
Steinmetz: Toward automatic decomposition of

monolithic software into microservices

Jakob Löhnertz
Picnic Technologies

Amsterdam, Netherlands
mail@jakob.codes

Ana Maria Oprescu
University of Amsterdam
Amsterdam, Netherlands
A.M.Oprescu@uva.nl

Graduate School of Informatics, University of Amsterdam

Abstract

Industry is adopting the microservices
paradigm for greenfield development as well
as for migrating monolithic software. How-
ever, the latter approach involves significant
manual work, specifically in the early stages of
the decomposition process, when determining
boundaries between the services.

We devise a methodology to automatically
generate microservice candidate recommenda-
tions for any given monolithic software. We
leverage three coupling dimensions: static, se-
mantic, and evolutionary. For each dimension,
we calculate a weighted graph. We aggregate
the three dimensions into a single graph that
we cluster into microservice candidate recom-
mendations.

We evaluate our methodology using several
established metrics as well as our PoC im-
plementation, Steinmetz 1. Preliminary re-
sults are encouraging: the methodology works
as expected, there are clear results regarding
feasibility of metrics to assess the quality of
microservice candidate recommendations, and
we are able to identify the best suitable graph
clustering algorithm.

Copyright c© by the paper’s authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY
4.0).

In: Proceedings of the Seminar Series on Advanced Techniques
& Tools for Software Evolution, Virtual conference (originally
in Amsterdam, the Netherlands), 01-02 July 2020, published at
http://ceur-ws.org

1Steinmetz is the German word for stonemason: it carves
the monolith into many smaller stones, the microservices.

1 Introduction

While many software engineers talk about the bene-
fits and challenges of microservices, they are nothing
more than an architectural pattern for designing back-
end software. However, the idea mandates new strate-
gies that developers and operations could apply when
leveraging microservices in their business logic.

When deciding to move an application to a
microservices-based architecture, the decomposition
process is a significant challenge: defining where
within the existing application one service should end
and the next one should begin, i.e., detecting latent
boundaries that partition the monolith into smaller
pieces is a tedious manual task [FBZW18]. This work
covers an algorithmic methodology that can assist soft-
ware engineers in such decompositions.

Generally, microservices-based software architec-
ture is implemented either in a greenfield ap-
proach, meaning that microservices are developed
from scratch, or by migrating a monolithic software
solution to independent microservices [Zha]. Our work
focuses solely on the latter approach. While there is
already some research in this domain [FBZW18], uti-
lizing an existing application is still underrepresented.

Accurate boundary detection for each microservice
is difficult, especially when the teams working on the
existing software are captive in their mental models
[FBZW18]. To address such cases, we devise a semi-
automated approach to assist software engineers in de-
composing an existing monolith into microservices.

Existing approaches mostly leverage graph cluster-
ing algorithms to receive a partitioning of the origi-
nal monolithic software into microservice candidates
[FBZW18]. However, apriori knowledge about the ex-
pected number of resulting microservices is required.

We formulate three research questions addressing
the current shortcomings in semi-automatic microser-
vice decomposition:

1

mailto:mail@jakob.codes
mailto:A.M.Oprescu@uva.nl

RQ1: How can existing monolithic software be ana-
lyzed to formulate microservices recommendations?

RQ2: Which numeric metrics are most suitable for
evaluating the output of microservice decomposition?

RQ3: Which graph clustering algorithms are most
suitable for generating microservice recommenda-
tions?

2 Background

Our methodology takes as input only the monolith.
Various types of program analysis techniques are lever-
aged to collect information about the monolith algo-
rithmically.

2.1 Static coupling calculation

Generally, call graphs can be created via static or
dynamic program analysis [GKM82]. In an object-
oriented program, the vertices represent methods or
classes [GDDC97]. One major usage of the static anal-
ysis is to construct a graph such that each routine from
the input program is a vertex in the output graph while
each invocation is an edge connecting two routines.

