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Abstract: We discuss the motion of substance in a channel containing nodes of a network. Each node
of the channel can exchange substance with: (i) neighboring nodes of the channel, (ii) network nodes
which do not belong to the channel, and (iii) environment of the network. The new point in this study
is that we assume possibility for exchange of substance among flows of substance between nodes
of the channel and: (i) nodes that belong to the network but do not belong to the channel and (ii)
environment of the network. This leads to an extension of the model of motion of substance and the
extended model contains previous models as particular cases. We use a discrete-time model of motion
of substance and consider a stationary regime of motion of substance in a channel containing a finite
number of nodes. As results of the study, we obtain a class of probability distributions connected to
the amount of substance in nodes of the channel. We prove that the obtained class of distributions
contains all truncated discrete probability distributions of discrete random variable ω which can take
values 0, 1, . . . , N. Theory for the case of a channel containing infinite number of nodes is presented in
Appendix A. The continuous version of the discussed discrete probability distributions is described
in Appendix B. The discussed extended model and obtained results can be used for the study of
phenomena that can be modeled by flows in networks: motion of resources, traffic flows, motion of
migrants, etc.

Keywords: network; channel of network; flow of substance in a channel of a network; probability
distributions for stationary flow of substance; Katz, Ord, Kemp families of probability distributions;
general forms of discrete and continuous distribution for stationary flow of substance

1. Introduction

Networks of different degrees of complexity arise often in research on complex systems. Flows
of substances occur frequently in these systems and because of this, network flow models are
used, for example, to study flows in computer networks [1], flows in electrical and communication
networks [2], to detect network structure [3], to study flows in financial networks [4], flows connected to
transportation problems [5–7], etc. [8–12]. Below, we discuss flow of substance in a channel of a network
containing a chain of network’s nodes which are connected by edges. The kind of substance can be
different (e.g., some resource which flows through the channel) and we consider a discrete-time model
of motion of the substance through the studied channel. There are exchanges between nodes of the
channel and (i) other nodes of the channel; (ii) network nodes which are not part of the channel; and (iii)
environment of the network. The new point in this study is that in addition to the above exchanges we
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assume also possibility for exchange of substance among the flows between the nodes of the channel and
(i) the network; (ii) the environment of the network. Thus, the discussed model extends models studied
up to now, for example, in [13,14], and has different possible applications such as: (i) to model flow of a
substance through a channel and use of part of this substance in some industrial process happening
in the nodes of the channel or (ii) to model human migration flows. The last application is important
because of the frequent use of probability and deterministic models of human migration [15–19] and
as the migration flows are important for taking decisions about economic development of regions
of a country [20–24] for analysis of migration networks [13,25–31], and ideological struggles [32,33];
for study of waves and probability distributions in population systems [34–37], etc. Migration-like
models are also used in other research areas [38,39]. The model described below can be connected to
an appropriate urn model. This is a useful connection as urn models are greatly applied in the research
of various problems, e.g., genetics, clinical trials, biology, social dynamics, military theory, etc. [40–43].

The text below is organized as follows. In Section 2, we formulate a general model of motion of a
substance in a channel of a network containing a finite number of nodes. In Section 3, we describe the
particular case of the general model which will be discussed in the article. in Section 4 we obtain a class
of probability distributions connected to the stationary motion of substance through the channel and
show that this class of distributions contains all possible truncated discrete distributions of a random
variable which can take values 0, . . . , N. As a result of this, the obtained class of distributions contains,
in particular, cases of the classes of (long-tail) distributions obtained in our previous research. Short
discussion of the obtained results is presented in Section 5. Theory for the case of the channel containing
infinitely many nodes is presented in Appendix A. The class of probability distributions obtained there
contains, in particular, cases of the classes of distributions of Katz, Ord, Kemp, etc. In Appendix B,
we obtain a probability distribution for the case of a continuous random variable taking values between
0 and 1. This distribution is a continuous analogue of the discrete distributions discussed in main text
and in Appendix A.

2. Mathematical Formulation of the Model

We consider a channel in a network consisting of nodes connected by edges—Figure 1. We assume
that the channel consists of a chain of N + 1 nodes (labeled from 0 to N) connected by corresponding
edges (ways for motion of the substance). Each edge connects two nodes and each node is connected
to two edges except for 0-th node and N-th node which are connected to one edge. Some kind of
substance moves through the nodes and edges of the channel.

This motion is accompanied by processes of the exchange of substance between the channel,
the rest of the network, and the environment of the network. The possible processes of exchange of
substance for the i-th node of the channel are shown in Figure 2. One can image that an urn is placed in
any of the nodes of the channel and in any of other nodes of the network and exchange of substance is
among these urns. The i-th node can exchange substance with the (i− 1)-th and with (i + 1)-th nodes.
The i-th node can also exchange substance with network nodes outside the channel and with the
environment of the network. Let us denote as: (i) “leakage”—the process of motion of substance from
a node of the channel to a node of the network or from a node of the channel to environment of the
network; (ii) “inflow”—the process of motion of substance from a node of the network that does not
belong to the channel or from the environment of the network to a node of the channel. The additional
exchanges of substance connected to the flows between the i-th node and other nodes are shown in
Figure 2 by arrows having dashed or dot-dashed lines. These exchanges are not accounted for by the
previous models.
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Figure 1. An example of the kind of channel studied in the text. The channel consists of 7 nodes
labeled from 0 to 6. Some substance can move through the channel. Exchange of substance is possible
between nodes of the channel, other nodes of the network, and environment of the network. In addition,
there can be exchange of substance among the flows between the nodes of the channel and other nodes
of the network or environment of the network. The nodes of the network that belong to the channel
and edges that connect these nodes are painted by circles and solid lines. Other nodes and edges of the
network are painted by rectangles and dashed lines.

