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Abstract: This paper studies simultaneous inference for factor loadings in the approximate factor
model. We propose a test statistic based on the maximum discrepancy measure. Taking advantage of
the fact that the test statistic can be approximated by the sum of the independent random variables,
we develop a multiplier bootstrap procedure to calculate the critical value, and demonstrate the
asymptotic size and power of the test. Finally, we apply our result to multiple testing problems by
controlling the family-wise error rate (FWER). The conclusions are confirmed by simulations and real
data analysis.
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1. Introduction

The high-dimensional factor model is becoming more and more important in different scientific
areas including finance and macroeconomics. For example, the data in the World Bank contain
two-hundred countries over forty years and the number of stocks can be in the thousands which is
larger than or of the same order of the sample size for portfolio allocation. Due to its broad applications,
much efforts have been devoted to analyzing factor model in different aspects. Examples include
estimation of factors and loadings for latent factor model [1,2], covariance matrix estimation [3–6],
and simultaneous inference for factor loadings of dynamic factor model [7,8], among others.

This work focuses on the simultaneous inference for the loading matrix with observed factors,
which is an important issue in the analysis of approximate factor models. For example, in the study of
gene expression genomics, it is commonly assumed that each gene is associated with only a few factors.
For example, the authors of [9] showed that several oncogenes are related to Rb/E2F pathway rather
than any other pathways. The authors of [10] also considered sparse loading matrix for gene expression
data. Therefore, it is necessary to test the sparsity of the factor loadings. In the literature, some inference
procedures have been proposed for latent factor models. For example, in low-dimensional setting,
the authors of [11] considered testing the homogeneity assumption, i.e., the loadings associated to a
factor are identical for all variables. The same testing problem has been considered by the authors
of [12] in high-dimensional situation. As for observed factors, to the best of our knowledge, very limited
work has been conducted.

Inference for the factor loadings with observed factors is not trivial. The approaches for latent factors
cannot be directly applied to observed factors. The major difficulty is due to the high dimensionality,
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which poses significant challenges in deriving the asymptotic null limiting distribution of the test statistic.
We propose a test statistic based on the maximum discrepancy measure. The distribution of this statistic
is attractive in high-dimensional statistical inference such as model selection, simultaneous inference,
and multiple testing. Examples include the works in [13–17], among others.

We use the multiplier bootstrap procedure to obtain the critical value of our test statistic.
Based on the fact that the test statistic can be approximated by the sum of the independent random
variables, we show that the proposed multiplier bootstrap method consistently approximates the
null limiting distribution of the test statistic, and thus the testing procedure achieves the prespecified
significance level asymptotically. There are some related works applying multiplier bootstrap method
to high-dimensional inference; see in [16,18,19], among others. However, their procedures require
sparsity assumption on the parameters and cannot be directly applied to factor model. Compared with
the works with latent factors, we do not require homogeneity constraints or sparsity on the model and
our procedure is adaptive to high-dimensional regime.

Another application of our procedure is the multiple testing problem. Combining the multiplier
bootstrap method with step-down procedure proposed by [17], we show that our procedure has a
strong control of the family-wise error rate (FWER). Our method is asymptotically non-conservative
as compared to the Bonferroni–Holm procedure since the correlation among the test statistics has
been taken into account. We also want to point out that any procedure controlling the FWER will also
control the false discovery rate [20] when there exist some true discoveries.

The rest of the paper is organized as follows. In Section 2.1, we develop the multiplier bootstrap
procedure for simultaneous test of parameters for a single factor and demonstrate its asymptotic level
and power. In Section 2.2, we give the result of simultaneous test of parameters for multiple factors.
Section 3 discusses the multiple testing problem by combining the multiplier bootstrap procedure
with the step-down method proposed by [17]. Section 4 investigates the numerical performance of the
proposed test by simulations. We also conduct real data analysis on portfolio risk of S&P stocks via
Fama–French model in Section 5. The proofs of the main results are given in Appendix A.

Finally, we introduce some notation. For set S, let |S| denote the cardinality of S. Let 0p ∈ Rp

be the vector of zeros. For p× p matrix A = (aij)
p
i,j=1, denote by λmin(A) and λmax(A) the minimum

and maximum eigenvalues of A, respectively. The matrix element-wise maximum norm and L2 norm
are defined as ‖A‖∞ = max1≤i,j≤p|aij| and ‖A‖ = λ1/2

max(A′A), respectively. For a = (a1, . . . , ap)′ ∈ Rp

and q > 0, denote by ‖a‖q = (
∑p

i=1 |ai|q)1/q and ‖a‖∞ = max1≤j≤p|aj|. Let vi ∈ RK be the ith column
of the K × K identity matrix. We write at . bt if at is smaller than or equal to bt up to a universal
positive constant. For a, b ∈ R, we write a ∨ b = max{a, b}. For two sets, A and B, A	 B denotes their
symmetric difference, that is, A	 B = (A\B) ∪ (B\A).

2. Methodology

2.1. Simultaneous Test for a Single Factor

We consider the factor model defined as follows,

yit = b′ift + uit, i = 1, . . . , p and t = 1, . . . , T, (1)

where yit is the observed response for the ith variable at time t, bi ∈ RK is the unknown vector of
factor loadings, ft ∈ RK is the observed vector of common factors, and uit is the latent error. Here, K is
a fixed integer denoting the number of factors, p is the number of variables, and T denotes the sample
size. Model (1) is commonly used in finance and macroeconomics, see, e.g., in [3,4,21], among others.
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Denote by B = (b1, . . . , bp)′, yt = (y1t, . . . , ypt)′ and ut = (u1t, . . . , upt)′, then model (1) can be
re-expressed as

yt = Bft + ut. (2)

We first focus on testing the coefficients bik = b′ivk corresponding to a single factor, i.e., the kth
factor. Specifically, we consider the following simultaneous testing problem that given k = 1, . . . , K,

H0,G : bik = bnull
ik for all i ∈ G versus H1,G : bik 6= bnull

ik for some i ∈ G, (3)

where G is a subset of {1, . . . , p} and bnull
ik are prespecified values. For example, if bnull

ik are 0, then the
hypotheses are able to test whether the variables with indices in G are significantly associated with
the kth factor. Throughout the paper, |G| is allowed to grow as fast as p, which may have exponential
growth with T as in Assumption 3.

The ordinary least squares (OLS) estimator B̂ = Y′F(F′F)−1 is applied to estimate B, where
Y = (y1, . . . , yT)

′ and F = (f1, . . . , fT)
′. Therefore,

B̂− B =
( T∑

t=1

utf′t
)( T∑

t=1

ftf′t
)−1

. (4)

We propose the following test statistic for H0,G,

MT,k = max
i∈G

√
T|b̂ik − bnull

ik |,

where (b̂ik)i≤p,k≤K = B̂. For each i ∈ G, the asymptotic normality of b̂ik is straightforward due to the
central limit theorem. However, when |G| diverges with p, it is very challenging to demonstrate the
existence of the limiting distribution of MT,k. In order to approximate the asymptotic distribution of
MT,k, we will use the multiplier bootstrap method. From (4), we know

√
T(b̂ik − bik) =

1√
T

T∑
t=1

uitf′t“Ω f vk =
1√
T

T∑
t=1

ξ̂it, (5)

where ξ̂it = uitf′t“Ω f vk and “Ω f = (
∑T

t=1 ftf′t/T)−1.
In order to apply the multiplier bootstrap procedure, we need to approximate

∑T
t=1 ξ̂it/

√
T by

sum of independent random variables. As “Ω f is consistent for Ω f = {E(ftf′t)}−1, we can replace the
former with the latter in ξ̂it, and define ξit = uitf′tΩ f vk. Then, for each i ∈ G, {ξit}t≥1 are i.i.d. and∑T

t=1 ξit/
√

T well approximates
∑T

t=1 ξ̂it/
√

T.
We then apply the multiplier bootstrap procedure to approximate the distribution of

maxi∈G |
∑T

t=1 ξit|/
√

T. Denote by Σu = (σij)p×p the covariance matrix of ut, and hence cov(ξit, ξ jt) =

Ω f (k, k)σij, where Ω f (k, k) = v′kΩ f vk. We know that “Ω f (k, k) = v′k
“Ω f vk is

√
T-consistent for Ω f (k, k).