Compared to other types of program analysis, static
coupling does not bear an intuitive notion of strength.
To counteract this problem, we use a modification
of the Response for a class (RFC) metric [BDW99].
Other popular metrics, like CBO, are not as feasible
as they cannot be geared toward calculating a coupling
percentage between a pair of classes. RFCα of a class
counts all methods that can be invoked with a stack
depth of α. The default is α = 0, counting the directly
accessible methods of a class (i.e., the compiler allows
them to be called). We calculate RFC0 values for every
pair of classes that are statically coupled via method
invocations. The percentage reflects the strength of
coupling between two classes c1 and c2:

RFC0(c1, c2) =
|(IM(c1, c2) ∪ IM(c2, c1))|
|(AM(c1, c2) ∪ AM(c2, c1))|

IM(ci, cj) is the set of methods ci invokes on cj , and
AM(ci, cj) is the set of methods ci can access in cj .

2.2 Semantic coupling calculation

Calculating the semantic similarity between two docu-
ments is a traditional discipline in the domain of nat-
ural language processing (NLP). Several NLP steps
(Tokenization, Normalization, Vectorization, Weight-
ing via tf-idf, Latent semantic indexing (LSI)) are
performed for every source file in the application until
the resulting vectors can be run through a similarity
function [S+01]. A common approach is the cosine
similarity, which results in a percentage [S+01].

2.3 Evolutionary coupling calculation

Similarly to the semantic similarity, the overlap be-
tween software development life cycles (creation, main-
tenance, and eventual deletion) of two entities (e.g.,
classes) can be computed as a percentage. For in-
stance, entities that have an interface toward each
other are likely evolutionary similar as a change of
the signature or semantics of the interface also involves
changes in the other entity. Compared to other types
of coupling, however, the evolutionary similarity does
not have an established method to compute the per-
centage. We leverage work by Tornhill on evolutionary
similarity [Tor15]. Their approach is based on mining
information out of version control system (VCS) data.

2.4 Graph clustering

Graph clustering partitions a graph into sub-graphs
based on some closeness criteria [LF09]. In our work,
sub-graphs do not overlap. A cluster is a group of
vertices that are interconnected via their intra-cluster
edges and connected to vertices outside the cluster via
inter-cluster edges [LF09, New04].

2.4.1 Metrics

Modularity (Q) [New04] measures the quality of a
graph clustering by comparing the interconnectedness
of intra-cluster vertices to their inter-cluster edges.
The metric ranges from lacking clustering structure,
0.0, to a perfect clustering, 1.0. Any given graph
has a theoretical maximum in terms of the achiev-
able Modularity. However, it is rarely 1.0, and finding
the global maximum is an NP-complete optimization
problem [BDG+06]. Values over 0.4 already indicate
a strong clustering structure [New04, FB07].

Cluster Factor (CF) [MM06] measures the co-
hesion within a cluster compared to the coupling from
that cluster to the other clusters. This factor ranges on
a scale from [0.0, 1.0] with higher values being better.
The metric measures the quality of a graph clustering
by comparing the interconnectedness of intra-cluster
vertices to their inter-cluster edges per cluster.

3 Related work

Gysel and Kölbener [GKGZ16] were the first to work
toward a complete methodology to extract microser-
vice recommendations from an existing system by clus-
tering an input graph. Their work was qualified by
Fritzsch et al. as the benchmark in this domain of
research [FBZW18]. However, this groundwork has
major shortcomings in terms of usability, as indicated
by the authors themselves.

Types of analysis. Model analysis, as utilized
by Gysel and Kölbener, requires much manual work

2

[GKGZ16]. Kruidenberg [Kru18] created a generator
for the input required by said model analysis using
static, dynamic, and evolutionary analysis input. Ma-
zlami [MCL17] chose semantic, and evolutionary anal-
ysis to create their graph representation. Our ap-
proach strives to remove any need for manual pre-
processing of the input. We utilize three distinct input
dimensions for constructing a more precise weighted
graph which can then be clustered: static analysis, se-
mantic analysis, and evolutionary analysis.

