns-3 (following a uniform

distribution), with 0.25 meaning that 25% of the bits transmitted are lost) then either

five frames corrupted in the first transmission will be successfully received or one frame

will be retransmitted five times. Moreover, it is not considered any ACKs lost, implying

that the transmitter of the data/coded frames does not experience the EIFS (EIFS >

DIFS). Two important conclusions can be drawn from this figure. First, operating in

the lowest MCS (in our case HE-MCS0) throughput gain for SCC can only be achieved

under high burst erasure probability and for small frames, assuming that EIFS is not
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used at the transmitting node. Secondly, as the data rate increases, higher throughput

gain can be observed even for larger frames. For example, systematic SCC achieves

a 33% and 45% throughput gain when HE-MCS11 is used for packet sizes of 128 and

1024 bytes, respectively. If aggregation is enabled then higher transmission rates will

be required for the transmission of the data frames to compensate for the use of Block-

ACKs (e.g. wider channel bandwidth, MIMO etc.).

8.4.3 Performance of Systematic SCC in IEEE 802.11 Fading Channel

The SCC is now evaluated in a scenario described in Table 8.1. The main difference

now, that should greatly affect the decoding capabilities is that instead of the burst

erasure channel used earlier, a packet either is correctly received or not received at

all due to low RSSI or SNR. The node is placed in various locations such that the

packet error probability is allowed to vary (i.e. ≈ 0 to ≈ 0.3). Note that the packet

error rate is measured only at the receiver of the data frames. That means that if an

ACK is lost during the reception, the node experiences EIFS instead of DIFS for the

retransmission. Further, the same settings to SCC as the ones used in the previous

sub-section (i.e. delta = 0.9, c = 0.01 and systematic SCC with [Kp, Np,M ] = [3, 4, 5])

are applied. Any errors that have not been recovered by the SCC decoder are handled

in the higher layers (e.g. errors in the IPv4 header etc.). Lastly, the lowest HE-MCS

was used, first as the worst case scenario for the SCC performance and secondly to meet

the full buffer requirements without increasing the complexity of the simulations (i.e.

higher HE-MCS would mean higher number of encoding/decoding operations).

Figure 8.7a illustrates the goodput (i.e. focusing on useful data only (i.e. excluding

any headers), hence measured at the application layer) of SCC against the conventional

IEEE 802.11ax for three different packet sizes; 128, 484, and 1024 bytes (at the appli-

cation layer). It is expected that for a packet size of 128 bytes, the SCC mechanism

would have shown the highest throughput gain against the legacy scheme, nevertheless,

SCC shows an extremely poor performance in this case. This is mainly due to the frag-

ile decoding capabilities of LT when performing over small number of input symbols.

The channel used now, needs to also be taken into consideration, which differs from
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Figure 8.7: SCC performance against conventional IEEE 802.11ax in a fading channel

a) Aggregation is disabled (HE-MCS0), b) throughput for AMPDU = 4 (emulating

video traffic), and c) data received for AMPDU = 4 (emulating video traffic).

the burst erasure one. On the other hand, for the packet sizes of 484 and 1024 bytes,

SCC decoding rate is maintained high (slightly higher than the goodput), which means

that the usage of the higher LT packet sizes, result in acceptable performance by SCC.

Although, for a packet size of 484 bytes, SCC offers a throughput gain of only up to 20%

compared to the legacy scheme, when a packet size of 1024 bytes is used the benefits of

SCC start to diminish. This effect is due to the access scheme and the low MCS (i.e.

HE-MCS0) used for the transmission of such large frames (Sub-Section 8.4.2).

On the other hand, when aggregation is enabled and video traffic (burst traffic) is

emulated, a clear improvement can be observed in Figures 8.7b and 8.7c in terms of

throughput and reliability (data received), respectively. This is due to the traffic pattern
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and the reduction in overhead when sending multiple coded data as an aggregated single

packet.

8.5 Conclusion

This chapter investigated the performance of a network coding scheme, a.k.a. Serially

Concatenated Codes (SCC), that comprises an outer digital fountain code (i.e. LT) and

an inner coded that is based on the RLNC. Encoding is performed at the transmitter

side, whilst the use of RLNC as an inner code allows intermediate nodes to re-encode

the information based on the RLNC. The SCC mechanism lies in a shim layer between

the MAC layer and the Network layer and allows a node to encode/decode information

with or without the use of an ACK. Reliable communications in the absence of ACKs are

ensured and provide a means of applying the SCC or any other powerful coding scheme

for multicast/broadcast transmissions. It is showed that SCC can improve the decoding

capabilities of both the LT and RLNC when used as a standalone codes under a burst

erasure channel. Further, the potential benefits of SCC when applied in an IEEE 802.11

environment are studied, by looking at the access scheme and the procedure followed for

the retransmissions. SCC was also compared against the conventional IEEE 802.11ax in

a fading channel where the RSSI varies during the simulation to mimic a slow walking

station. Directions for future study include the optimisation of SCC for small packet

sizes, the study of aggregation against SCC and the impact of the SCC-ACK on the

overall system performance, and extensions to other scenarios (e.g. dense deployments).
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Chapter 9