To estimate σij, we first calculate the residuals

ûit = yit − b̂′ift.

Denote by ût = (û1t, . . . , ûpt)′, then the error covariance matrix is estimated by

Σ̂u =
1
T

T∑
t=1

ûtû′t = (σ̂ij)i≤p,j≤p.
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Let {et}T
t=1, a sequence of i.i.d. N(0, 1) independent of {yt, ft}T

t=1, be the multiplier random
variables. Then the multiplier bootstrap statistic is defined as

WT,k = max
i∈G

T−1/2
√“Ω f (k, k)

∣∣∣ T∑
t=1

ûitet

∣∣∣.
Conditioning on {yt, ft}T

t=1, the covariance of T−1/2∑T
t=1

»“Ω f (k, k)ûitet and

T−1/2∑T
t=1

»“Ω f (k, k)ûjtet is “Ω f (k, k)σ̂ij, which can sufficiently approximate the covariance
between ξit and ξ jt. Then, the bootstrap critical value can be obtained via

cWT,k (α) = inf{t ∈ R : P(WT,k ≤ t|(Y, F)) ≥ 1− α}.

cWT,k (α) is calculated by generating {et}T
t=1 repeatedly. In our simulations and real data, we conduct

bootstrap 500 times. We now present some technical assumptions.

Assumption 1. (i) {ft, ut}t≥1 are i.i.d. with E(ut) = 0p and Σu = cov(ut).
(ii) There exist constants c1, c2 such that 0 < c1 < λmin(Σu) < λmax(Σu) < c2 < ∞.
(iii) {ut}t≥1 and {ft}t≥1 are independent.

Assumption 2. There exist positive constants r1, r2, b1, b2, such that for any s > 0, t ≤ T, i ≤ p and j ≤ K,

P(|uit| > s) ≤ exp{−(s/b1)
r1}, P(| f jt| > s) ≤ exp{−(s/b2)

r2}.

The “i.i.d.” condition in Assumption 1 is commonly considered in the literature for
high-dimensional inference, see, e.g., in [16]. Assumption 1 (ii) allows the bounded eigenvalue
of the error covariance matrix. As noted in [22], such assumption is satisfied by two situations:
(1) cov(U1, . . . , Up), where {Ui, i ≥ 1} is a stationary ergodic process with spectral density f ,
0 < c1 < f < c2 and (2) cov(X1, . . . , Xp) where Xi = Ui + Vi, i = 1, . . . , p, {Ui} is a stationary process
as above and {Vi} is a noise process independent of {Ui}. In Example 1 in [22], they demonstrated that
ARMA(r, q) process satisfies Assumption 1 (ii). Furthermore, this assumption is commonly considered
in the literature, see, e.g., in [4,15].

Assumption 2 allows the application of the large deviation theory to (1/T)
∑T

t=1 uitujt − σij and
(1/T)

∑T
t=1 uit f jt. In this paper, we assume that ft and ut have exponential-type tails. Let γ−1

1 = 3r−1
1

and γ−1
2 = 1.5r−1

1 + 1.5r−1
2 .

Assumption 3. Suppose γ1 < 1, γ2 < 1 and there exists a constant c1 > 0, such that (log p)γ = o(T),
where γ = max{2/γ1 − 1, 2/γ2 − 1, 7 + c1}.

Assumption 4. There exists a constant C > 0 such that λmax(Ω f ) < C.

Assumption 3 is needed in Bernstein-type inequality [23] and commonly assumed in the literature
for Gaussian approximation theory. Assumption 4 is also reasonable by bounding the eigenvalues
of Ω f .

Theorem 1. Under Assumptions 1–4, we have

sup
α∈(0,1)

∣∣∣P(max
i∈G

√
T|b̂ik − bik| > cWT,k (α)

)
− α
∣∣∣ = o(1).
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Theorem 1 demonstrates that the multiplier bootstrap critical value cWT,k (α) well approximates
the quantile of the test statistic. It is worth mentioning that our method does not require any sparsity
assumption on either Σu or B.

The proof of Theorem 1 depends on the two results: (1) maxi∈G
∑T

t=1 ξit/
√

T is sufficiently close
to maxi∈G

∑T
t=1 ξ̂it/

√
T and (2) the covariances of ξit and ξ jt are well approximated by the bootstrap

version. The first result is demonstrated in Lemma A7 that there exist ζ1 > 0 and ζ2 > 0 such that

P
(∣∣∣max

i∈G

T∑
t=1

ξ̂it/
√

T −max
i∈G

T∑
t=1

ξit/
√

T
∣∣∣ > ζ1

)
< ζ2,

where ζ1
√

1∨ log(p/ζ1) = o(1) and ζ2 = o(1). The second result is shown in Lemma A6 that

∆ = max
1≤i,j≤p

|“Ω f (k, k)σ̂ij −Ω f (k, k)σij| = oP((log p)−2),

i.e., the maximum discrepancy between the empirical and population covariance matrices converges
to zero.

Based on Theorem 1, for a given significance level 0 < α < 1, we define the test Φα by

Φα = I(MT,k > cWT,k (α)). (6)

The hypothesis H0,G is rejected whenever Φα = 1.
Bootstrap is a commonly used resampling method and full theories about it can be found

in [24]. There are many versions of bootstrap, for example, wild bootstrap, empirical bootstrap,
and multiplier bootstrap, among others. As discussed in [25], other exchangeable bootstrap methods
are asymptotically equivalent to the multiplier bootstrap. As our test statistic can be approximated
by the maximum of sum of independent random vectors, we adopt the multiplier bootstrap method
in [25] based on Gaussian approximation.

Alternatively, we propose the studentized statistic M∗T,k := maxi∈G
√

T|b̂ik − bnull
ik |/

√“ωii for H0,G,

where “ωii = “Ω f (k, k)σ̂ii. Similarly to Section 2.1, we define the multiplier bootstrap statistic as

W∗T,k = max
i∈G

T−1/2
∣∣∣ T∑

t=1

ûitet

∣∣∣√“Ω f (k, k)/“ωii = max
i∈G

T−1/2σ̂−1/2
ii

∣∣∣ T∑
t=1

ûitet

∣∣∣,
where {et}T

t=1
i.i.d.∼ N(0, 1) are independent of {yt, ft}T

t=1. Then, the bootstrap critical value can be
obtained via

c∗WT,k
(α) = inf{t ∈ R : P(W∗T,k ≤ t|(Y, F)) ≥ 1− α}.

Theorem 2 below justifies the validity of the bootstrap procedure for the studentized statistic.

Theorem 2. Under the assumptions in Theorem 1, we have

sup
α∈(0,1)

∣∣∣P(max
i∈G

√
T|b̂ik − bik|/

»“ωii > c∗WT,k
(α)
)
− α
∣∣∣ = o(1).

Based on this result, for a given significance level 0 < α < 1, we define the test Φ∗α by

Φ∗α = I(M∗T,k > c∗WT,k
(α)).

