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Abstract: The integrative analysis of copy number alteration (CNA) and gene expression (GE) is an 

essential part of cancer research considering the impact of CNAs on cancer progression and 

prognosis. In this research, an integrative analysis was performed with generalized differentially 

coexpressed gene sets (gdCoxS), which is a modification of dCoxS. In gdCoxS, set-wise interaction 

is measured using the correlation of sample-wise distances with Renyi’s relative entropy, which 

requires an estimation of sample density based on omics profiles. To capture correlations between 

the variables, multivariate density estimation with covariance was applied. In the simulation study, 

the power of gdCoxS outperformed dCoxS that did not use the correlations in the density estimation 

explicitly. In the analysis of the lower-grade glioma of the cancer genome atlas program (TCGA-

LGG) data, the gdCoxS identified 577 pathway CNAs and GEs pairs that showed significant 

changes of interaction between the survival and non-survival group, while other benchmark 

methods detected lower numbers of such pathways. The biological implications of the significant 

pathways were well consistent with previous reports of the TCGA-LGG. Taken together, the 

gdCoxS is a useful method for an integrative analysis of CNAs and GEs. 

Keywords: copy number alteration; gene expression; integrative analysis; Renyi’s relative entropy; 

The cancer gene atlas project; lower-grade glioma 

 

1. Introduction 

Copy number alteration (CNA) is a cytogenetic hallmark of cancer pathophysiology [1]. Due to 

the aberrant behavior of cancer cell proliferation and differentiation, genomic sequences can be 

amplified or deleted in cancer cells. The CNA can cause the abnormal expression of oncogenes or 

tumor suppressor genes. These abnormal expressions are related to cancer progression or poor 

prognosis [2–6]. For this reason, the identification of the copy number aberration has been a key issue 

in cancer research [7–9]. 

The array comparative genomic hybridization (aCGH) facilitated the discovery of the CNAs in 

cancer [7]. The paradigm of high-throughput technology, which is a massive parallelization of single 

experiments, was directly applied to the aCGH method. Consequently, researchers can obtain 

information about copy numbers on a genome-wide scale using the aCGH platform. Studies on many 

types of cancers revealed copy number anomalies in various genomic regions with the aCGH 

technology [8–12]. Recently, researchers have used a single nucleotide polymorphism (SNP) 

microarray platform for the detection of CNAs [13]. For the detection of CNAs, specific probes are 
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inserted in the microarray platform. Several algorithms had been developed for analysis of the CNAs 

using the SNP microarray platform [14–17]. 

Although the microarray platforms enable the efficient screening of the CNAs, they give no 

information about gene expression (GE). For the identification of their impact on GE, they should be 

validated at the transcription level because the GEs of CNA loci can show no significant change [18]. 

To this end, the GE microarray or RNA sequencing platform can be used concurrently on the same 

samples that are applied to the CNA-detecting platform for accurate detection of the CNAs having 

an effect on transcription. The underlying assumption of the integrative analysis of the CNA and GE 

is straightforward: if the CNAs of genomic loci co-vary with the expression level of genes, it indicates 

that the genomic loci are likely to influence the GE. 

The integrative analysis of the CNV and GE datasets has been focused on single gene-wise 

correlations or regression-based approaches that found significant relationships between CNA and 

GE, which are focused on identifying the coordinated variation between CNA and GE. To capture 

the variation, several computational methods were applied [19,20]. Lathi et al. reviewed and 

classified such methods into four categories, including two-step-, regression- and correlation-based 

approaches, and latent variable models [20]. The two-step approach consists of detecting CNA lesions 

and testing the association of the lesions and differential gene expressions. Regression- and 

correlation-based approaches are dependent on the corresponding statistical models that have been 

widely used in the data analysis, and some modifications of the original models are applied. Latent 

variable models are used to model the shared and independent signals between CNA and GE. This 

approach has an advantage in that it directly models the signal and noise, but has the disadvantage 

of high computation time. 