Conclusion

9.1 Summary of the Thesis

The main purpose of this research study was to understand the potentials and chal-

lenges that the new IEEE 802.11 amendments will face in dense deployments. To this

extend, IEEE 802.11 has introduced a new amendment to address users’ demands and

requirements in populated areas. This new amendment, namely IEEE 802.11ax (a.k.a.

Wi-Fi 6), is coming out with a lot new features aiming at improving not only through-

put performance but also spectrum efficiency in dense areas. This study focused on the

Spatial Reuse feature introduced in IEEE 802.11ax, which is a completely new mecha-

nism coping with the exposed node problem, hence improving the network performance.

Exposed nodes incur some major challenges in dense scenarios and poor performance,

by reducing the number of concurrent transmissions. This in turn, would lead to low

throughput and spectrum inefficiency, nodes being blocked from transmissions.

In this research, a tutorial on the directions that both 3GPP and IEEE 802.11 camps

are looking at, was provided. The most straightforward approach to provide higher

throughput for the users, is the exploitation of new available spectrum and might use

higher Modulation and Coding Scheme (MCS) (e.g. 1024 QAM). Although, mmWave

frequency bands can potential offer large and unexploited bandwidth, they can mainly

be used for short-range communications, similar with the higher MCSs. On the other

hand, following the paradigm of IEEE 802.11ah, an amendment for IoT, the IEEE

802.11ax introduces OFDMA and BSS Color, a Spatial Reuse scheme, for utilising the

231
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spectrum in the already congested 2.4 and 5 GHz bands and coping with the high

number of users. Moreover, the latency can also reduced for the WLANs by decreasing:

i) the time that a channel remains idle, ii) the number of packet collisions, and iii) the

overhead introduced by the headers and control/management frames. Even though, a

noticeable number of works were included in this tutorial, the area of Spatial Reuse in

dense deployments is still at the initial stage of development.

The development of the IEEE 802.11ax features and the simulation scenarios constitute

the first step towards understanding the potential of the SR mechanism and the chal-

lenges that the future WLANs will face. However, as the IEEE 802.11ax amendment

evolves, there is a need for the simulation tools to keep pace with this evolution to cor-

rectly assess the performance of the active amendment. Therefore, the IEEE 802.11ax

SR features were developed in a well known simulator (a.k.a. ns-3) and assessed in

various scenarios, according to the TGax guidelines. Apart from the new features and

advancements that are keeping introduced by the TGax, the lack of ns-3 to correctly

capture the behaviour of the off-the-shelf devices could have significant implications on

the assessment of the IEEE 802.11 performance. The Physical Layer Capture (PLC)

has been shown that has a significant impact on throughput and may cause fairness

issues between the nodes, especially for the cell-edge users, which was also developed

in this work. Furthermore, an analytical model was proposed to capture the behaviour

of IEEE 802.11 in dense deployments that gave insights of the good potentials for the

BSS Color.

Based on the analytical and simulation results, the increased interference level intro-

duced by the higher number of concurrent transmissions from the BSS Color scheme can

severely affect the network performance and lead to low throughput. To this extent, a

novel algorithm was proposed that takes into account the channel conditions to adjust

the thresholds for BSS Color. It is the first ever algorithm proposed based on BSS Color

that aims at improving throughput, whilst preserving fairness for the cell-edge users in

terms of transmission opportunities. It is solely based on the interference level and the

RSSI from the associated recipient(s) to adjust the thresholds in regard to the BSS

Color. Simulation results showed of up to 57% throughput gain in various scenarios,

when the proposed algorithm is applied along with the BSS Color scheme.
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The lack of most rate control algorithms to integrate fundamental MAC functionalities

and incorporate new techniques introduced in the recent amendments, as well as the

poor performance of the off-the-shelf rate control algorithms (e.g. MinstrelHT) have led

to the development and design of a new rate control algorithm. This algorithm proposed

in this thesis, attempts to select a rate in a distributed way that is characterised by high

delivery probability, given the network conditions and it also exploits the IEEE 802.11ax

Spatial Reuse features. It integrates the algorithm mentioned earlier for controlling the

BSS Color scheme and jointly adjusts the transmit power level. Simulation results in

various dense deployments show a clear gain (up to 113%) of the novel rate control

algorithm against MinstrelHT.

