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Faculty of Economics, University of Belgrade, Kamenička 6, 11000 Belgrade, Serbia; milos.bozovic@ekof.bg.ac.rs

Received: 31 October 2020; Accepted: 15 December 2020; Published: 17 December 2020
����������
�������

Abstract: This paper develops a method for assessing portfolio tail risk based on extreme value
theory. The technique applies separate estimations of univariate series and allows for closed-form
expressions for Value at Risk and Expected Shortfall. Its forecasting ability is tested on a portfolio
of U.S. stocks. The in-sample goodness-of-fit tests indicate that the proposed approach is better
suited for portfolio risk modeling under extreme market movements than comparable multivariate
parametric methods. Backtesting across multiple quantiles demonstrates that the model cannot be
rejected at any reasonable level of significance, even when periods of stress are included. Numerical
simulations corroborate the empirical results.
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1. Introduction

Events of the Global Financial Crisis, the Eurozone sovereign debt crisis, and the ongoing
COVID-19 pandemics increase the investors’ awareness of the need to assess the risk of extreme
losses and the necessity of protection against future market meltdowns. To quantify financial risks,
investors and regulators commonly resort to risk measures based on quantiles of distributions of
losses or returns, such as Value at Risk (VaR) or Expected Shortfall (ES). However, the most significant
problem with conventional approaches to assessing the quantile-based risk measures is their poor
performance in characterizing the “tail” behavior of the distribution of returns. Any model aiming to
mitigate severe losses should specifically focus on the tail risk.

The importance of tail behavior in risk assessment has been emphasized by many authors, such
as Poon et al. [1], Rodriguez [2], Ning [3], Okimoto [4], Ning [5], Christoffersen et al. [6], Rocco [7],
Gkillas et al. [8], and Gkillas et al. [9], and many distributional assumptions have been introduced so
far to improve risk management and asset pricing practices (see, for instance, [10,11]). Perhaps the
most obvious alternative to the usual parametric approaches is the Extreme Value Theory (EVT) since
it concentrates on extreme losses. McNeil [12], Bensalah [13], Smith [14], Nyström and Skoglund [15],
Embrechts et al. [16], and Daníelsson [17], among others, provide excellent methodological overviews
of EVT and discuss its applications in risk modeling. McNeil [18], Nyström and Skoglund [15],
Harmantzis et al. [19], Marinelli et al. [20], and Lai and Wu [21] show that EVT-based models
outperform VaR and ES estimates based on other analytical methods. The discrepancy becomes
pronounced at more extreme quantiles.

The EVT approach seems like a natural choice for risk modeling: its implementation is
relatively easy, and the method is based on a few assumptions required for the asymptotics to work.
Although straightforward in the univariate case, EVT becomes of limited practical use when applied
to a portfolio of financial instruments or several risk factors at once. Investors usually deal with
many risk factors simultaneously, and hence an appropriate method requires a multivariate approach
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rather than a univariate one based on portfolio-level returns. As shown by Longin and Solnik [22],
Campbell et al. [23], and many authors since, multivariate modeling is particularly vital during bear
markets, when risk factors exhibit extreme co-movements. It also allows for risk attribution and
additive decomposition of VaR, which is essential for risk management and economic capital allocation
in financial institutions.

Defining portfolio-level dynamics of risk factors under extreme market conditions has so far
been a daunting task. A seemingly obvious technique involves a multivariate version of the EVT
based on the multidimensional limiting relations (see, for example, [14,24–27]). However, the model
complexity increases faster than linearly with the number of risk factors in that case. Alternatively,
the joint distribution of returns can be seen as a product of marginal distributions and a copula.
McNeil and Frey [28] and Nyström and Skoglund [29], for example, describe the copula approach
to the assessment of the extreme co-dependence structure of risk factors. The copula-based
methods introduce an additional model risk, inherent in the assumption of a specific analytical
form of the co-dependence function. In addition, they become quite intractable with an increase
in dimensionality. Moreover, a typical copula method for multivariate EVT, such as the one
described in Nyström and Skoglund [29], requires an additional simulation step to retrieve the
residuals from the joint distribution, given the fitted marginals and parameters of the copula.
The dimensionality problem in the multivariate setting can be tackled by vine pair copulas,
as in Aas et al. [30], Chollete et al. [31], Yu et al. [32], or Trucíos et al. [33].

This paper introduces a multivariate EVT method for risk assessment based on separate
estimations of the univariate model. Instead of estimating joint n-dimensional distributions
(using multidimensional limiting relations, copulas, or otherwise), the method proposed here works
with n orthogonal series that are approximately independent and identically distributed. These series
are obtained from the eigenvectors of the joint return series, filtered to remove autocorrelation and
heteroskedasticity. The filtering can be achieved, for instance, by assuming that the conditional
covariance matrix follows a stationary n-dimensional model from the orthogonal GARCH family, as in
Alexander [34] or van der Weide [35]. The tails of n independent univariate series of residuals are then
fitted to a generalized Pareto distribution, allowing for closed-form expressions for VaR and ES. As an
illustration, the technique is applied to a sequence of daily returns on stocks comprising the Dow Jones
Industrial Average. For an out-of-the-sample analysis, daily VaR and ES estimates are compared to
the actual portfolio losses over a more extended period, covering the extreme market co-movements
during the last quarter of 2008. The results indicate that the method performs well in capturing extreme
events jointly across the entire portfolio. The in-sample tests show that the proposed approach is better
suited for portfolio risk modeling under extreme market movements than comparable multivariate
parametric methods, such as orthogonal GARCH with normal or t-distribution. In addition, backtesting
across multiple quantiles demonstrates that the method cannot be rejected at any reasonable level of
significance, even for out-of-sample windows that contain stress periods.

This paper contributes to the literature in several important ways. To the best of our knowledge,
it is the first method that extends the EVT to the multivariate case by combining the relative simplicity of
univariate EVT and orthogonalization of return residuals. By doing so, we can capture tail correlations
and extreme co-movements. The proposed method is universal, as it can be applied to any asset class,
and it can incorporate any volatility model from the GARCH family.