In addition to the single gene-wise method, gene set approaches were also applied to the 

integrative analysis of CNA and GE. Menezes et al. used the global test to identify the relationship 

between single copy number alteration and corresponding gene set expression profiles [21]. By 

mapping neighbor expression probes to a single aCGH probe, they identified the CNAs that 

influenced the gene set expression profiles using the global test. The other gene set approach 

identified relationships between sets of CNAs and sets of expression values using canonical 

correlation analysis. Peng et al. applied the multivariate regression method for the set-wise analysis 

of CNAs and GEs [22]. To deal with the high dimensionality of genomic data, they used a 

regularization process. The canonical correlation analysis is a multivariate analysis method for 

detecting similarity between two variable sets. Lahti et al. used the canonical correlation method to 

determine a regional set of copy numbers and gene expression changes [23], which includes a 

probabilistic approach that is robust to small sample sizes. In another research, the elastic net 

approach was adopted to reduce the number of variables in the genomic data [24]. Similarly, selecting 

sparse subsets of variables of CCA instead of considering all combinations of genomic variables is 

proposed to consider high dimensional variables of genomic data [25]. 

In this research, the integrative analysis of CNA and gene expression is performed in terms of 

the gene set approach. The rationale for the set-wise analysis was to identify biological findings that 

were not detected by the single gene-wise analysis. Moreover, conditional changes in the similarity 

between CNAs and gene expressions are explicitly tested to identify whether a pair of CNAs and 

GEs is associated with the condition, which indicates that the CNAs and GEs are likely to be involved 

in the biology of the condition. For this purpose, the dCoxS method is modified to capture the 

variation between heterogenous omics data, especially for CNAs. The dCoxS was originally designed 

to detect interaction between a pair of GEs [26]. The interaction implies similarity between GEs, which 

is measured by the correlation between sample-wise distances in the GE matrices. For the 

identification of interactions between CNAs and GEs, dCoxS is able to be applied directly. However, 

if the CNAs data are in a segmented form, the dCoxS may not identify the combination effect of CNA 

loci in the determination of interaction because the dCoxS uses productive kernels for the estimation 

of sample-wise distances. Since the productive kernel computes the bandwidth parameters of the 

variables from the standard deviation of each variable, which can show monotonic variations in the 

segmented values of CNAs that represent only three statuses of gain, loss, and normal, the productive 
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kernel may not be appropriate for the segmented CNA data. In this research, multivariate normal 

density estimation was applied, which integrates the correlation structure of the CNAs explicitly. 

Here, the modified method is named generalized dCoxS (gdCoxS), and it can analyze heterogenous 

omics datasets. The performance of the gdCoxS is tested using simulation data and lower-grade 

glioma of the cancer genome atlas program data. 

2. Materials and Methods 

2.1. Identification of Conditional Change of Interactions Between Set-Wise CNAs and GEs 

The overview of analysis is illustrated in Figure 1. The dCoxS method was originally developed 

for detecting significant changes in the interaction of a pair of gene expression matrices between 

different conditions. In the dCoxS, conditional similarity between two gene set expression profiles 

was determined by the correlation of sample-wise distances in the expression profiles, which was 

defined as the interaction score (IAS). 

 

Figure 1. Overall analysis flow of generalized differentially coexpressed gene sets (gdCoxS). In each 

condition, copy number and gene expression matrices are converted to matrices of sample-wise 

distances that are measured by Renyi’s relative entropies. Then, interactions are determined by the 

computation of correlation coefficients of sample-wise distances from the copy number and gene 

expression matrix. CNAs: copy number alterations; GEs: gene expressions; IAS: interaction score; 

RREs: sample-wise distances with Renyi’s relative entropies. 
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For the estimation of sample-wise distances, Renyi’s relative entropy is estimated by the ratio of 

densities from two different samples. The densities were computed using the multivariate productive 

kernel that multiplies the single density values and bandwidth parameters obtained from standard 

deviations of the variables. The dCoxS performs well in the estimation of differential interaction 

between a set of gene expressions. However, when the method is applied to CNAs and gene 

expressions, the productive kernel may not represent the dynamics of CNA changes because it 

integrates no explicit correlation structure into the density estimation. The CNA status includes only 

three possible values, which are loss, neutral and gain, and these are frequently coded as –1, 0 and 1, 

respectively. Since the CNAs occur in a small portion of samples, it is likely that the density of the 

CNA matrix had small variations because combinations of the CNA status are not considered 

explicitly in the dCoxS. Thus, in this analysis, a multivariate normal density estimation that uses a 

covariance matrix representing combinations of the CNA status is adopted. The multivariate density 

function is: 
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where n and p represent the number of samples and variables. The µ is a mean vector of CNA or GE 

profiles, and 1 /2Σ̂ is the square root of the estimated covariance matrix. In practice, n was the number 

of samples and d was the number of CNAs or GEs in a pathway. The corpcor R package was used for 

the shrinkage estimation of the covariance matrix and its inverse form [27] to handle the computation 

of high-dimensional matrices that are frequently possible with various types of genomics data (n < 

p).  