Node (urn)

i

Node (urn)
i+1

Node (urn)
i−1

of the network

Exchange with other nodes

Exchange with the environment

of the network

Figure 2. Exchanges connected with the i-th node of chain of nodes i = 0, . . . , N. Note that nodes
with numbers 0 and N are connected only to one of other nodes of the channel. These two nodes may
exchange substance only with one of the other nodes of the channel. The new point in this study is the
possibility for an exchange of substance: (i) among flows between nodes and the network (arrows with
dashed lines) and (ii) among flows between nodes and environment of the network (arrows with
dot-dashed lines).

We consider a discrete-time and assume that intervals between moments of time have equal length.
At each time interval, the substance in a node of the channel can participate in the following processes:
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(1) substance remains in the same node;
(2) substance moves to previous or to the next node (e.g., substance may move from node m to node

m + 1 or from node m to node m− 1);
(3) substance leaks from the node m. Leaked substance does not belong anymore to the channel.

Such substance may spread through the network or through the environment of the network.
Thus, we have two kinds of leakage: (i) leakage from node m of the channel to nodes of the
network and (ii) leakage from node m of the channel to the environment of the network;

(4) the substance “inflows” to node m. Two kinds of “inflow” are possible: (i) inflow from nodes of
the network to the node m of the channel and (ii) inflow from environment of the network to the
node m of the channel.

In addition, the substance from any of the flows between nodes of the channel can participate in
the following processes:

(5) substance can move from the flow to a node of the network which does not belong to the channel
(arrows with dashed line pointing from the flow in Figure 2);

(6) substance can move from a node of the network which does not belong to the channel to the flow
between two nodes of the channel (arrows with dashed line pointing to the flow in Figure 2);

(7) substance can move from the flow to the environment of the network (arrows with dot-dashed
line pointing from the flow in Figure 2);

(8) substance can move from the environment of the network to the flow between two nodes of the
channel ( arrows with dot-dashed line pointing to the flow in Figure 2).

Let us formalize mathematically the above considerations. We consider discrete-time tk,
k = 0, 1, 2, . . . and denote by xi(tk) the amount of substance in the i-th node of the channel at the
beginning of time interval [tk, tk + ∆t]. For processes happening in this time interval in the n-th node
of the channel, we use the following notations:

1. ie
n(tk) and oe

n(tk) are amounts of inflow and outflow of substance from the environment to the
n-th node of the channel (upper index e means that the quantities are for the environment);

2. oc
n(tk) is the amount of outflow of substance from the n-th node of the channel to the (n + 1)-th

node of the channel (upper index c means that the quantity is for the channel);
3. ic

n(tk) is the amount of inflow of substance from the (n + 1) node of the channel to the n-th node
of the channel;

4. on
n(tk) and in

n(tk) are the amounts of outflow and inflow of substance between the n-th node of
the channel and the network (upper index n means that quantities are for the network).

In addition, there are the following exchanges for the flows between nodes of the channel, nodes
of the network, and environment of the network. We note that in general we have two flows of
substance between the nodes of the channel: (a) flow directed from i-th node of the channel to i + 1-th
node of the channel, and (b) flow directed from i + 1-th node of the channel to i-th node of the channel.
We denote the corresponding flows as follows:

5. f e
n(tk): amount of the outflow of substance to the environment of network from the flow between

the n-th and n + 1-th nodes of the channel;
6. f n

n (tk): amount of the outflow of substance to the network from the flow between the n-th and
n + 1-th nodes of the channel;

7. ge
n(tk): amount of the inflow of substance from the environment of the network to the flow

between the n-th and n + 1-th nodes of the channel;
8. gn

n(tk): amount of the inflow of substance from the network to the flow between the n-th and
n + 1-th nodes of the channel;

9. he
n(tk): amount of the outflow of substance to the environment of network from the flow between

the n + 1-th and n-th nodes of the channel;
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10. hn
n(tk): amount of the outflow of substance to the network from the flow between the n + 1-th

and n-th node of the channel;
11. pe

n(tk): amount of the inflow of substance from the environment of the network to the flow
between the n + 1-th and n-th nodes of the channel;

12. pn
n(tk): amount of the inflow of substance from the network to the flow between the n + 1-th and

n-th nodes of the channel.

We are interested in the amounts of substance available in the nodes of the channel. For the
0-th node there are: exchange of substance with the environment (inflow and outflow); exchange of
substance with next node of channel (inflow and outflow); and exchange of substance with the network
(inflow and outflow). In addition to the inflow from the neighbor node of the channel, there are
exchanges of substance (inflow and outflow) with the network and with the environment of the
network. Similarly, 4 exchanges are available also for the outflow from the 0-th node of the channel to
the next node of the channel. From all of these exchanges, what are significant for the 0-th node are the
inflows and outflows from the network and from the environment of the network towards the inflow
of substance in the 0-th node as these exchanges of substance contribute to the change of substance
in the 0-th node of the channel. Thus the change of amount of substance in 0-th node of channel is
described by the relationship

x0(tk+1) = x0(tk) + ie
0(tk)− oe

0(tk)− oc
0(tk) + ic

0(tk)− on
0 (tk) + in

0 (tk)− he
0(tk)−

hn
0 (tk) + pe

0(tk) + pn
0 (tk). (1)

For the nodes of the channel numbered by i = 1, . . . , N − 1, there is an exchange of substance with the
environment, exchange of substance with the network, and exchange of substance with the (i− 1)-th
and (i + 1)-th node of the channel. Thus, the change of amount of substance in the i-th node of channel
is described by relationship

xi(tk+1) = xi(tk) + ie
i (tk)− oe

i (tk) + oc
i−1(tk)− ic

i−1(tk)− oc
i (tk) + ic

i (tk)− on
i (tk) + in

i (tk)−
he

i (tk)− hn
i (tk) + pe

i (tk) + pn
i (tk)− f e

i−1(tk)− f n
i−1(tk) + ge

i−1(tk) + gn
i−1(tk),

i = 1, . . . , N − 1 (2)

For the N-th node of the channel, there is an exchange of substance with the environment, exchange of
substance with the network, and exchange of substance with the (N − 1)-th node of the channel. Thus,
the change of the amount of substance in the N-th node of channel is described by relationship

xN(tk+1) = xN(tk) + ie
N(tk)− oe

N(tk) + oc
N−1(tk)− ic

N−1(tk)− on
N(tk) + in

N(tk)− f e
N−1(tk)−

f n
N−1(tk) + ge

N−1(tk) + gn
N−1(tk). (3)

Equations (1)–(3) describe the general case of motion of substance along a channel of nodes
connected to a network and in direction to the environment of this network.