The remainder of the paper is organized as follows: Section 2 presents the theoretical background
behind the proposed multivariate EVT approach and the estimation methodology used in this paper.
Section 3 describes the data, provides an example of VaR and ES estimation, and compares the method’s
in-sample forecasting ability with other similar approaches. Section 4 illustrates the out-of-sample
performance of the method through backtesting. Section 5 demonstrates the model performance on a
set of simulated data. Concluding remarks are given in Section 6.
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2. Theoretical Framework and Estimation Methodology

2.1. Theoretical Framework

Two important theorems are related to the univariate EVT. The first one shows that order statistics
of independent and identically distributed (i.i.d.) random variables converge in distribution to the
generalized extreme value (GEV) distribution [36,37]. The usual approach then is to fit the GEV
distribution to the sequence of maxima of portfolio returns or their residuals, as described for example
in Smith [14]. An alternative method is based on exceedances over threshold. The following theorem,
first stated by Pickands [38], gives the asymptotic form of conditional distribution beyond a threshold:

Theorem 1. Let {Zt}T
t=1 be a set of T i.i.d. random variables with distribution function F. Define

Fu(x) := P (Zt ≤ u + x | Zt > u) =
F(u + x)− F(u)

1− F(u)
, x ≥ 0

to be the distribution of exceedances of Zt over the threshold u. Let zF be the right endpoint of the distribution F,
possibly a positive infinity. Then, if F is such that GEV distribution is well-defined, there are constants ξ ∈ R
and β := β(u) ∈ R+ such that

lim
u→zF

sup
u<u+x<zF

∣∣Fu(x)− Gξ,β(x)
∣∣ = 0,

where

Gξ,β(x) := 1−
(

1 + ξ
x
β

)−1/ξ

+

(1)

is the generalized Pareto (GP) distribution, while the subscript + denotes the positive part of a function,
i.e. f+(x) ≡ max ( f (x), 0) for any function f .

The challenges associated with implementation of EVT-based models are well known in the
literature. Since the Theorem 1 defines a limiting distribution for the extreme returns, we need a
sufficient number of observations and a large enough threshold u. There are different methods of
making this choice, and some of them are examined in Bensalah [13] and Gabaix et al. [39]. In addition,
the limit theorems hold only if the extreme observations Zt are i.i.d. Therefore, we cannot apply the
results of univariate EVT to returns on financial assets directly without taking into account their
autocorrelation and heteroskedasticity.

2.2. Estimation Methodology

The method works in several steps. We start from a multivariate series of returns in a portfolio
consisting of n assets. Next, we apply orthogonal GARCH to obtain a set of random variables
that are approximately i.i.d. Then, we fit the tails of n independent univariate residual series to a
generalized Pareto distribution to obtain the quantiles for each component. Finally, we substitute
these quantiles into a formula for VaR and ES. Sections 2.2.1–2.2.6 describe the methodology in detail,
while Section 2.2.7 provides its summary.

2.2.1. Orthogonalization

The ultimate goal is to adapt the EVT approach to a portfolio consisting of n assets in order to
capture their tail risk and their extreme co-movements. Before applying any of the results of EVT
outlined in Section 2.1, we have to construct a set of cross-sectionally uncorrelated random variables.
A natural choice is to work with the eigenvectors of the unconditional covariance matrix of returns.
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Definition 1. Define εt to be an n-dimensional random vector whose components εt,i have zero mean for
each i = 1, 2, . . . , n. Let V∞ = E(εtε

′
t) be the n-by-n unconditional covariance matrix of εt and P be the

corresponding orthogonal matrix of normalized eigenvectors, where the prime symbol (′) denotes the transpose of
a matrix. The eigenvalue decomposition of V∞ is given by

V∞ = PΛP′,

where Λ is a diagonal matrix of the eigenvalues of V∞, ordered by descending values, λ1 ≥ λ2 ≥ . . . ≥ λn > 0.
Further, let

L := PΛ1/2.

Then,
zt = L−1εt, (2)

is called the vector of principal components of εt, for any t. The i-th element of the vector zt is called the i-th
principal component of εt.

Note that E (zt) = 0 and var (zt) = 1n, which follows from E (εt) = 0 and V∞ = LL′, respectively.
Hence, zt are cross-sectionally uncorrelated and each component has a unit variance. Since εt = Lzt,
each coordinate of εt can be written as a linear combination of the principal components,

εt,i =
n

∑
j=1

Lijzt,j, i = 1, 2, . . . , n,

where Lij are the elements of L. The method can be easily adapted to fewer than n risk factors
(see Appendix A).

An alternative linear transformation that can be used to separate multivariate returns into additive
subcomponents is the independent component analysis. This technique has found its successful
applications in finance: Back and Weigend [40] use it to extract the structure from stocks returns, while
Moody and Wu [41] and Moody and Yang [42] apply it to foreign exchange rates. The main goal
of independent component analysis is to minimize statistical dependence between the transformed
vectors. Unlike principal component analysis, these vectors are neither orthogonal nor ranked by
the variance they explain, and the linear transformation matrix analogous to L cannot be obtained in
a closed form. Therefore, independent component analysis is not entirely suitable for the problem
treated in this paper. A good comparison between the two methods can be found in Hyvärinen and
Oja [43].

2.2.2. Filtering

Orthogonalization transforms a cross-sectionally correlated series into a set of uncorrelated ones.
We also have to filter out any autocorrelation and heteroskedasticity from the series. As the end-result,
we will obtain sequences of conditional residuals that are orthogonal, and (approximately) serially
uncorrelated and identically distributed.

Specifically, we can assume that, for each asset i = 1, 2, . . . , n, the series of log returns
yt,i := ln(St,i/St−1,i), where St,i denotes the price at time t, follows a process:

yt,i = µt,i + εt,i, (3)

where µt,i is the conditional mean of yt,i. Conditionally on the information available at t− 1, the vector
of residuals εt := [εt,1 εt,2 . . . εt,n]′ has a zero mean and a conditional covariance matrix Vt:

E (εt|Ft−1) = E (εt) = [0 0 . . . 0]′ =: 0, (4)

var (εt|Ft−1) = E
(
εtε
′
t|Ft−1

)
=: Vt, (5)
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where, for any t, the matrix Vt is positive definite and measurable with respect to the information set
Ft−1, a σ-algebra generated by the past residuals {ε1, ε2, . . . , εt−1}.