For each corresponding copy number and expression matrix, sample-wise distances were 

measured with Renyi’s quadratic divergence. 
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In Equation (2), D2(P∥Q) represents Renyi’s quadratic diversity [26]. The Si and Sj indicate 

different samples. The ˆ ( )h if S and ˆ ( )h jf S are the probabilistic densities of the samples Si and Sj. 

Therefore, the higher divergence implies that two samples are more distant from each other.  

Using the Renyi’s diversity, set-wise CNA and expression matrices were transformed to sample-

wise distance matrices. The upper trigonal members of the sample-wise distance matrices were used 

for the computation of the IAS. The IAS was obtained through the correlation coefficient between the 

upper trigonal members of the sample-wise distance matrices. 
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In Equation (3), REC and REG are the sample-wise distance (relative entropy) matrices of the 

CNAs and GEs, respectively. After the IASs were determined in each condition, the significance of 

the IAS and the differences in the IAS between conditions were tested non-parametrically 

(Supplementary Methods).  

2.2. Simulation Analysis 

Since the IAS is used for determining the similarity between set-wise CNA and gene expression 

matrices, unlike the original application, a simulation study tests whether the IAS reflects the 

similarity between CNAs and GEs. 

First, a CNA matrix was generated using binomial distribution. In general, CNA occurs in a 

small proportion of samples. Neutral status was therefore set to the predefined proportion of total 

samples. Then, gain (+1) or loss (–1) status was assigned to the rest of the samples using binomial 
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distribution with number of trials = 1 and probability = 0.5. The rbinom R function generates a 0 or 1 

status according to the predefined probability, and 0 is assigned to the −1. The proportion of samples 

having CNAs in the total sample was selected among the predefined values (0.1, 0.2, 0.3, 0.4 and 0.5) 

for each simulated CNA. 

After the generation of CNAs, the GEs matrix with similarity with the CNA matrix was 

simulated. The random values from the normal distribution with different standard deviation (SD) 

values were added to a simulated CNA for the generation of GEs having various similarities 

according to the SD values. To simulate a GE matrix having less similarity with the CNA matrix, a 

greater SD value was applied in the generation of random numbers. 

Power analysis was also performed with the simulation data. First, two random CNAs–GEs 

pairs were generated. The CNA matrices were generated by the same method used in similarity 

analysis. Then, a random expression matrix was generated and the same matrix was used as an 

expression matrix in both conditions. The random expression matrix was generated by random 

numbers from standard normal distribution. Since the CNA matrices were different and the 

expression matrices were the same between conditions, this generated the true differential interaction 

of CNAs and GEs between conditions. Simulation data were generated with different parameters, 

including the number of samples and genes. 

2.3. Analysis of TCGA-Multiomics Data 

In addition to the simulation study, to test whether the current approach identifies valid 

biological phenomena, TCGA-LGG data were analyzed. The data were downloaded from the 

genomic data commons (GDC) portal (https://portal.gdc.cancer.gov/), and clinical information was 

also obtained from the portal. For the detection of CNAs and GEs, Affymetrix 6.0 SNP microarray 

and Illumina Hiseq 2500 sequencing platform were used, respectively. 

For the set-wise CNA expression interaction analysis of the TCGA-LGG data, biological 

pathway information was used. The current analysis framework can be applied straightforwardly to 

gene sets that are constructed with the other biological knowledge, such as gene ontology. The 

pathway information, which is mainly compiled from the Bio-Carta (www.biocarta.com), KEGG 

(www.genome.jp/kegg) and the Reactome (www.reactome.org) websites, was downloaded from 

MSigDB of the Broad Institute (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp). 

