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Abstract: Airborne laser scanning (ALS) point cloud has been widely used in various fields, for it can
acquire three-dimensional data with a high accuracy on a large scale. However, due to the fact that
ALS data are discretely, irregularly distributed and contain noise, it is still a challenge to accurately
identify various typical surface objects from 3D point cloud. In recent years, many researchers proved
better results in classifying 3D point cloud by using different deep learning methods. However,
most of these methods require a large number of training samples and cannot be widely used in
complex scenarios. In this paper, we propose an ALS point cloud classification method to integrate
an improved fully convolutional network into transfer learning with multi-scale and multi-view
deep features. First, the shallow features of the airborne laser scanning point cloud such as height,
intensity and change of curvature are extracted to generate feature maps by multi-scale voxel and
multi-view projection. Second, these feature maps are fed into the pre-trained DenseNet201 model
to derive deep features, which are used as input for a fully convolutional neural network with
convolutional and pooling layers. By using this network, the local and global features are integrated
to classify the ALS point cloud. Finally, a graph-cuts algorithm considering context information is
used to refine the classification results. We tested our method on the semantic 3D labeling dataset
of the International Society for Photogrammetry and Remote Sensing (ISPRS). Experimental results
show that overall accuracy and the average F1 score obtained by the proposed method is 89.84% and
83.62%, respectively, when only 16,000 points of the original data are used for training.

Keywords: ALS point cloud; classification; transfer learning; fully convolutional neural network;
graph-cuts; small training samples

1. Introduction

ALS (airborne laser scanning) technology can obtain high precision and high-density 3D point
cloud for a large area, which are used widely in topographic mapping, forest monitoring, power line
detection, 3D building reconstruction and so on [1–4]. However, due to the fact that ALS data are
discretely, irregularly distributed and contain noise, it is still a challenge to accurately identify various
typical surface objects in complex scenarios [5].
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Currently, when classifying 3D point cloud data, there are typically three kinds of approaches
that have been widely investigated, namely rule-based point cloud classification methods,
traditional machine learning methods and deep learning methods. Among them, rule-based point
cloud classification methods first extract the features of each 3D point and then the corresponding
classification rules are designed to classify the point cloud [6–9]. These methods are relatively stable,
but are only applicable when large category attributes have been derived and cannot work well in
complex scenes [10]. Methods based on traditional machine learning are relatively mature point cloud
classification methods. Among these methods, SVM (support vector machine) and RF (random forest)
classifiers are often used to perform point cloud classification with artificial features [11–15]. However,
when applying these methods, the local features of each point need to be estimated independently,
which requires elaborate designing. Moreover, the classification results of these methods tend to suffer
from noise because the label consistency among neighborhood points is not considered [16]. To solve
this problem, researchers began to use CRF (conditional random fields) and MRF (Markov random
fields) frameworks to integrate contextual information into the classification process [17,18]. However,
the classification accuracy of these methods is limited by the feature quality and the performance of
the classifier, which cannot be applied to the large-scale regions, especially in complex environment.

In recent years, deep learning methods have become the most prevalent approach and achieved
great success in image processing and related fields [19–21]. Following this trend, scholars began to
apply CNN (convolutional neural network) on point cloud classification. In order for the existing
CNN models to be used for point cloud classification directly, researchers often transform the unevenly
distributed point cloud into regular images or voxels [22–24]. However, these methods will lead to
feature loss and information redundancy in the process of transforming point cloud into a non-point
cloud. Therefore, researchers began to study the classification methods on the original 3D point cloud.
Qi et al. designed the PointNet model, which was the first deep learning framework to directly classify
the original 3D point cloud [25]. It extracts the local features and global features by using convolutional
and max-pooling operation, and then these features are fed into MLP (multiple layer perception) for
point clouds classification. With the success of PointNet, more and more studies focus on PointNet-like
architectures for point cloud classification. Qi et al. further designed a PointNet++ model to extract
the multi-scale local features by point feature down-sampling and up-sampling [26]. Ben et al. used an
improved Fisher vector to represent point cloud and design a CNN for point classification by these
vectors [27]. Li et al. propose a PointCNN model, a new point feature learning architecture by using
the X-transformation to standardize the disordered point cloud [28]. Tomas et al. designed a new
point convolution named KPConv, which could be applied directly to point cloud [29]. Wen et al.
proposed a novel, directly constrained point convolution module named D-Conv, which extracts locally
representative features of 3D point sets from the projected 2D receptive fields [16]. Moreover, Arief et al.
used the Atrous XCRF model to alleviate the overfitting problem of PointCNN [30]. Although these
3D point-based methods have achieved success in point cloud classification, such methods require
a large number of training samples and manual labeling, which is time consuming and laborious.
Zhao et al. [31] proposed an ALS point cloud classification method based on transfer learning. In this
method, it used the deep residual network to extract deep features, and then a CNN was designed
for point cloud classification. Nonetheless, a small range of multi-view projection led to the lack of
detailed description on each 3D point, which affected classification accuracy. Moreover, in the process
of generating feature maps, a large amount of computing time was required.

