
 

 

 
Abstract—In this paper, an intelligent approach is proposed to 

optimize the orientation of continuous solar tracking systems on 
cloudy days. Considering the weather case, the direct sunlight is more 
important than the diffuse radiation in case of clear sky. Thus, the 
panel is always pointed towards the sun. In case of an overcast sky, 
the solar beam is close to zero, and the panel is placed horizontally to 
receive the maximum of diffuse radiation. Under partly covered 
conditions, the panel must be pointed towards the source that emits 
the maximum of solar energy and it may be anywhere in the sky 
dome. Thus, the idea of our approach is to analyze the images, 
captured by ground-based sky camera system, in order to detect the 
zone in the sky dome which is considered as the optimal source of 
energy under cloudy conditions. The proposed approach is 
implemented using experimental setup developed at PROMES-
CNRS laboratory in Perpignan city (France). Under overcast 
conditions, the results were very satisfactory, and the intelligent 
approach has provided efficiency gains of up to 9% relative to 
conventional continuous sun tracking systems. 
 

Keywords—Clouds detection, fuzzy inference systems, images 
processing, sun trackers.  

I. INTRODUCTION 

UE to increasing demand for sustainable and green 
energy resources, solar energy technology has 

experienced phenomenal growth in recent years. The 
efficiency of all types of solar energy based technologies is 
influenced by the variation in solar resources due to weather 
changes. In this context, the Concentrated Solar Power 
efficiency IMProvement (CSPIMP) project has been initiated 
in 2013 in order to overcome the power system disturbances 
caused by the sudden changes in the weather and as a result to 
make concentrated solar power CSP, solar thermal collectors, 
and photovoltaic PV plants more efficient. 

Considering the continuous change of the sun position, 
orientation of solar panels plays a key role in the total energy 
yield. There are two main ways to increase the efficiency of 
solar collectors. In the first way, collectors are fixed, or have a 
tilt that can be adjusted, monthly or seasonally [1]. In the 
second approach, they can always be pointed directly toward 
the sun using single or dual axis tracking system [2]. The most 
efficient of these driving techniques is the dual axis tracker 
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that increases the capture of solar radiation by approximately 
30% compared to the fixed mount and by 6% compared to the 
single axis tracker [3]. 

Considering weather conditions, most of global solar energy 
reaching earth’s surface comes from the direct sunshine, and a 
small quantity is from diffuse solar energy in case of clear sky 
[4]. However, atmospheric components like clouds and 
pollution increase the percentage of diffuse radiation. Thus, 
during overcast conditions, tracking the sun is an ineffective 
method and the horizontal position becomes the ideal choice 
to capture this diffuse radiation that is isotopically-distributed 
over the whole sky [5]. In case of partly covered sky, diffuse 
radiations have anistropically-distribution and there are some 
zones of the sky dome which reflect more energy than others 
according to the position of clouds relative to the sun and 
clouds motion.  

In the literature, satellite images are mostly used to study 
clouds distribution and features which constitute major factors 
in estimating and forecasting solar irradiance [6]. However, 
the low resolution of satellite images with respect to space and 
time is not adequate to satisfy the control requirements of 
solar energy systems. Thus, researchers have turned towards 
analyzing the images captured by ground-based sky camera 
systems in order to make up the deficiency of satellite cloud 
observations in terms of spatial and temporal resolutions [7].  

Many detection algorithms have been implemented to 
separate pixels which represent clouds from those represent 
sky background. Indeed, all these approaches are segmentation 
methods adopting conditional rules based on the intensities of 
blue B and red R components of the RGB images to identify 
the pixels. Some researchers have divided the case of sky into 
three classes: opaque cloud, thin cloud, and clear sky by using 
one or two thresholds applied to the R/B ratio for the whole 
sky images WSI [8]. In the other works, the difference 
between R and B is considered to determine the case of pixels 
[9]. The last two approaches are combined by a hybrid 
thresholding algorithm that transforms the color images into 
normalized R/B ratio images (NRBR) and applying 
thresholding algorithm to the normalized images to identify 
the cloudy pixels [10]. However, most cloud classification 
algorithms encounter great uncertainties for cloud detection in 
the circumsolar and near-horizon zones. To overcome this 
problem, we propose a new cloud detection algorithm basing 
on fuzzy inference systems FIS. 

