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3D multiobject tracking (MOT) is an important part of road condition detection and hazard warning algorithm in roadside
systems and autonomous driving systems. +ere is a tricky problem in 3DMOTthat the identity of occluded object switches after
it reappears. Given the good performance of the 2D MOT, this paper proposes a 3D MOTalgorithm with deep learning based on
themultiobject tracking algorithm. Firstly, a 3D object detector was used to obtain oriented 3D bounding boxes from point clouds.
Secondly, a 3D Kalman filter was used for state estimation, and reidentification algorithm was used to match feature similarity.
Finally, data association was conducted by combining Hungarian algorithm. Experiments show that the proposedmethod can still
match the original trajectory after the occluded object reappears and run at a rate of 59 FPS, which has achieved advanced results
in the existing 3D MOT system.

1. Introduction

With the rapid development of computer vision, image
processing, and other technologies as well as the emergence
of deep learning, the field of object detection has achieved
great development. From the high accuracy of two-step
RCNN [1], fast RCNN [2], and faster RCNN [3] to the high
speed of one-step YOLO [4], YOLOv2 [5], YOLOv3 [6], and
SSD [7] and from anchor-based methods [8, 9] to anchor-
free methods [10, 11], object detection has made great
progress in both accuracy and speed. At the same time, the
development of object detection also promoted the devel-
opment of other fields, including object tracking. Multi-
object tracking is a branch of object tracking, which is closely
related to the development of object detection [12]. Object
tracking algorithm is divided into single-object tracking
algorithms [13] and multiobject tracking algorithms [14].
Single-object tracking algorithms are widely used in mon-
itoring and navigation systems. Among the single-object
tracking algorithms, SiamMask [15] only needs to initialize
the frame; then it can generate the masks segmented with the
object and the boundary frames in the video with the speed

up to 35 FPS. SiamRPN++ [16] develops a Siamese tracker
based on ResNet architecture. Chen et al. [17] proposed a
multiscale fast correlation filtering tracking algorithm based
on a feature fusion model. Zhang et al. [18] exploited spatial
and semantic convolutional features extracted from con-
volutional neural networks in continuous object tracking.
Multiobject tracking is widely used in autonomous driving
systems because it can associate the results of object de-
tection in time without switching the identities of multiple
targets [19, 20]. +e autonomous driving system can esti-
mate the location of the object by using tracking algorithm
and avoid accidents. In the MOT algorithm, simple online
and realtime tracking (SORT) [21] adopts the Kalman filter
and Hungarian matching algorithm to track the objects,
which obtains fast and great tracking performance, but it
may cause the ID switch of the occluded object after it
reappears. In order to reduce the frequency of ID switch,
simple online and realtime tracking with a deep association
metric (DeepSORT) [22] was proposed. DeepSORT com-
bines the advantages of SORT, and it makes up for the
defects of the SORT by adding the reidentification network
of pedestrians, extracting the pedestrian features, and
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matching the feature similarity. Ristani and Tomasi [23] put
forward DeepCC algorithm, and Tang et al. [24] put forward
LMP algorithm; all of these algorithms use reidentification to
improve the performance of tracking algorithm through
matching the similarity of trajectories. In order to enhance
the robustness of complicated changes of multiple objects
and complex background scene, Chen et al. [25] proposed
the visual object tracking algorithm based on adaptive
combination kernel. In addition, tracking has many other
applications, such as tracking in basketball games [26].