To capture the volatility clustering effect, we can assume that the conditional covariance matrix
follows a model from the GARCH family. The standard GARCH(p,q) is sufficient to capture most
of the clustering, and—to some extent—excess kurtosis. The leverage effect can be taken into
account, for example, by assuming that the conditional residuals follow an asymmetric distribution,
such as skewed Student’s t. Alternatively, we can model the asymmetry explicitly in the equation
followed by the conditional covariance matrix. Without losing generality of the proposed method,
we can assume that the conditional covariance Vt follows a multivariate asymmetric GARCH(p,q)
of Glosten et al. [44], also known as the (multivariate) GJR-GARCH(p,q), or simply GJR(p,q):

Vt = Ω +
p

∑
s=1

AsEt−s +
p

∑
s=1

ΘsIt−sEt−s +
q

∑
s=1

BsVt−s, (6)

where Ω, A1, . . . , Ap, Θ1, . . . , Θp, B1, . . . , Bq are constant, positive semidefinite n-by-n matrices
of parameters,

Et := εtε
′
t,

and
It := diag (sgn(−εt,1)+ sgn(−εt,2)+ . . . sgn(−εt,n)+) ,

for any t. As usual, the matrices As in (6) measure the extent to which volatility shocks in previous
periods affect the current volatility, while As + Bs measure the rate at which this effect fades away.
The terms proportional to matrices Θs capture the impact of asymmetric return shocks to volatility.
For any t, the unconditional covariance matrix of εt is given by

V∞ :=

(
1n −

p

∑
s=1

(
As +

1
2

Θs

)
−

q

∑
s=1

Bs

)−1

Ω,

where 1n denotes an n-by-n identity matrix. Covariance stationarity of the GJR(p,q) process (6) is
assured by setting the matrix

1n −
p

∑
s=1

(
As +

1
2

Θs

)
−

q

∑
s=1

Bs

to be positive definite. Note that the multivariate GJR process (6) contains the ordinary multivariate
GARCH as its special case. There are also many plausible alternatives. For example, the APARCH
model of Ding et al. [45] includes ARCH, GARCH, and GJR-GARCH models as special cases, as well
as four other ARCH extensions. These four extensions are the TS-GARCH model of Taylor [46] and
Schwert [47], Log-ARCH model of Geweke [48] and Pentula [49], N-ARCH model of Higgins and
Bera [50], and T-ARCH model of Zakoïan [51]. Similarly, the EGARCH model of Nelson [52] can be
used to capture the leverage effect in a slightly different manner. The method developed in this paper
can be applied straightforwardly with any of the multivariate models from the GARCH family.

Cross-sectional correlations are reflected in the off-diagonal terms of matrices Vt and Et.
This, in turn, makes the parameter matrices non-diagonal. In total, one would have to estimate
(1 + 2p + q)(n + 1)n/2 different parameters. Clearly, this number explodes as we increase the number
of assets in the portfolio. However, this is only one aspect of the problem. The other is that we cannot
apply the results of univariate EVT to conditional residuals εt,i directly. However, we can switch to the
orthonormal basis of principal components by applying the linear transformation (2) to the conditional
residuals εt. In this basis, Equation (6) reads:

Ṽt = Ω̃ +
p

∑
s=1

ÃsẼt−s +
p

∑
s=1

Θ̃s Ĩt−sẼt−s +
q

∑
s=1

B̃sṼt−s, (7)
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where M̃ := L−1M
(
L−1)′ for any square matrix M. In particular,

Ẽt := L−1Et

(
L−1

)′
= ztz′t

and
Ĩt := L−1It

(
L−1

)′
= diag (sgn(−zt,1)+ sgn(−zt,2)+ . . . sgn(−zt,n)+) .

Equation (4) implies that E (zt|Ft−1) = 0. Let

Ṽt := var (zt|Ft−1) = L−1Vt

(
L−1

)′
be the conditional covariance matrix of principal components. As in Alexander [34], it is reasonable
to assume that the matrix Ṽt is diagonal, since the eigenvectors zt are orthogonal. Then, the process
given by Equation (7) can be estimated separately for each principal component. This gives a set of n
independent scalar equations of the form

Ṽt,i = Ω̃i +
p

∑
s=1

Ãs,i Ẽt−s,i +
p

∑
s=1

Θ̃s,i Ĩt−s,i Ẽt−s,i +
q

∑
s=1

B̃s,iṼt−s,i, (8)

where, in general, M̃i := M̃ii is the i-th diagonal element of the matrix M̃, i being 1, 2, . . . , n for the first,
second, . . ., n-th principal component, respectively.

Once we estimate the parameters Ω̃, Ã1, . . . , Ãp, Θ̃1, . . . , Θ̃p, B̃1, . . . , B̃q, we can apply the
inverse transformation

Vt := LṼtL′, (9)

for t ≥ max{p, q}, to retrieve the series of conditional covariance matrices in the original basis
of log returns. This allows us to forecast VaR and ES in a multivariate framework, and for an
arbitrary portfolio.