To overcome these problems, this paper proposes an ALS point cloud classification method
which integrates an improved fully convolutional network into transfer learning with multi-scale and
multi-view deep features. The main contributions of this paper are as follows:

(1) We proposed a novel feature map generation method using multi-scale voxel and multi-view
projection. This algorithm can quickly and accurately extract the features and reduce the effect of
ground object size on classification results.
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(2) We proposed a novel point cloud classification method by integrating an improved fully
convolutional neural network into the transfer learning. This method uses the pre-trained
DensNet201 model to derive deep features, which can characterize the object effectively. Then,
the full CNN is improved by using max-pooling operation to extract the global features and
average-pooling operation to derive the final feature of each object. Finally, the improved fully
CNN is used for the classification of the ALS point cloud.

(3) Our method achieves the highest accuracy in the ISPRS reference dataset [5]. When only
16,000 points of the original data are used as training samples, our overall accuracy is 89.84% and
the average F1 score is 83.62%.

The rest of the paper is organized as follows. In Section 2, we describe the proposed methods in
detail. Section 3 shows the experimental data, settings, and results. Section 4 discusses the experimental
results and evaluates the performance of the proposed method on ISPRS point cloud segmentation
benchmark dataset. Finally, we conclude our work in Section 5.

2. Methodology

2.1. Overview

Figure 1 shows the overview of the proposed method. The whole procedure is composed of
three parts: (1) feature map generation, (2) point cloud classification based on transfer learning,
(3) post processing.
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Figure 1. The flow chart of the proposed classification method.

(1) Feature map generation includes the shallow feature extraction and the generation of feature
maps by multi-scale voxel and multi-view projection.

(2) Point cloud classification based on transfer learning, which includes deep feature extraction based
on a pre-trained DenseNet201 model and a classification procedure using a fully convolutional
neural network with convolutional and pooling layers.

(3) Post processing, in which a graph-cuts algorithm considering context information is used to refine
the classification result.

A detailed explanation of the whole procedure, as well as the respective methods is presented in
the following subsections.

2.2. Feature Map Generation by Multi-Scale Voxel and Multi-View Projection

2.2.1. Shallow Feature Extraction

At present, the main shallow features used in ALS point cloud classification are elevation features,
spectral features and geometric features. The literature [5] evaluates the importance of various features,
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and the results show that the normalized height in elevation features is the most important feature in
ALS point cloud classification. Intensity information in spectral features is widely used for classification
because it can effectively distinguish ground objects of different materials. Similarly, the change of
curvature in geometric features can distinguish flat objects such as buildings and roads from irregular
objects such as vegetation and shrubs [31]. Therefore, the above three features, namely the normalized
height, intensity and change of curvature are selected as the shallow features in this paper. To calculate
the normalized height, an excellent and efficient CSF filtering algorithm is used to identify ground
and non-ground points from the original point cloud [32]. Then, the ground points are interpolated
to generate a DEM (digital elevation model), and the normalized height of each point is obtained
by reducing the corresponding height in DEM. Intensity features can be derived by searching in
the original file. The change of curvature is obtained by the covariance analysis. In the calculation
of covariance, the selection of neighborhood points is very important. Our proposed method uses
Shannon entropy to adaptively select the optimal number of neighborhood points for each point [33]
and then the optimal neighborhood point is used to obtain the change of curvature.