3. Studied Particular Case of the General Model (1)–(3)

We continue our study by consideration of a particular case for the relationships for the
quantities from the system of Equations (1)–(3). In this particular case, we have linear relationships
connecting the exchanges between the nodes of the channel and the amounts of substance in the nodes.
The relationships are as follows.
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• Exchange between the nodes of the channel and the environment of the network

ie
0(tk) = σ0(tk)x0(tk); oe

0(tk) = µ0(tk)x0(tk)

ie
i (tk) = σi(tk)xi(tk); oe

i (tk) = µi(tk)xi(tk), i = 1, . . . , N − 1

ie
N(tk) = σN(tk)xN(tk); oe

N(tk) = µN(tk)xN(tk) (4)

• Exchange between the channel and the network

in
0 (tk) = ε0(tk)x0(tk); on

0 (tk) = γ0(tk)x0(tk)

in
i (tk) = εi(tk)xi(tk); on

i (tk) = γi(tk)xi(tk), i = 1, . . . , N − 1

in
N(tk) = εN(tk)xN(tk); on

N(tk) = γN(tk)xN(tk) (5)

• Exchange within the channel

oc
0(tk) = ϕ0(tk)x0(tk); ic

0(tk) = δ1(tk)x1(tk)

oc
i (tk) = ϕi(tk)xi(tk); ic

i (tk) = δi+1(tk)xi+1(tk), i = 1, . . . , N − 2

oc
N−1(tk) = ϕN−1(tk)xN−1(tk);

ic
N−1(tk) = δN(tk)xN(tk) (6)

• Exchanges between flows among the nodes of the channel and the network/environment of
the network

f e
n(tk) = ζn(tk); f n

n (tk) = θn(tk);

ge
n(tk) = κn(tk); gn

n(tk) = λn(tk)

he
n(tk) = νn(tk); hn

n(tk) = πn(tk)

pe
n(tk) = ρn(tk); pn

n(tk) = τn(tk) (7)

For this particular case, the system of Equations (1)–(3) becomes

x0(tk+1) = x0(tk) + σ0(tk)x0(tk)− µ0(tk)x0(tk)− ϕ0(tk)x0(tk) + δ1(tk)x1(tk)−
γ0(tk)x0(tk) + ε0(tk)x0(tk)− ν0(tk)− π0(tk) + ρ0(tk) + τ0(tk), (8)

xi(tk+1) = xi(tk) + σi(tk)xi(tk)− µi(tk)xi(tk) + ϕi−1(tk)xi−1(tk)− δi(tk)xi(tk)−
ϕi(tk)xi(tk) + δi+1(tk)xi+1(tk)− γi(tk)xi(tk) + εi(tk)xi(tk)− νi(tk)−
πi(tk) + ρi(tk) + τi(tk)− ζi−1(tk)− θi−1(tk) + κi−1(tk) + λi−1(tk),

i = 1, . . . , N − 1, (9)

xN(tk+1) = xN(tk) + σN(tk)xN(tk)− µN(tk)xi(tk) + ϕN−1(tk)xN−1(tk)− δN(tk)xN(tk)−
γN(tk)xN(tk) + εN(tk)xN(tk)− ζN−1(tk)− θN−1(tk) + κN−1(tk) + λN−1(tk).

Below, we consider the case of absence of an inflow from the (i + 1)-th node to the i-th node of the
channel (no flow of substance in the direction opposite to the direction from the 0-th node to the N-th
node of the channel). In this case, the system of Equations (8)–(10) becomes

x0(tk+1) = x0(tk) + σ0(tk)x0(tk)− µ0(tk)x0(tk)− ϕ0(tk)x0(tk)− γ0(tk)x0(tk)

+ε0(tk)x0(tk) (10)
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xi(tk+1) = xi(tk) + σi(tk)xi(tk)− µi(tk)xi(tk) + ϕi−1(tk)xi−1(tk)− ϕi(tk)xi(tk)−
γi(tk)xi(tk) + εi(tk)xi(tk)− ζi−1(tk)− θi−1(tk) + κi−1(tk) + λi−1(tk)

i = 1, . . . , N − 1 (11)

xN(tk+1) = xN(tk) + σN(tk)xN(tk)− µN(tk)xi(tk) + ϕN−1(tk)xN−1(tk)− γN(tk)xN(tk) +

εN(tk)xN(tk)− ζN−1(tk)− θN−1(tk) + κN−1(tk) + λN−1(tk) (12)

We shall study the stationary case of the model Equations (10)–(12) in more detail below.

4. Results

We consider the case of stationary motion of the substance through the channel of nodes. In this
case, xi(tk+1) = xi(tk), i = 0, . . . , N and the system of Equations (10)–(12) becomes[

σ0(tk)− µ0(tk)− ϕ0(tk)− γ0(tk) + ε0(tk)

]
x0(tk) = 0

(13)

[
µi(tk) + ϕi(tk) + γi(tk)− σi(tk)− εi(tk)

]
xi(tk) = ϕi−1(tk)xi−1(tk) + (−ζi−1(tk)− θi−1(tk) +

κi−1(tk) + λi−1(tk)), i = 1, . . . , N − 1

(14)

[
µN(tk) + γN(tk)− σN(tk)− εN(tk)

]
xN(tk) = ϕN−1(tk)xN−1(tk) + (−ζN−1(tk)− θN−1(tk) +

κN−1(tk) + λN−1(tk)) (15)

Below we discuss the model described by Equations (13)–(15) for the case when the parameters of the
model are time independent (i.e., when σi(tk) = σ; µi(tk) = µi; γi(tk) = γi; εi(tk) = εi; f0(tk) = f0;
i = 0, . . . , N. Note that these parameters do not depend on time but they may depend on i and also on
other parameters connected to the network and to the environment of the network. In this case, the
system of equations becomes [