2.2.3. Estimating Independent Univariate Excess Distributions

Theorem 1 states that, for a large class of underlying excess distributions, the exceedances over
threshold converge in distribution to GP as the sample size increases and the threshold is raised.
Thus, the GP is the natural model for the unknown excess distribution above the threshold u, and we
may conjecture that

Fu(x) = Gξ,β(x), (10)

for any x satisfying 0 ≤ x < zF − u. Assuming that we have a set of realizations for the variable Zt, we
can choose a sensible threshold u and estimate parameters ξ and β. If there are Tu out of a total of T
observations that exceed the threshold, the GP distribution will be fitted to the Tu exceedances. In the
literature, several estimators have been used to fit the GP parameters. The most popular ones are the
maximum likelihood (ML) and the Hill estimator. The ML estimator assumes that, if the tail under
consideration strictly follows a GP distribution, the likelihood function can be written in a closed-form.
The estimators of the parameters ξ and β are then obtained using the standard ML approach. Provided
that ξ > −1/2, the ML estimator of the parameters is consistent and asymptotically normal as the
length of the series tends to infinity. On the other hand, the Hill estimator is based on a combination
of the ML method and a semi-parametric result, which describes the scaling of F when ξ > 0 (see,
for instance, [53]). Here, we will use the ML estimator due to its performance and universality,
as discussed in Nyström and Skoglund [15].
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2.2.4. Tails of Univariate Distributions

By combining Theorem 1 and Equation (10), we can write

F(z) = (1− F(u)) Gξ,β(z− u) + F(u),

for z > u. The only additional element we require to construct a tail estimator is F(u). The simplest
choice would be to use the non-parametric method and take the obvious empirical estimator,
F̂(u) = 1− Tu/T. Alternatively, we can find Tu that is closest to a predetermined F(u). Thus,
for example, in a sample of T = 1000 observations, F̂(u) = 0.90 will correspond to Tu = 100.
The threshold is then set to u = Z900, if {Zt}T

t=1 are ordered in an increasing way.
Combining the empirical estimate F̂(u) with the ML estimates of the GP parameters, we obtain

the tail estimator:

F̂(z) = 1− Tu

T

(
1 + ξ̂

z− u
β̂

)−1/ξ̂

, z > u. (11)

Note that, when the scale parameter β tends to infinity, Gξ,β(·) vanishes and the tail estimator
converges to the empirical one for any z. Thus, the tail estimator in (11) can be viewed as the
non-parametric estimator augmented by the tail behavior captured by the GP distribution.

2.2.5. Estimating Univariate Var and Es

We formally define VaR in the following way.

Definition 2. Let {Zt}T
t=1 be a set of i.i.d. random variables with distribution function F(z) := P (Zt ≤ z)

for any i. Value at Risk is the α quantile of the distribution F:

VaRα := F−1(α),

where α ∈ (0, 1) and F−1 is the inverse of F.

The usual critique of VaR as a risk measure is that it is not coherent and ignores the structure of
losses beyond a specific quantile. (See, for example, Artzner et al. [54,55], Acerbi and Tasche [56,57]
and Szego [58].) In order to overcome these drawbacks, Expected Shortfall (ES) is often used as an
obvious alternative. It is defined as the conditional expectation of loss that surpasses a fixed level of
VaR. Formally, under the same assumptions as in Definition 2, we can define ES as:

ESα := E[Zt|Zt > VaRα].

As such, ES takes into account tail risk and satisfies the sub-additivity property, which assures its
coherence as a risk measure.

Let u+ ≡ u be the upper-tail threshold, and let the lower-tail threshold u− be defined
symmetrically, that is, by F(u−) = 1− F(u+). Then, for a given upper-tail probability α+ > F(u+) or
a given lower-tail probability α− < F(u−), the general form of the VaR estimate is

V̂aRα+ = F−1(α+) = u+ +
β̂+

ξ̂+

(Tu+(1− α+)

T

)ξ̂+

− 1

 , (12)

V̂aRα− = F−1(α−) = u− +
β̂−

ξ̂−

[(
Tu−α−

T

)ξ̂−
− 1

]
, (13)
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where the subscript + (−) refers to parameters in the upper (lower) tail. Similarly, the general form of
the ES estimate is

ÊSα± =
1

1− ξ̂±

(
V̂aRα± + β̂± − ξ̂±u±

)
. (14)

(see, for example, [12]). As the tail becomes heavier, the tail index increases (equivalently, ξ̂± → 0),
and ES becomes progressively greater than VaR.

2.2.6. Portfolio-Level VaR and ES

Given the upper- and lower-tail quantiles α±, the quantile of i-th principal component h time
steps ahead is given by

z±τ,i = F−1
i (α±)

√
Ṽτ,i, (15)

where τ = T + h and F−1
i (·) is the inverse of the univariate probability function for the set of principal

components {zt,i}T
t=1, given by Equations (12) and (13).

Our final goal is to estimate VaR and ES for a portfolio of n assets. Denote by a the vector of
portfolio positions, in monetary units. This, among other things, facilitates the treatment of portfolios
with short positions. Then, h-steps-ahead portfolio VaR is given by

VaRα± = a′µτ ±
√

a′Q±τ a, (16)

where Q±τ is a real symmetric matrix that can be decomposed as

Q±τ := LD±τ
(
LD±τ

)′
D±τ := diag

(
z±τ,1 z±τ,2 . . . z±τ,n

)
.

The intuition behind Formula (16) is fairly simple. The first term, a′µτ , represents the forecast
of the expected portfolio return. The second term is the upper- or lower-tail bound of the confidence
interval for total portfolio return. It is obtained in three steps: first, we use (15) to calculate the quantiles
z±τ,i, i.e., individual contribution to VaR for each principal component, and stack them into a diagonal
matrix D±τ ; second, we use L to transform this matrix back to the original basis of log returns; finally,
we take a square root of the matrix ”sandwich” consisting of the vector of portfolio holdings a and
transformed quantiles Q±τ to obtain the bounds of confidence intervals around the expected return.
If all principal components happen to be identically distributed (which is unlikely, even if all come
from the same family of distribution functions), then the square-root term is simply the α-quantile of
this distribution times the h-steps-ahead forecast of the portfolio variance.

A similar rationale can be applied to derive the forecast of portfolio ES:

ESα± = a′µτ ±
√

a′R±τ a, (17)

where, by analogy with Equations (14)–(16),

R±τ := L∆±τ
(
L∆±τ

)′
∆±τ := diag

(
ζ±τ,1 ζ±τ,2 . . . ζ±τ,n

)
,

ζ±τ,i =
1

1− ξ±

(
F−1

i (α±) + β± − ξ±u±
)√

Ṽτ,i.