Since the related algorithms become more and more
proven in image processing, the development of image
object detection algorithm cannot escape from the limita-
tions of two-dimensional data, and the drawbacks of data are
more obvious, which lead to many problems in the algo-
rithm. For example, object detection and tracking algorithm
are greatly affected by light, rain, snow, and haze weather.
Under such conditions, the object detection accuracy is low
and the recognition results are two-dimensional without
including distance and volume. However, the point clouds
acquired by LiDAR are little affected by the light and have
the information of distance and volume, which can over-
come these problems above andmake up for the shortages of
image processing. In recent years, with the decrease of Li-
DAR cost, more and more researchers use LiDAR to replace
the camera for object detection. At the meantime, different
from image, point clouds are sparse and disorder space
points. However, the proven algorithm used in the image
processing cannot be directly used in point clouds. In order
to solve this problem, many researchers adopted projection
methods [27–31] to project 3D objects into multiple views
and fuse the features of each view for detection and rec-
ognition. Using the projection method provides a trans-
formation idea from point clouds to image processing.
However, a large number of projections will cause the in-
crease of computation, while reducing the number of pro-
jections will cause the lack of information. Wu et al. [32] and
Le and Duan [33] applied the idea of voxelization to voxelate
the point clouds and processed it directly, which improved
the efficiency of object detection. +e development of point
cloud object detection also promoted the development of
point cloud tracking algorithm. Weng and Kitani [34] ex-
tended the two-dimensional SORTto three-dimensional and
proposed the AB3DMOT algorithm, which performed well
on the KITTI dataset [35]. In order to improve the per-
formance of point clouds multiobject tracking and retrieve
the ID information of occluded objects, we combine rei-
dentification algorithm of pedestrian and 3D Kalman filter
and apply them to point clouds. Our contributions are as
follows:

(i) +e tracking algorithm based on deep learning of
image processing is introduced into the tracking
algorithm based on point cloud, and a tracking
algorithm model based on deep learning is
established.

(ii) +e proposed tracking algorithm model uses the
three-channel image composed of bird’s eye view
(BEV), density, and intensity maps of the point

cloud to train the point cloud reidentification
network.+e two-dimensional features of the three-
channel image are extracted by using the point
cloud recognition network, and they are made
cascade matching with the location features of the
IOU.

(iii) +e proposed tracking algorithm model performs
well in the point cloud tracking algorithm. +e
original trajectory can be matched again after oc-
clusion. +e proposed model provides a new
baseline for the point cloud tracking algorithm.

2. Related Works

2.1. 3D Object Detection. 3D object detection is an indis-
pensable part of 3D object tracking, and the 3D bounding
box of detection is also very important for the effect of
tracking. 3D object detection can be divided into four
categories: image processing methods, voxel-based methods,
point-based methods, and some fusion methods. Li et al.
[36] presented 3D point cloud to 2D image, and then used
the 2D end-to-end full convolution neural network to
predict target confidence and 3D bounding boxes through
bounding boxes encoding. Simon et al. [37] transformed
point clouds into BEVmap, density map, and intensity map,
and used the method of image processing for 3D detection.
Zhou and Tuzel [38] proposed VoxelNet, which divided
point clouds into different voxels. +en, they used the VFE
(Voxel Feature Encoding) layer to encode features uni-
formly. Finally, RPN (region proposal network) was used for
category classification and 3D bounding boxes regression.
Based on the VoxelNet, Yan et al. [39] proposed sparsely
embedded convolutional detection (SECOND) by using
sparse convolution, which improved the accuracy of de-
tection further. Qi et al. [40] put forward PointNet through
using point clouds directly. PointNet adopted spatial
transformation matrix to align point clouds and the com-
bined convolutional neural network (CNN) to obtain good
results in object segmentation and detection. +is method is
a better one than two-dimensional image processing. Later,
in order to solve the shortcomings of PointNet, Qi et al. [41]
put forward PointNet++ by modifying PointNet. Shi et al.
[42] put forward PV-RCNN by combining the advantages of
voxel-based and point-based methods and then achieved the
highest score on KITTI data. In addition, there are some
other multisensor fusion methods: MV3D [43] fused BEV
and front view of point clouds with RGB image; AVOD [44]
fused RGB images and six-channel BEV map consisting of
five equal height slices and density map; and F-ConvNet [45]
used 2D region to estimate end-to-end of bounding boxes in
3D space.

