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Abstract 
Speech enhancement is an indispensable technology in the 
field of speech interaction. With the development of 
microphone array signal processing technology and deep 
learning, the beamforming combined with neural network has 
provided a more diverse solution for this field. In this paper, a 
multi-channel speech enhancement method is proposed, which 
combines beamforming and post-filtering based on neural 
network. The spatial features and phase information of target 
speech are incorporated into the beamforming by neural 
network, and a neural network based single-channel post-
filtering with the phase correction is further combined to 
improve the performance. The experiments at different signal-
to-noise ratio (SNR) levels confirmed that the proposed 
method results in an obvious improvement on speech quality 
and intelligibility compared to the reference methods. 
Index Terms: beamforming, post-filtering, spatial features, 
phase sensitive, phase correction 

1. Introduction 
With the development of speech communication technology, 
the use of microphone array to extract the desired speech from 
noisy and reverberant environments has become an important 
research task. One important reason for this is that the 
microphone array could utilize information about speech 
source location except for spectral information [1]. 

Beamforming is one of the most effective methods to 
implement speech enhancement [2][3][4]. Among them, the 
minimum variance distortionless response (MVDR) 
beamforming [5] is a kind of adaptive beamforming method. It 
can make the interesting signal undistorted when the 
interesting signal passes through the filter on the desired 
direction. Meanwhile, it can minimize the variance of residual 
noise or the filtered speech. 

In recent years, traditional beamforming methods have 
been combined with deep neural networks (DNNs) to improve 
the performance of speech enhancement. For example, the 
masking estimation methods [6][7] were proposed by 
combining the MVDR beamforming and the DNNs. The long 
short-term memory networks (LSTMs) were used in these 
methods to estimate the mask for masking noisy speech of 
each channel so that the spatial covariance matrices (SCMs) of 
clean speech and noise are calculated for constructing the 
MVDR beamformer. On the other hand, an iterative-based 
post-filtering method was proposed in [8], in which the 
MVDR was constructed using the DNNs to estimate the mask. 
Thus, a mask-based post-filter was obtained to further 
suppress the noise of the beamformed speech. Through the 

iterative operations, i.e., the output speech is sent back to the 
neural network for re-estimation of the mask, the finally 
enhanced speech is obtained. Although great progress has 
been made in the beamforming with the help of the DNNs, 
there is still much room for improvement and research 
significance. 

In this paper, a multi-channel speech enhancement method 
based on the spatial and phase information is proposed, in 
which the DNNs-based beamforming and post- filtering are 
included. In the beamforming, the efficient spatial features and 
phase-sensitive-based mask are considered to implement 
speech enhancement based on the DNNs and the MVDR 
beamforming. In post-filtering, a single-channel speech 
enhancement method based on the DNNs with the phase-
sensitive-based mask and phase correction technology is 
performed, which can further improve the performance of the 
beamformed speech. The experiments showed that the 
proposed method could increase the speech quality and 
intelligibility effectively by making better use of the spatial 
and phase information. 

The structure of the paper is organized as follows: The 
proposed neural network-based beamforming method is 
described in Section 2. The proposed single-channel post- 
filtering method is given in Section 3. Experiments and 
discussion are shown in Section 4. Finally, Conclusions and 
future work are summarized in Section 5. 

2. Neural Network-Based Beamforming 
The block diagram of the neural network-based beamforming 
is illustrated in Figure 1. In this method, only one target 
speech is considered for reverberation condition in the cases of 
additive microphone self-noise and isotropic spherically 
diffuse noise which is generated by acoustic noise field 
generator [9]. 

2.1. Input Features of Neural Network 

Considering a microphone array with L microphones that 
captures the reverberant speech with noise. In the short-time 
Fourier transform (STFT) domain, the received signal at the lth 
microphone can be represented as Yl(n,k)=|Yl(n,k)|ej∠Yl(n,k), 
where n and k are the indexes of time frame and frequency bin, 
respectively. |⋅| and ∠⋅ indicate the magnitude and phase 
operation, respectively. The magnitude of noisy speech plays 
an indispensable role in the DNNs-based methods due to its 
time-varying characteristics. So, in this work, the magnitude is 
used for primary feature. 

Benefits from microphone array, the inter-channel phase 
differences (IPDs) representing the spatial feature of the target 
speech can be used for the second feature. IPDs can help 
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neural network to make full use of spatial information and 
better serve the subsequent beamforming process. When the 
1st microphone is chosen as the reference microphone, the 
IPDs at the ith microphone can be calculated as 

 1( , ) ( , ) ( , ), 2, ,i iIPD n k Y n k Y n k i L= ∠ −∠ =    (1) 

That is, the IPDs is obtained by subtracting the phase of 
the reference microphone from the phases of other 
microphones. This operation can eliminate inherent wrap 
characteristics of the short-term phase and can be used as 
input features of neural network to capture spatial information 
of target speech and acoustic characteristics of the room. 