2.2.7. Summary of the Methodology

We summarize the methodology through the following procedure:
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Step 1. Start by performing the orthogonalization on portfolio returns. In other words, use the
eigenvalue decomposition of the unconditional covariance matrix V∞ of return residuals εt to obtain
the matrix L following Definition 1. Then, use Equation (2) to obtain the set of orthogonal vectors zt.
This step assures cross-sectional independence and allows working with univariate series.

Step 2. Filter out the heteroskedasticity on each component from step 1 to obtain serially
i.i.d. random variables. In other words, use the set of orthogonal vectors zt from step 1, calculate
Ẽt = ztz′t and run a GARCH-like process such as one given by Equation (8) on Ẽt. This results in a
set of univariate estimates of the conditional variance Ṽt,i. This step is a prerequisite for using the
univariate EVT.

Step 3. Use the estimator from Equation (11) to fit the tails of each of the independent series from
step 2. This gives the parameters of GP distribution.

Step 4. Substitute the parameters from step 3 into Equations (12) or (13). This step allows us to
calculate the quantile for each component, Equation (15).

Step 5. Substitute the quantiles from step 4 into the closed-form expressions from
Equations (16) and (17) to obtain portfolio VaR and ES.

Steps 1 and 2 are analogous to the orthogonal GARCH of Alexander [34]. Steps 3 and 4 are typical
for a univariate EVT approach. A combination of steps 1–4 with step 5 is essential for the multivariate
EVT approach.

As discussed, the method is based only on a few assumptions that allow the exploitation of
asymptotical properties. From Theorem 1, we can see that it is sufficient to have a set of independent
univariate random variables {Zt}T

t=1 drawn from the same distribution function F. We can obtain
the set of univariate random variables by merely applying a simple eigenvalue decomposition of
the unconditional covariance matrix V∞ in step 1. This step is well defined as long as the original
multivariate series has a finite unconditional covariance matrix, a reasonable assumption for the
financial time series. The set of i.i.d. random variables having the same distribution function F can be
obtained through a GARCH-like filter in step 2. The filter can be applied provided that the covariance
stationarity condition has been met. This condition is merely a restriction on the model parameters.
Other assumptions are not required for the method to work since it relies on the transformed random
variables’ asymptotic property.

3. Illustration of the Method

The empirical results that follow are based on daily closing prices of the thirty stocks that
constituted the Dow Jones Industrial Average at the end of 2011, gathered from Thomson Reuters
Datastream. The prices are adjusted for stock splits and dividend payments. The observation period
covers all trading days between and, including 2 January 2001, and 30 December 2011, there is a total
of 2766 returns per stock. Figure 1 displays the returns of an equally-weighted portfolio, which will be
used in the later examples.

Following the procedure described in Section 2.2, we first estimate the upper- and the lower-tail
parameters of the univariate GP distribution, ξ± and β±, for each of the principal components.
The upper and lower thresholds, u+ and u−, are determined by F(u+) = 0.90 and F(u−) = 0.10,
respectively. (g choice of threshold u± is of minor importance for this illustration. For instance,
using F(u−) = 0.05 instead of 0.10 at α = 0.001 changes the level of VaR forecast by less than a percent
in relative terms.) The lower-tail VaR and ES forecasts can be found easily from Equations (16) and (17).
The conditional covariance matrix Ṽτ,i in (15) is obtained using the steps described in Equations (6)–(8).
Here, we illustrate this procedure, assuming that the conditional covariance matrix in Equation (6)
follows a multivariate GJR(1,1) process, i.e., p = q = 1, or its multivariate GARCH(1,1) restriction,
in which Θs ≡ 0. Table 1 shows ten-day VaR and ES forecasts for several confidence levels reported as
a percentage of the total portfolio value. (We choose the convention that the negative values obtained
in Equation (15) correspond to losses.)
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Figure 1. Daily returns of an equally-weighted portfolio of Dow 30 companies.

Table 1. Ten-day VaR and ES Forecast

Confidence Level, 1 − α

0.900 0.950 0.990 0.995 0.999

mv GARCH – GP
VaR 5.11 6.77 10.81 12.63 17.08
ES 7.57 9.30 13.52 15.42 20.05

mv GJR – GP
VaR 4.69 6.33 10.08 11.67 15.28
ES 7.04 8.66 12.35 13.90 17.46

We can compare different multivariate volatility models in terms of their ability to fit the
conditional distributions of principal components. Here, we use three different distributional
assumptions: normal, Student’s t, and GP. The results for normal and Student’s t-distribution are
calculated from the usual procedure of Alexander [34]. The GP results are based on our multivariate
EVT method, as described in Section 2. The results are summarized in Table 2. The second column
of Table 2 shows the cumulative R2, i.e., the fraction of variance explained by each of the thirty
eigenvectors. The remaining columns contain Kolmogorov–Smirnov test statistics for the univariate
probability distribution of standardized eigenvectors zt,i. The methods based on multivariate EVT
appear to be the only ones that cannot be rejected at any reasonable significance level for all thirty
eigenvectors—everything else being equal. Due to the fat tails of returns, conditional normality can
be rejected for almost all eigenvectors. The assumption of Student’s t conditional distribution can
be safely rejected for the first principal component, which is the one that explains almost half of the
variations of returns in this sample. It is also rejected at more restrictive levels of significance for the
remaining eigenvectors.