2.2.2. Projecting Shallow Feature into Feature Map

Due to the requirement of subsequent transfer learning, we project the shallow features into
feature maps. The projection method combining point cloud voxelization and cube neighborhood
projection, which can preserve the original spatial features and reduce the computational complexity.
The projection of feature map is shown in Figure 2.
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Figure 2. Projection of a feature map: (a) ALS point cloud display by the normalized height, intensity
and change of curvature, (b) two-dimensional grid generation of point P, (c) Z value of each grid node
is calculated in the voxelized point cloud, (d) calculating the normalized height, intensity and change
of curvature of each grid node in the cube neighborhood, (e) feature map of point P that indicating the
normalized height, intensity and change of curvature.

Figure 2 shows the projection process from the normalized height, intensity and change of
curvature to feature map of point P. First, point P is projected to an X-Y plane, and then a regular grid
is constructed with point P as the center, as shown in Figure 2b. The coordinates of each grid node are
calculated by Equation (1).

Xpi, j = XP + ( j− [(N − 1)/2]) ∗ S,
Ypi, j = YP + (i− [(N − 1)/2]) ∗ S,

(1)

In Equation (1), i and j are the row and column number corresponding to the grid node pi,j.
(Xpi,j,Ypi,j) are the two-dimensional coordinates of point Pi,j. (XP, YP) are the coordinates of point P;
S is the size of the grid; N is the height of feature map, which is defined as 33 in this paper.

Second, a voxelized point cloud is generated by down sampling the original point cloud with
grid size S. Then, two-dimensional adjacent points of each grid node are searched in the voxelized
point cloud. By using 3D coordinates of these adjacent points, an interpolation process is conducted
to derive the Z value of the corresponding grid node, as shown in Figure 2c. For each 3D grid node
calculated from above process, three points closest to it are searched in a cube neighborhood with point
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P serving as the center. Then these points are used to calculate the normalized height, intensity and
change of curvature of the corresponding grid node, as shown in Figure 2d.

Finally, the three features above can be re-assigned to a range of 0~255, that is, a feature map with
three channels can be generated, which can be seen from Figure 2e.

2.2.3. Multi-Scale and Multi-View Feature Maps Generation

To derive a more accurate description of 3D objects in point cloud, a multi-scale voxel and
multi-view feature maps generation method is proposed in this paper. For each 3D point, three feature
maps are generated with different grid sizes by using aforementioned feature map projection method,
which can be seen from Figure 3. In this work, three grid sizes including S1 = 0.1 m, S2 = 0.3 m and
S3 = 0.5 m are adopted for the generation of multi-scale feature maps, which are determined by the
point cloud density and the size of ground objects in the experimental area. Differently from the
method of Zhao et al. [31], we generated the multi-scale feature maps based on the voxelized point
cloud, which can improve the neighborhood searching efficiency during the generation of feature maps.
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Note that the aforementioned feature maps are derived by projecting the point cloud into X-Y
plane. Figure 4a shows the feature map with a grid size of S1 based on the projection plane of X-Y
plane. In addition, other two feature maps are then generated by projecting the point cloud to Y-Z
plane and X-Z plane by using the feature map projection method described in Section 2.2.2, as shown
in Figure 4b,c. In the method of Zhao et al. [31], they rotated the point cloud with two small angles
to generate multi-view feature maps. In our method, we project the voxelized point cloud into X-Y,
Y-Z, and X-Z plane for the generation of multi-view feature maps, which can derive a more accurate
description of each 3D point.Sensors 2020, 20, x FOR PEER REVIEW 6 of 17 
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In summary, five feature maps are obtained as the inputs for the transfer learning. Among them,
three feature maps are generated by projecting the point cloud into X-Y plane with three grid sizes,
and other two feature maps are generated by projecting the point cloud into Y-Z and X-Z plane with
the same grid size.