Apart from the aim for higher throughput, reliability is another aspect of interest for the

research and industry communities. In the environments where the channel conditions

rapidly change, e.g. due to mobility, packet retransmissions will take the lion’s share of

the available resources. Also, in the event of static users, it was found in this research

that most of the packets transmitted were retransmissions with the packet delivery

ration in most of the dense scenarios being relative low. One approach to provide

reliable communications (apart from the use of acknowledgements) is to apply Network

Coding. In this study, Serially Concatenated Codes (SSC) were developed and designed

to operate on the higher MAC layer and enable reliable communications. In particular,

the SCC mechanism lies in a shim layer between MAC and Network layers and allows

a node to encode/decode information with or without the use of an ACK. It is showed

that SCC can improve performance and provide reliable communications in the absence

of ACKs, whilst can enable multicast/broadcast transmissions (due to the absence of

ACKs), hence efficiently utilising the spectrum resources.

9.2 Research Directions

The mathematical model proposed in this study, is more suitable to analyse throughput

for small cells, where users experience good channel conditions. A possible direction

that this work can take in the future is to extend the analytical model to account for

the packet collisions/losses due to the channel conditions, where users may experience,
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especially in large cell deployments. This means that SINR needs to be taken into

account, while relaxing other assumptions made in this work will also lead to more

accurate results (e.g. CCA/ED threshold).

This work showed the importance and the benefits for designing new rate control al-

gorithms that exploit the newly proposed features of the IEEE 802.11 amendments.

In this work, Damusys was proposed that is aware of the OBSS transmissions and the

interference level by exploiting the BSS Color information. A possible direction for

further improving Damusys’s performance is to introduce a mechanism to dynamically

adjust the CCA thresholds, as it has been shown that the adjustment of these thresh-

olds may provide significant throughput gain. However, this poses a challenge since it

may break the rules defined on the IEEE 802.11 standards for static thresholds during

the frame reception. Therefore, this mechanism should carefully be designed by taking

into account the OBSS/PD threshold and transmit power levels.

Another challenge for the future WLANs is the high interference, due to the dense

deployments and the increased number of transmissions introduced for example by BSS

Color. One way to address the increased interference in dense deployments could be,

by enabling schedulers in the MAC layer that are interference-aware. By introducing

intelligence in the MAC queue and selecting a packet that has higher probability of being

successfully received than randomly selecting one. These scheduling policies could be

applied along with the BSS Color, where the Access Points (APs) are aware of inter-

BSS transmissions and their interference level. The AP may classify its associated

STAs based on their RSSI into, e.g. three zones; short distance, intermediate distance,

and cell-edge users. Once a colored packet is dropped and a concurrent transmission

is allowed, the AP will select its next recipient based on the interference level (e.g.

inter-BSS frame’s RSSI). In particular, under strong interference, the AP will select

a short distance user, when a weak inter-BSS RSSI is recorded it will transmit to a

cell-edge user, otherwise an intermediate distance node will be served. In order to

preserve fairness for the users in a zone, a scheduling mechanism (e.g.round-robin) can

be applied per zone, following the paradigm of 3GPP for addressing the substantial

number of devices contending for a preamble.
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A third challenge that can be further investigated is this of Network Coding. This work

shed some light on the potentials of Network Coding in terms of improving throughput,

reliability, and enabling broadcastin/multicasting transmissions, but there is still a lot

of work that needs to be done to fully collaborate Network Coding with the existed

ACK/ARQ mechanisms. For example, the IEEE 802.11aa has been introduced to en-

able video multicasting where frames are repeated to ensure high reliability over lossy

channels. A performance assessment of Network Coding against the IEEE 802.11aa for

multicasting transmissions would be beneficial for the research and industry communi-

ties.

Finally, another hurdle that needs to be tackled in the next generation of WLANs is

the huge overhead that the headers add, due to backward compatibility issues. It was

shown in this study, that MAC efficiency is severely affected by the extremely long PHY

headers, leading to lower throughput. One way to cope with this, would be to follow

the paradigm of IEEE 802.11ah for the MAC headers, applied in the PHY headers too.

Nevertheless, this would also require the “mutual collaboration” of the old devices, since

the channel sensing is based on these headers.
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Appendix A

PHY characteristics of IEEE 802.11

amendments

Table A.1: Comparison of PHY characteristics for IEEE 802.11ad/ac/ax/af/ah tech-

nologies.