σ0 − µ0 − ϕ0 − γ0 + ε0

]
x0 = 0 (16)

[
µi + ϕi + γi − σi − εi

]
xi = ϕi−1xi−1 + (−ζi−1 − θi−1 + κi−1 + λi−1), i = 1, . . . , N − 1

(17)

[
µN + γN − σN − εN

]
xN = ϕN−1xN−1 + (−ζN−1 − θN−1 + κN−1 + λN−1)

(18)

From the system of Equations (16)–(18), we obtain the following relationships (note that δi,j below
is the Kronecker delta symbol):

ϕ0 = σ0 − µ0 − γ0 + ε0,
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xk = x0

k

∏
i=1

ϕi−1

µi + ϕi + γi − σi − εi
+

(1− δk1)
k−1

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj

k

∏
l=j+1

ϕl−1
µl + ϕl + γl − σl − εl

)
+

κk−1 + λk−1 − ζk−1 − θk−1
µk + ϕk + γk − σk − εk

, k = 1, . . . , N − 1,

xN = x0
ϕN−1

µN + γN − σN − εN

N−1

∏
i=1

ϕi−1
µi + ϕi + γi − σi − εi

+

ϕN−1
µN + γN − σN − εN

(1− δN,2)
N−2

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj

N−1

∏
l=j+1

ϕl−1
µl + ϕl + γl − σl − εl

)
+

ϕN−1
µN + γN − σN − εN

κN−2 + λN−2 − ζN−2 − θN−2
µN−1 + ϕN−1 + γN−1 − σN−1 − εN−1

+
κN−1 + λN−1 − ζN−1 − θN−1

µN + γN − σN − εN
,

(19)

and

x =
N

∑
k=0

xk = x0

[
1 +

N−1

∑
k=1

k

∏
i=1

ϕi−1
µi + ϕi + γi − σi − εi

+
ϕN−1

µN + γN − σN − εN

N−1

∏
i=1

ϕi−1
µi + ϕi + γi − σi − εi

]
+

N−1

∑
k=1

[
(1− δk,1)

k−1

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj

k

∏
l=j+1

ϕl−1
µl + ϕl + γl − σl − εl

)
+

κk−1 + λk−1 − ζk−1 − θk−1
µk + ϕk + γk − σk − εk

]
+

ϕN−1
µN + γN − σN − εN

(1− δN,2)
N−2

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj
×

N−1

∏
l=j+1

ϕl−1
µl + ϕl + γl − σl − εl

)
+

ϕN−1
µN + γN − σN − εN

κN−2 + λN−2 − ζN−2 − θN−2
µN−1 + ϕN−1 + γN−1 − σN−1 − εN−1

+

κN−1 + λN−1 − ζN−1 − θN−1
µN + γN − σN − εN

. (20)

Equations (19) and (20) lead to a class of probability distributions as follows. We have xi and x
and we can consider probability distribution yi = xi/x connected to amount of substance in nodes of
the channel. yi can be considered as probability values of distribution of a discrete random variable ω:
yi = p(ω = i), i = 0, . . . , N. For this distribution, we obtain

y0 = x0

/{
x0

[
1 +

N−1

∑
k=1

k

∏
i=1

ϕi−1
µi + ϕi + γi − σi − εi

+
ϕN−1

µN + γN − σN − εN

N−1

∏
i=1

ϕi−1
µi + ϕi + γi − σi − εi

]
+

N−1

∑
k=1

[
(1− δk,1)

k−1

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj

k

∏
l=j+1

ϕl−1
µl + ϕl + γl − σl − εl

)
+

κk−1 + λk−1 − ζk−1 − θk−1
µk + ϕk + γk − σk − εk

]
+

ϕN−1
µN + γN − σN − εN

(1− δN,2)
N−2

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj
×

N−1

∏
l=j+1

ϕl−1
µl + ϕl + γl − σl − εl

)
+

ϕN−1
µN + γN − σN − εN

κN−2 + λN−2 − ζN−2 − θN−2
µN−1 + ϕN−1 + γN−1 − σN−1 − εN−1

+

κN−1 + λN−1 − ζN−1 − θN−1
µN + γN − σN − εN

}
, (21)
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yk =

{
x0

k

∏
i=1

ϕi−1

µi + ϕi + γi − σi − εi
+ (1− δk1)

k−1

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj

k

∏
l=j+1

ϕl−1

µl + ϕl + γl − σl − εl

)
+

κk−1 + λk−1 − ζk−1 − θk−1

µk + ϕk + γk − σk − εk

}/{
x0

[
1 +

N−1

∑
k=1

k

∏
i=1

ϕi−1

µi + ϕi + γi − σi − εi
+

ϕN−1

µN + γN − σN − εN

N−1

∏
i=1

ϕi−1

µi + ϕi + γi − σi − εi

]
+

N−1

∑
k=1

[
(1− δk,1)

k−1

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj

k

∏
l=j+1

ϕl−1

µl + ϕl + γl − σl − εl

)
+

κk−1 + λk−1 − ζk−1 − θk−1

µk + ϕk + γk − σk − εk

]
+

ϕN−1

µN + γN − σN − εN
(1− δN,2)