Graph clustering. Various clustering algorithms
were used in related work, all requiring the number of
microservices as an input parameter [GKGZ16, Kru18,
MCL17]. We use seven clustering algorithms that do
not require the expected number of microservices.

Evaluative metrics. Gysel and Kölbener
[GKGZ16] evaluated their requirements on a custom
scale together with a binary questionnaire to assess the
quality of the recommendations. Mazlami [MCL17]
devised a set of six metrics that measure the output
of their methodology. However, several do not have
clear semantics (e.g., Average Contributors per Mi-
croservice). Kruidenberg [Kru18] used a combination
of metrics from the other two [GKGZ16, MCL17]. In-
stead, we devise a set of six numeric metrics that offers
an objective and quantifiable view on the resulting mi-
croservice recommendations, to be able to evaluate our
methodology as well as the recommendations.

Another related topic is architectural refactoring
[HMZ09]. Multiple approaches out of of this do-
main were studied, while we ultimately chose the work
of Mitchell and Mancoridis to evaluate our approach
[MM06], since it is the first work out of this domain
that has been corroborated by multiple other authors
as well [HMZ09].

4 Methodology

In this section, we cover the methodology for creating
recommendations, the metrics to evaluate the qual-
ity of the recommendations, and the proof of con-
cept (PoC). The methodology is geared toward object-
oriented software input while it is language agnostic.
However, the PoC is only working with Java software,
although it was designed with extensibility for other
platforms in mind.

4.1 Rationale

We map the three measured dimensions of coupling to
the output by leveraging several design principles of
microservices [Sar, Mar, New15]. We select the follow-
ing two based on the importance assigned in literature
and their ties to the three types of coupling:

Principle 1. One service should only handle one

task. This is tied to static coupling and semantic cou-
pling. The term task is ambiguous, as it has no notion
of size or complexity attached. However, the objec-
tive size of a microservice is not very important [Mar].
Instead, the idea of the bounded context [Eva04] is
widely accepted as a helpful methodology to devise
the boundaries of each microservice in a given appli-
cation [New15, Mar]. One service should encapsulate
one bounded context while keeping them as small as
reasonably possible [New15, Mar].

Principle 2. The services should have independent
software development life cycles. This is related to
evolutionary coupling. As this architectural style suits
well having separate teams handle one or multiple mi-
croservices [New15], services should have independent
life cycles. The more dependent the life cycles are, the
more coupled the services are, and the longer it could
take to apply feature additions, changes, or bug fixes.

4.2 Extraction

This section covers the extraction of coupling data for
each weighted graph of each of the input dimensions.

4.2.1 Static coupling

Starting from the source root of the given applica-
tion (e.g., src in Java), an algorithm recursively walks
down the classes and their methods. Both class instan-
tiations, as well as method invocations, are registered
and result in an edge between two classes. Finally, the
RFC0 values are calculated for every edge to determine
its weight.

4.2.2 Semantic coupling

When processing source code, the major difference to
common NLP approaches occurs in the tokenization
and the stop word filtering. This first step is specific
to the respective programming language as different
languages use different sets of control characters and
differing compound identifier patterns (e.g., camel case
and snake case). Importantly, human-readable, not
yet compiled source code is necessary as the seman-
tics are mostly lost in compiled code. Every line is
parsed separately, and language-specific keywords such
as package or import trigger that the line gets dis-
carded. Next, every line of the source code is stripped
of non-word characters (i.e., W from regular expres-
sions) [IEE93]. Additionally, explicit strings as well as
every other text that is still left then and matches a
compound identifier pattern (e.g., camel case), is split
into terms. Moreover, numeric characters, as well as
single characters, are filtered out, as both provide no
relevant semantic meaning. Next, a list of stop words
specific to the programming language is used to filter

3

these out (e.g., public, static, void). Finally, every-
thing that was not filtered out until this point is split
at white space characters (i.e., t from regular expres-
sions) [IEE93]. The result is a flattened list of terms
for each document (i.e., source code file) that is then
used for the remaining NLP steps.