Parameter IEEE

802.11ad

IEEE

802.11ac

IEEE

802.11ax

IEEE

802.11af

IEEE

802.11ah

Frequency

Spectrum

[GHz]

Between 57

- 66

5 Between 1 -

7

0.54 - 0.698

in USA and

0.47 - 0.79

in Europe

Sub-1

Channel

Bandwidth

[MHz]

2160 20 / 40 /

80 / 160 /

(80+80)

20 / 40 /

80 / 160 /

(80+80)

6 / 7 / 8 /

12 / 14 / 16

/ 24 / 28 /

32, where

the first

three are

the BCUs

1 / 2 / 4 / 8

/ 16
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Spectrum

Sharing

SC-OFDM/

OFDM

OFDM OFDM/

DL-UL

OFDMA

OFDM OFDM

Subcarriers

per Chan-

nel (useful

subcarri-

ers)

355, where

336 are

data sub-

carriers, 16

are pilot

subcarri-

ers, and 3

are Direct

Current

subcarriers

56 / 114 /

242 / 484,

where 52

/ 108 /

234 / 468

are data

subcarriers

and 4 / 6

/ 8 / 16

are pilot

subcarriers,

for 20 / 40

/ 80 / 160

(continuous

or not),

respectively

NST =

NSRU ∗

NRU , NSRU

is the

number of

Subcarriers

per RU; 26

/ 52 / 106 /

242 / 484 /

996 / 1992

and NRU

the number

of RUs per

channel

width, that

varies from

1 to 74,

depending

on channel

width and

NSRU

114, where

108 are

data sub-

carriers and

6 are pilot

subcarriers

26 / 56 /

114 / 242 /

484, where

24 / 52 /

108 / 234

/ 468 are

the data

subcarriers

and 2 / 4

/ 6 / 8 /

16 the pilot

subcarriers,

respectively

Modulation Up to 64-

QAM

Up to 256-

QAM

Up to 1024-

QAM

Up to 256-

QAM

Up to 256-

QAM
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Coding

Rates

1/2 (with/

without

preamble

repetition),

5/8, 3/4,

13/16

1/2, 2/3,

3/4, 5/6

1/2, 2/3,

3/4, 5/6

1/2, 2/3,

3/4, 5/6

1/2, 2/3,

3/4, 5/6

FFT

Length

512 64 / 128 /

256 / 512

256 / 512 /

1024 / 2048

64 / 128 /

256 / 512 /

1024, with

the latter

two to be

optional

32 / 64 /

128 / 256 /

512

Spatial

Multiplex-

ing/Spatial

Streams/

Beamform-

ing

N/A / 1 /

Supported

DL MU-

MIMO /

Up to 8 /

Supported

DL-UL

MU-MIMO

/ Up to 8 /

Supported

DL MU-

MIMO /

Up to 4 /

Supported

DL MU-

MIMO /

Up to 4 /

Supported

Symbol

Duration

(IDFT/DFT

period) [µs]

0.194 3.2 3.2 / 6.4 /

12.8

BCUs (6

/ 7 MHz):

30, BCU (8

MHz): 22.5

36 / 40 / 48

Guard

Interval

[µs]

0.0484 0.4 / 0.8 /

1.6

0.8 / 1.6 /

3.2

BCUs (6

/ 7 MHz):

6, BCU (8

MHz): 4.5

4 / 8 / 16
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Subcarrier

Frequency

Spacing

[kHz]

5156.25 312.5 78.125 BCUs (6

/ 7 MHz):

41*(2/3),

BCU (8

MHz):

55*(5/9)

31.25

Max PPDU

Duration

[ms]

2 5.484 5.484 20 27.84

Max PSDU

Length

[bytes]

262143 4692480 6500631 1065600 797160

Slot time

[µs]

5 9 9 / 20 in

2.4 and 5

GHz band,

respectively

BCUs (6

/ 7 MHz):

24, BCU (8

MHz): 20

52

SIFS/DIFS

[µs]

3 / 13 16 / 34 2.4 GHz: 10

/ 28, 5 GHz:

16 / 34

BCUs (6

/ 7 MHz):

120, BCU

(8 MHz):

90

160 / 264
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BUSY indi-

cation [µs]

within 3 within 4

(primary 20

MHz chan-

nel) and

25 (non-

primary

20 MHz

channel)

within 4

(primary 20

MHz chan-

nel) and

25 (non-

primary

20 MHz

channel)

BCUs (6

/ 7 MHz):

94, BCU (8

MHz): 70

within 40

(primary

1 MHz

channel

with RSSI

≥ -98 dBm

for type 1

channels or

-89 dBm

for type 2

channels)

and 212

(primary

1 MHz

channel

with RSSI

≥ -89 dBm

for type 1

channels or

-86 dBm

for type 2

channels,

and non-

primary 1

MHz por-

tion of the

primary 2

MHz)
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Min Re-

ceiver

Sensitivity

[dBm]

-78 for

MCS0,

PER less

than 5%,

for a PSDU

size of

256B and

-68 for all

other MCSs

with PER

less than

1% for a

PSDU size

of 4096B

-82 for 20

MHz

-82 for 20

MHz

BCUs (6

/ 7 MHz):