2.4. Comparison with Single Gene-Wise CNA Expression Analysis 

One of the strengths of the gene set-wise analysis was that it could identify slight changes in 

genomic signals [28]. Maybe the strength came from the modeling of the interaction between the 

elements of the gene sets. To find out whether the current set-wise approach had the same advantage, 

the detection of significant changes in the CNAs and gene expression profiles was performed single 

gene-wisely. However, previous methods are not implemented to model the difference in interaction 

between conditions. Therefore, applicable methods for testing the differential change in the 

interaction of CNAs and GEs between conditions were applied. First, correlation-based single CNA 

and GE analysis was performed (See Supplementary Methods), and Mantel statistics with different 

distance measures, including Euclidean, Manhattan and Mahalanobis distances, that were available 

to the differential interaction analysis, were applied for comparison with Renyi’s relative entropy and 

Mantel statistics in the analysis of gdCoxS. 

3. Results 

3.1. Simulation Analysis Results 

To generate simulation data for testing whether IAS represents similarity between CNAs and 

GEs, CNA matrices that have 20, 50, and 100 variables, and 100 samples, were generated. For each 

simulated CNA, the proportion of the CNA in the total samples was randomly selected from among 

the predefined frequencies as described in the methods. When a CNA matrix was generated, random 

values from the normal distribution with SD = 0.01 were added, which resulted in high IAS between 
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the CNA and GE matrices. The second GE matrix was generated by adding random values from 

normal distribution with SD = 0.1 to the previously generated GE matrix. Likewise, the i-th GE matrix 

was generated by adding random values from normal distribution with SD = (i − 1) × 0.1 to the (i − 

1)-th GE matrix. This generated GE matrices that were less similar to the simulated CNA matrix 

compared with the previously generated matrix. For each simulated CNA matrix, five GE matrices 

were generated in total, and this process was iterated 1000 times. When the number of variables in a 

GE matrix was 100, the same CNA vectors were repeatedly sampled and used for the generation of 

the GE matrix. Figure 2 shows that the IAS represents the similarity between CNAs and GEs. Each 

point indicates the mean IAS between the CNA matrices and the simulated expression matrices, with 

corresponding SD values. In general, the mean IASs were highest when SD was 0.01, and they became 

lower with increasing SD. The mean IAS was lowest with SD = 0.4 in all simulations. Besides mean 

values, the paired t tests of the IASs were highly significant between IASs from different SDs (p < 2.2 

× 10−16). These indicate that the IAS represents similarity between CNAs and GEs. Since the CNA and 

GE matrices are different types of data, the simulated matrices should have different distributions. 

While it was obvious that the simulated CNA matrices have binomial distributions, it was not clear 

that the simulated GE matrices have multivariate normal distributions that are frequently used in the 

simulation of a gene expression matrix, because they were generated by adding numbers from 

binomial and normal distributions. Therefore, normality tests were applied to the GE matrices and 

the result showed that the matrices had multivariate normal distributions with Bonferroni’s multiple 

testing correction (data not shown). 

 

Figure 2. Results of simulation study for measuring similarity between copy number alterations 

(CNAs) and gene expressions (GEs). The red, black and blue dots and lines indicate the numbers of 

variables in the gene expression matrix, as 20, 50, and 100, respectively. As standard deviations (SDs) 

increase, the mean IASs decline. 

Power analysis was performed with changes in the number of samples and number of elements 

in the simulation data. The number of samples included {100, 200, 400}, and the number of variables 

in the set were set within {10, 20, 30}. The number of permutations was set to 100. Figure 3 shows the 

results of the power analysis. There was an obvious trend whereby the power of gdCoxS and dCoxS 

increased as the number of samples was elevated. However, dCoxS had a decreasing power as the 

number of elements in the gene sets increased, regardless of the number of samples, while dCoxS 

showed the best performance with the smallest number of elements (n = 10). Since the gdCoxS used 

a covariance matrix for estimating the relationship between variables, gdCoxS captured the 

difference in CNA matrices more efficiently than the dCoxS, which adopted the productive kernel in 
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estimating density without the use of such a covariance matrix, which was more evident in the higher 

number of elements in the gene set. Considering the high-dimensional characteristics of functional 

genomics data, the gdCoxS is a more efficient and robust method, which can detect the dynamics 

between matrices from two different sets of genomic data. 