2.3. Point Cloud Classification Based on Transfer Learning

2.3.1. Deep Feature Extraction

In order to obtain a well-trained deep neural network, a large number of training samples are
usually required and many parameters need to be tuned in this process. To solve these problems,
scholars began to apply the transfer learning method for point cloud classification. In transfer learning,
it is critical to choose an appropriate pre-trained neural network, which can extract deep features
with good generalization performance [31]. The well-known network-based transfer learning model
includes AlexNet, VggNet, and ResNet which are commonly used in various classification tasks [34].
Zhao et al. use the ResNet50 model pre-trained on ImageNet to extract the deep features [31]. In this
paper, we use DensNet201 model instead of ResNet50 model to extract deep features, because the
pre-trained DensNet201 model achieves better performance in the following classification task. This can
be explained that the dense connection and feature reuse of DenseNet can extract deep features more
efficiently. Meanwhile, the ImageNet dataset can also provide data guarantee for transfer learning [35].
As shown in Figure 5, the feature maps (5 × 33 × 33 × 3) generated in Section 2.2 are fed into the
pre-trained DesNet201 model to generate the multi-scale and multi-view deep features (5 × 1920).
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2.3.2. Classification by Using an Improved Fully Convolutional Neural Network

Multi-scale and multi-view deep features derived from the pre-trained DenseNet201 model have
a good generalization ability, which is critical to improve classification accuracy. Based on these
deep features, a classifier is often needed for subsequent point cloud classification. In this paper,
an improved fully convolutional neural network was designed to carry out the classification task.
Compared with the fully-connected layer, the convolutional and pooling layers can effectively conduct
data mining, reduce computing cost and increase classification accuracy [25,36]. We designed a fully
convolutional neural network with convolutional and pooling layers for the classification of ALS point
cloud, as can be seen from Figure 6. First, the deep features derived from pre-trained DenseNet201
model (5 × 1920) were used to generate the global features (1 × 1920) by the max-pooling operation.
Second, the combined features (6 × 1920), which were formed by global features and deep features
were fed into multiple convolutional layers with different convolutional kernels to learn high-level
features (2 × 8). After that, the average-pooling layer was used to derive the final feature of each object
(1 × 8). Finally, a softmax layer was used to obtain the per-class probability of each point and the
prediction label was obtained.
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2.4. Post Processing with Graph-Cuts Optimization

Although the context information is taken into account in the generation of feature maps, the point
cloud classification adopted in this paper is conducted point by point, so it is easy to make the point
cloud classification result containing noise, which affects the classification accuracy. To further improve
the classification accuracy, a post processing is conducted by using graph-cuts optimization. In this
process, the adjacent points around the interest point are searched to build an undirected graph
model. The nodes in the graph represent each 3D points, while the edges indicate the neighborhood
environment. Based on this graph model, a cost function is defined as:

E(L) =
∑

p∈P
Dp

(
lp
)
+ λ

∑
{p,q}∈N

Vp,q
(
lp, lq

)
·B(p,q), (2)

In Equation (2), the first item on the right side of the equation is the data item. Dp
(
lp
)

represents
the cost when marking point p as the corresponding category lp, which is defined as the per-class
probability of point p derived from the transfer learning. The second item on the right of the equation
is a smooth item. Vp,q

(
lp, lq

)
represents the cost of determining adjacent points (p, q) as the same

or different category. When marked as the same category, its value is 0; otherwise, its value is 1.
The parameter λ shows the contribution of the data and smooth terms to the total energy function. P is
the set of all points; N is the geometry of neighborhood points. B(p,q) can be expressed as Equation (3).
In Equation (3), k is defined as the 3D distance between adjacent point p and q.

B(p,q) = e−k, (3)

The aforementioned cost function can be solved by employing a graph-cuts strategy using the
alpha-expansion, which can minimize the cost function to refine the classification results [37].