4.2.3 Evolutionary coupling

The approach leveraged to mine VCS data is modeled
after the methodology of Tornhill [Tor15]. Theoreti-
cally, every VCS that has the notion of revisions that
include files and that is able to generate a log file which
details past revisions together with the files involved,
can be used to extract evolutionary coupling informa-
tion. We support the following VCS with our PoC: Git,
Subversion, Mercurial, Perforce, and TFS. A caveat
with this approach is that by default, the log files will
only include complete files. Owing to the fact that in
applications written in Java, one file is also equivalent
to one class, we can generate the coupling graph with-
out any changes to the log format. After parsing the
input log file, a weighted evolutionary coupling graph
is constructed, such that the vertices vi ∈ V are the
classes extracted from the VCS log file while the edges
ei ∈ E are resembling that two classes have overlap-
ping software development life cycles. The weight of
the edges is a percentage that indicates how much the
life cycles overlap W (ei) ∈ [0.0, 1.0]. Finally, we use an
adjustable threshold for the minimum shared revisions
to filter out noise.

4.3 Construction

We begin with the graph constructed out of the static
analysis Gstatic. The two remaining graphs are merged
into Gstatic. Semantic coupling and evolutionary cou-
pling can be calculated for any two given classes re-
gardless of their connection in the input application
codebase. Hence, this step uses set-theoretic intersec-
tions to maintain the results out of the static program
analysis as a single source of truth: classes that are
not connected in it are not able to instantiate or in-
voke each other in the application.

Gcombined = ((Gstatic ∩Gsemantic) ∩Gevolutionary)

For the vertices, only ones from the static analysis
graph are used for the same reason. Merging of the
edges is twofold. The edges are drawn from the static
analysis graphs to connect the vertices while the other
two input graphs do not add new edges but just enrich
the information of existing ones:

Ecombined = ((Estatic ∩ Esemantic) ∩ Eevolutionary)

We use edge weighting to define factors for each input
dimension to increase or decrease its contribution to

the combined weight of each edge ei ∈ Ecombined in
the combined graph Gcombined.

4.4 Clustering

Once we construct the combined graph Gcombined, we
cluster it such that groups of vertices that are strongly
coupled, as indicated by the combined edge weights,
are more likely to end up in the same cluster. These
clusters mirror bounded contexts, and each cluster rep-
resents a microservice candidate recommendation.

Various graph clustering algorithms have vari-
ous goals, mechanisms, and features [LF09, For10,
DDGDA05]. We evaluate several established graph
clustering algorithms in the context of our goal. Ta-
ble 1 shows the feasible ones. Although these algo-
rithms differ in terms of the exact input and output
formats, the core idea is passing a list of edges as in-
put. A simple example format is a tuple of three items:
two vertices v1, v2 ∈ V and the edge weight of the edge
connecting them e(1,2) ∈ E, G = (V, E).

Table 1: Selected graph clustering algorithms

Name Runtime complexity

MCL [VD00] O(nk2)
Walktrap [PL05] O(mn2)
Clauset et al. [CNM04] O(md log n)
Louvain [BGLL08] O(n)
Label Propagation [RAK07] O(n)
Infomap [RB08] O(n)
Chinese Whispers [Bie06] O(n)

n = number of vertices; m = number of edges; k =
threshold for the number of resources allocated per
vertex; d = depth of the resulting dendrogram.

4.5 Evaluation Metrics

We select six metrics and organize them into four cat-
egories: a) input fidelity, b) general clustering quality,
c) Modularity (Q), d) Mean Cluster Factor (mCF).