 

Figure 3. Results of power analysis. The number of x axis is the number of variables in the gene sets, 

and the y axis represents power. When the number of samples is higher, the overall powers of gdCoxS 

are higher than the powers with lower number of samples, regardless of the number of variables. The 

dCoxS shows, however, an obvious trend of decreasing power with elevating numbers of elements 

of gene sets. N; number of simulation samples in each class. 

3.2. Real Data Analysis 

In the TCGA-LGG, genes of CNA and expression data were mapped to the ensemble identifier 

system. Since the pathway information used gene symbols, the mapping table of the HUGO Gene 

Nomenclature Committee (HGNC) for gene symbols and ensemble identifiers was used for mapping 

gene symbols to ensemble identifier (https://www.genenames.org/download/cus-tom/). The CNA 

data had 533 samples and the RNA sequencing data had 530 samples. Of the samples, 507 samples 

with CNA, gene expression and survival information were used in the analysis. In the MSigDB, there 

were 1335 canonical pathways from the open databases including the KEGG, BioCarta and Reactome. 

The class was labeled into two groups according to the survival status (death = 98, survival more than 

5 years = 409). In the analysis of the TCGA-LGG dataset, the GDC provided CNA information that 

had been computed using the Genomic Identification of Significant Targets in Cancer (GISITC) 

algorithm [17]. The CNA information of 12,117 ensemble genes, that were matched to the genes of 

the 1335 items of MSigDB pathway information, were applied in this analysis. The RNA sequencing 

(RNA-seq) data has 60,483 transcripts in total, and 13,339 transcripts were mapped to the ensemble 

identifiers of all the pathway information in the 1335 pathways. Since the RNA-seq data had different 

batches, a batch effect adjustment was performed with Combat-seq program [29]. After the 

adjustment, the RNA-seq data were normalized using the quantile normalization method. First, zero 

values were treated as missing values and they were imputed using the impute R package with 

default parameters [30]. The data were then log-transformed and the quantile normalization was 

applied. For the quantile normalization, the normalize.quantiles function of the preprocessCore R 

package was used [31]. In the real data analysis, pathway gene sets having more than 10 elements 
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were arbitrarily selected for analysis. In total, 1282 pathways were applied for this analysis. The 

numbers of CNA ensemble identifiers of each pathway ranged from 10 to 933 (median = 23). Those 

of the pathway expression matrices lay between 10 and 941 (median = 23). 

For each pathway, CNA and expression matrices with elements of the pathway were generated, 

and the differential interaction of two matrices between the survival and death group was computed. 

To test the significance of the difference of IASs between conditions, a permutation test was applied 

with 26,000 repeats of permutation.  

In the gdCoxS analysis, Bonferroni’s multiple testing correction was applied (adjusted p value = 

3.9 × 10-5). With the threshold, 577 pathways were found to exhibit significantly different interactions 

of CNAs and expressions of the pathways between the survival and death groups of TCGA-LGG 

patients (Table 1 and Supplementary Table 1). 

Table 1. Pathways showing upper and lower top 5 significant results in gdCoxS analysis. The total 

results are listed in Supplementary Table 1. 

Pathway Database Pathways NCNA
1 NEXP

2 IAS.S3 IAS.NS4 diffIAS5 

PID IL3_PATHWAY 10 10 0.023 0.407 –52.037 

REACTOME PROTEIN_METHYLATION 14 14 0.197 0.524 –48.578 

REACTOME DUAL_INCISION_IN_GG_NER 14 14 0.081 0.430 –48.002 

BIOCARTA FORMATION_OF_INCISION_COMPLEX_IN_GG_NER 26 26 0.176 0.501 –47.231 

REACTOME MICRORNA_MIRNA_BIOGENESIS 10 10 0.146 0.476 –47.219 

REACTOME TRIGLYCERIDE_CATABOLISM 15 11 0.148 –0.179 41.893 

REACTOME DEGRADATION_OF_CYSTEINE_AND_HOMOCYSTEINE 11 10 0.168 –0.159 41.940 

BIOCARTA EGF_PATHWAY 14 14 0.200 –0.145 44.284 

KEGG CYTOSOLIC_DNA_SENSING_PATHWAY 16 15 0.240 –0.127 47.355 

REACTOME GLYCOSPHINGOLIPID_METABOLISM 31 28 0.256 –0.136 50.660 

1 NCNA: number of variables in copy number matrix; 2 NCNA: number of variables in gene expression 

matrix; 3 IAS.S: interaction score in survival group; 4 IAS.NS: interaction score in non-survival group; 
5diffIAS: difference of interaction scores; PID: pathway interaction database; KEGG: Kyoto 