N−2

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj

N−1

∏
l=j+1

ϕl−1

µl + ϕl + γl − σl − εl

)
+

ϕN−1

µN + γN − σN − εN

κN−2 + λN−2 − ζN−2 − θN−2

µN−1 + ϕN−1 + γN−1 − σN−1 − εN−1
+

κN−1 + λN−1 − ζN−1 − θN−1

µN + γN − σN − εN

}
,

k = 1, . . . , N − 1, (22)

yN =

{
x0

ϕN−1
µN + γN − σN − εN

N−1

∏
i=1

ϕi−1
µi + ϕi + γi − σi − εi

+

ϕN−1
µN + γN − σN − εN

(1− δN,2)
N−2

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj
×

N−1

∏
l=j+1

ϕl−1
µl + ϕl + γl − σl − εl

)
+

ϕN−1
µN + γN − σN − εN

κN−2 + λN−2 − ζN−2 − θN−2
µN−1 + ϕN−1 + γN−1 − σN−1 − εN−1

+
κN−1 + λN−1 − ζN−1 − θN−1

µN + γN − σN − εN

}/
{

x0

[
1 +

N−1

∑
k=1

k

∏
i=1

ϕi−1
µi + ϕi + γi − σi − εi

+
ϕN−1

µN + γN − σN − εN

N−1

∏
i=1

ϕi−1
µi + ϕi + γi − σi − εi

]
+

N−1

∑
k=1

[
(1− δk,1)

k−1

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj

k

∏
l=j+1

ϕl−1
µl + ϕl + γl − σl − εl

)
+

κk−1 + λk−1 − ζk−1 − θk−1
µk + ϕk + γk − σk − εk

]
+

ϕN−1
µN + γN − σN − εN

(1− δN,2)
N−2

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj
×

N−1

∏
l=j+1

ϕl−1
µl + ϕl + γl − σl − εl

)
+

ϕN−1
µN + γN − σN − εN

κN−2 + λN−2 − ζN−2 − θN−2
µN−1 + ϕN−1 + γN−1 − σN−1 − εN−1

+

κN−1 + λN−1 − ζN−1 − θN−1
µN + γN − σN − εN

}
. (23)

To the best of our knowledge, the class of distributions (21)–(23) was not discussed by other authors.
The corresponding class of distributions for the case N = ∞ is discussed in Appendix A. We note that
the system of Equations (16)–(18) is connected to the system of equations

xi = Fixi−1 + αi−1, i = 1, . . . , N, (24)

where x0 and αi are parameters and Fi is a function of i and eventually also a function of other variables
and parameters. This connection can be easily verified. We just have to set

Fi =
ϕi−1

µi + ϕi − γi − σi − εi
;

αi−1 =
κi−1 + λi−1 + ζi−1 − θi−1

µi + ϕi − γi − σi − εi
(25)
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in Equation (17) and

FN =
ϕN−1

µN − γN − σN − εN
;

αN−1 =
κN−1 + λN−1 + ζN−1 − θN−1

µN − γN − σN − εN
(26)

in Equation (18). In addition, we stress that x0 is a free parameter.
Equation (24) leads to a class of probability distributions as follows. From Equation (24) we obtain

xk = x0

k

∏
i=1

Fi + (1− δk1)
k−1

∑
j=1

(
αj−1

k

∏
l=j+1

Fl

)
+ αk−1, k = 1, . . . , N

(27)

Then the amount of substance in the channel will be

x = x0 +
N

∑
k=1

xk = x0

[
1 +

N

∑
k=1

k

∏
i=1

Fi

]
+

N

∑
k=1

[
(1− δk1)

k−1

∑
j=1

(
αj−1

k

∏
l=j+1

Fl

)
+ αk−1

]
(28)

We can consider probability distribution yi = xi/x connected to the amount of substance in the
nodes of the studied channel. yi can be considered as probability values of a distribution of a discrete
random variable ω: yi = p(ω = i), i = 0, . . . , N. For this distribution, we obtain

y0 =
x0

x0

[
1 +

N
∑

k=1

k
∏
i=1

Fi

]
+

N
∑

k=1

[
(1− δk1)

k−1
∑

j=1

(
αj−1

k
∏

l=j+1
Fl

)
+ αk−1

] ,

yk =

x0
k

∏
i=1

Fi + (1− δk1)
k−1
∑

j=1

(
αj−1

k
∏

l=j+1
Fl

)
+ αk−1

x0

[
1 +

N
∑

k=1

k
∏
i=1

Fi

]
+

N
∑

k=1

[
(1− δk1)

k−1
∑

j=1

(
αj−1

k
∏

l=j+1
Fl

)
+ αk−1

] , k = 1, . . . , N. (29)

As a result of the presence of functions Fk, the shapes of the distributions from the class (29) (and
the shapes of distributions from class (21), respectively) can be quite different from one another—
Figures 3 and 4.
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Figure 3. Several truncated distributions for a channel of 10 nodes connected to relationship (24)
for the case of a fixed value of αi−1 and different values of Fi. αi−1 has fixed value αi−1 = 0.2,
i = 1, . . . , 10 for all figures. In addition, x0 = 10 for all figures. (a) Fi = 1.2− 0.05i. (b) Fi = exp(−0.05i).
(c) Fi = 1− sin(3.2i). (d) Fi = 0.8 + 0.3(−1)i.
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Figure 4. Several truncated distributions for a channel containing 10 nodes connected to relationship (24)
for the case of a fixed value of Fi and different values of αi−1. Fi has fixed value Fi = 0.85, i = 1, . . . , 10
for all figures. In addition x0 = 10 for all figures. (a) αi = 0. (b) αi = exp(0.2i). (c) αi = 2− i0.25. (d)
αi = −0.2 + sin(3.2i).

Let us consider Equation (24). We note that we consider relationships connected to probability
distributions and our interest will be for the values of Fi and xi, which are nonnegative real numbers.
We shall prove the following lemma.

Lemma 1. Both quantities Fi and αi form Equation (24) (given by Equations (25) and (26)) can have arbitrary
values at the same time.

Proof. Let us show first that Fi can have an arbitrary (appropriate positive) real value. Indeed, in
Equations (25) and (26), we have many parameters and we can choose one of them in such a way that
Fi has an appropriate arbitrary value. We obtain from Equation (25).
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γi = µi + ϕi − σi − εi −
ϕi−1

Fi
(30)

and we can choose γi in such a way that Fi will be an arbitrary nonzero real number (we have just
to put the desired value of Fi in Equation (30) and we obtain the corresponding value of γi for any
combination of the other parameters and for ϕi−1 6= 0). There is no problem to obtain also Fi = 0.
For this, we just have to set ϕi−1 = 0 in Equation (25). Thus, Fi, i = 1, . . . , N − 1 can have arbitrary
value. The same conclusion holds for FN and it can be obtained on the basis of Equation (26).