2.2. 3DMOT. +e difference between 3DMOTand 2DMOT
is that the tracking objects of 3D MOTare three-dimensional
and have height information and distance information. Osep
et al. [46] proposed a 2D-3D Kalman filter to jointly use
images and the 3D world coordinate system. Baser et al. [47]
proposed an online multiobject tracking method based on
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CNN. Hu et al. [48] used long short-term memory network
(LSTM) learning module to predict long-term motion more
accurately. Frossard and Urtasun [49] described this problem
as a linear programming problem and adopted CNN to detect
andmatch end-to-end. Zhang et al. [50] put forwardmmMOT
to encode point clouds in the process of data association and
realized the fusion of multimodal data. Shenoi et al. [51]
developed JRMOTwhich used a two-dimensional RGB image
and three-dimensional point cloud. Here, three-dimensional
point cloud was used for detection, and a two-dimensional
RGB image was used for reidentification based on CNN, and
then multi-object tracking was achieved. +e camera shooting
angle results in the occlusion of the object in a RGB image, so
we combine the aerial view of point cloud with the rei-
dentification method based on CNN to match the similarity
and use the three-dimensional Kalman filter to predict the
three-dimensional information of the object’s movements.

3. Materials and Methods

According to the characteristics of point clouds, 2D and 3D
separation methods are used. We use the 3D Kalman filter to
predict the 3D coordinate information of the point clouds
and extract the features of the bird’s-eye view by the rei-
dentification network. Our system uses the three-dimensional
object detection networks such as SECOND to obtain the
three-dimensional coordinate information X, Y, Z, L, W, H,
and θ.+ese seven parameters represent the coordinates of the
center point, length, width, height, and heading angle of the
frame. +e object detection results are transformed into 2D
bounding boxes in the three-channel image which is com-
posed of BEV, density, and intensity map, and then, they are
sent to the reidentification network to extract features. X, Y, Z,
L, W, H, and θ are used for state prediction and trajectory
matching of the 3D Kalman filter. After that, the results of
feature matching and 3D Kalman filter matching are output to
obtain the ID information of the current detection results. +e
flow chart is shown in Figure 1.

3.1. 3DObject Detection. With the rapid development of 3D
object detection, many 3D object detections have obtained
good results in the KITTI dataset. We use the advanced 3D
detector on the KITTI dataset to conduct experiments and
directly use their detection results for performance test of
tracking. +e detection result of D is obtained by high-
precision 3D object detection.D includes {X, Y,W, L, θ, Z,H,
S} (S represents the detection score).Dt is the detection result
of frame t and Dt � {Dt1, Dt2, . . ., Dtn} (n represents the
number of objects detected). In addition, considering the
detection speed and effect, we choose SECOND as the three-
dimensional object detection detector of our tracking sys-
tem. SECOND uses sparse convolution to improve signifi-
cantly the speed of training and reasoning. +e structure
chart of SECOND is shown in Figure 2, and the detection
performance is shown in Figure 3.

3.2. 3D Kalman Filter. In order to describe the moving
object, we use the Kalman filter to predict the next frame
state of it. It predicts the position of the current frame by the

position information of historical target and then establishes
the following state equation as equation (1) for each goal:

μ � [x, y, z, l, w, h, θ, 􏽢x, 􏽢y, 􏽢z,􏽢l, 􏽢w, 􏽢h, 􏽢θ]
T

, (1)

where x, y, and z are the x, y, and zcoordinates of the point
clouds, θ denotes the course angle, and l, w, and h denotes
length, width, and height of the object, respectively.