Encyclopedia of Genes and Genomes.  
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Figure 4. Heatmap and scatter plot of sample-wise distances of pathway copy number alteration and 

gene expression matrices of the significant results. Note that pathway CNA matrices contain 

substantial portions of neutral status. The orders of genes in the CNA and GE matrices are set to the 

same in the survival and non-survival groups. (a) Results of 

‘GLYCOSPHINGOLIPID_METABOLISM’. (b) Results of ‘IL3_PATHWAY’ pathway gene set. The 

scatter plots are made up of plotting sample-wise distances from CNA and GE matrices. The slopes 

of red lines in the scatter plots indicate interaction scores of each condition. 

In the result, 274 pathways showed increased interactions of CNAs and GEs in the non-survival 

group, which indicated that variations in CNAs and GEs were more harmonized. On the other hand, 

303 pathways had decreased interactions in the non-survival group. The IAS of the IL3_PATHWAY 

from the pathway interaction database (PID) increased from 0.023 in the survival group to 0.407 in 

the non-survival group, which was the greatest absolute diffIAS among the results (Figure 4). The 

‘GLYCOSPHINGOLIPID_METABOLISM’ pathway from the REACTOME database had the greatest 
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positive diffIAS ( = 50.66), which implied that the coordination of the CNAs and GEs of the pathway 

in the survival group was disrupted in the non-survival group. While the IAS of the pathway CNAs 

and GEs was 0.256 in the survival group, it decreased (−0.136) in the non-survival group (Figure 4). 

For the benchmark analysis of gdCoxS, differential co-expression analysis and Mantel statistics 

were applied. The differential coexpression analysis includes an estimation of the correlation 

coefficient between a CNA and GE in each condition, and a test of the significance of the difference 

in correlations between conditions (See Supplementary Methods). In the single gene-wise differential 

coexpression analysis, cis and trans regulation were considered, and only the CNAs and GEs that 

were used in the pathway analysis were included to avoid the loss of power that resulted from a large 

number of statistical tests. First, 6202 CNAs and 6233 GEs were selected and correlations between the 

CNAs and GEs were computed in each condition, and the differences in the correlations were tested 

(Supplementary Methods). After the Bonferroni’s multiple testing correction, there was no significant 

result from the Bonferroni’s multiple testing correction (adjusted p < 1.29 × 10−9). 

In the benchmark analysis, the Mantel statistics were also applied to compare the performance 

of gdCoxS when different similarity measures other than Renyi’s relative entropy were applied 

(Supplementary Methods). Different statistics, including Euclidean, Manhattan and Mahalanobis, 

which could compute interactions between CNAs and GEs, were applied. Although the Mantel test 

with different measures showed substantial numbers of significant results, the numbers were far less 

than those of the gdCoxS analysis (Supplementary Table 2–4, respectively). In the result, the Mantel 

statistics with the Mahalanobis distance using the covariance matrix showed the largest number of 

significant results (n = 171).  

4. Discussion 

In this research, the gdCoxS performs an integrative analysis of CNAs and GEs. In the simulation 

analysis, the gdCoxS shows an improvement in the performance in terms of power, especially with 

larger numbers of gene set elements. In the real data analysis, the gdCoxS detected 577 significant 

results, while the single gene-wise differential coexpression analysis gave no significant result, and 

the set-wise analysis with Mantel statistics identified fewer significant pathways than gdCoxS. These 

results seem to indicate that the gdCoxS outperforms the other benchmark methods. 