Let us show that the value of αi−1 in Equation (25) and the value of αN−1 in Equation (26) can be
arbitrary for any value of Fi. From Equation (25), we obtain

θi−1 = κi−1 + λi−1 + ζi−1 − αi−1(µi + ϕi − γi − σi − εi) (31)

From Equation (31), we obtain the needed value of θi−1 for desired arbitrary value of αi−1 and fixed
values of the other parameters. Note that we can obtain an arbitrary value of αi−1 by the use of θi−1
and we can do this for an arbitrary value of parameter γi.

It follows from the above that Fi and αi−1 can have arbitrary values at the same time.

Lemma 1 has interesting consequences. Let us prove:

Lemma 2. The relationship xi = Fixi−1 + αi−1 from Equation (24) connected to distribution (21)–(23)
describes any sequence {Xi} of nonnegative real numbers.

Proof. Let {Xi} be an arbitrary sequence of nonnegative real numbers. We note that x0 connected to
distribution (21)–(23) can have arbitrary (nonnegative real) value. Let us set x0 = X0. According to
Lemma 1, F1 and α0 can have arbitrary values at the same time. Let us consider the following equation
for X1: X1 = F1X0 + α0. As F1 and α0 can have arbitrary values, we can choose these two parameters
in such a way that the equation for X1 is satisfied for an arbitrary value of X1 given the value of X0,
e.g., α0 = X1 − F1X0. We can do the same for X2. We can write the equation X2 = F2X2 + α1 and
we can choose free parameters F2 and α1 in such a way that the equation is satisfied for arbitrary X2

given the value of X1. We can proceed in this way with respect to X3, . . . and as we have enough
free parameters, we can choose them in such a way that we can obtain any sequence of numbers
{Xi}. Thus, the relationship xi = Fixi−1 + αi−1 from Equation (24) connected to distribution (21)–(23)
describes any sequence {Xi} of nonnegative real numbers.

Lemma 2 leads us to the main result:

Theorem 1. Any truncated discrete probability distribution of the random variable ω that can take values
0, 1, . . . , N is a particular case of the distribution (21)–(23).

Proof. Any discrete probability distribution {Zi}, i = 0, . . . , N of the random variable ω can be written
in the from

Zi = FiZi−1 + βi−1, i = 1, . . . , N (32)

where Fi has a nonnegative real value and βi−1 has a real value. If the above is not true then there
exists a sequence {Z∗i }, i = 0, . . . , N such that it can not be represented in the form (32). We can
take Z0 = Z∗0 and then we can construct all of the other Z∗i by relationship of the kind (32) fixing the
parameters Fi and βi−1 (as it has been done in the Proof of Lemma 2). Thus, we can represent any
truncated discrete probability distribution by a sequence of the kind (32). However, the sequence of
kind (32) is a particular case of the sequence xi = Fixi−1 + αi−1 from Lemma 2 for the case when x
varies between 0 and 1. Thus, any truncated discrete probability distribution can be described by a
sequence of the kind xi = Fixi−1 + αi−1 from Lemma 2. The sequence xi = Fixi−1 + αi−1 from Lemma
2 describes probability distributions from the kind (21)–(23). Then the class of probability distributions
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described by (32) belongs to the class of probability distributions described by (21)–(23). This means
that any truncated discrete probability distribution of the random variable ω is a particular case of the
distribution (21)–(23).

5. Discussion

In this text, we propose a discrete model of motion of substance in a channel of a network which
accounts for: (i) exchanges of substance between the nodes of the channel and the nodes of the
network, (ii) exchanges of substance between the nodes of the channel and the environment of the
network, (iii) exchanges of substance between the flows in the channel and the nodes of the network,
and (iv) exchanges of substance between the flows in the channel and the environment of the network.
The general model is complicated but nevertheless one can obtain analytical results for the distribution
of substance in the nodes of the channel for the particular case of stationary flow of substance through
the channel. We obtain the analytical relationship for the general distribution of substance under these
conditions of flow for the case of a channel containing a finite number of nodes (in Appendix A we
present the corresponding distribution for the case of a channel containing an infinite number of nodes
and in Appendix B we discuss the continuous version of the distribution). We show that the obtained
distribution contains as particular cases all possible discrete distributions of a random variable which
can take values 0, 1, . . . , N. This class of distributions contains famous named distributions and entire
families of discrete distributions such as families of distributions of Katz, Ord, Kemp, etc. [44–54].

The new point in this study is connected with the presence of the processes (5)–(8) described in
Section 2. The processes are connected to exchange of substance among flows between the nodes and
the environment of the studied channel. If the values of the parameters listed in points 5–12 of Section 2
are set to 0 then the model is reduced to the model discussed in [14]. Thus, the results obtained in [14]
are a particular case of the results obtained in this text. In [17], we discuss a continuous model for flow
of substance in a channel of a network. The probability distributions for the case of stationary flow
of substance along the channel obtained in [17] are particular cases of the corresponding probability
distributions obtained in this text and this is a consequence of Theorem 2 from Appendix A.

The theory discussed above leads to interesting results and can have numerous applications.
We have started our research on flows in channels of the network by a study of problems of
migration [27–31]. The theory presented above can be applied for many other practical situations
connected to the flow of substances in networks. The flows can be, for example, traffic flows and the
substances can be resources, goods, or even humans. The discussed model has potential to describe
various situations connected to different kinds of flows and one can obtain analytical results for cases
of simple flows or can make numerical simulations for the case of more complicated flows.
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Appendix A. Probability Distributions of Substance for a Channel Containing an Infinite
Number of Nodes

The model of a channel containing an infinite number of nodes corresponding to the model of a
channel containing a finite number of nodes and described by Equations (13)–(15) is as follows
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[
σ0(tk)− µ0(tk)− ϕ0(tk)− γ0(tk) + ε0(tk)

]
x0(tk) = 0,

(A1)

[
µi(tk) + ϕi(tk) + γi(tk)− σi(tk)− εi(tk)

]
xi(tk) = ϕi−1(tk)xi−1(tk) + (−ζi−1(tk)− θi−1(tk) +

κi−1(tk) + λi−1(tk)), i = 1, . . .