To visualize the model’s ability to fit the lower tail, we can plot the distribution of exceedances
Fu(x). Figure 2 shows log10 Fu(x) for the first four principal components, which jointly contribute to
more than two-thirds of variations in portfolio returns. Each graph compares the empirical distribution
function tails and three different distribution functions obtained from the orthogonal-GJR(1,1) residuals.
The fitted GP distribution Gξ,β(·) is obtained from the model proposed in this paper. Consistently with
Table 2, it provides the best fit to the actual data.
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Table 2. Model comparison: Kolmogorov–Smirnov statistics across eigenvectors

eig. Cumulative R2 mv GARCH mv GJR
Normal Student GP Normal Student GP

1 0.4913 0.0470 *** 0.0367 *** 0.0053 0.0419 *** 0.0364 *** 0.0052
2 0.5609 0.0403 *** 0.0238 * 0.0060 0.0410 *** 0.0247 * 0.0040
3 0.6162 0.0362 *** 0.0177 0.0051 0.0363 *** 0.0280 ** 0.0047
4 0.6523 0.0335 *** 0.0148 0.0041 0.0334 *** 0.0144 0.0044
5 0.6792 0.0396 *** 0.0126 0.0047 0.0388 *** 0.0125 0.0046
6 0.7053 0.0335 *** 0.0181 0.0061 0.0338 *** 0.0176 0.0073
7 0.7286 0.0571 *** 0.0126 0.0044 0.0571 *** 0.0143 0.0047
8 0.7489 0.0425 *** 0.0116 0.0070 0.0408 *** 0.0115 0.0062
9 0.7677 0.0302 ** 0.0134 0.0045 0.0296 ** 0.0139 0.0050

10 0.7862 0.0261 ** 0.0170 0.0047 0.0260 ** 0.0172 0.0046
11 0.8042 0.0308 ** 0.0146 0.0059 0.0307 ** 0.0147 0.0063
12 0.8214 0.0261 ** 0.0162 0.0043 0.0264 ** 0.0162 0.0041
13 0.8374 0.0310 *** 0.0167 0.0058 0.0295 ** 0.0167 0.0063
14 0.8525 0.0320 *** 0.0180 0.0074 0.0316 *** 0.0177 0.0067
15 0.8668 0.0229 0.0194 0.0045 0.0225 0.0194 0.0052
16 0.8808 0.0277 ** 0.0157 0.0053 0.0278 ** 0.0156 0.0049
17 0.8939 0.0363 *** 0.0131 0.0041 0.0360 *** 0.0133 0.0039
18 0.9066 0.0302 ** 0.0144 0.0052 0.0301 ** 0.0134 0.0049
19 0.9188 0.0456 *** 0.0196 0.0050 0.0441 *** 0.0149 0.0041
20 0.9296 0.0347 *** 0.0240 * 0.0053 0.0365 *** 0.0149 0.0042
21 0.9396 0.0574 *** 0.0110 0.0058 0.0572 *** 0.0114 0.0056
22 0.9488 0.0405 *** 0.0168 0.0044 0.0405 *** 0.0164 0.0042
23 0.9576 0.0356 *** 0.0148 0.0035 0.0357 *** 0.0150 0.0040
24 0.9657 0.0266 ** 0.0177 0.0076 0.0264 ** 0.0173 0.0072
25 0.9736 0.0272 ** 0.0140 0.0040 0.0280 ** 0.0143 0.0040
26 0.9804 0.0519 *** 0.0097 0.0036 0.0519 *** 0.0107 0.0036
27 0.9863 0.0318 *** 0.0139 0.0052 0.0321 *** 0.0140 0.0043
28 0.9919 0.0362 *** 0.0196 0.0046 0.0364 *** 0.0196 0.0047
29 0.9972 0.0400 *** 0.0152 0.0062 0.0400 *** 0.0160 0.0065
30 1.0000 0.0326 *** 0.0136 0.0040 0.0327 *** 0.0140 0.0048

*—p-value< 0.10; **—p-value< 0.05; ***—p-value< 0.01.
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Figure 2. Distribution of exceedances in the lower tail of standardized residuals (log scale): (a) first
principal component; (b) second principal component; (c) third principal component; (d) fourth
principal component.
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4. Out-of-Sample Performance

To analyze the out-of-sample performance of the proposed method, we use a 1000-day
rolling-window sequence of one-day VaR forecasts and compare them to the corresponding actual
returns of the equally-weighted portfolio for each day. In other words, we use the sequence of returns
between 3 January 2001, and 14 January 2008, to obtain the VaR forecast for 15 January 2008. Then,
we shift the window by one day and use the sequence of returns between 4 January 2001, and 15
January 2008, to obtain the VaR forecast for 16 January 2008, and so on, until the last sequence becomes
the one corresponding to the period between 28 December 2004, and 29 December 2011, which is
used to obtain the VaR forecast for 30 December 2011. We use five different VaR quantiles (α = 0.001,
0.005, 0.010, 0.050, 0.100) and perform a backtesting procedure on the same models as in Section 3:
orthogonal multivariate GARCH(1,1) and GJR(1,1) processes, under three distributional assumptions
(normal, Student’s t, and GP).

Table 3 compares the actual and expected number of VaR violations for each quantile. We may
notice that the number of violations is above the expected value, indicating that the models, on average,
underestimate the tail risk. The assumption of conditional normality displays far too many exceptions
in the extremes. The models based on the multivariate EVT method with GP distribution have
violations whose number is closest to the expected.

Table 3. Actual and expected number of lower-tail VaR violations for an equally-weighted portfolio of
30 stocks.

Method Confidence Level, 1 − α
0.900 0.950 0.990 0.995 0.999

mv GARCH
Normal 109 69 24 16 7
Student 118 71 17 10 3
GP 117 68 15 8 3

mv GJR
Normal 107 64 25 15 8
Student 117 65 19 10 1
GP 115 62 14 8 0

Expected 100 50 10 5 1

We further follow Campbell [59] and apply a formal backtesting procedure that assesses the
forecasting ability of each of the methods across multiple VaR quantiles simultaneously, separated into
K bins on the unit interval. The test is based on the usual Pearson’s statistic,

Q :=
K

∑
k=1

(
Nobs

k − Nexp
k

)2

Nexp
k

, (18)

where Nobs
k and Nexp

k are, respectively, the observed and the expected number of violations in the k-th
bin. The Q statistic converges in distribution to a χ2 with K− 1 degrees of freedom. The results of the
test are summarized in Table 4 for the set of bins that correspond to the five VaR quantiles chosen,
i.e., α ∈ [0.000, 0.001) ∪ [0.001, 0.005) ∪ [0.005, 0.010) ∪ [0.010, 0.050) ∪ [0.050, 0.100) ∪ [0.100, 1.000].
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Table 4. Pearson’s Q test statistics and corresponding p-values for an equally-weighted portfolio of
30 stocks.