Input fidelity. We use input fidelity to describe
the percentage of the classes of the entire application
covered by a given input. The input fidelity reflects
the eventual quality of the clustering. The higher these
values are, the more precisely the clustering represents
the application’s inherent structure.

General clustering quality. This set of metrics
has the property that it can not be strictly defined
if low values are better or worse. The four metrics
in this set are: number of clusters, number of inter-
cluster edges, ratio of inter-cluster edge weights.

Mean Cluster Factor. The Modularization Qual-
ity (MQ) metric was proposed and validated by
Mitchell and Mancoridis [MM06]. It measures the

4

quality of a partition by analyzing its interconnectiv-
ity and intraconnectivity. First, the Cluster Factor
(CF) is calculated for every cluster. Originally, the last
step in calculating the Modularization Quality metric
is summing up the Cluster Factor values of every clus-
ter. Instead, we take the arithmetic mean of all Cluster
Factor values. The ones that yield ∞ due to division-
by-zero are still treated as 0.0 [MM06]. The final met-
ric value ranges on the scale of [0.0, 1.0]. We name the
modified metric Mean Cluster Factor (mCF).

Modularity. The Modularity metric is included
but not preferred since some of our supported graph
clustering algorithms use it as their fitness function
which causes the metric to favor them. Nevertheless,
the Mean Cluster Factor as well as the Modularity
metric are specifically interesting when inputs achieve
high scores in both of them at the same time.

4.6 Proof of Concept

We published our implementation as open-source soft-
ware, licensed under the Apache License v2. The entire
source code can be found on GitHub 2. We split our
semantic coupling analysis implementation into a sep-
arate library, as we found no good existing library for
this purpose. Similarly, that library can also be found
on GitHub 3.

The high-level architecture of our implementation is
a three-tier web-based design, shown in Fig. 1. Stein-
metz has two major functionalities that can be used
via RESTful endpoints. These functionalities are to
analyze and persist an input monolithic application as
well as clustering and retrieving it again as a separate
step, as seen in Fig. 1.

Figure 1: Overview of the Steinmetz architecture

5 Evaluation setup

In this section, we cover the setup of the experiments
conducted to evaluate our methodology.

5.1 Evaluation applications

A microservices-based architecture targets large-scale,
web-based, back-end applications. To be able to ana-

2https://github.com/loehnertz/Steinmetz/
3https://github.com/loehnertz/semantic-coupling/

lyze all three input dimensions, the applications have
to be available as source code and be version-controlled
via a supported VCS.

We conducted a survey on GitHub using the
query NOT library NOT framework NOT android

NOT distributed NOT client stars:>500

language:Java. We examine projects with at
least 500 stars to filter out educational projects
that are most likely not peer-reviewed. The first 50
pages of search results were analyzed for software
projects of varying sizes with the following properties:
standalone, large-scale, web-based, back-end, and
monolithic (i.e., having a single main method).
Table 2 lists the selected projects.

Table 2: Selected software projects for the evaluation
Project SLOC Commits

Apache OpenMeetings 4, 222 2, 755
Apache Solr 203, 364 33, 018
BigBlueButton 36, 578 26, 774
Google Bazel 340, 747 24, 442
Halo 23, 010 1, 788
Heritrix 15, 210 2, 126
KeyCloak 419, 351 12, 340
OpenCMS 326, 836 23, 674
Openfire 77, 112 9, 368
OpenTripPlanner 67, 976 9, 560
Red5 8, 528 481
Teammates 42, 280 17, 221
Traccar 52, 090 6, 202
XWiki 238, 253 38, 841

We conducted three experiments: the first experi-
ment used all the selected projects measuring all the
selected metrics to answer RQ1. We analyzed all
the 14 experiment subjects via the described method-
ology and subsequently clustered them with all the
seven graph clustering algorithms. The second ex-
periment recorded the major metrics summarized per
graph clustering algorithm using the same output used
in the first experiment. It helps to answer RQ2 (fea-
sibility) and RQ3 (output quality). The third exper-
iment evaluated the runtime performance of the PoC
by measuring the runtime during the analysis step of
the first experiment. All experiments were executed on
a 2.4 GHz 8-Core Intel Core i9-9880H processor.