Our work has two objectives; the first is to propose an 
intelligent method to detect the case of sky from ground-based 
images using fuzzy logic approach. The second aim is to 
imply the results of first part to point the solar panels in an 
optimal direction through which they can capture the 
maximum of the incident solar radiation. Under clear sky 
conditions, the solar panel is pointed towards the sun to 
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capture the maximum of direct solar radiation under different 
weather conditions. Thus, this paper is organized as follows: 
the experimental setup is introduced in Section II. Section III 
describes the overall solar energy capture by solar panels 
according to weather conditions. The intelligent orientation 
method is presented in Section IV. Cloud detection algorithms 
are illustrated in Section V. Finally, a summary and 
suggestions for future research are shown in Section VI.  

II. EXPERIMENTAL SETUP  

The intelligent approach proposed in this paper has been 
implemented on an experimental setup developed by 
PROMES-CNRS laboratory located in Perpignan City 
(Latitude = 42.700 N, Longitude= 2.900 E). As shown in Fig. 
1, the setup comprises: 
• Polycrystalline photovoltaic panels SUNSET-PX 60E. 
• Two dual axis sun trackers of type SM34SPM+ equipped 

with microcontroller board. One tracks the sun 
continuously and the other is oriented optimally taking 
into account the case of sky.  

• Computer with a data acquisition card NI-USB-6008. 
• Ground-based sky camera system. 

 

 

Fig. 1 Picture of the experimental setup: (a) Data acquisition system, 
(b) sun tracker, (c) PROMES-CNRS sky imager, and (d) Sample of 

images 
 
The images used in this study are captured by a 5-

megapixels ground-based sky camera with a color CMOS 
sensor. The camera, named 5481VSE-C and provided by IDS-
imaging, is equipped with a Fujinon fisheye lens and protected 
by a waterproof enclosure manufactured by autoVimation. 
Images are collected every 20 seconds at a resolution of 1920 
x 2560 pixels with 8 bits per channel. Since 2014, all captured 
images have been stored in data base in form of HDF5 files 
that organize the data and metadata in a hierarchical structure. 

In addition to the captured images, the HDF 5 files contain the 
meteorological measures like solar irradiance and the 
atmospheric turbidity factor. The great number of stored 
images allowed us to take into account all sky conditions in 
our experiments. 

In practice, the intelligent algorithm detects the point of sky 
dome that emits the maximum of solar energy during the 
period Δt (fixed in this study at Δt = 15 minutes) and then, 
zenith and azimuth angles of the last point are calculated and 
transmitted to the microcontroller in the tracker via a RS232 
serial communication. 

III. IMAGE-BASED ORIENTATION METHOD  

The proposed method consists of several steps as 
demonstrated by the flow diagram presented in Fig. 2. Firstly, 
the image captured at the moment t is used to detect the case 
of sky. If the sky is clear, the solar panel will track the sun, 
and if overcast sky is detected, the collector must be pointed 
horizontally. In the case of partly covered sky, the solar panel 
must be oriented towards the center of gravity of the brightest 
area in the studied image I(t). The process is repeated and the 
position is updated each Δt (time interval between two 
orientations). 

 

 

Fig. 2 Block diagram of intelligent sun tracking method 

Sky Case Detection  

Fuzzy inference systems (FIS) systems play a key role in 
situations where qualitative data and human expertise are 
introduced into the modeling, such as in our case, where 
meteorological variables as well as human perceptions and 
values are used. There are two main structures of fuzzy 
inference systems: Mamdani-type and Sugeno-type. 
Mamdani’s fuzzy inference method expects the output 
membership functions to be fuzzy sets [11]. Sugeno -type can 
be used to model the systems in which the output membership 
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functions are either linear or constant [12]. Here Sugeno -type 
inference system is used to classify the pixels into four 
categories: light cloudy, heavy cloudy, clear sky and 
circumsolar pixels depending upon the normalized 
components R, G, and B of each pixel. In fact, three main 
processes are required to build a fuzzy inference system: the 
fuzzification, the fuzzy rules base, and the defuzzification. 

The aim of fuzzification process is to map the crisp values 
of input and output variables to values from 0 to 1 using fuzzy 
subsets. In this context, the range of variation of each variable 
is divided into sub-ranges associated with linguistic labels 
such as: “Small”, “Big”, “High”, etc. 

The last linguistic ratings can be characterized by different 
types of fuzzy membership functions like: triangular, sigmoid, 
trapezoidal, Gaussian, or singleton [13]. Selecting the right 
type of membership functions depends strongly upon the user 
experience [14]. As presented in Fig. 3, triangular and 
trapezoidal fuzzy membership functions are used for the sake 
of simplicity. In this figure, each of the input variables is 
normalized to be varied from 0 to 1 and then it is fuzzified into 
three membership functions with the associated linguistic 
labels L (“Low”), M (“Medium”) and H (“high”). 

In the output, we defined four constant membership 
functions according to the five classes of pixels: 0.25 for light 
cloudy, 0.5 for heavy cloudy, 0.75 for circumsolar, and 1 for 
clear sky pixels. 