As a result, the magnitudes and the IPDs of each 
microphone are combined together to form input features of 
neural network, so input feature vector can be expressed as 

    
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where Y1(n,k) ⋅⋅⋅ YL(n,k) are the magnitude of the received 
signals from the 1st to the Lth microphone, and the IPD2(n,k) ⋅⋅⋅ 
IPDL(n,k) are the IPDs with respect to reference microphone 
from the 2nd to the Lth microphone, respectively. 

2.2. Structure of Neural Network 

The neural network in beamforming consists of three BiLSTM 
[10] layers and one output layer with two linear layers. Each 
layer contains 512 neurons. Activation functions ReLU [11] 
and tanh are used for hidden layers and output layer, 
respectively. The Adam optimizer is chosen to update the 
parameters of the neural network. 

2.3. Training Targets of Neural Network 

For the supervised speech enhancement methods, in general, 
mask-based training target can achieve better performance 
than magnitude-based training target [12]. In order to utilize 
phase information better, the phase-sensitive mask (PSM) [13] 
considering phase difference between the expected speech and 
noisy speech is used in this work. So, the PSMs of speech and 
noise are given by 
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where S1(n,k), N1(n,k) represent the STFT of speech and noise 
of the reference microphone, respectively. 

In order to obtain more accurate estimation of the PSMs, 
the PSMs of speech and noise are supervised simultaneously 
by mean squared error criterion, it is given by 
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where ||⋅||2 denotes L2 norm, sPSM*(n,k) and nPSM*(n,k) 
indicate the estimations of sPSM(n,k) and nPSM(n,k), 
respectively. 

2.4. PSM-Based Beamforming 

The SCMs of speech and noise φss(k) and φnn(k) can be 
estimated from the sPSM*(n,k) and nPSM*(n,k) as follows 
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where N is the total number of the frames. φss(k) is constrained 
to rank-1 as described in [14]. Additionally, y(n,k) is 
expressed a matrix of the STFT magnitudes of the received 
signals of L microphones 
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where [⋅]T is the transpose of a matrix. 
With the SCMs of speech and noise, the MVDR 

beamformer can be calculated as 
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Figure 1: The block diagram of the neural network-based beamforming. 

4497



where u is a column vector whose first element is 1 and other 
elements are 0 [15]. Tr[⋅] is the trace of a matrix. So, the 
beamformed speech Sbeam(n,k) can be given by 

 ( , ) ( ) ( , )H
beamS n k k n k= w y   (10) 

where (⋅)H is the Hermitian transpose. 

3. Single-Channel Post-Filtering 
In order to further suppress the noise components in the 
direction of the target speech. a single-channel speech 
enhancement method based on the DNNs and phase correction 
is proposed as the post-filtering. The block diagram of this 
method is shown in Figure 2. 

In this method, the beamformed speech Sbeam(n,k) is fed 
into the neural network after feature extraction, the structure 
of the network is the same as the network used in neural 
network-based beamforming method. The enhanced 
magnitude |Spost(n,k)| and |Npost(n,k)| of speech and noise are 
obtained through multiplying the estimated PSMs of speech 
and noise by the beamformed speech Sbeam(n,k). The PSMs are 
defined similarly to Eq. (3) and Eq. (4), respectively. 

Then, the phase correction [16] can be performed to obtain 
a more accurate phase than directly using phase of the 
beamformed speech, because there is an error between the 
phase of the beamformed speech and clean speech. The phase 
correction function Γ(n,k) is defined by [16] 
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where c is a constant. Ω(k) is a time-invariant anti-symmetry 
function given by 
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where K is the length of the window used for the STFT. The 
corrected phase θ(n,k) can be obtained by the ∠⋅ operator on 
the summation of the beamformed speech Sbeam(n,k) and phase 
correction function Γ(n,k) 

 ( )( , ) ( , ) ( , )beamn k S n k n kθ = ∠ +Γ   (13) 

Then, the enhanced speech Spost(n,k) can be obtained by 
combing the corrected phase θ(n,k) and the magnitude 
|Spost(n,k)| of the speech estimated in post-filtering 

 ( , )( , ) ( , ) j n k
post postS n k S n k e θ=   (14) 

After the beamforming with spatial and phase information, 
this post-filtering can effectively enhance the speech. 

4. Experiments and Results 

4.1. Datasets 

In the experiments, a uniform linear microphone with L=8 
microphone is used, its microphone spacing is 4 cm. In order 
to analyze the effect of spatial position of the target speech 
and the array on the speech enhancement, 7 different relative 
positions for the target speech and the array are set in training, 
whereas 3 arbitrary relative positions are used in testing. For 
each relative position, the angular range of the array is 
discretized with a 5° resolution to get 37 different angular 
positions of relative target speech. The details about data 
configuration information is shown in Table 1, which is 
inspired by [17]. 