-88, BCU (8

MHz): -87

with PER

less than

10% for a

PSDU size

of 4096B

-98 / -95 for

1 MHz &

repetition

on / off

with PER

less than

10% for a

PSDU size

of 256B

Max Peak

Rate

[Mbps]

6756.75 6933.3 9608 570 347



Appendix B

Damusys Algorithm (after

successful transmissions)

The following variables are defined and used in Damysus after X successful/failed trans-

missions:

• mcsc : the current rate

• mcspwr : the rate based on the transmit power level

• newRate : the new assigned rate

• newPower : the power required for the next rate

• TxPwr : the new assigned transmit power level

• TxPwrc : the current transmit power level

• TxPwrmax : the maximum transmit power level

• TxPwrstep : the step for tuning the transmit power level

• OBSS/PDstep : the step for influencing the OBSS/PD

• OBSS/PD : the OBSS/PD threshold
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• OBSS/PDmax : the maximum OBSS/PD

• succThres : the successful threshold (e.g. 10)

• failThres : the failure threshold (e.g. 10)

• succeed : the number of successful transmissions (succeed ≥ succThres)

• failed : the number of failed transmissions (failed ≤ failThres)

• ewmaTemp : the ewmaProb threshold (e.g. 75)

• ewmaProbc : the ewmaProb of the current rate

• ewmabest : the rate with the best ewmaProb

• throughputc : the throughput of the current rate

• throughputbest : the rate with the highest throughput

• rateF lagn : is true when a higher rate exists
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Algorithm 1 Damysus algorithm
1: procedure Success

2: succeed← 0

3: failed← 0

4: if mcsc < mcsmax − 1 then

5: ewmaProbn ← the ewmaProb of next rate (i.e. n = c + 1)

6: succProbIntern ← the success probability of the next rate

7: numRateTxFramesn ← the numRateTxFrames of the next rate

8: numRateTxAttemptsn ← the numRateTxAttempts of the next rate

9: throughputn ← the throughput of the next rate

10: intervalRateTxFramesn ← the intervalRateTxFrames of the next rate

11: end if

12: if rateF lagn AND ewmaProbc > ewmaTemp AND (ewmaProbn > ewmaTemp OR numRateTxFramesn < 30 ∗

succThres OR numRateTxAttemptsn < 3 ∗ succThres OR throughputn > throughputc) AND failed < 0.5 ∗ failThres

then

13: go to IncreaseRate (mcsc+1, newPower)

14: else if (numRateTxFramesc > 30 ∗ succThres OR numRateTxAttemptsn > 3 ∗ succThres) AND ewmaProbc >

ewmaTemp AND ewmaProbc > ewmaProbn + 2 AND failed < 0.4 ∗ failThres then

15: comment: keep the same rate unless it has very good properties (then mcsc + 1)

16: newPower ← the power required for the current rate

17: if TxPwrc − TxPwrstep > newPower then

18: newPower ← TxPwrc − TxPwrstep

19: end if

20: if OBSS/PD + OBSS/PDstep < OBSS/PDmax then

21: go to DoReportObssSignal (OBSS/PDmax)

22: end if

23: else

24: UpperMCS ← Equation 7.3

25: for ii← UpperMCS to 1 do

26: if intervalRateTxFramesc+ii > 0 then

27: comment: find rate with the highest intervalRateSuccess > ewmaTemp

28: else if (ewmaProbc+ii > ewmaTemp AND throughputc+ii > throughputc) OR ewmaProbc+ii == 0 then

29: comment: find rate with the highest intervalRateSuccess > ewmaTemp + (c + ii) (guard to avoid high

fluctuations)

30: end if

31: end for

32: comment: if new rate has been found then go to IncreaseRate (newRate, TxPwrmax) and set TxPwrFlag to true

if ewmaProbc > min(ewmaTemp + 15.0, 95.0)

33: end if

34: end procedure

35: procedure IncreaseRate(mcs, newPower)

36: comment: Increase rate and power

37: end procedure

38: procedure DoReportObssSignal(OBSS/PDmax)

39: comment: Influence the calculation of OBSS/PD to use a more aggressive value

40: end procedure
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Damusys Algorithm (after failed

transmissions)
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Algorithm 2 Damysus algorithm
1: procedure Failure

2: succeed← 0

3: failed← 0

4: if ewmaProbc < ewmaTemp AND (numRateTxFramesc < 30∗failThres OR numRateTxAttemptsc < 3∗failThres

OR TxPwr < TxPwrmax) then

5: newPower ← TxPwrmax

6: DoReportObssSignal (OBSS/PDmin)

7: newRate← Equations 7.6− 7.9

8: else if mcsc == 0 AND (numRateTxFramesc > 30 ∗ failThres OR numRateTxAttemptsc > 3 ∗ failThres) AND

ewmaProbc < ewmaTemp then

9: newPower ← TxPwrmax

10: DoReportObssSignal (OBSS/PDmin)

11: else

12: comment: from the statistics collected, find the ewmabest and the throughputbest that have the highest

ewmaProb and achieve the highest throughput, respectively.