The fuzzy rules have the following form:  
If R is “L” And G is “L” And B is “H” Then the case of 

pixel is “clear sky pixel” 
When fuzzy rules are applied to the fuzzified inputs, the 

outputs of all rules are aggregated to form one membership 
function. Then, the fuzzy output is converted to a crisp value 
using the defuzzification process. In this work, the weighted 
average is adopted: 
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where ZWa is the crisp output, µA(z) is the aggregated 
membership functions, and z is the centroid of each 
membership function. 

After determining the class of each pixel, the case of sky 
can be determined depending upon the portion of clouds in the 
whole image. Fig. 4, shows the results obtained by the 
proposed identification method whereby cloudy pixels form 
22% of the whole image, thus the sky is considered as partly 
covered. 

Brightest Area Detection  

Brightness of an object composed of group of pixels is an 
attribute assigned to the pixels in which the object appears to 
be radiating or reflecting light. In the other words, brightness 
is an indicator to the luminance of a visual object. To 
determine the brightest area, the true color image I is 

converted into a gray scale one Ig, and then, this grayscale 
image is transformed to binary image Ib by replacing all pixels 
in the input image with luminance greater than level with the 
value 1 (white) and by replacing all other pixels with the value 
0 (black). Finally, the brightest area is that has the biggest 
number of white pixels (Fig. 5). 

 

 

Fig. 3 Fuzzification of input variables 
 

 

Fig. 4 Results of classification process: (a) original image and (b) 
segmented image through which clear sky pixels, cloudy pixels and 
circumsolar pixels are colored in Blue, White, and Red, respectively 

 

 

Fig. 5 Brightest area detection: (a) true color image, (b) gray scale 
image, and (c) binary image in which the brightest area surrounded 

by Blue line 
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IV. RESULTS AND DISCUSSION  

Our goal in this work is to increase the efficiency of 
continuous sun trackers taking into account different weather 
conditions. Thus, the proposed approach was evaluated by 
measuring and comparing the energy yield of a solar panel 
mounted on classical continuous sun tracker to that obtained 
from another solar panel mounted on intelligent sun tracker 
over 2016. The results, presented in Fig. 6, show that the solar 
panel driven by the intelligent tracker generates more energy 
than that driven by classical one over the whole experimental 
period, and that indicates a significant improvement of sun 
tracker efficiency.  

 

 

Fig. 6 Energy yield of the solar panel using continuous and intelligent 
sun trackers in 2016 

 
TABLE I 

GAIN OF ENERGY YIELD OBTAINED BY THE INTELLIGENT SUN TRACKING 

APPROACH RELATIVE TO THAT OBTAINED BY THE CONVENTIONAL 

CONTINUOUS SUN TRACKING SYSTEM IN 2016 

Month Sunshine Duration (h) Gain (%) 

Jan 99 7.8 

Feb 165 7.8 

Mar 174 7.7 

Apr 227 7.8 

May 231 6.6 

Jun 253 6 

Jul 306 3.3 

Aug 332 0.5 

Sep 260 7.7 

Oct 176 9.5 

Nov 141 8.9 

Dec 126 8.9 

 
Now to analyze the performance of our approach under 

different weather conditions, the gain of energy (g) is 
computed for each month using: 
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where Ei (kWh) is the energy produced by the PV using the 
intelligent orientation method and Ec (kWh), is the energy 

produced by the PV using the classical sun tracking method 
(continuous solar tracking systems).  

The results are presented in Table I. Considering this table, 
the gain of energy is affected by the sunshine duration. When 
the last parameter is short, the gain is big and vice versa. And 
this is normal because direct solar radiation and sunshine 
duration, in case of partly covered and overcast sky, are 
seriously reduced as a result of the increased scattering by 
particulates in the atmosphere, which makes tracking the sun 
ineffective. 

V. CONCLUSION  

In this paper, an intelligent sun tracking approach is 
proposed to optimize the conventional dual axis sun trackers 
under different weather conditions. The intelligent approach is 
mainly based on sky images processing and fuzzy inference 
systems. In this context, pixel identification algorithm is used 
to detect the case of sky and to compute clouds size presented 
in the whole image. While, block matching algorithms BMAs 
are used for estimating clouds motion. The size and the speed 
of clouds are then introduced to a fuzzy inference system, to 
decide the optimal position of the PV panel. To evaluate the 
performance of our method, it was implemented using an 
experimental setup, and the obtained results over one-year 
show that the energy yield increases proportionally with cloud 
duration. The immediate continuation of this work will be to 
apply the developed algorithm in zones with other kind of 
climate. 
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