(A2)

We consider the case when the parameters of the model are time independent (i.e., when σi(tk) = σ;
µi(tk) = αi; γi(tk) = γi; εi(tk) = εi; ϕ0(tk) = ϕ0; i = 0, . . . ). In this case, the system of
equations becomes [

σ0 − µ0 − ϕ0 − γ0 + ε0

]
x0 = 0 (A3)

[
µi + ϕi + γi − σi − εi

]
xi = ϕi−1xi−1 + (−ζi−1 − θi−1 + κi−1 + λi−1), i = 1, . . . (A4)

From Equations (A3) and (A4), we obtain the relationships

ϕ0 = σ0 − µ0 − γ0 + ε0;

xk = x0

k

∏
i=1

ϕi−1

µi + ϕi + γi − σi − εi
+ (1− δk1)

k−1

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj

k

∏
l=j+1

ϕl−1

µl + ϕl + γl − σl − εl

)
+

κk−1 + λk−1 − ζk−1 − θk−1

µk + ϕk + γk − σk − εk
, k = 1, . . . (A5)

From Equation (A5), we obtain

x =
∞

∑
k=0

xk = x0

[
1 +

∞

∑
k=1

k

∏
i=1

ϕi−1

µi + ϕi + γi − σi − εi

]
+

∞

∑
k=1

[
(1− δk,1)

k−1

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj

k

∏
l=j+1

ϕl−1

µl + ϕl + γl − σl − εl

)
+

κk−1 + λk−1 − ζk−1 − θk−1

µk + ϕk + γk − σk − εk

]
(A6)

We consider probability distribution yi = xi/x for the amount of substance in the nodes of the studied
channel. yi can be considered as probability values of the distribution of a discrete random variable ω:
yi = p(ω = i), i = 1, . . . , ∞. For this distribution, we obtain

y0 = x0

/{
x0

[
1 +

∞

∑
k=1

k

∏
i=1

ϕi−1

µi + ϕi + γi − σi − εi

]
+

∞

∑
k=1

[
(1− δk,1)

k−1

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj

k

∏
l=j+1

ϕl−1

µl + ϕl + γl − σl − εl

)
+

κk−1 + λk−1 − ζk−1 − θk−1

µk + ϕk + γk − σk − εk

]}
,

yk =

{
x0

k

∏
i=1

ϕi−1

µi + ϕi + γi − σi − εi
+ (1− δk1)

k−1

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj

k

∏
l=j+1

ϕl−1

µl + ϕl + γl − σl − εl

)
+

κk−1 + λk−1 − ζk−1 − θk−1

µk + ϕk + γk − σk − εk

}/{
x0

[
1 +

∞

∑
k=1

k

∏
i=1

ϕi−1

µi + ϕi + γi − σi − εi

]
+

∞

∑
k=1

[
(1− δk,1)

k−1

∑
j=1

(
κj−1 + λj−1 − ζ j−1 − θj−1

µj + ϕj + γj − σj − εj

k

∏
l=j+1

ϕl−1

µl + ϕl + γl − σl − εl

)
+

κk−1 + λk−1 − ζk−1 − θk−1

µk + ϕk + γk − σk − εk

]}
k = 1, . . . , ∞ (A7)
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To the best of our knowledge, the class of distributions (A7) was not discussed by other authors.
We note that the system of Equations (A3) and (A4) is connected to the system of equations

xi = Fixi−1 + αi−1, i = 1, . . . , (A8)

where x0 and αi are parameters and Fi is a function of i and eventually also a function of other variables
and parameters. This connection can be easily proved. We have just to set

Fi =
ϕi−1

µi + ϕi − γi − σi − εi
; αi−1 =

κi−1 + λi−1 + ζi−1 − θi−1

µi + ϕi − γi − σi − εi
(A9)

in Equation (A4). In addition, we stress that x0 is a free parameter.
Equation (A8) leads to a class of probability distributions as follows. From Equation (A8),

we obtain

xk = x0

k

∏
i=1

Fi + (1− δk1)
k−1

∑
j=1

(
αj−1

k

∏
l=j+1

Fl

)
+ αk−1, k = 1, . . . (A10)

Then the amount of substance in the studied channel is

x = x0 +
∞

∑
k=1

xk = x0

[
1 +

∞

∑
k=1

k

∏
i=1

Fi

]
+

∞

∑
k=1

[
(1− δk1)

k−1

∑
j=1

(
αj−1

k

∏
l=j+1

Fl

)
+ αk−1

]
(A11)

We consider probability distribution yi = xi/x for the amount of substance in the nodes of the
channel. yi can be considered as probability values of distribution of a discrete random variable ω:
yi = p(ω = i), i = 0, . . . . For this distribution, we obtain

y0 =
x0

x0

[
1 +

∞
∑

k=1

k
∏
i=1

Fi

]
+

∞
∑

k=1

[
(1− δk1)

k−1
∑

j=1

(
αj−1

k
∏

l=j+1
Fl

)
+ αk−1

] ;

yk =

x0
k

∏
i=1

Fi + (1− δk1)
k−1
∑

j=1

(
αj−1

k
∏

l=j+1
Fl

)
+ αk−1

x0

[
1 +

∞
∑

k=1

k
∏
i=1

Fi

]
+

∞
∑

k=1

[
(1− δk1)

k−1
∑

j=1

(
αj−1

k
∏

l=j+1
Fl

)
+ αk−1

] , k = 1, . . .

(A12)

Several probability distributions connected to relationships (A8) and (A12) are shown in
Figures A1 and A2.

Let us consider (A8). We note that we consider relationships connected to probability distributions
and our interest will be for values of Fi and xi that are nonnegative real numbers. Analogous to the
proofs in the main text, we can prove two lemmas and a theorem as follows.

Lemma A1. Both quantities Fi and αi form (A8) (given by (A9)) can have arbitrary values at the same time.