13: if less than two rates have been tried in the last interval then

14: newRate← mcsc − 1

15: else if more than 4 rates have been used AND ewmaProbc < 80 then

16: newRate← Equation 7.10

17: else if (ewmaProbc > ewmaTemp AND intervalRateSuccessc > 65) OR (ewmaProbc < ewmaTemp AND

intervalRateSuccessc > ewmaTemp) then

18: comment: maintain the same settings

19: else

20: if mcsc − 1 == 0 AND intervalRateSuccessc > 65 then

21: comment: avoid using the lowest MCS, maintain the same settings

22: else if mcspwr 6= mcsc AND (ewmaProbpwr > ewmaProbc + 2 OR throughputpwr > throughputc) then

23: newRate← mcspwr

24: else if throughputbest ≤ mcsc + 3 AND (ewmaProbthroughputBest > ewmaTemp OR

(ewmaProbthroughputBest > ewmabest − 2 AND ewmaProbthroughputBest > ewmaProbc + 2)) then

25: newRate← throughputbest

26: else if ewmabest ≤ mcsc + 3 AND (ewmabest > ewmaTemp OR (ewmabest > ewmaProbthroughputBest + 2

AND ewmabest > ewmaProbc + 2)) then

27: newRate← ewmabest

28: else if (ewmaProbmcsPwr == 0 OR ewmaProbmcsPwr > ewmaTemp) AND

(intervalRateTxFramesmcsPwr == 0 OR intervalRateSuccessmcsPwr > 65) then

29: comment: find the |mcsc −mcsPwr| and normalise it by 2 (i.e. ratenorm). Switch to the ratenorm only

if mcsc > mcsPwr

30: else

31: comment: switch to either mcsc − 1 or to the rate found based on Equations 7.6 - 7.9, whom provides the

best properties.

32: end if

33: end if

34: end if

35: end procedure
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ns-3; Network Simulator

The simulation tool used throughout this work is ns-3, a discrete-event network simula-

tor used by both the academia and industry. It is based mostly on C++, whilst Python

scripts may also be used. The major advantage of ns-3 is that it uses parallel and dis-

tributed simulation technology, utilizing the memory and allowing a single simulation

over multiple processors, hence simulations of large and dense networks are possible.

The ns-3 software tool consists of the modules that are built as separate software li-

braries, and the models that are abstract representations of real-world objects, protocols,

devices etc.

This work focuses on the Wi-Fi module, which implements an abstraction of the IEEE

802.11 standard, attempting to provide an accurate MAC and PHY layer of the stan-

dard, illustrated in Figure D.1. It is worth noting that as new standards are introduced,

new features are developed and are incorporated in the Wi-Fi module, aiming to capture

the basic functionality of an IEEE 802.11 device.

The Physical layer is abstracted in ns-3 in the following way: The reception of a packet

is binary, in a way that the packet received is probabilitically evaluated for the outcome

of the reception; successful or failed. Now, this probability depends on the modulation,

the SINR, and the state of the physical layer (e.g. if the device transmits then any

received packet during that period of time will be lost). A packet is evaluated when

the first bit has been received, whether its energy is above the CCA/CS threshold and
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Figure D.1: The Wi-Fi module in ns-3.

then at the end of the PHY header based on the aforementioned probability. If the

header is successfully received, the reception will continue with the rest bits of the

packet. Finally, the end of the packet triggers again the probabilistic model, where if

the reception is successful, the device will forward the packet to the higher layers (i.e.

MAC). The physical model used in ns-3 is based on the one described in [394].

The MAC layer provides the core functionalities of MAC as described in the standards,

taking care of the transmission of the packets (i.e. data, control, and management

frames). It implements the DCF and EDCA (for QoS), whilst retransmissions, and

packet aggregation are also handled by this layer.

The main contributions made on ns-3 in regard to the IEEE 802.11ax development, in

this work can be summarised:

• PHY layer: The development of a physical capture model as described in Chap-

ter 4 based on the document [346]. Furthermore, a received packet is probabi-

litically evaluated not only at the end of the PHY header and at the end of the

packet, but also at the end of each header field. This is to provide a more accurate



250 Appendix D. ns-3; Network Simulator

packet reception scheme and evaluate the BSS Color field at the right time (i.e.

when it is received and not after a few microseconds). However, this comes at

the cost of increased complexity and longer simulation time. Also, the HE (IEEE

802.11ax) preamble and PHY header was developed, that carries all the related

information (e.g. BSS Color). Finally, the OBSS/PD threshold has been incorpo-

rated as a function at this layer, similar to the CCA/CS and CCA/ED accounting

only for the OBSS packets.