For the speech in training, 370 randomly chosen clean 
speech utterances from the TIMIT corpus [18] are used to 
match 37 different angular positions of the array, each angular 
position is related to 10 different speech utterances, and each 
utterance is about 3 s. 129-dimension magnitude spectrum of 
speech is used, where the window length used for the STFT is 
256 samples and the windows are overlapped by 128 samples. 
The sampling rate of speech signal is 16 kHz. The white noise 
used as the microphone self-noise is added to the training data 
to get a 10 dB input SNR level, and babble noise used as the 
isotropic spherically diffuse noise is added to generate -6 dB, 
0 dB and 6 dB input SNR levels. Clean speech, noise and 
room impulse responses (RIRs) [19] are combined to simulate 
the signals received by the microphones in different acoustic 
conditions. The training set is about 6 hours. For the network 
in the beamforming, we use entire training set, while for the 
network in the post-filtering, we only use noisy speech of the 
first microphone. In testing, another 185 utterances from the 
TIMIT test set are randomly chosen as the clean speech of 
testing set. For each relative position of target speech and 
array in test set, 5 utterances correspond to one angular 
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Figure 2: The block diagram of the single-channel post-filtering. 
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position for 37 different angular positions. The test set is 
constructed by 3 different SNR levels for the babble noise 
from -6 to 6 dB at a step of 6 dB, while the white noise is 10 
dB SNR level for all the cases. The duration of each speech 
segment in the test set is about 10 minutes. 

4.2. Experimental Results 

To evaluate speech quality and intelligibility, the enhanced 
speech is evaluated by perceptual evaluation of speech quality 
(PESQ) [20] in wide band (WB) mode, short-time objective 
intelligibility (STOI) [21] and segment SNR (SSNR) [22]. The 
proposed neural network-based beamforming method is 
referred as the NN-BF, and the method combining post-
filtering is called the NN-BF-PF. The average results of 
speech quality and intelligibility are shown in Table 2, where 
∆ represents the improvement to the received speech at 
reference microphone. 

From the comparison in Table 2, we can see that due to 
the existence of reverberation and the limitation of the number 
of microphones, the MVDR method does not achieve better 
enhancement performance. Compared with the MVDR 
method, the IRM-CNN method is trained under the 
coexistence condition of reverberation and noise, and the 
phase of the noisy speech received by each microphone is also 
considered in the training process [17], its performance seems 
to be improved than the MVDR method. 

Furthermore, the superiority of the proposed methods can 
be seen from Table 2. The proposed NN-BF method, whether 
the IPDs in the input features or the PSMs in the training 
target, they all take phase information into the construction of 
beamformer, which better reflects the spatial features of the 

target speech. They make NN-BF better in the same 
environment than MVDR and IRM-CNN. The proposed NN-
BF-PF method is based on the NN-BF method and fused with 
post-filtering based on the PSMs and phase correction, which 
further improves the performance by using phase information. 

5. Conclusions 
In this paper, a new method for multi-channel speech 
enhancement was proposed, which is based on the spatial and 
phase information. The proposed method was divided into 
MVDR beamforming based on deep neural network and 
spatial information, and single-channel post-filtering based on 
deep neural network and phase correction. In beamforming 
process, a more comprehensive spatial and phase information, 
such as IPDs and PSMs, of the speech source were considered 
for building the MVDR beamformer. In the post-filtering, 
phase correction technology and DNN-based PSMs estimation 
were combined to further improve enhanced speech 
performance. In comparison with the conventional speech 
enhancement methods, the proposed method can significantly 
improve the speech quality and intelligibility by making full 
use of spatial features and phase information. In the future 
work, we will further study how to use DNNs combined with 
spatial features and phase information to construct a more 
accurate beamformer, so as to achieve more robust speech 
enhancement methods.  
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Table 1: Configuration for the generation of the training dataset and test dataset.  

 Training dataset Test dataset 
Speech TIMIT 

Room size [length, width and height] [6, 6, 2.7] [4, 7, 3] 
Array positions 7 different positions 3 arbitrary positions 

RT60 0.3s 0.38s 
SNR Diffuse babble: -6 to 6 dB, Spatially white: 10 dB 

Table 2: The average results of quality and intelligibility test. 

Methods MVDR IRM-CNN NN-BF NN-BF-PF 

∆ PESQ SNR 
(dB) 

-6 0.1027 0.1985 0.2915 0.3566 
0 0.1386 0.3126 0.5055 0.5750 
6 0.1559 0.3958 0.5517 0.6631 

∆ STOI 
(%) 

SNR 
(dB) 

-6 0.1111 4.3306 5.7714 6.0818 
0 0.1080 3.4616 3.8038 4.6773 
6 0.0944 0.5312 2.0740 3.4631 

∆ SSNR SNR 
(dB) 

-6 2.5218 3.0299 3.1886 6.9447 
0 2.0398 2.5707 2.7303 5.3444 
6 1.7745 2.2202 2.1726 4.1287 
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