3. Experimental Results

3.1. Dataset

We use two ALS dataset to evaluate the performance of the proposed classification method.
The first dataset is provided by the ISPRS Test Project on Urban Classification and 3D Building
Reconstruction [5]. The ISPRS benchmark dataset is collected by the Leica ALS50 system and has a
point density of about 4/m2. Each point contains information such as 3D coordinates, reflection intensity
and category label. As shown in Figure 7, the dataset is divided into training data and test data.
Among them, the training data have 753,876 points and the testing data have 411,722 points. The dataset
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defines nine different classes, including powerline (Pow), low vegetation (Low_veg), impervious surface
(Imp_sur), car (Car), fence/hedge (Fe/He), roof (Roof), facade (Facade), shrub (Shrub) and tree (Tree).
In our experiment, we ignore class powerline, which has a limited number of occurrences (around a
thousand) in the ISPRS benchmark dataset.
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In order to further verify the generalization ability of the proposed classification method,
experiments are conducted on the 2019 IEEE GRSS Data Fusion Competition (DFC) 3D point cloud
classification dataset. The dataset contains information such as 3D coordinates, intensity and labels
for each point, and are labeled into six classes: ground, high vegetation, building, water, road/bridge
and unclassified points. As shown in Figure 8, in our experiment, we chose two areas from the
dataset as training data and testing data, respectively, and kept only the first five kinds of point clouds.
Among them, there are 748,569 points in the training data and 799,881 points in the testing data.Sensors 2020, 20, x FOR PEER REVIEW 9 of 17 
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3.2. Experiment Settings

In the experiment, we randomly selected 2000 samples per-class from ISPRS benchmark dataset
and IEEE training dataset for training. By using these training data, the proposed network is trained
100 epochs. During the training, we adopted the optimization method of Adam [38], with the initial
learning rate set as 0.0001 and batch size set as 128. Overall accuracy (OA), F1 score and average F1
score (Avg. F1) are used as accuracy evaluation indexes. The F1 score is an evaluation index that
comprehensively considers the precision and the recall. F1 score is defined as Equation (4):

F1 = 2·
precision·recall

precision + recall
, (4)

In this study, Python 3.5, Tensorflow 1.13.1 and Keras 2.4.3 were used to generate the feature
maps and classify the point cloud. All the algorithms were implemented on a computer with an Intel
I7-6700HQ CPU, 16 GB RAM, and a GeForce GTX1070 (8 GB\Nvidia) GPU.

3.3. Classification Result

Based on the above experiment settings, two aforementioned datasets are used to validate the
proposed method. The qualitative evaluation of the experimental results can be seen from Figure 9.
We can tell by the Figure 9 that various objects have been effectively identified by using the proposed
method in this paper by our proposed model.
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In addition to qualitative evaluation, the overall accuracy and F1 score are used to quantitatively
evaluate the experimental result. For ISPRS benchmark dataset, the overall accuracy and average F1
score are 89.84% and 83.62%, respectively, which are higher than all the contrast methods. In addition,
we also obtain a high classification accuracy for the IEEE dataset. The overall accuracy of the IEEE
dataset is 98.31% and the average F1 score is 87.50%. The F1 scores of each category are 99.36% (ground),
97.48% (high vegetation), 92.97% (building), 66.11% (water) and 81.57% (road/bridge), respectively.
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4. Discussion

4.1. Impact of Multi-View and Multi-Scale Features

In order to verify the impact of multi-view and multi-scale features on the classification results,
we performed experiments using four configurations: (1) using the single scale feature with a grid size
of 0.1 m for classification, based on that we project the point cloud into X-Y plane (V1/S1); (2) using
multi-scale features with grid sizes of 0.1 m, 0.3 m and 0.5 m for classification, we project the point cloud
into X-Y plane (MS); (3) using multi-view features by projecting the point cloud into X-Y, Y-Z and X-Z
plane for classification set the grid size as 0.1 m (MV); (4) using the multi-scale and multi-view features
for classification (MSMV). Figure 10 shows per-class F1 score of the aforementioned four configurations.
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Figure 10. F1 score of each class on ISPRS benchmark dataset under four different configurations.

As shown in Figure 10, the per-class F1 score of S1 (V1) is lower than the configuration using MS
features or MV features, and the highest per-class F1 score is obtained by using MSMV features in this
experiment. In addition, the overall accuracy of MSMV is 87.96%, which is higher than S1 (73.22%),
MS (81.09%) and MV (82.29%). In general, the configuration of using MSMV features achieves the best
classification result in this experiment. This can be explained by that the multi-scale and multi-view
features can be used to effectively express the inherent features of 3D point cloud. So, we use MSMV
features as the input of the subsequent transfer learning.