Method Q p-Value

mv GARCH
Normal 46.77 0.000
Student 12.49 0.029
GP 9.62 0.087

mv GJR
Normal 57.31 0.000
Student 10.75 0.057
GP 7.23 0.204

Table 4 indicates that the proposed multivariate EVT method cannot be rejected whenever the
comparable methods can. For example, if the orthogonal multivariate GJR process is used, the model
based on conditionally normal residuals can be rejected at 5% significance, but the models based
on conditionally t-distributed residuals and the multivariate EVT method cannot. However, if the
orthogonal multivariate GARCH process is used, then, at 5% significance, the models based on
conditionally normal and t-distributed residuals can both be rejected, while the multivariate EVT
method cannot. Similar results are obtained with Christoffersen [60] conditional coverage test across
separate quantiles (available upon request). In Appendix B, we illustrate the method using the
exchange-rate data. We obtain results similar to those shown in Table 4.

5. Numerical Simulations

To demonstrate the proposed method’s ability to incorporate various data patterns, we will apply
it to simulated data in this section. To this end, we will simulate co-dependent multivariate series
using different copulas: a Gaussian copula with the ‘’ordinary” (i.e., Pearson’s) linear correlation,
a Gaussian copula with Kendall’s τ correlation, a t copula with Kendall’s τ correlation, and three
Archimedean copulas—Clayton, Frank, and Gumbel. The copula parameters will be calibrated using
the stock returns from Section 3. We will also use the stock data to obtain the marginal distributions,
applying kernel smoothing on the empirical distribution functions. For the Gaussian copulas and the
t copula, we apply the full 30-dimensional multivariate structure. Since the applied Archimedean
copulas are bivariate, we use two equally-weighted sub-portfolios containing 15 return series each.
For every copula, we simulate 10,000 data points in each series.

We again follow the procedure outlined in Section 2.2, with the same choice of thresholds. We then
apply Equations (16) and (17) to estimate lower-tail VaR and ES. For the sake of tractability, we focus on
the multivariate GJR(1,1) process for the conditional covariance matrix. Table 5 summarizes the ten-day
VaR and ES forecasts for the same confidence levels as in Table 1, again reported as a percentage of the
total portfolio value. We can notice that the numbers do not change drastically with respect to those
reported in Table 1. They are also similar across different joint distributional assumptions.

The method’s flexibility in fitting the lower tail across various joint distributions of the data can
be visualized in Figure 3. We show the log10 Fu(x) of the first principal component for each of the six
copula types obtained from the orthogonal-GJR(1,1) residuals. The GP distribution Gξ,β(·) represents
an excellent fit to the simulated data.
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Table 5. Ten-day VaR and ES Forecast (simulated data).

Confidence Level, 1 − α
0.900 0.950 0.990 0.995 0.999

Gaussian copula (Pearson)
VaR 5.07 7.19 12.29 14.58 20.08
ES 8.19 10.38 15.66 18.02 23.71

Gaussian copula (Kendall)
VaR 5.26 7.41 12.34 11.67 19.25
ES 8.34 10.47 15.35 17.42 22.19

t copula
VaR 5.01 7.17 13.67 17.28 28.14
ES 8.72 11.49 19.86 24.50 38.47

Clayton copula
VaR 3.85 5.50 9.75 11.76 16.93
ES 6.38 8.19 12.83 15.04 20.68

Frank copula
VaR 4.24 6.05 10.63 12.78 18.21
ES 6.99 8.94 13.89 16.21 22.07

Gumbel copula
VaR 3.97 6.02 12.25 15.73 26.31
ES 7.51 10.18 18.97 22.79 36.52
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Figure 3. We show the log10 Fu(x) of the first principal component for each of the six copula types
obtained from the orthogonal-GJR(1,1) residuals.
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The out-of-sample performance of the proposed method on the simulated data can be assessed
following the same idea as in Section 4. Again, we apply a 1000-day rolling-window sequence of
one-day VaR forecasts. We use the same five VaR quantiles as in Section 4 and perform a backtesting
procedure using the orthogonal multivariate GJR(1,1) processes, under six joint distributional
assumptions (i.e., simulated copulas).

Table 6 shows the comparison between the actual and the expected number of VaR violations
across quantiles. In all cases, the number of violations is very close to the expected value. We can
see this more formally through Pearson’s Q test results, shown in Table 7. The proposed multivariate
EVT method cannot be rejected for any of the six joint distributional assumptions used to obtain the
simulated datasets.

Table 6. Actual and expected number of lower-tail VaR violations for an equally-weighted portfolio
(simulated data).

Method Confidence Level, 1 − α
0.900 0.950 0.990 0.995 0.999

Gaussian copula (Pearson) 110 62 13 5 2
Gaussian copula (Kendall) 109 64 16 7 1
t copula 104 58 8 4 0
Clayton copula 110 52 12 6 0
Frank copula 100 45 10 8 1
Gumbel copula 101 51 12 8 1
Expected 100 50 10 5 1

Table 7. Pearson’s Q test statistics and corresponding p-values for an equally-weighted portfolio
(simulated data).

Method Q p-Value

Gaussian copula (Pearson) 5.26 0.384
Gaussian copula (Kendall) 6.39 0.270
t copula 4.04 0.544
Clayton copula 3.59 0.610
Frank copula 5.18 0.394
Gumbel copula 2.48 0.780

6. Conclusions

This paper proposes a procedure for assessing portfolio tail risk based on Extreme Value Theory,
without the necessity to use multivariate limiting relations. The method applies separate estimations
of the univariate EVT model. It works with a set of orthogonal conditional residuals obtained from
the principal components of the covariance matrix of returns. Autocorrelation, heteroskedasticity,
and asymmetry inherent in the original return series can be removed by assuming a GARCH-type
process for conditional variances of principal components. In this way, we can obtain a set of
independent and identically distributed random variables, which is a prerequisite for any univariate
EVT approach. The tails of the univariate distributions have been modeled by a generalized Pareto
distribution of peeks over the threshold, while the interiors are fitted with an empirical distribution
function. The estimation of parameters can be obtained using maximum likelihood, keeping the
method computationally as fast as its orthogonal-GARCH counterparts. The method also provides
closed-form expressions for Value at Risk and Expected Shortfall.