6 Preliminary results and discussion

Fig. 2 and 3 are heat maps, depicting the metrics val-
ues (color) of each utilized graph clustering algorithm
(y-axis) for each of the input applications (x-axis). A
large difference between the two is that the range of
values is a lot larger with the Q metric.

5

https://github.com/loehnertz/Steinmetz/
https://github.com/loehnertz/semantic-coupling/

Figure 2: Experiment 1: Overview of analyzed soft-
ware projects measuring the mCF metric

Figure 3: Experiment 1: Overview of analyzed soft-
ware projects measuring the Q metric

Fig. 4 and 5 are violin plots showing the values of
the two metrics (y-axis) across the graph clustering
algorithms (x-axis). of the algorithms. The aforemen-
tioned major difference is visible in this plot as well.
Compared to the heat maps, these plots show more
distinctly how the algorithms performed in total.

Fig. 6 shows the bivariate correlation between the
source lines of code (SLOC) (x-axis) and the runtime
in seconds (y-axis).

Proof of concept. The first experiment shows
that Steinmetz works as expected. The mean of the
highest scores for each input project regarding the
clustering metrics are 0.91 for the Mean Cluster Factor
(mCF) and 0.72 for the Modularity (Q). The coeffi-
cients of variation of the highest scores are good values
of 7.48% and 14.27%, respectively. The fidelity values
for the semantic and evolutionary inputs are 95% and
25% in the mean. The fidelity of the static inputs
is always 100% as it is the base to calculate the oth-
ers. All these metrics are promising, indicating our
methodology as an answer to RQ1.

Metrics. Fig. 2, 3, 4, and 5 show the mCF metric
generally scoring high, while the Q values are more
spread. The algorithms never achieve 1.0 for the Q
metric which aligns with the claim that only fabricated

Figure 4: Experiment 2: Comparison of graph clus-
tering algorithms measuring the mCF metric

Figure 5: Experiment 2: Comparison of graph clus-
tering algorithms measuring the Q metric

graphs are going to achieve 1.0 [New04]. The mCF
metric does score 1.0, even for algorithms that have a
large spread. As a result, we deem the Q metric to be
more fit than the mCF metric, which answers RQ2.

Graph clustering algorithms. Fig. 2, 3, 4, and 5
show the Chinese Whispers algorithm performing the
worst, while Louvain is performing the best overall
in both, the mCF and Q metrics, although Clauset-
Newman-Moore scores almost the same results. Both
algorithms are also achieving very high bivariate cor-
relations of R = 0.89 and R = 0.90 between their
results for the mCF and Q metrics. Thus, these two
algorithms perform the best, which answers RQ3.

Runtime performance. As Fig. 6 depicts, the
runtime of the PoC is predictable with a bivariate cor-
relation between input size and runtime being a very
high R = 0.92. Due to this, the small confidence inter-
val, and the slope of the regression line, the runtime
complexity of the PoC seems to be O(N).

6.1 Threats to validity

Shared code classes (i.e., utility and data classes)
are attributed to one microservice, although its cou-
pling might be equally high toward other ones. This
could be addressed via a fuzzy clustering approach

6

Figure 6: Experiment 3: Runtime performance of the
analysis of the software projects

(i.e., one class can belong to multiple services).

Quality assessment of the generated results is the
inherent weakness of our and other methodologies. Al-
though we devise objective metrics numeric in nature,
a human could still want certain classes not to be put
into separate services due to security concerns, com-
pliance reasons, etc.

7 Conclusion

Our area of research is still young compared to others
in the domain of software evolution [FBZW18].