• MAC layer: Enable the support of IEEE 802.11ax frames and correctly assign to

these packets this information. In particular, the Spatial Reuse is handled by this

layer and the BSS Color id assignment.

• Channel models: The channel models developed too, as described in Chapter 7

based on the document [329].

• Simulation scenarios: The scenarios applied in this work, were developed again

according to the document [329].

Furthermore, SISO systems are only considered in this work.The default antenna model

is used in this study, which is the IsotropicAntennaModel from ns-3. This antenna

radiation pattern model provides a unitary gain (0 dB) for all direction [395]. Note

that at least 30 runs per simulations with a long simulation time per run were allowed

according to the guidelines of ns-3 and IEEE 802.11ax. Finally, a sufficient warm-up

period (until the simulator reaches a stable condition) was applied in this work, with

all prerequisite operations (e.g. nodes’ association, Block-ACK establishment) taking

place during this period.
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Appendix E

TGax Simulation Scenarios

The simulation scenarios that have been developed and have been used in this work,

follow the TGax recommendations as described in [329]. There are two different sets

of the TGax simulation scenarios: i) scenarios to capture real-world dense deployments

and ii) scenarios for calibration purpose. For each scenario, TGax specifies some models

and settings such as:

• Topology: The location of the APs and STAs (layout) and the propagation model.

• Traffic model: Either UL (i.e. STA - AP) or DL (i.e. AP - STA). Note that mixed

traffic in dense deployments is not recommended due to its high complexity to

analyse the results, only for the calibration scenarios is allowed mixed traffic (i.e.

DL and UL).

• PHY & MAC parameters:

? Transmit power [dBm]: APs at 20 dBm and STAs at 15 dBm (not EIRP).

? Antenna Gain [dBi]: 0 dBi and -2dBi for APs and STAs, respectively.

? Number of antennas: Default values of STAs is 1, whilst 2 for the APs.

? Noise figure [dB]: 7 for both APs and STAs.

? Bandwidth [MHz]: Either 20 at 2.4 GHz or 20/80 at 5 GHz.

? RTS/CTS: Disabled.
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Figure E.1: Box5 calibration scenario.

? Packet aggregation: Either 1 A-MPDU or maximum size of A-MPDU.

? Traffic: UDP traffic is recommended (as TCP will skew the results when

studying the lower layers, i.e. PHY and MAC).

? Traffic conditions: Full-buffer.

? Packet size: The maximum that can be supported (i.e. 1500 bytes).

E.0.1 Calibration scenarios

The calibration scenario has been introduced to allow various organisations to finely

tune their simulation tools. For this scenario shadowing is not considered (although 5

dB standard deviation per link might be used, but is not recommended). Figure E.1

illustrates the layout for this calibration scenario (i.e. Box5). Note that only DL, only

UL, and mixed traffic (where a few STAs transmit only UL) are supported, whereas the

propagation model applied here follows the one described for SCE3 (as described in the

next Section). This scenario was applied for calibrating and assessing the performance

of COST algorithm (see Chapter 6).
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E.0.2 Dense deployments

Five scenarios have been introduced by TGax to capture real-world deployments:

• Residential scenario (SCE1): SCE1 has been proposed by TGax, representing a

multi-floor building with 5 floors as depicted in Figure E.2a. Each floor comprises

of 2x10 apartments, each one with a size of 10x10x3m and an AP randomly placed

in the apartment in an unplanned fashion. Each AP is randomly assigned in one

of the 3 non-overlapping channels (when operating in 2.4 GHz), 11 otherwise. The

main challenge here is the severe co-channel interference due to the uncontrolled

and unmanaged deployment.

• Enterprise scenario (SCE2): SCE2 represents an office environment, which com-

prises a floor with 8 offices as depicted in Figure E.2b. Each office has an area of

20m x 20m and contains 64 cubicles, with 4 STAs and 4 APs placed per cubicle

and per office, respectively. There are in total 32 APs with 64 STAs per AP. Three

non-overlapping channels in the 2.4 GHz band are assigned for this scenario, with

the following allocation (per office): AP0 ← Channel 1, AP1 ← Channel 6,

AP2 ← Channel 11, AP3 ← Channel 11, AP4 ← Channel 1, AP5 ← Channel 6,

AP6 ← Channel 11, and AP7 ← Channel 11.

• Indoor small BSS (SCE3): SCE3 represents dense indoor deployments (i.e. crowded

statium, airport, auditorium etc.), where thousands of people are concentrated in

a small area. The APs’ deployment is planned in a hexagonal layout with ISD

of 17.32m, and the APs are placed at 3m height. A frequency reuse pattern is

also considered with SR3 to be more representative than SR1, even though, SR1

should also be considered as some regions might have very low available band-

width. For both SR patterns, 19 co-channel cells are considered with one AP per

cell, forming a 2-ring deployment, as depicted in Figure E.2c.