The hypothesis H0,G is rejected whenever Φ∗α = 1.
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For the studentized statistic, we can derive its asymptotic distribution. By Lemma 6 of the work
in [15], for any x ∈ R and as p→ ∞, we have

P
(

max
1≤i≤p

T|b̂ik − bik|2/“ωii − 2 log(p) + log log(p) ≤ x
)
→ exp

{
− 1√

π
exp

(
− x

2

)}
.

However, the above alternative testing procedure may not perform well in practice, because it
requires diverging p, and the convergence rate is typically slow.

In contrast to the extreme value approach, our testing procedure explicitly accounts for the effect
of |G| in the sense that the bootstrap critical value c∗WT,k

(α) depends on G. Therefore, our approach is
more robust to the change in |G|.

Next, we turn to the (asymptotic) power analysis of the above procedure. Denote by Bk the kth
column of B. We focus on the case where |G| → ∞ as T → ∞ below. Define the separation set

UG(c) = {(b1k, . . . , bpk)
T : max

i∈G
|bik − bnull

ik |/
√

ωii > c
»

log(|G|)/T}, (7)

where ωij = Ω f (k, k)σij. Let Θ = (θij)
p
i,j=1 with θij = ωij/

√
ωiiωjj = σij/

√
σiiσjj, which is the

correlation matrix of ut.

Assumption 5. Suppose max1≤i 6=j≤p |θij| ≤ c0 < 1 for some constant c0.

Theorem 3. Under Assumptions 1–5, for any ε0 > 0, we have

inf
Bk∈UG(

√
2+ε0)

P
(

max
i∈G

√
T|b̂ik − bnull

ik |/
»“ωii > c∗WT,k

(α)
)
→ 1.

As long as one entry of bik − bnull
ik has a magnitude larger than (

√
2 + ε0)

√
log |G|/T,

our bootstrap-assisted test can reject the null correctly. Therefore, with B being sparse, our procedure
performs well in detecting non-sparse alternatives. According to Section 3.2 of [26], the separation rate
(
√

2 + ε0)
√

log(|G|)/T is minimax optimal under suitable assumptions.

2.2. Simultaneous Test for Multiple Factors

In this section, we test the elements of the loading matrix corresponding to different factors.
The testing problem can be stated as follows,

H0,G∗ : bik = bnull
ik for all (i, k) ∈ G∗ versus H1,G∗ : bik 6= bnull

ik for some (i, k) ∈ G∗,

where G∗ is a subset of M ≡ {(i, j) : i = 1, . . . p and j = 1, . . . , K}. Define

ω∗(i,k),(j,`) = cov(uitf′tΩ f vk, ujtf′tΩ f v`) = σijv′kΩ f v`,“ω∗(i,k),(j,`) = (“Ω f vk)
′
( 1

T

T∑
t=1

ûitûjtftf′t
)
(“Ω f v`).

We propose the studentized test statistic

MT,G∗ = max
(i,k)∈G∗

√
T|b̂ik − bik|/

√“ω∗
(i,k),(i,k).
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From the linear expansion in (5), the multiplier bootstrap statistic is defined as

WT,G∗ = max
(i,k)∈G∗

T−1/2
∣∣∣ T∑

t=1

ûitf′t“Ω f vket

∣∣∣/√“ω∗(i,k),(i,k),
where {et}T

t=1
i.i.d.∼ N(0, 1) are independent of {yt, ft}T

t=1. Then, the bootstrap critical value can be
obtained via

cWT,G∗ (α) = inf{t ∈ R : P(WT,G∗ ≤ t|(Y, F)) ≥ 1− α}.

Let γ−1
3 = 4r−1

1 + 4r−1
2 , r−1

3 = 3r−1
1 + 9r−1

2 and r = max{2/γ3 − 1, 2/r3 − 1, c1 + 7} for a constant
c1 > 0.

Theorem 4. Suppose (log p)r = o(T), under Assumptions 1, 2, and 4, we have

sup
α∈(0,1)

∣∣∣P( max
(i,k)∈G∗

√
T|b̂ik − bik|/

√“ω∗
(i,k),(i,k) > cWT,G∗ (α)

)
− α
∣∣∣ = o(1).

Based on Theorem 4, for a given significance level 0 < α < 1, we define the test Φα(G∗) by

Φα(G∗) = I(MT,G∗ > cWT,G∗ (α)).

The hypothesis H0,G∗ is rejected whenever Φα(G∗) = 1.
Now we turn to the power analysis of the test Φα(G∗). Similar to Section 2.1, we focus on the case

where |G∗| → ∞ as T → ∞ and define the separation set

VG∗(c) = {(bik)i≤p,k≤K : max
(i,k)∈G∗

|bik − bnull
ik |/

»
ω∗
(i,k),(i,k) > c

»
log(|G∗|)/T},

Let θ∗(i,k),(j,`) = ω∗(i,k),(j,`)/
»

ω∗
(i,k),(i,k)ω

∗
(j,`),(j,`). We consider the following condition.

Assumption 6. Suppose max(i,k),(j,`) |θ∗(i,k),(j,`)| ≤ c∗0 < 1 for some constant c∗0 .

The asymptotic power of the testing procedure is given as follows.

Theorem 5. Under the assumptions in Theorem 4 and Assumption 6 , for any ε0 > 0, we have

inf
B∈VG∗ (

√
2+ε0)

P
(

max
(i,k)∈G∗

√
T|b̂ik − bnull

ik |/
√“ω∗

(i,k),(i,k) > cWT,G∗ (α)
)
→ 1.

3. Multiple Testing with Strong FWER Control

In this section, we study the following multiple testing problem,

H0,i : bij ≤ bnull
ij versus H1,i : bij > bnull

ij for all i ∈ G.

For simplicity, we set G = {1, 2, . . . , p} and let j be fixed. We combine the bootstrap-assisted
procedure with the step-down method proposed by [17]. Our method can be seen as a special case in
Section 5 of [25]. Note that this framework can cover the case of testing equalities (H0,j : bij = bnull

ij )

because equalities can be rewritten as pairs of inequalities.
We briefly illustrate the control of the FWER. Full details and theory can be found in [25]. Let Ω

be the space for all data generating processes, and ω be the true process. Each null hypothesis H0,i
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is equivalent to ω ∈ Ωi for some Ωi ⊂ Ω. For any η ⊂ G, denote by Ωη = (∩i∈ηΩi) ∩ (∩i/∈ηΩc
i ) with

Ωc
i = Ω\Ωi. The strong control of the FWER means that

sup
η⊂G

sup
ω∈Ωη

Pω( reject at least one hypothesis H0,i, i ∈ ω) ≤ α + o(1), (8)

where Pω denotes the probability distribution under the data-generating process ω.
For i = 1, . . . , p, denote tij =

√
T(b̂ij − bnull

ij ). For a subset η ⊂ G, let cη(α) be the bootstrapped
estimate for the (1− α)-quantile of maxi∈ηtij. The step-down procedure in [17] is described as follows.
Define η(1) = G at the first step and reject all H0,i satisfying tij > cη(1)(α). If no H0,i is rejected,
then stop the procedure. If some H0,i are rejected, let η(2) be the set of indices for those hypotheses
not being rejected at the first step. On step ` ≥ 2, let η(`) ⊂ G be the subset of hypotheses that were
not rejected at step `− 1. Reject all hypotheses H0,i for i ∈ η(`) satisfying that tij > cη(`)(α). If no
hypothesis is rejected, then stop the procedure. Proceed in this way until the algorithm stops.

Romano and Wolf [17] proved the following result:

cη(α) ≤ cη′(α), for η ⊂ η′ (9)

sup
η⊂G

sup
ω∈Ωη

Pω

(
max
i∈η

tij > cη(α)
)
≤ α + o(1). (10)

Therefore, we can show that the step-down method together with the multiplier bootstrap provide
strong control of the FWER by verifying (9) and (10). The theoretical results are given in the proposition
below. The proofs are similar to those of Theorem 1, which are omitted here.