Note that we voxelize the point cloud by using the grid sizes as the feature maps. By this means,
the original point cloud can be reduced by 10.5%, 30.0%, 50.1% in scale of 0.1 m, 0.3 m and 0.5 m,
respectively. Experimental results show that the overall accuracy of using voxel is 87.96% and the
average F1 score is 79.96%, which are almost the same as the classification accuracy without voxelizing
the point cloud, 87.97% (OA) and 80.07% (Avg. F1). It is indicated that the proposed multi-scale voxel
projection method can reduce time of calculation while maintaining the classification accuracy.
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4.2. Performance of the Improved Fully Convolutional Neural Network

In this paper, we designed an improved fully convolutional neural network with convolutional
and pooling layers for point cloud classification. In order to verify the performance of the proposed
network, we conducted experiments using three networks for comparison: (1) FC only uses the
fully-connected layer; (2) FCN only uses the convolutional layer; and (3) CN-P uses the pooling and
the convolutional layers. Table 1 lists the overall accuracy and F1 score of each category by using
different networks.

Table 1. F1 score of each class and overall accuracy (OA) using different classification network on
ISPRS benchmark dataset. Bold numbers show the highest values (%).

Classifer
F1 Score

OA
Low_veg Imp_sur Car Fe/He Roof Facade Shrub Tree

FC 83.78 92.15 66.45 69.46 92.13 55.07 63.75 85.51 85.09
FCN 84.11 93.1 71.49 65.33 93.67 60.63 64.95 87.53 86.3
CN-P 86.36 93.69 73.44 71.14 94.3 61.55 70.18 89.01 87.96

As shown in Table 1, the classification accuracy of FCN is higher than FC. CN-P achieves the
best classification accuracy in this experiment, especially for points of the ground objects, such as
low vegetation, fence/hedge, and shrub. For these objects, the F1 score of CN-P is 2.25%, 5.81% and
5.23% higher than that of FCN. From Table 1, we can see that the overall accuracy of CN-P is 87.96%,
which indicates that the designed fully convolutional neural network is beneficial for effective feature
extraction and can be used to classify the point cloud accurately.

4.3. Effectiveness of Graph-Cuts Optimization

In order to verify the effectiveness of the graph-cuts optimization algorithm, experiments with
and without graph-cuts optimization on ISPRS benchmark dataset are performed. The F1 score of each
class and overall accuracy of these two experiments are listed in Table 2. In Table 2, N-GC means the
result of not using graph-cuts optimization; GC means the result of using graph-cuts optimization.

Table 2. F1 score of each class and overall accuracy (OA) with and without graph-cuts optimization on
ISPRS benchmark dataset. Bold numbers show the highest values (%).

Method
F1 Score

OA
Low_veg Imp_sur Car Fe/He Roof Facade Shrub Tree

N-GC 86.36 93.69 73.44 71.14 94.3 61.55 70.18 89.01 87.96
GC 87.33 94.02 84.46 76.17 95.76 67.07 73.44 90.75 89.84

As shown in Table 2, the overall accuracy with graph-cuts optimization is 1.88% higher than
N-GC. The F1 scores of all class have been increased, which indicate that the graph-cuts is effective
for refining the point cloud classification result. Note that there are noise points in the classification
result of transfer learning, as can be seen from Figure 11a,c. In the areas marked by red ellipses in
Figure 11a,c, there are scattered misclassification points of shrubs and trees, fences and trees, etc.
These misclassification points have been identified as the correct category after graph-cuts optimization,
which can be seen in Figure 11b,d.
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Figure 11. The classification results before and after graph-cuts optimization on ISPRS benchmark
dataset: (a) the classification results before graph-cuts optimization of area1, (b) the classification results
after graph-cuts optimization of area1, (c) the classification results before graph-cuts optimization of
area2, (d) the classification results after graph-cuts optimization of area2.