By observing the movement law of vehicles and target
characteristics of the point cloud, we find that the height and
z coordinate of vehicle and pedestrian hardly changed
during the movement. In order to reduce the calculation
amount and improve the performance, we ignore the height
H and Z coordinates. In the experiment, we find that adding
angle will cause the increase of the radian of the predicted
target, and the target’s angle will be flipped over. +erefore,
the final state model we use is as follows:

μ � [x, y, l, w, 􏽢x, 􏽢y,􏽢l, 􏽢w]
T
. (2)

+e status of detection results can be expressed as
follows:

Dt � x
d
t , y

d
t , l

d
t , w

d
t , θd

t , z
d
t , h

d
t􏽨 􏽩

T
. (3)

+e predicted state equation can be expressed as follows:

Ttest � x
d
t + 􏽢x, y

d
t + 􏽢y, l

d
t + 􏽢l, w

d
t + 􏽢w, θd

t , z
d
t , h

d
t􏽨 􏽩

T
. (4)

3.3. PointCloudReidentification. +e point cloud is different
from the image in which point cloud has no fine-grained
features, and the fine features are difficult to distinguish.
Although RGB images can be used for reidentification to
obtain a large number of fine-grained features, they have
some problems: the image may encounter obscuring; the
farther the distance, the smaller the target; the farther the
distance, the less distinctive the features which are even
difficult to distinguish. On the contrary, the aerial view of
point cloud has a large field of view and no occlusion of the
object, which is conducive to reidentification and solves the
problems existing in the image.

Reidentification can realize the matching of feature
similarity in the trajectory, so that when it appears again
after the object is blocked, it can find the original trajectory
by comparing with the features in the trajectory, while the
traditional matching method will cause id jump. We use the
three-channel image composed of BEV map, density map,
and intensity map of point clouds to replace the RGB image
to realize feature extraction. Due to the difference between
the point cloud coordinate system and the image coordinate
system, equation (5) is used to convert the point cloud
coordinate system to the image coordinate system, and the
transformation diagram is shown in Figure 4:

xt � −y + w,

yt � −x + h,
􏼨 (5)

where x and y represent coordinates in the point cloud
coordinate system, h denotes the distance from the point
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Figure 3: SECOND detects point clouds of roadside LiDAR.
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Figure 4: Converting point cloud coordinates to the image coordinate system.
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cloud boundary to the y-axis, w is the distance from the
point cloud boundary to the x-axis, and xtand ytrepresent
the coordinates in the image coordinate system.

After coordinate transformation, the height of point
clouds is mapped to the pixel value to obtain an aerial view,
and then, the intensity value of corresponding points in the
BEV map is mapped into the intensity map. Finally, we
calculate the density value of corresponding point clouds in

the image by using equation (6). +e resultant three-channel
picture is shown in Figure 5:

ρi �
min 1, log ci + 1( 􏼁 − log cmin + 1( 􏼁( 􏼁

log cmax + 1( 􏼁 − log cmin + 1( 􏼁
, (6)

whereρirepresents density of the ith location point,
cirepresents the number of point clouds at the ith location

2D boxes ResNet18 1 × 512

Figure 5: Reidentification network structure diagram.

Table 1: 3D experimental comparison.

Method Samota AMOTA AMOTP MOTA MOTP IDS FRAG FPS
FANTract [47] 0.8297 0.4003 0.7501 0.7430 0.7524 35 202 23.1
AB3DMOT [34] 0.9178 0.4426 0.7741 0.8335 0.7843 0 15 207.4
Ours KF 0.8842 0.4203 0.7777 0.7743 0.7856 229 275 882.5
Ours deep 0.9077 0.4361 0.7769 0.8084 0.7899 0 34 67

Table 2: 2D experimental comparison.

Method MOTA MOTP IDS FRAG FPS
Complexer-YOLO [37] 0.7570 0.7846 1186 2092 100
DSM [49] 0.7615 0.8342 296 868 10
FANTrack [47] 0.7772 0.8283 150 812 25
AB3DMOT [34] 0.8384 0.8524 9 224 214.7
Ours 0.8047 0.8723 4 44 59

Id 1

Id 2

Id 3

Figure 6: Reidentification of training samples.
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point, cminis the minimum number of point clouds at the
location point, and cmaxdenotes the maximum number of
point clouds at the location point.