Proposition 1. Under the assumptions in Theorem 1, the step-down procedure with the bootstrap critical value
cη(α) satisfies (8).

Our multiple testing method has the following two important features: (i) It can be applied to
models with an increasing dimension; (ii) It takes into account the correlation amongst statistics and
hence is asymptotically non-conservative.

In the simulation, we also consider Benjamini–Hochberg procedure [20] to control the false
discovery rate (FDR), which is summarized as follows. For each of H0,1, . . . , H0,p, we calculate the
p-values P1, . . . , Pp based on the studentized test statistic. Let P(1) ≤ · · · ≤ P(p) be the ordered p-values,
and denote by H0,(i) the null hypothesis corresponding to P(i). Let k = max{i : P(i) ≤ iα/p}, and then
reject all H0,(i) for i = 1, . . . , k.

4. Simulation Study

This section examines the performance of the proposed testing procedure by a simulation study.
We fix the number of factors K = 3, the sample size T ∈ {200, 400}, and let the dimensionality p
increase from 50 to 600. Throughout the simulation, we consider testing the first column of B and
repeat multiplier bootstrap 500 times.

Each row of B is generated independently from N(0, IK), where IK is K × K identity matrix.
Let cov(ft) = (σ

f
ij)K×K with σ

f
ij = 0.6|i−j|. Here, we consider two models for the covariance

structure Σu.

(a) Model 1 (sparse): Ωu = (ωij)1≤i,j≤p where ωii = 1, ωij = 0.8 for 2(k− 1) + 1 ≤ i 6= j ≤ 2k, where
k = 1, . . . , [p/2] and ωi,j = 0 otherwise. Σu = Ω−1

u .
(b) Model 2 (non-sparse): Σu = (σij)1≤i,j≤p where σii = 1 and σij = 0.5 for i 6= j.
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Under each model, {ft}T
t=1 and {ut}T

t=1 are generated independently from N(0, cov(ft)) and
N(0, Σu), respectively.

We calculate the empirical sizes of test for each column of B under each model by considering
hypothesis (3) with G = {1, 2, . . . , p} and bnull

ik being the true value of bik. The results are summarized in
Table 1. Here “NST”, “ST” denote the non-studentized, studentized Bootstrap-based test, respectively,
and “EX” denotes the test using extreme value distribution. The estimated sizes of the three tests are
reasonably close to the nominal level 0.05 for the values of p ranging from 50 to 600.

Table 1. Empirical sizes of tests, α = 0.05, T = 400, and 500 replications.

p = 50 p = 100 p = 200 p = 400 p = 600

Model 1
NST 0.076 0.060 0.058 0.050 0.058
ST 0.074 0.064 0.064 0.058 0.078
EX 0.046 0.046 0.038 0.046 0.058

Model 2
NST 0.050 0.052 0.056 0.060 0.038
ST 0.070 0.058 0.064 0.068 0.048
EX 0.038 0.030 0.024 0.018 0.016

For all i ∈ G, by varying bik = bnull
ik + c/40 with c = ±0.8` and ` = 0, . . . , 10, we plot the empirical

powers of MT,k and M∗T,k in Figure 1. For ease of presentation, we only consider p ∈ {10, 200, 600}.
The results for other dimensionality are similar in spirit, and are not presented here. For all tests,
the significance level is fixed at α = 0.05. From Figure 1, we can tell that the empirical rejection rate
grows from the nominal level to one as c deviates away from zero. The difference between NST test
and ST test is slight. For small p, the EX test does not perform well because this approach requires
diverging p. Furthermore, for non-sparse error covariance matrix, our method performs better than
the EX method. These numerical results confirm our theoretical analysis.

Next, we study the numerical performance of the step-down method in Section 3 and compare
it with the Bonferroni–Holm procedure. Consider the following two-sided multiple testing problem;
H0,i : bij = b̃null

ij among all i = 1, 2, . . . , p with j = 1. For Models 1 and 2, the first s0 entries of {b̃null
ij }

p
i=1

are bnull
ij + 0.5 and bnull

ij + 0.35, respectively, and the rest are equal to bnull
ij . We set T ∈ {200, 400} and

p ∈ {50, 200, 500, 600}.
We employ both the step-down method based on the studentized/non-studentized test

statistic, and the Bonferroni–Holm procedure (based on the studentized test statistic) to control
the FWER. We denote these three procedures by NST-FWER, ST-FWER, and BH-FWER, respectively.
For comparison, we also consider using Benjamini–Hochberg procedure to control FDR. We denote
this procedure by BH-FDR. Based on 500 replications, we calculate the average empirical FWER

Average {I{ At least one hypothesis H0,i is rejected , i ∈ {s0 + 1, . . . , p}}}

for methods NST-FWER, ST-FWER, and BH-FWER, the average empirical FDR

Average
{∑

i∈S0

I{H0,i is rejected}/
∑
i∈G

I{H0,i is rejected}
}

for method BH-FDR, and the average empirical power

Average
{∑

i∈S0

I{H0,i is rejected}/s0

}
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for all the four methods, where S0 = {1, 2, . . . , s0} and G = {1, . . . , p}. Under each model, we consider
the case s0 = 3 and s0 = 15. Tables 2 and 3 report the empirical FWER, FDR, and the average power.
From Tables 2 and 3, the proposed and Bonferroni–Holm procedures provide similar control on the
FWER, and Benjamini–Hochberg procedure can control FDR. The empirical powers of the step-down
method and Benjamini–Hochberg procedure are higher than that of the Bonferroni–Holm procedure.
It is also seen that controlling the FDR is more powerful than controlling the FWER.
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Figure 1. Empirical powers of the NST, ST, and EX methods. The figures in the left panels are based on
Model 1, while those in the right panels are for Model 2. The red solid line corresponds to the nominal
level. (a) p = 10, (b) p = 10, (c) p = 200, (d) p = 200, (e) p = 600, (f) p = 600.
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Table 2. Empirical family-wise error rate (FWER) and false discovery rate (FDR) with power in the
brackets of multiple testing based on Model 1, α = 0.05, and 500 replications.

T s0 Method p = 50 p = 200 p = 500 p = 600

200 3 NST-FWER 0.058 (0.551) 0.062 (0.405) 0.048 (0.309) 0.056 (0.291)
ST-FWER 0.074 (0.554) 0.082 (0.431) 0.086 (0.337) 0.090 (0.324)
BH-FWER 0.054 (0.528) 0.070 (0.409) 0.074 (0.319) 0.068 (0.300)
BH-FDR 0.061 (0.635) 0.064 (0.470) 0.086 (0.380) 0.069 (0.353)

15 NST-FWER 0.056 (0.569) 0.050 (0.412) 0.040 (0.306) 0.046 (0.303)
ST-FWER 0.066 (0.583) 0.086 (0.430) 0.074 (0.334) 0.084 (0.327)
BH-FWER 0.060 (0.561) 0.066 (0.410) 0.056 (0.310) 0.068 (0.309)
BH-FDR 0.043 (0.810) 0.064 (0.655) 0.06 (0.518) 0.061 (0.509)

400 3 NST-FWER 0.050 (0.935) 0.058 (0.889) 0.062 (0.839) 0.058 (0.808)
ST-FWER 0.070 (0.937) 0.062 (0.885) 0.078 (0.842) 0.066 (0.813)
BH-FWER 0.052 (0.931) 0.054 (0.873) 0.062 (0.834) 0.052 (0.795)
BH-FDR 0.057 (0.957) 0.056 (0.924) 0.064 (0.889) 0.068 (0.863)

15 NST-FWER 0.058 (0.947) 0.054 (0.881) 0.040 (0.819) 0.070 (0.815)
ST-FWER 0.052 (0.946) 0.066 (0.881) 0.058 (0.825) 0.084 (0.882)
BH-FWER 0.050 (0.942) 0.056 (0.871) 0.050 (0.809) 0.060 (0.806)
BH-FDR 0.035 (0.989) 0.052 (0.968) 0.056 (0.946) 0.059 (0.941)

Table 3. Empirical FWER and FDR with power in the brackets of multiple testing based on Model 2,
α = 0.05, and 500 replications.