We showed how a rationale can tie the input to the
output, to be able to assert that the final microser-
vice recommendations were generated via the means
of an input that leads to good microservice boundaries
which were extracted out of the input — the three di-
mensions of coupling in the case of our methodology.
Furthermore, it became apparent that a multitude of
graph clustering algorithms is available to be utilized
while offering insights into which are feasible for this
domain of research by leveraging the discussed met-
rics. We also saw that some graph clustering algo-
rithms consistently perform better than others.

We devised and implemented a methodology that
can assist software engineers by automatically extract-
ing microservice recommendations from a monolithic
codebase. We evaluated the quality of the recommen-
dations on several real-world applications.

7.1 Future work

Evaluation study involving human software engi-
neers. We expect that specific patterns might be de-
tected where our methodology falls short.

Automatically generating API of microservices
candidates. Offer a more holistic set of recommen-
dations that can be validated from an additional
perspective: the quality of the interfaces between the
services.

References

[BDG+06] Ulrik Brandes, Daniel Delling, Marco
Gaertler, Robert Görke, Martin Hoefer,
Zoran Nikoloski, and Dorothea Wagner.
Maximizing modularity is hard. arXiv
preprint physics/0608255, 2006.

[BDW99] Lionel C. Briand, John W. Daly, and Ju-
rgen K Wust. A unified framework for
coupling measurement in object-oriented
systems. IEEE Transactions on software
Engineering, 25(1):91–121, 1999.

[BGLL08] Vincent D Blondel, Jean-Loup Guil-
laume, Renaud Lambiotte, and Etienne
Lefebvre. Fast unfolding of communi-
ties in large networks. Journal of statis-
tical mechanics: theory and experiment,
2008(10):P10008, 2008.

[Bie06] Chris Biemann. Chinese whispers: an ef-
ficient graph clustering algorithm and its
application to natural language process-
ing problems. In Proceedings of the first
workshop on graph based methods for
natural language processing, pages 73–80.
Association for Computational Linguis-
tics, 2006.

[CNM04] Aaron Clauset, Mark EJ Newman, and
Cristopher Moore. Finding community
structure in very large networks. Physical
review E, 70(6):066111, 2004.

[DDGDA05] Leon Danon, Albert Diaz-Guilera, Jordi
Duch, and Alex Arenas. Comparing com-
munity structure identification. Journal
of Statistical Mechanics: Theory and Ex-
periment, 2005(09):P09008, 2005.

[Eva04] Eric Evans. Domain-driven design: tack-
ling complexity in the heart of software.
Addison-Wesley Professional, 2004.

[FB07] Santo Fortunato and Marc Barthelemy.
Resolution limit in community detection.
Proceedings of the national academy of
sciences, 104(1):36–41, 2007.

[FBZW18] Jonas Fritzsch, Justus Bogner, Alfred
Zimmermann, and Stefan Wagner. From
monolith to microservices: A classifica-
tion of refactoring approaches. arXiv
preprint arXiv:1807.10059, 2018.

[For10] Santo Fortunato. Community detection
in graphs. Physics reports, 486(3-5):75–
174, 2010.

7

[GDDC97] David Grove, Greg DeFouw, Jeffrey
Dean, and Craig Chambers. Call
graph construction in object-oriented
languages. ACM SIGPLAN Notices,
32(10):108–124, 1997.

[GKGZ16] Michael Gysel, Lukas Kölbener, Wolf-
gang Giersche, and Olaf Zimmermann.
Service cutter: a systematic approach to
service decomposition. In European Con-
ference on Service-Oriented and Cloud
Computing, pages 185–200. Springer,
2016.

[GKM82] Susan L Graham, Peter B Kessler, and
Marshall K Mckusick. Gprof: A call
graph execution profiler. In ACM Sig-
plan Notices, volume 17, pages 120–126.
ACM, 1982.