4.4. Comparison with Other Methods

To evaluate the proposed method, we compared it with the top five classification methods
submitted on the ISPRS website, including WhuY3 [39], RIT_1 [40], LUH [41], NANJ2 [42] and
WhuY4 [43]. To further prove the advantage of our proposed method in this paper, we also compared
our method with the recently published point cloud classification methods using deep learning,
including D-FCN [16], A-XCRF [30], JGVNet [44], VPNet [45], DRN [31]. Per-class F1 score and overall
accuracy of each submission, including ours, are shown in Table 3.

Table 3. F1 scores of each category and overall accuracy (OA) of different classification methods.
Bold numbers show the highest values. The underlined numbers are the second-best values for each
evaluation metric (%).

Method
F1 Score

OA
Pow Low_veg Imp_sur Car Fe/He Roof Facade Shrub Tree

WhuY3 37.1 81.4 90.1 63.4 23.9 93.4 47.5 39.9 78.0 82.3
RIT_1 37.5 77.9 91.5 73.4 18.0 94.0 49.3 45.9 82.5 81.6
LUH 59.6 77.5 91.1 73.1 34.0 94.2 56.3 46.6 83.1 81.6

WhuY4 42.5 82.7 91.4 74.7 53.7 94.3 53.1 47.9 82.8 84.9
NANJ2 62.0 88.8 91.2 66.7 40.7 93.6 42.6 55.9 82.6 85.2
D-FCN 70.4 80.2 91.4 78.1 37.0 93.0 60.5 46.0 79.4 82.2

A-XCRF 63.0 82.6 91.9 74.9 39.9 94.5 59.3 50.8 82.7 85.0
JGVNet 66.9 82.6 91.6 78.6 37.9 95.8 60.6 42.6 83.7 85.0
VPNet 74.5 82.1 91.6 83.4 45.9 93.3 60.6 51.1 82.3 84.0
DRN - 83.3 92.5 52.4 62.5 95.2 62.8 64.9 88.7 86.8
Ours - 87.3 94.0 84.5 76.2 95.8 67.1 73.4 90.8 89.8
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As shown in Table 3, compared with all the contrast methods, our proposed method shows the
best result in overall accuracy and per-class F1 scores except for powerline and vegetation. Note that
the proposed method achieves substantially higher performance on the fence/hedge, facade and shrub
categories, for which it outperforms the second-best method for the above categories by 13.7%, 4.3%,
8.5%, respectively. The overall accuracy and the average F1 score of our method is 3.0% and 8.3% higher
than the overall second-best DRN method. This can be explained by that the multi-scale and multi-view
features can be explored to characterize 3D point cloud comprehensively, and these deep features are
applicable to the designed a fully convolutional neural network to derive accurate classification.

In addition to compare the classification accuracy, we also compare the number of training
samples with other methods. In the proposed method, only 16,000 points are selected as training data
However, RIT_1, D-FCN, A-XCRF, JGVNet and VPNet use all original training dataset as training data.
The experimental result shows that the proposed method can be used to accurately classify the ALS
point cloud with a small number of training samples.

5. Conclusions

In this paper, an ALS point cloud classification method is proposed by integrating an improved
fully convolutional network into transfer learning. In this method, the multi-scale and multi-view
feature maps are firstly extracted to characterize 3D point cloud comprehensively, and then these
feature maps are fed into the pre-trained DenseNet201 model to obtain the deep features with good
generalization. Subsequently, a fully convolutional neural network is designed to classify the ALS
point cloud. Finally, a graph-cuts algorithm is used to refine the classification results. We test our
method on the ISPRS benchmark dataset, the overall accuracy of 89.84% and the average F1 score of
83.62% are achieved, which outperforms other contrast classification method reported in the recent
literature. The IEEE dataset experimental results show that, the overall accuracy is 98.31% and the
average F1 score is 87.50%.

However, the procedure of feature maps generation is complex in the proposed method. It is
because those algorithms in our programs are not integrated efficiently, and a lot of redundant data will
be generated during the experiments. In addition, only three kinds of shallow features are extracted
to derive deep features, which will affect the classification accuracy. In the future, the algorithms
proposed in this paper will be integrated efficiently to reduce data redundancy, and the proposed
method will be validated on more datasets.
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