T s0 Method p = 50 p = 200 p = 500 p = 600

200 3 NST-FWER 0.044 (0.805) 0.052 (0.692) 0.066 (0.622) 0.056 (0.609)
ST-FWER 0.058 (0.807) 0.066 (0.701) 0.084 (0.638) 0.066 (0.621)
BH-FWER 0.030 (0.759) 0.042 (0.620) 0.024 (0.517) 0.024 (0.505)
BH-FDR 0.039 (0.819) 0.046 (0.691) 0.038 (0.592) 0.030 (0.570)

15 NST-FWER 0.042 (0.805) 0.060 (0.697) 0.058 (0.626) 0.048 (0.618)
ST-FWER 0.050 (0.809) 0.080 (0.708) 0.080 (0.637) 0.072 (0.630)
BH-FWER 0.028 (0.757) 0.042 (0.621) 0.034 (0.530) 0.038 (0.519)
BH-FDR 0.035 (0.922) 0.044 (0.822) 0.046 (0.746) 0.040 (0.717)

400 3 NST-FWER 0.060 (0.989) 0.052 (0.985) 0.052 (0.971) 0.050 (0.970)
ST-FWER 0.064 (0.989) 0.054 (0.985) 0.068 (0.970) 0.072 (0.973)
BH-FWER 0.046 (0.983) 0.022 (0.975) 0.026 (0.951) 0.024 (0.945)
BH-FDR 0.045 (0.995) 0.034 (0.990) 0.040 (0.972) 0.035 (0.973)

15 NST-FWER 0.066 (0.992) 0.072 (0.986) 0.056 (0.975) 0.056 (0.975)
ST-FWER 0.072 (0.992) 0.076 (0.986) 0.056 (0.975) 0.064 (0.975)
BH-FWER 0.046 (0.988) 0.036 (0.973) 0.024 (0.952) 0.022 (0.950)
BH-FDR 0.043 (0.999) 0.042 (0.998) 0.031 (0.993) 0.044 (0.992)

5. Real Data Analysis

This section conducts hypothesis testing for financial data from 1 January 2017 to 14 March 2018.
The dataset consists of daily returns of 491 stocks from S&P 500 index. In addition, we collected
Fama–French three factors [21] in the same period. In summary, the panel matrix is a 300 by 491 matrix
Y, in addition to a factor matrix F of size 300 by 3. Here, 300 is the number of days and 491 is the
number of stocks.

We first centralize and standardize the factor matrix F and Y is centralized as well. We consider
testing the sparsity of each column of B and repeat the multiplier bootstrap 500 times. Simultaneous
test of parameters corresponding to multiple factors is also considered. The hypotheses are

H0 : bik = 0 for all (i, k) ∈ s versus H1 : bik 6= 0 for some (i, k) ∈ s,
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where s = {(i, k) : k ∈ s∗ ⊂ {1, 2, 3}, |b̂ik| are the smallest β% among {|b̂ik|}i∈{1,...,p};k∈s∗}, with s∗ =
{1}, {2}, {3} or {2, 3} and β = 10, 30, 50, 70, 90. The results are depicted in Table 4. For the first column
of B, it is therefore not reasonable to assume bi1 = 0. However, we can claim that the last two columns
of B are sparse. Hence, a sufficiently large number of stocks are not influenced by the last two factors.

Table 4. Results of sparse testing.

β = 10 β = 30 β = 50 β = 70 β = 90

1st loading R R R R R
2nd loading A A A A A
3rd loading A A A A R

2nd and 3rd loading A A A R R

Note: “A” means accepting the null hypothesis; “R” denotes rejecting the
null hypothesis.
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Appendix A. Technical Details

We prove the main results in this section. First, we introduce some notations. Throughout this
section, we denote by c, c′, C, C′, Ci constants that do not depend on p, T and may vary from place to
place. Define T0 = maxi∈G

∑T
t=1 ξit/

√
T and T1 = maxi∈G

∑T
t=1 ξ̂it/

√
T. Let {zt}T

t=1 be a sequence
of N(0, Ω f (k, k)Σu) vectors. Define cW0(α) = inf{t ∈ R : P(W0 ≤ t|(Y, F)) ≥ 1− α} with W0 =

maxi∈G T−1/2
»“Ω f (k, k)

∑T
t=1 ûitet and cZ0(α) = inf{t ∈ R : P(Z0 ≤ t|(Y, F)) ≥ 1− α} with Z0 =

maxi∈G
∑T

t=1 zit/
√

T. Denote by Σ f (m, n) = v′mΣ f vn with Σ f = Ω−1
f . We begin by presenting some

useful lemmas that will be used in the proofs of the main results.

Lemma A1. Suppose that the random variables Z1, Z2 both satisfy the exponential-type tail condition: There
exist r1, r2 ∈ (0, 1) and b1, b2 > 0 such that ∀s > 0,

P(|Zi| > s) ≤ exp{1− (s/bi)
ri}, i = 1, 2.

Then, for some r3 and b3 > 0, and any s > 0,

(i) P(|Z1Z2| > s) ≤ exp{1− (s/b3)
r3}, where r3 ∈ (0, r) with r = r1r2/(r1 + r2),

(ii) P(|Z| > s) ≤ exp{1− (s/b3)
r3}, where Z = max{Z1, Z2}.

Proof of Lemma A1. The proof of the first claim can be found in the proof of Lemma A.2 in [4], thus we
prove the second claim. For any s > 0, we have

P(|Z| > s) ≤ P(|Z1| > s) + P(|Z2| > s)

= exp{1− (s/b1)
r1}+ exp{1− (s/b2)

r2}
≤ 2 exp{1− (s/b)r},
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where br = max{br1
1 , br2

2 }. Pick up an r3 ∈ (0, r), and b3 > max{(r3/r)1/rb, (1 + log 2)1/rb}; then, it
can be shown that F(s) = (s/b)r − (s/b3)

r3 is increasing when s > b3. Therefore, F(s) > F(b3) > log 2
when s > b3, which implies when s > b3,

P(|Z| > s) ≤ 2 exp{1− (s/b)r} ≤ exp{1− (s/b3)
r3}.

When s ≤ b3,
P(|Z| > s) ≤ 1 ≤ exp{1− (s/b3)

r3}.

Then the proof is complete.

Lemma A2. Under Assumptions 1–4, we have

(i) maxi,j≤p |σ̂ij − σij| = Op(
√

log p/T).
(ii) maxi≤p,k≤K |(1/T)

∑T
t=1 fktuit| = Op(

√
log p/T).

(iii) maxi,j≤K |(1/T)
∑T

t=1 fit f jt − E fit f jt| = Op(
√

log T/T).

Proof of Lemma A2. For a proof, see the proof of Lemma A.3 and Lemma B.1 in [4].

Lemma A3. If a random variable X satisfies exponential-type tail: there exist r > 0 and b > 0 such that
∀s > 0, P(|X| > s) ≤ exp{1− (s/b)r}. Then E(|X|) = O(1).