As an illustration, the method has been applied to a sequence of daily stock returns of
Dow 30 companies. In-the-sample tests show that the proposed approach is more reliable for
modeling extreme market movements than comparable multivariate parametric methods, such as
orthogonal GARCH-type models with normal or t-distribution. Backtesting on 1000 out-of-the-sample
observations indicates that VaR forecasts obtained by the proposed method perform well across
multiple quantiles: the values of test statistics suggest that the null hypothesis of an equal number
of observed and predicted VaR violations could not be rejected for all relevant VaR confidence levels.
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The importance of these results is further highlighted because the backtesting period covers extreme
market movements that had followed the events of the Global Financial Crisis.

Numerical simulations have corroborated the empirical results. Using six different joint
distributional assumptions, where various copula families drive the co-dependence in the data,
we show that the proposed multivariate EVT method represents an excellent fit for the simulated data
tails. The out-of-the-sample performance has also been confirmed via simulations: the method cannot
be rejected for any of the six joint distributional assumptions.

Even though EVT is a natural choice for tail risk modeling, its major shortcoming is the complexity
of extension to the multivariate case. This paper proposes a way to overcome this problem by
combining the simplicity of univariate EVT and orthogonal GARCH while capturing tail correlations
and extreme co-movements. The proposed method can be applied to any asset class, and it is
straightforward to modify its filtering process to include any volatility model from the GARCH
family. Hence, it has many potential applications in volatility forecasting, asset allocation under VaR
or ES constraints, risk management of complex portfolios, or assessing individual assets’ contributions
to systemic risk.
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Appendix A. Working with Fewer Than n Principal Components

Definition 1 implies that the fraction of total variation in εt explained by the j-th principal
component is given by

λj

∑n
k=1 λl

.

This property leads to another convenient feature of the principal component approach. Namely,
if low-ranked components do not add much to the overall explained variance, which is often the case
when the number of risk factors is relatively low, we can work with a reduced number of m principal
components, where m < n. The first m components will then explain

∑m
j=1 λj

∑n
k=1 λl

. 1

of the variation in εt. In that case, L is replaced by an n-by-m matrix Lm, where

Lm := PmΛ1/2
m , (A1)

Pm is an n-by-m matrix of the first m normalized eigenvectors, and

Λm := diag (λ1 λ2 . . . λm)

is a diagonal matrix of the first m eigenvalues. The m-dimensional vector of the first m principal
components of εt is then given by

zt = L−1
m εt, (A2)
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for any t, where L−1
m is the pseudo-inverse of Lm. It is straightforward to generalize the multivariate EVT

approach presented in the paper to the case of m < n principal components. Using definition (A1), we
can transform any n-by-n matrix M into the basis of the first m principal components via transformation

M̃ := L−1
m M

(
L−1

m

)′
,

obtaining an m-by-m matrix M̃. Equations (7), (8), (15), and (16) maintain the same form.

Appendix B. Illustration Using Exchange-Rate Data

As an additional robustness check of our method, we present here the results for the exchange-rate
data. On average, currency portfolios have lower rates of return than stocks but are significantly more
volatile and notoriously fat-tailed. Here, we use daily data on 20 major currencies against the US Dollar
(USD), retrieved from Refinitiv-Eikon. We used the following currencies: Australian Dollar, Brazilian
Real, Canadian Dollar, Swiss Franc, Chinese Yuan, Euro, Pound Sterling, Hong Kong Dollar, Indian
Rupee, Japanese Yen, South Korean Won, Mexican Peso, Norwegian Krone, New Zealand Dollar,
Russian Ruble, Swedish Krona, Singapore Dollar, Turkish Lira, New Taiwan Dollar, and South African
Rand. The data consists of middle exchange rates between 1 December 2000, and 1 December 2020,
a total of 5217 returns per currency. Figure A1 shows the returns of an ‘’equally-weighted” portfolio,
which we will apply in our analysis, analogous to Section 3.

2002 2005 2007 2010 2012 2015 2017 2020
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Date

D
ai

ly
 r

et
u

rn
s 

(p
er

ce
n

t)

Figure A1. Daily returns of an equally-weighted portfolio of 20 major currencies against USD.

We use a 2000-day rolling-window sequence of one-day VaR forecasts to analyze the out-of-sample
performance on the exchange-rate data. As in Section 4, we compare these results to the corresponding
actual returns of the equally-weighted portfolio for each day using the same five quantiles
(α = 0.001, 0.005, 0.010, 0.050, 0.100) and the same multivariate methods. The results are summarized
in Tables A1 and A2. Table A1 compares the actual and expected number of VaR violations for each
quantile. The multivariate EVT method with GP distribution has the number of violations that is
again closest to the expected. We can see this more formally from the backtesting results in Table A2.
Again, the proposed multivariate EVT method cannot be rejected whenever the comparable methods
can. This result indicates that the method is robust across different asset classes, observation periods,
and backtesting horizons.
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Table A1. Actual and expected number of lower-tail VaR violations for an equally-weighted portfolio
of 20 major currencies against USD.

Method Confidence Level, 1 − α
0.900 0.950 0.990 0.995 0.999

mv GARCH
Normal 264 169 53 34 20
Student 248 147 32 21 9
GP 217 115 25 13 2

mv GJR
Normal 225 140 36 27 15
Student 251 145 31 22 8
GP 207 111 24 12 1

Expected 200 100 20 10 2

Table A2. Pearson’s Q test statistics and corresponding p-values for an equally-weighted portfolio of
20 major currencies against USD.

Method Q p-Value

mv GARCH
Normal 193.33 0.000
Student 43.20 0.000
GP 2.98 0.704

mv GJR
Normal 96.40 0.000
Student 38.85 0.000
GP 2.82 0.727
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