• Outdoor large BSS (SCE4): SCE4 captures an outdoor deployment (i.e. hotspot

areas), where the distance between the APs is high, i.e. ISD of 130m is recom-

mended. Similar to SCE3, 19 APs are planned in a hexagonal layout at 10m

height.



254 Appendix E. TGax Simulation Scenarios

• Outdoor large BSS and Residential scenario (SCE4a): SCE4a represents a of an

outdoor and a residential scenario. However, in this scenario only 7 BSSs are used

with one residential building deployed per BSS, as depicted in Figure E.2d. Note

that each building comprises one floor.

(a) (b)

(c)

  

(d)

Figure E.2: TGax scenarios for dense deployments: a) SCE1 layout, b) SCE2 layout,

c) SCE3 and SCE4 layout, and d) SCE4a layout.

In this work, scenarios Box5, SCE1, SCE2, SCE3, and SCE4 were developed and the

performance of the proposed algorithms was assessed in these scenarios. In partic-

ular, SCE4 was used in Chapter 3 with some modifications, such as 127 APs were

deployed forming a 6-ring deployment with the wrap-around technique enabled as de-

scribed in [329], [338]. Chapter 4 studies the impact of BSS Color in SCE3 with the

wrap-around technique enabled as well. Chapter 6 assesses the performance of the
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proposed COST algorithm in Box5, whilst Chapter 7 evaluates the performance of the

proposed rate control algorithm, namely Damysus, in SCE1, SCE2, SCE3, and SCE4.

Finally, the path loss models used in each scenario are also specified in [329]:

• Path loss for SCE1:

PLsce1(dB) = 40.05 + 20 · log10(
fc
2.4

) + 20 · log10(min(d, dBP )) + 18.3 · ( d

NF
)

d
NF

+2

( d
NF

+1)−0.46

+ 5 · d

NW
+ 1(d > dBP ) · 35 · log10(

d

dBP
) (E.1)

with,

PL: The path loss (in dB)

fc: The frequency (in GHz)

dBP : The breakpoint distance (5m)

NF : The number of floors

NW : The number of walls per floor

NA: The number of apartment per floor and NL

NL: The number of apartment rows per floor

• Path loss for SCE2:

PLsce2 = 40.05 + 20 · log10(
fc
2.4

) + 20 · log10(min(d, dBP )) + 7 · d

NW

+ 1(d > dBP ) · 35 · log10(
d

dBP
) (E.2)

where dBP = 10 (m).

• Path loss for SCE3:

PLsce3 = 40.05+ 20 · log10(
fc
2.4

) + 20 · log10(min(d, dBP )) + 1(d > dBP ) · 35 · log10(
d

dBP
)

(E.3)

where dBP = 10 (m).

• Path loss for SCE4:

LOSprob =


min( 18d , 1) · (1− e

−d
36 ) + e

−d
36 , UMi

min( 18d , 1) · (1− e
−d
63 ) + e

−d
63 , UMa

(E.4)
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where dBP = 146 (m).

PLLOS
sce4/UMi =



21 · log10(
√
d2 + (TXz −RXz)2) + 32.4 + 20 · log10(fc), d ≤ dBP

40 · log10(
√
d2 + (TXz −RXz)2) + 32.4 + 20 · log10(fc)

− 9.5 · log10((dBP )
2 + (TXz −RXz)

2), d > dBP

(E.5)

where TXz, RXz is the height (in m) of the transmitter and receiver, respectively,

d is the 2D distance now, and the Breakpoint distance (in m) is given by:

dBP =
4 · (TXz − 1) · (RXz − 1) · (fc · 109)

C
(E.6)

where C is the speed of light (299792458 m/s) and the fc is in Hz that time. For

more details in respect to the UMi and UMa channel models, the reader can refer

to [383] (Table A1-2) and [384] (Note 1 in Table 7.4.1-1).

• Path loss for Sce4a:

A combination of SCE4 and SCE1.

Figure E.3 illustrates the path loss models for the aforementioned scenarios, where the

breakpoint corresponds to the indicator function as defined in the path loss models.

Furthermore, shadowing has been specified per scenario as: i) SCE1: Log-normal

with 5 dB standard deviation, independent and identically distributed (iid) across all

links, ii) SCE2: Log-normal with 5 dB standard deviation, iid across all links, iii)

SCE3: Log-normal with 5 dB standard deviation, iid across all links, and iv) SCE4:

Log-normal with 3 dB standard deviation, iid across all LOS links and Log-normal with

4 dB standard deviation, iid across all NLOS links.
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Figure E.3: Path loss models for a) SCE1, b) SCE2, c) SCE3, and d) SCE4.
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