Proof of Lemma A3. Note that

E(|X|) =
∫ ∞

0
P(|X| > x)dx

≤
∫ ∞

0
exp{1− (x/b)r}dx

.
∫ ∞

0
exp(−xr)dx := I

It is not hard to check when r ≥ 1, I ≤ 1 + e−1. When r < 1, I = αΓ(α), where α = 1/r and
Γ(α) =

∫ ∞
0 e−xxα−1dx = O(1). Then, the proof is complete.

Lemma A4. Under the assumptions in Theorem 1, there exist constants c, C > 0 such that

ρ := sup
t∈R
|P(T0 ≤ t)− P(Z0 ≤ t)| ≤ CT−c.

Proof of Lemma A4. Implied by Assumption 3, we have (log(pT))7/T ≤ C1T−c1 for some constants
c1, C1 > 0. We then apply Corollary 2.1 of [25] to the sequence ξit. What we should check is its
Condition (E.2), that is, uniformly over i,

c0 ≤ E(ξit)
2 ≤ C0, max

k=1,2
E(|ξit|k+2/Bk) + E{( max

1≤i≤p
|ξit|/B)4} ≤ 4,

where c0, C0 > 0 and B is some large enough constant. By Lemmas A1 and A3 we have E( fit f jt) = O(1)
uniformly for i, j ≤ K. This implies ‖Ω f ‖∞ = O(1). Uniformly for i ≤ p, we have

ξit = uitf′tΩ f vk ≤ uit‖ft‖∞‖Ω f vk‖1 := γit.
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By Lemma A1, we know γit and max1≤i≤p |γit| is exponential-type tail. Then by Lemma A3 we
have E(|ξit|4) ≤ E(|γit|4)=O(1) and E(maxi≤p |ξit|)4 ≤ E(maxi≤p |γit|)4 = O(1). Thus, we can find
large enough B such that the above condition is satisfied. Then, the proof is complete.

Lemma A5. Under the assumptions in Theorem 1, there exists a sequence of positive numbers αT → ∞ such
that αT/p = o(1) and P(αT(log p)2|“Ω f (k, k)−Ω f (k, k)| > 1)→ 0.

Proof of Lemma A5. By Lemma A2 (iii), we have ‖“Ω−1
f −Ω−1

f ‖∞ = Op(
√

log T/T). Since ‖Ω f ‖ =
O(1) and ‖“Ω f ‖∞ = Op(1), we have

‖“Ω f −Ω f ‖∞ = ‖“Ω f (Ω
−1
f − “Ω−1

f )Ω f ‖∞

≤ ‖“Ω f ‖∞‖“Ω−1
f −Ω−1

f ‖∞‖Ω f ‖∞

= Op(
»

log T/T).

On the other hand,

|“Ω f (k, k)−Ω f (k, k)| ≤ ‖“Ω f −Ω f ‖∞ = Op(
»

log T/T).

Choosing αT =
√

log T, by Assumption 3, the proof is complete.

Lemma A6. Under the assumptions in Theorem 1, we have for every α ∈ (0, 1) and ϑ > 0,

P(cW0(α) ≤ cZ0(α + π(ϑ))) ≥ 1− P(∆ > ϑ),

P(cZ0(α) ≤ cW0(α + π(ϑ))) ≥ 1− P(∆ > ϑ),

Proof of Lemma A6. For ϑ > 0, let π(ϑ) = C2ϑ1/3(1 ∨ log(p/ϑ))2/3 with C2 > 0. Recall that ∆ =

max1≤i,j≤p |“Ω f (k, k)σ̂ij −Ω f (k, k)σij|. As |Ω f (k, k)| = O(1) uniformly for k ≤ K, by Lemma A2 (i),
we have

∆ = Op(|“Ω f (k, k)−Ω f (k, k)|+
»
(log p)/T).

By Lemma A5 and Assumption 3, choosing ϑ = 1/(αT(log p)2), we have P(∆ > ϑ) = o(1).
By Lemma 3.1 of [25], on the event {(Y, F) : ∆ ≤ ϑ}, we have |P(Z0 ≤ t)−P(P(W0 ≤ t|(Y, F))| ≤ π(ϑ)

for all t ∈ R, and so on this event

P(P
(
W0 ≤ cZ0(α + π(ϑ))|(Y, F))) ≥ P(Z0 ≤ cZ0(α + π(ϑ)))− π(ϑ)

≥ α + π(ϑ)− π(ϑ) = α,

implying the first claim. The second claim follows similarly.

Lemma A7. Under the assumptions in Theorem 1, there exist ζ1, ζ2 > 0 such that

P
(∣∣∣ max

1≤i≤p

T∑
t=1

ξ̂it/
√

T − max
1≤i≤p

T∑
t=1

ξit/
√

T
∣∣∣ > ζ1

)
< ζ2,

where ζ1
√

1∨ log(p/ζ1) = o(1), ζ2 = o(1).

Proof of Lemma A7. The arguments in the proof of Lemma A5 imply that

‖“Ω f vk −Ω f vk‖1 = Op(
»

log T/T).
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By Lemma A2 (ii), uniformly for i ≤ p, we have

∣∣∣ T∑
t=1

ξ̂it/
√

T −
T∑

t=1

ξit/
√

T
∣∣∣ = ∣∣∣ T∑

t=1

uitf′t(“Ω f vk −Ω f vk)/
√

T
∣∣∣

≤ ‖“Ω f vk −Ω f vk‖1 max
i≤p,k≤K

∣∣∣ 1√
T

T∑
t=1

fktuit

∣∣∣
= Op(

»
log p log T/T).

Choosing ζ2
1 = O(

√
log p log T/T), we have

P
(

max
1≤i≤p

∣∣∣ T∑
t=1

ξ̂it/
√

T −
T∑

t=1

ξit/
√

T
∣∣∣ > ζ1

)
≤ ζ2, ζ2 = o(1).

Note that

∣∣∣ max
1≤i≤p

T∑
t=1

ξ̂it/
√

T − max
1≤i≤p

T∑
t=1

ξit/
√

T
∣∣∣ ≤ max

1≤i≤p

∣∣∣ T∑
t=1

ξ̂it/
√

T −
T∑

t=1

ξit/
√

T
∣∣∣,

then the proof is complete.

Lemma A8. Under the assumptions in Theorem 4, we have

(i) maxi,j,m,n |(1/T)
∑T

t=1 uitujt fmt fnt − σijΣ f (m, n)| = Op(
√

log p/T),
(ii) maxi,j,m,n |(1/T)

∑T
t=1 uit f jt fmt fnt| = Op(

√
log p/T),

Proof of Lemma A8. (i) By Assumption 1 and Lemma A1, uit fmt satisfies the exponential tail condition,
with parameter 2r1r2/(3r1 + 3r2) as shown in Lemma A1. Thus, uitujt fmt fnt satisfies the exponential
tail condition, with parameter r1r2/(4r1 + 4r2). It follows from 1.5(r−1

1 + r−1
2 ) > 1 that γ3 < 1.

Therefore, by the Bernstein’s inequality [23], there exist constants Ci, i = 1, . . . , 5, for any s > 0

max
i,j,m,n

P
(∣∣∣ 1

T

T∑
t=1

uitujt fmt fnt − σijΣ f (m, n)
∣∣∣ ≥ s

)
≤ T exp

(
− (Ts)γ3

C1

)
+ exp

(
− T2s2

C2(1 + TC3)

)
+ exp

(
− (Ts)2

C4T
exp

( (Ts)γ3(1−γ3)

C5(log Ts)γ3

))
.

(A1)

Using Bonferroni’s method, we have

P
(

max
i,j,m,n

∣∣∣ 1
T

T∑
t=1

uitujt fmt fnt − σijΣ f (m, n)
∣∣∣ > s

)

≤ (pK)2 max
i,j,m,n

P
(∣∣∣ 1

T

T∑
t=1

uitujt fmt fnt − σijΣ f (m, n)
∣∣∣ > s

)
.