When the single gene differential coexpression analysis was applied, no significant results could 

be found in the result of the single gene-wise analysis. However, gene set methods including gdCoxS 

and Mantel tests identified a lot of significant pathway CNA–GE set pairs. These findings clearly 

indicate the benefit of gene set-wise analysis, which has more power to detect significant interactions 

between CNAs and GEs. In the benchmark study using Mantel statistics, the results with 

Mahalanobis distance showed a far better performance than the other measures. This seems to result 

from the fact that the Mahalanobis distance uses a covariance matrix that can capture the relationship 

between elements of gene sets. This finding supports the validity of the concept in gdCoxS, which is 

an application of the multivariate density function with covariance information to capture the 

relationship between CNAs explicitly. The dCoxS method was not compared in the real data analysis 

because variations in sample-wise distances in CNA matrices tended to be zero, which made the 

computation of IAS intractable. Among the pathways, more than a thousand of pathway CNA 

matrices showed such variations. This finding strongly indicates that the productive kernel of the 

dCoxS was not suitable for detecting combinatorial variations in CNAs. In the benchmark analysis, 

the set-wise methods, such as modified canonical correlation analysis (CCA), that were presented in 

the introduction could be applied. However, the methods can estimate the similarity between CNA 

and GE matrices only, and the differences in the similarities between conditions were not considered. 

Moreover, the methods provided no statistical testing for the estimation of P values. Therefore, the 

comparison between the gdCoxS and the modified CCA was not possible. 

In the result, many pathways were related to the glioma pathophysiology in previous studies. 

For example, 10 pathways were related to p53, which has impacts on the glioma pathophysiology 

(Supplementary Table 1). The mutation and inactivation of p53 is related to the proliferation and 

progression of glioma, invasion, and anti-apoptotic activity [32–35]. It is possible that copy number 
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alterations in p53-related pathways disrupt the CNAs–GE relationship in the favorable group of LGG. 

The significant change in IASs between the CNAs and GEs of the p53-related pathways in the non-

survival group seems to implicate a disrupted regulatory relationship between CNAs and GEs. 

Considering the role of p53 in the prognosis of many types of cancers [35], these results indicate the 

validity of gdCoxS analysis. Among the p53-related pathways, the “53 regulates transcription of 

caspase activators and caspases” pathway is interesting because the result indicated that the 

differential interaction of CNAs and GEs in the pathway was associated with the apoptosis that is 

critical to the survival of cancer genes. There are supportive results to this finding. In the pathway, 

p53 regulates caspase 10, which is associated with apoptotic signaling in glioblastoma [36], and 

capase 10 induced cellular death in response to the chemotherapeutic agent, which has a possibility 

of prolonged survival [37]. In the mouse experiment, the ATM gene was involved in the suppression 

of glioblastoma by the down-regulation of glioblastoma-associated genes such as the PDGFRA gene 

[38]. P63, which is another member of the pathway, was revealed to suppress tumor growth by up-

regulating caspase 1 expression [39]. These seem to be consistent with the results of the significant 

differential interaction of CNAs and GEs between survival and non-survival groups. 

The EGF pathway also indicated the validity of the analysis result (Table 1). The EGF receptor 

(EGFR) and its downstream signaling is frequently aberrant in cancers, especially in glioma [40]. 

EFGR gene amplification and overexpression can be observed in approximately 40% of glioblastoma 

[41]. Since the EGFR signaling is associated with the apoptosis, proliferation and invasion of cancer 

cells [42], the EGFR was investigated as a therapeutic target in previous studies [43]. The significant 

change in the interaction of CNAs and GEs in the EGF pathway between the survival and non-

survival groups seems to be further supportive evidence of the fact that the EGF and its receptor have 

a therapeutic potential. It is notable that the homocysteine pathway (‘DEGRADATION OF 

CYSTEINE AND HOMOCYSTEINE’ from REACTOME database) was highly ranked in the 

significant results. It is well known that the homocysteine metabolism is aberrant in cancers, 

including glioma [43], and the homocysteine level is associated with the death of a human 

glioblastoma cell line [44]. Moreover, the variant of the methylenetetrahydrofolate reductase was 

shown to be significantly associated with patient survival [45]. Considering these, the interaction 

between CNAs and GEs in the homocysteine pathway seems to be related to the pathophysiology of 

the lower-grade glioma. 

In conclusion, the set-wise identification of the interaction between CNAs and GEs revealed 

pathways that are consistent with the molecular pathophysiology of lower-grade glioma, which was 

not found in single-variable analysis. This gene set method for performing the integrative analysis of 

multi-omics data will promote the discovery of hidden biologic mechanisms. 

Supplementary Materials: The following are available online at www.mdpi.com/1099-4300/22/12/1434/s1, 

Figure S1: title, Table S1: title, Video S1: title. 
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