Lemma A2. The relationship xi = Fixi−1 + αi−1 from (A8) connected to distribution (A7) describes any
sequence {Xi} of nonnegative real numbers.

Theorem A1. Any discrete probability distribution of the random variable ω, which can take values 0, 1, . . . ,
is a particular case of distribution (A7).

For the case of a continuous distribution, we can construct a discrete distribution that is a discrete
analogue of the continuous distribution. Let for an example X be a continuous variable (x ∈ [0, ∞))
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with p.d.f. f (x). The discrete analogue of f (x) can be obtained as follows: one considers discrete
random variable Y with possible values Y = k, k = 0, 1, . . . , and p.m.f.

P(Y = k) =
f (k)

∞
∑

l=0
f (l)

, k = 0, 1, . . . , l = 0, 1, . . . (A13)

Then we can formulate:

Theorem A2. Any discrete analogue of the kind (A13) of a continuous probability distribution is a particular
case of the distribution (A7).

Proof. Any distribution of kind (A13) is a discrete probability distribution of a random variable of the
random variable ω from the Theorem 2. Then, according to Theorem 2, this distribution is a particular
case of the distribution (A7).

There exists also other ways for construction of discrete analogues of continuous distributions
(see, e.g., [55,56]). Let us consider the discrete analogues that are discrete distributions of a discrete
random variable Y with possible values Y = k, k = 0, 1, . . . . Let us denote as C the class of these
discrete distributions. Then we can extend Theorem 3 to

Theorem A3. Any discrete analogue of a continuous probability distribution that is a member of the class C is
a particular case of the distribution (A7).

Proof. Any distribution from the class C is a discrete probability distribution of a random variable of
the kind of the random variable ω from the Theorem 2. Then, according to Theorem 2, this distribution
is a particular case of the distribution (A7).
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Figure A1. Several distributions connected to the relationship (A8) for the case of fixed value of αi−1

and different values of Fi. αi−1 has the fixed value αi−1 = 0.2, i = 1, . . . for all figures. In addition,
x0 = 10 for all figures. (a) Fi = 1.01 − 0.2i/(i + 4). (b) Fi = exp(−0.05i). (c) Fi = 1 − sin(3.2i).
(d) Fi = 0.9 + 0.3(−1)i.
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Figure A2. Several distributions connected to the relationship (A8) for the case of a fixed value of Fi and
different values of αi−1. Fi has the fixed value Fi = 0.85, i = 1, . . . for all figures. In addition x0 = 10
for all figures. (a) αi = 0. (b) αi = exp(0.6− 0.05i). (c) αi = 0.8− sin 3.2i. (d) αi = 0.2 + 0.6(−1)i.

Appendix B. A General Continuous Distribution

Below, we apply an approach analogous to the approach in the main text in order to obtain a
continuous probability distribution containing known continuum distributions as particular cases.
We consider a function x(i) where i is a continuous real variable which takes values in the interval
from i1 to i2 (e.g., i1 can be −∞ and i2 can be +∞ or i1 can be 0 and i2 can be +∞). The interval for i is
divided into intervals of infinitesimal length di and we assume that the values of x(i) are nonnegative
real values.

i i+dii−di

Figure A3. Values of x(i) for the intervals i− di, i, and i + di.

Figure A3 shows one example of possible values of x(i) for the values i − di, i, and i + di of
quantity i. We remember that for the case of discrete values of i in the main text (see Equation (24)),
we have xi = Fixi−1 + αi−1, i = 1, . . . , N. For the case of continuous values of i, we shall start
from relationship
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dx
di

= F(i)x(i) + α(i) (A14)

In (A14), F(i) and α(i) can be arbitrary real functions of i. The only condition is that x(i) has to be
nonnegative. In such a way, (A14) can describe arbitrary shape of the distribution x(i).

The solution of (A14) is as follows

x(i) = exp

[ ∫
di F(i)

]{
C +

∫
di

[
α(i) exp

(
−
∫

di F(i)

)]}
(A15)

where C is a constant of integration.
For the case when i can have values in the interval from i1 and i2, we have

x∗ =
i2∫

i1

di

{
exp

[ ∫
di F(i)

]{
C +

∫
di

[
α(i) exp

(
−
∫

di F(i)

)]}}

and then we can construct the probability distribution

y(i) =
x(i)
x∗

=

exp [
∫

di F(i)]
{

C +
∫

di [α(i) exp (−
∫

di F(i))]
}

i2∫
i1

di
{

exp [
∫

di F(i)]
{

C +
∫

di [α(i) exp (−
∫

di F(i))]
}}

(A16)

The distribution (A16) contains two arbitrary functions: F(i) and α(i) and because this is a very general
one, in other words, it contains as particular cases all continuous statistical distributions which satisfy
Equation (A14). Let us show now that any distribution D(i) where i takes values from i1 to i2 is a
particular case of the distribution (A16). In order to show this, we have to satisfy the relationship

D(i) = exp

[ ∫
di F(i)

]{
C +

∫
di

[
α(i) exp

(
−
∫

di F(i)

)]}
(A17)

Then,

∫ i2

i1
di D(i) =

i2∫
i1

di exp
[∫

di F(i)
]{

C +

∫
di
[

α(i) exp
(
−
∫

di F(i)
)]}

= 1

We shall satisfy the relationship (A17), for example, by choosing an appropriate form of the arbitrary
function α(i) (we can fix also F(i)). For the required from of α(i), we obtain from (A17)
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α(i) = exp

[ ∫
diF(i)

]
d
di

[
D(i) exp

(
−
∫

diF(i)

)]
(A18)

For an example, if we want D(i) to be the normal distribution

D(i) =
1

(2πσ)1/2 exp
(
− (i− µ)2

2σ2

)
(A19)

we have to set for α(i)

α(i) =
1

(2πσ)1/2 exp

[ ∫
diF(i)

]
×

d
di

[
exp

(
− (i− µ)2

2σ2

)
exp

(
−
∫

diF(i)

)]
(A20)
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