Let s = C
√
(log p)/T for some C > 0. It is not hard to check that when (log p)2/γ3−1 = o(T)

(by assumption), for large enough C,

p2T exp
(
− (Ts)γ3

C1

)
+ p2 exp

(
− (Ts)2

C4T
exp

( (Ts)γ3(1−γ3)

C5(log Ts)γ3

))
= o
( 1

p2

)
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and

p2 exp
(
− T2s2

C2(1 + TC3)

)
= O

( 1
p2

)
.

As K = O(1), this proves (i).
(ii) By Assumption 1 and Lemma A1, uit f jt fmt fnt satisfies the exponential tail condition for the tail

parameter r1r2/(9r1 + 3r2). Therefore, again by the Bernstein’s inequality and the Bonferroni method
on uit f jt fmt fnt similar to (A1) with the parameter r−1

3 = 3r−1
1 + 9r−1

2 , it follows from 1.5(r−1
1 + r−1

2 ) > 1
that r3 < 1. Thus, when s = C

√
log p/T for large enough C, as K is fixed, the term

pK3 exp
(
− T2s2

C2(1 + TC3)

)
≤ p−2,

and the rest terms on the right-hand side of the inequality, multiplied by pK3 are of order o(p−2).
Hence when (log p)2/r3−1 = o(T) (by assumption), we have

max
i,j,m,n

∣∣∣ 1
T

T∑
t=1

uit f jt fmt fnt

∣∣∣ = Op(
»

log p/T),

which completes the proof.

Lemma A9. Under the assumptions in Theorem 4, we have

(i) maxi,j,m,n |(1/T)
∑T

t=1(ûitûjt fmt fnt − uitujt fmt fnt)| = Op(log p/T).
(ii) maxi,j,m,n |(1/T)

∑T
t=1 ûitûjt fmt fnt − σijΣ f (m, n)| = Op(

√
log p/T).

Proof of Lemma A9. (i) By the triangular inequality, we have

∣∣∣ 1
T

T∑
t=1

(ûitûjt fmt fnt − uitujt fmt fnt)
∣∣∣

≤
∣∣∣ 1
T

T∑
t=1

(ûitûjt fmt fnt − ûitujt fmt fnt)
∣∣∣︸ ︷︷ ︸

I

+
∣∣∣ 1
T

T∑
t=1

(ûitujt fmt fnt − uitujt fmt fnt)
∣∣∣︸ ︷︷ ︸

I I

For I, we have

I =
∣∣∣ 1
T

T∑
t=1

ûit(b̂j − bj)
′ft fmt fnt

∣∣∣
≤
∣∣∣ 1
T

T∑
t=1

(b̂i − bi)
′ft(b̂j − bj)

′ft fmt fnt

∣∣∣︸ ︷︷ ︸
i

+
∣∣∣ 1
T

T∑
t=1

uit(b̂j − bj)
′ft fmt fnt

∣∣∣︸ ︷︷ ︸
ii

By Lemma 3.1 of [4], we have maxi≤p ‖b̂i − bi‖ = Op(
√

log p/T). It is straightforward to see that

max
m,n≤K

∥∥∥ 1
T

T∑
t=1

ftf′t fmt fnt

∥∥∥
∞
= Op(1).

then we have,

i ≤ max
i,m,n
‖b̂i − bi‖2

∥∥∥ 1
T

T∑
t=1

ftf′t fmt fnt

∥∥∥
∞
= Op(log p/T).
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By Lemma A8 (ii), we have ‖(1/T)
∑T

t=1 uitft fmt fnt‖∞ = Op(
√

log p/T), which implies that

ii ≤ max
j≤p
‖b̂j − bj‖

∥∥∥ 1
T

T∑
t=1

uitft fmt fnt

∥∥∥
∞
= Op(log p/T)

Part I I is similar to ii, thus we have

I I =
∣∣∣ 1
T

T∑
t=1

(b̂i − bi)
′ftujt fmt fnt

∣∣∣ ≤ Op(log p/T).

Then the proof is complete.
(ii) By the triangular inequality, we have

max
i,j,m,n

∣∣∣ 1
T

T∑
t=1

ûitûjt fmt fnt − σijΣ f (m, n)
∣∣∣

≤ max
i,j,m,n

∣∣∣ 1
T

T∑
t=1

(ûitûjt fmt fnt − uitujt fmt fnt)
∣∣∣+ max

i,j,m,n

∣∣∣ 1
T

T∑
t=1

uitujt fmt fnt − σijΣ f (m, n)
∣∣∣

= Op(
»

log p/T),

which proves the result.

Proof of Theorem 1. Without loss of generality, we set G = {1, 2, . . . , p}. First, we prove the
following fact,

sup
α∈(0,1)

|P(T1 > cW0(α))− α| = o(1), (A2)

For ϑ > 0, let π(ϑ) := C2ϑ1/3(1 ∨ log(p/ϑ))2/3 with C2 > 0. In addition, Let κ1(ϑ) := cZ0(α−
ζ2 − π(ϑ)) and κ2(ϑ) := cZ0(α + ζ2 + π(ϑ)). For every α ∈ (0, 1), note that

P({T1 ≤ cW0(α)} 	 {T0 ≤ cZ0(α)})
.(1) P(κ1(ϑ)− 2ζ1 < T0 ≤ κ2(ϑ) + 2ζ1) + P(∆ > ϑ) + ζ2

.(2) P(κ1(ϑ)− 2ζ1 < Z0 ≤ κ2(ϑ) + 2ζ1) + P(∆ > ϑ) + ρ + ζ2

.(3) π(ϑ) + P(∆ > ϑ) + ρ + ζ1

»
1∨ log(p/ζ1) + ζ2,

where (1) follows from Lemmas A6 and A7, (2) follows from Lemma A4, and (3) follows from
Lemma 2.1 in [25] and the fact that Z0 has no point masses. Then, by the definition of ρ in Lemma A4,
we have

sup
α∈(0,1)

|P(T1 > cW0(α))− α| ≤ ρ	 + ρ,

where ρ	 = supα∈(0,1) P({T1 ≤ cW0(α)} 	 {T0 ≤ cZ0(α)}). The right-hand side of the above inequality

is o(1), which has proved (A2). Since maxi∈G
√

T|b̂ik − bik| =
√

T maxi∈G max{b̂ik − bik, bik − b̂ik},
similar arguments imply that

sup
α∈(0,1)

∣∣∣P(max
i∈G

√
T|b̂ik − bik| > cWT,k (α)

)
− α
∣∣∣ = o(1),

which completes the proof.
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Proof of Theorem 2. From the arguments in the proof of Lemma A6, we have

∆ = Op(|“Ω f (k, k)−Ω f (k, k)|+
»

log p/T),

which implies that max1≤i≤p |“ωii −ωii| = Op(|“Ω f (k, k)−Ω f (k, k)|+
√

log p/T). We then have

P(ωii/2 < “ωii < 2ωii for all 1 ≤ i ≤ p)→ 1. (A3)

Define T̄1 = maxi∈G
∑T

t=1 ξ̂it/
√

T“ωii and T̄0 = maxi∈G
∑T

t=1 ξit/
√

Tωii. Note that

|T̄1 − T̄0|

≤ max
1≤i≤p

∣∣∣ T∑
t=1

ξ̂it/
»

T“ωii −
T∑

t=1

ξit/
√

Tωii

∣∣∣
≤ max

1≤i≤p

∣∣∣ T∑
t=1

ξ̂it/
»