After the image of the 2D bounding box in the converted
three-channel image is cut and adjusted to 128× 64× 3, it is
sent to the reidentification network trained by ResNet18 for
feature extraction. +e reidentification network can match
the similarity between the current detection box and the
bounding box saved in the trajectory to find the trajectory of
the target. +e input size of the reidentification network is

128× 64× 3, and the output feature vector is 1× 512, which is
shown in Figure 5.

4. Results and Discussion

+e experiment in this paper is conducted on ubuntu16.04,
GPU 1080ti. We use the KITTI MOT dataset and dataset of
roadside 32-line LiDAR in our company to perform the
evaluation. +ere are 21 sequences in the KITTI training set
and 29 sequences in the test set which include point clouds,

Frame354 AB3DMOT Frame354 ours

Frame355 ours

Frame359 ours

Frame360 ours

Frame355 AB3DMOT

Frame359 AB3DMOT

Frame360 AB3DMOT

Figure 7: Effect comparison of frame 354 to frame 360 in Sequence 1.
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images, and camera parameters. Since there is no label in-
formation in the KITTI train set, we use 8008 frames in the
training set for the test and use sequences 1, 6, 8, 10, 12, 13,
14, 15, 16, 18, and 19 in reference [52] to validate it. In order
to train the point cloud reidentification network, we use tags
in sequence 0, 2, 3, 4, 5, 7, 9, 11, and 20 to extract 354 tracks
and convert them into the three-channel image composed of
BEV, intensity, and density maps. Partial data of the rei-
dentification network in training are shown in Figure 6.

Tables 1 and 2 are comparison results of tracking ex-
periments using object detection results provided by
AB3DMOT. Due to the lacking labels of the roadside 32-line
LiDAR dataset, this paper only shows the comparative
recognition effect.

It can be seen from Tables 1 and 2 that our method has
better performance than the FANTract method. Since our
method is mainly used on the side of the road, there are a lot of

occlusion and reappearance problems, which rarely occurs in
the KITTI dataset. +erefore, the advantages of our method
cannot be reflected in the KITTI dataset, which is slightly lower
than those in AB3DMOT. In order to prove that our method
canmatch the original trajectory and reflect the advantage of the
reidentification network, we compare the occlusion in frame
354 to 360 and frame 372 to 379 in the first sequence of the
KITTI dataset. In Figure 7, the vehicle id 222 in AB3DMOT
jumps to 252 after blocking, while the id number of ourmethod
remains at 187 after blocking. In Figure 8, the vehicle id 262 of
frame 372 in the AB3DMOTmethod reappears to be 275 after
occlusion, while our method keeps the id 204 all the time.

Figure 9 is a segment of the roadside data. In our
method, the id of the two objects with id numbers 4004 and
3985 remain unchanged after occlusion, while the corre-
sponding vehicles id switching occur in the AB3DMOT
method. No matter if it is KITTI data or roadside data, our

Frame372 AB3DMOT Frame372 ours

Frame373 ours

Frame378 ours

Frame379 ours

Frame373 AB3DMOT

Frame378 AB3DMOT

Frame379 AB3DMOT

Figure 8: Effect comparison of frame 372 to frame 379 in Sequence 1.
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method can keep the id number after occlusion, which
reflects the advantage of the reidentification method in
matching by features when lacking distance information.

5. Conclusions

+is paper introduced re-identification algorithm into point
cloud tracking algorithm based on 2D MOT, and proposed
3D MOT algorithm based on deep learning. We use the
object detector to obtain the 3D boundary box of the target,
and then, use the 3D Kalman filter to estimate state, com-
bining with the re-identification algorithm to match feature
similarity, and finally use the Hungarian algorithm for data
association. On the KITTI dataset, our approach achieves
competitive results, and on the roadside dataset, our ap-
proach is more prominent. It is believed that our method can
be widely used in self-driving and roadside assisted driving.
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