[HMZ09] Mark Harman, S Afshin Mansouri, and
Yuanyuan Zhang. Search based software
engineering: A comprehensive analysis
and review of trends techniques and ap-
plications. Department of Computer Sci-
ence, King’s College London, Tech. Rep.
TR-09-03, page 23, 2009.

[IEE93] IEEE. ISO-IEC 9945-2: IEEE Std.
1003.2-1992 Information Technology -
Portable Operating System Interface:
Shell and Utilities. IEEE Standards Of-
fice, 1993.

[Kru18] Dennis Kruidenberg. From monoliths to
microservices: The decomposition pro-
cess, 2018.

[LF09] Andrea Lancichinetti and Santo Fortu-
nato. Community detection algorithms:
a comparative analysis. Physical review
E, 80(5):056117, 2009.

[Mar] Martin Fowler. Microservices.
(https://martinfowler.com/
articles/microservices.html) [last
accessed: 2019/01/21].

[MCL17] Genc Mazlami, Jurgen Cito, and Philipp
Leitner. Extraction of microservices from
monolithic software architectures. In
2017 IEEE International Conference on
Web Services (ICWS), pages 524–531.
IEEE, 2017.

[MM06] Brian S Mitchell and Spiros Mancoridis.
On the automatic modularization of soft-
ware systems using the bunch tool. IEEE

Transactions on Software Engineering,
32(3):193–208, 2006.

[New04] Mark EJ Newman. Fast algorithm for
detecting community structure in net-
works. Physical review E, 69(6):066133,
2004.

[New15] Sam Newman. Building Microservices.
O’Reilly Media, Inc., 1st edition, 2015.

[PL05] Pascal Pons and Matthieu Latapy. Com-
puting communities in large networks
using random walks. In International
symposium on computer and information
sciences, pages 284–293. Springer, 2005.

[RAK07] Usha Nandini Raghavan, Réka Albert,
and Soundar Kumara. Near linear time
algorithm to detect community struc-
tures in large-scale networks. Physical
review E, 76(3):036106, 2007.

[RB08] Martin Rosvall and Carl T Bergstrom.
Maps of random walks on complex net-
works reveal community structure. Pro-
ceedings of the National Academy of Sci-
ences, 105(4):1118–1123, 2008.

[S+01] Amit Singhal et al. Modern information
retrieval: A brief overview. IEEE Data
Eng. Bull., 24(4):35–43, 2001.

[Sar] Saravanan Subramanian. Mi-
croservices Design Principles.
(https://dzone.com/articles/
microservices-design-principles)
[last accessed: 2019/07/22].

[Tor15] Adam Tornhill. Your code as a crime
scene: use forensic techniques to arrest
defects, bottlenecks, and bad design in
your programs. Pragmatic Bookshelf,
2015.

[VD00] Stijn Marinus Van Dongen. Graph clus-
tering by flow simulation. PhD thesis,
2000.

[Zha] Zhamak Dehghani. How to break a
Monolith into Microservices. (https:
//martinfowler.com/articles/

break-monolith-into-microservices.

html) [last accessed: 2019/01/19].

8

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://dzone.com/articles/microservices-design-principles
https://dzone.com/articles/microservices-design-principles
https://martinfowler.com/articles/break-monolith-into-microservices.html
https://martinfowler.com/articles/break-monolith-into-microservices.html
https://martinfowler.com/articles/break-monolith-into-microservices.html
https://martinfowler.com/articles/break-monolith-into-microservices.html

	Introduction
	Background
	Static coupling calculation
	Semantic coupling calculation
	Evolutionary coupling calculation
	Graph clustering
	Metrics

	Related work
	Methodology
	Rationale
	Extraction
	Static coupling
	Semantic coupling
	Evolutionary coupling

	Construction
	Clustering
	Evaluation Metrics
	Proof of Concept

	Evaluation setup
	Evaluation applications

	Preliminary results and discussion
	Threats to validity

	Conclusion
	Future work