T“ωii −
T∑

t=1

ξ̂it/
√

Tωii

∣∣∣+ max
1≤i≤p

∣∣∣ T∑
t=1

ξ̂it/
√

Tωii −
T∑

t=1

ξit/
√

Tωii

∣∣∣
≤ C′ max

1≤i≤p

∣∣∣ T∑
t=1

ξ̂it/
√

T
∣∣∣ max

1≤i≤p
|
»

ωii/“ωii − 1|+ C′′ max
1≤i≤p

∣∣∣ T∑
t=1

(
ξ̂it − ξit

)
/
√

T
∣∣∣

:= I1 + I2,

where C′, C′′ > 0.
On the event ωii/2 < “ωii < 2ωii for all 1 ≤ i ≤ p,

max
1≤i≤p

|
»

ωii/“ωii − 1| ≤ max
1≤i≤p

|
√

ωii −
»“ωii| max

1≤i≤p

√
2/ωii

≤ max
1≤i≤p

∣∣∣ ωii − “ωii√
ωii +

√“ωii

∣∣∣ max
1≤i≤p

√
2/ωii

≤ max
1≤i≤p

|ωii − “ωii| max
1≤i≤p

1/ωii

= Op(|“Ω f (k, k)−Ω f (k, k)|+
»
(log p)/T).

On the other hand,

max
1≤i≤p

∣∣∣ T∑
t=1

ξ̂it/
√

T
∣∣∣ ≤ max

1≤i≤p

∣∣∣ T∑
t=1

(ξ̂it − ξit)/
√

T
∣∣∣+ max

1≤i≤p

∣∣∣ T∑
t=1

ξit/
√

T
∣∣∣

= OP(
»

log p log T/T +
»

log p) = OP(
»

log p).

Therefore, on the above event, I1 ≤ Op(
√

log p|“Ω f (k, k)−Ω f (k, k)|+ log p/
√

T). By Lemma A5,

we can find ζ ′1 such that P(I1 > ζ ′1) = o(1) and ζ ′1
»

1∨ log(p/ζ ′1) = o(1). Thus by Lemma A7 and
(A3), we have

P(|T̄1 − T̄0| > ζ1) ≤ P(I1 + I2 > ζ1) < ζ2,

for ζ1
√

1∨ log(p/ζ1) = o(1) and ζ2 = o(1).
Let ∆̄ = max1≤j,k≤p |ωjk/√ωjjωkk − “ωjk/

»“ωjj“ωkk|. Note that

|√ωjjωkk −
»“ωjj“ωkk| =

|ωjjωkk − “ωjj“ωkk|
√

ωjjωkk +
»“ωjj“ωkk

.
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On the event ωii/2 < “ωii < 2ωii for all 1 ≤ i ≤ p, we have

|ωjjωkk − “ωjj“ωkk|
√

ωjjωkk +
»“ωjj“ωkk

≤
|ωjjωkk − “ωjj“ωkk|

√
ωjjωkk +

»
ωjjωkk/4

≤ (2/3)|ωjjωkk − “ωjj“ωkk| max
1≤j≤p

1/ωjj,

which implies that

max
1≤j,k≤p

|
»

ωjjωkk/“ωjj“ωkk − 1| ≤ max
1≤j,k≤p

|√ωjjωkk −
»“ωjj“ωkk| max

1≤j≤p
2/ωjj

≤ (4/3) max
1≤j,k≤p

|ωjjωkk − “ωjj“ωkk| max
1≤j≤p

1/ω2
jj

= Op(|“Ω f (k, k)−Ω f (k, k)|+
»
(log p)/T).

Choosing ϑ = 1/(αT(log p)2), we can show that P(∆̄ > ϑ) = o(1). The rest of the proofs are
similar to those in the proof of Theorem 1. We skip the details.

Proof of Theorem 3. Let Z = (Z1, . . . , Zp)
d∼ N(0, Θ). Following the arguments in the proof of

Theorem 2, we can show that the distribution of maxi∈G
√

T|b̂ik − bik|/
√“ωii can be approximated by

maxi∈G |Zi|. Under Assumption 5, by Lemma 6 of [15], we have for any x ∈ R and as |G| → ∞,

P
(

max
i∈G
|Zi|2 − 2 log(|G|) + log log(|G|) ≤ x

)
→ F(x) := exp

{
− 1√

π
exp

(
− x

2

)}
.

It implies that

P
(

max
i∈G

T|b̂ik − bik|2/“ωii ≤ 2 log(|G|)− log log(|G|)/2
)
→ 1. (A4)

The bootstrap consistency result implies that

|(c∗WT,k
(α))2 − 2 log(|G|) + log log(|G|)− qα| = oP(1), (A5)

where qα is the 100(1− α)th quantile of F(x). Consider any i ∈ G such that |bnull
ik − bik|/

√
ωii >

(
√

2 + ε0)
√

log |G|/T. Using the inequality 2a1a2 ≤ δ−1a2
1 + δa2

2 for any δ > 0, we have

T|bnull
ik − bik|2/“ωii ≤ (1 + δ−1)T|b̂ik − bik|2/“ωii + (1 + δ)T|b̂ik − bnull

ik |
2/“ωii, (A6)

where T|b̂ik − bik|2/“ωii = op(log |G|) as i is fixed and |G| grows. From the proof of Theorem 2,
we know the difference between T|bnull

ik − bik|2/“ωii and T|bnull
ik − bik|2/ωii is asymptotically negligible.

Thus, by (A6) and the fact that Bk ∈ UG(
√

2 + ε0), we have

max
i∈G

T|b̂ik − bnull
ik |

2/“ωii ≥
1

1 + δ

{
(
√

2 + ε0)
2(log |G|)− op(log |G|)

}
. (A7)

The conclusion thus follows from (A7) and (A5) provided that δ is small enough.

Proof of Theorem 4. Without loss of generality, we set G∗ = M. Define

Γ̂ =
1
T

T∑
t=1

ûitûjtftf′t, and Γ = σijΣ f .

Let
∆∗ := max

i,j,m,n

∣∣∣(“Ω f vm)
′Γ̂(“Ω f vn)− σijΩ f (m, n)

∣∣∣
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denote the maximum discrepancy between the empirical and population covariance matrices. By the
triangular inequality, we have

|(“Ω f vm)
′Γ̂(“Ω f vn)− σijΩ f (m, n)|

= |(“Ω f vm)
′Γ̂(“Ω f vn)− (Ω f vm)

′Γ(Ω f vn)|

≤ |(“Ω f vm)
′(Γ̂− Γ)(“Ω f vn)|︸ ︷︷ ︸

I

+ |(“Ω f vm −Ω f vm)
′Γ(“Ω f vn)|︸ ︷︷ ︸

I I

+ |(Ω f vm)
′Γ(“Ω f −Ω f )vn|︸ ︷︷ ︸

I I I

.

Note that ‖“Ω f ‖∞ = Op(1), by Lemma A9 (ii), we have

I ≤ ‖“Ω f vm‖2
∞‖Γ̂− Γ‖∞ = Op(

»
log p/T).

By Lemma A2 (iii) and ‖Γ‖∞ = O(1), we have

I I ≤ ‖“Ω f vm −Ω f vm‖∞‖Γ‖∞‖“Ω f vn‖∞ = Op(
»

log T/T).

Since ‖Ω f ‖∞ = O(1), we have

I I I ≤ ‖(Ω f vm)
′‖∞‖Γ‖∞‖(“Ω f −Ω f )vn‖∞ = Op(

»
log T/T).

The above results hold uniformly for i, j, m, n, thus we have

∆∗ = Op(
»

log p/T +
»

log T/T).

The rest of the proofs is similar to those in the proof of Theorem 2. We skip the details.

Proof of Theorem 5. For a proof, see the proof of Theorem 3.
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