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Abstract: The idea of estimating the statistical interdependence among (interacting) brain regions 

has motivated numerous researchers to investigate how the resulting connectivity patterns and net-

works may organize themselves under any conceivable scenario. Even though this idea has devel-

oped beyond its initial stages, its practical application is still far away from being widespread. One 

concurrent cause may be related to the proliferation of different approaches that aim to catch the 

underlying statistical interdependence among the (interacting) units. This issue has probably con-

tributed to hindering comparisons among different studies. Not only do all these approaches go 

under the same name (functional connectivity), but they have often been tested and validated using 

different methods, therefore, making it difficult to understand to what extent they are similar or not. 

In this study, we aim to compare a set of different approaches commonly used to estimate the func-

tional connectivity on a public EEG dataset representing a possible realistic scenario. As expected, 

our results show that source-level EEG connectivity estimates and the derived network measures, 

even though pointing to the same direction, may display substantial dependency on the (often ar-

bitrary) choice of the selected connectivity metric and thresholding approach. In our opinion, the 

observed variability reflects the ambiguity and concern that should always be discussed when re-

porting findings based on any connectivity metric. 
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1. Introduction 

The idea to estimate the statistical interdependence among (interacting) brain re-

gions, generally named as functional connectivity [1–3], has motivated numerous re-

searchers to investigate how the resulting networks may organize themselves, in the con-

text of the importance of the whole [4], under any conceivable scenario. This phenomenon 

seems of particular relevance because brain function not only critically depends on func-

tional segregation, but also on functional integration, which, indeed, relates to the pattern 

of interactions between brain regions [5]. In general, functional connectivity may be in-

vestigated both at scalp- and at source-level. Nevertheless, it has been extensively shown 

that the two different approaches may lead to important differences in the reported results 

[6,7], as at scalp-level the EEG signals are more corrupted by effects of field spread. Even 

though this problem cannot be considered completely absent at source-level, it seems to 

be importantly attenuated in this latter case [8]. 

Countless studies reported how these patterns of statistical interdependence, com-

puted with several and different metrics, can be associated with behavioral/clinical pa-

rameters or used to contrast different groups/conditions [9]. Even though this idea is not 

at initial stages, its practical application is still far to be widespread. One concurrent cause 
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may be related to the proliferation of different approaches (metrics) to estimate the statis-

tical interdependence among these signals [5,10–12]. Despite their substantial differences, 

all these metrics aim to catch the underlying statistical interdependence among the (inter-

acting) units. The tacit idea that all these metrics can be used interchangeably because they 

measure the same connectivity may induce to inaccurate interpretations. Here, we want 

to investigate whether the arbitrary choice of the connectivity metric may have a severe 

impact on the results in a realistic scenario. Indeed, it is well known that different metrics 

could measure different characteristics, elements or aspects of the underlying connectiv-

ity, making it very difficult to define the ‘true’ connectivity. The issue of using the same 

name (i.e., functional connectivity) for all the different approaches has probably contrib-

uted to generate confusion and to hinder the comparison among different studies, since 

at the end they are based on different principles: linear or nonlinear relations, time or 

frequency domain, amplitude or phase information. Moreover, they have also been tested 

and validated using different methods, simulation [13,14] or empirical studies [12,13], 

making it even more difficult to understand to what extent they are similar or not. 

In this study, we aimed to compare a set of different metrics commonly used to esti-

mate the functional connectivity on a public EEG dataset [15,16] representing a possible 

realistic scenario. Ten different connectivity metrics were included in the analysis, to-

gether with five different thresholding approaches used in order to investigate several 

commonly used network measures. The proposed scenario consists of contrasting two 

different resting-state EEG conditions, namely eyes-closed and eyes-open, on 109 subjects 

recorded with a 64-channel system. The EEG signals were successively reconstructed at 

source-level and projected onto the Desikan–Killiany atlas [17]. Other than the inherent 

computational differences among the connectivity metrics, it is relevant to highlight that 

other methodological issues may have an effect on the reported findings, as for example, 

the problem of field spread, volume conduction, and reference montages [18]. For this 

reason, we decided to perform the analysis using metrics that are more prone to an erro-

neous estimate of connectivity and metrics that tend to limit these effects prior to compu-

ting the connectivity, including phase-based metrics that are less sensitive to these spuri-

ous interactions [18]. Moreover, since network density (the number of connections in a 

network) will directly influence the estimated network measures [19], we performed the 

analysis using four different densities (preserving 10%, 15%, 50% and 100% of the 

weights) and two methods of filtering information in the complex brain network that 

helped to overcome the problem of network density in the network analytical studies, 

namely the minimum spanning tree (MST) [20] and the efficiency cost optimization (ECO) 

[21]. In line with the investigated scenario, where we contrast eyes-closed and eyes-open 

conditions, all the reported results refer to the alpha [8–13 Hz] frequency band that should 

be a considerable marker of the underlying differences. All the analysis was performed 

using MNE python software [22] and Brain Connectivity Toolbox for MATLAB [23] 

2. Material and Methods 

2.1. Dataset 

In order to test our hypothesis, we used a public and freely available EEG dataset 

[15,16] consigning on a set of recordings performed on 109 subjects, including signals from 

resting-state for eyes-closed and eyes-open recordings, each one lasting 1 min. The EEG 

traces were recorded from 64 electrodes as per the international 10-10 system with a sam-

pling frequency equals to 160 Hz. All the EEG recordings are available at the following 

link: https://physionet.org/content/eegmmidb/1.0.0/. 

2.2. Preprocessing 

The EEGLAB toolbox (version 13_6_5b) [24] was used to re-reference to common av-

erage reference. Successively, ADJUST (version 1.1.1) [25], a fully automatic algorithm 
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based on Independent Component Analysis (ICA), was used to detect and remove arti-

facts from the EEG signals. Subsequently, the source-based EEG signals were recon-

structed using Brainstorm software (version 3.4) [26] with the head model created using 

a symmetric boundary element method in Open-MEEG (version 2.3.0.1) [27] based on the 

anatomy ICBM152 brain. The whitened and depth-weighted linear L2 minimum norm 

estimate (wMNE) [28] was used with an identity matrix as noise covariance. The source-

reconstructed EEG time-series were projected onto the Desikan-Killiany atlas [17], which 

includes 68 regions of interest and where the time-series for voxels within a ROI were 

averaged after flipping the sign of sources with opposite directions. The subsequent anal-

ysis was performed using five non-overlapping epochs of 12 seconds, which is in line with 

what reported in [29]. 

2.3. Connectivity Metrics 

Ten different connectivity metrics have been included in the analysis. In particular, 

for each subject and each condition we computed, for the alpha [8–13 Hz] frequency band, 

the following metrics: coherence (coh) [11], coherency (cohy) [30], imaginary coherence 

(imcoh) [30], phase-locking value (plv) [31], corrected imaginary PLV (icplv) [32], pairwise 

phase consistency (ppc) [33], phase lag index (pli) [34], unbiased estimator of squared PLI 

(pli2_unbiased) [35], weighted phase lag index (wpli) [35] and the debiased estimator of 

squared WPLI (wpli2_debiased) [35]. All the metrics were computed using the function 

mne.connectivity.spectral_connectivity from the MNE python software [22]. It is known 

that the unbiased procedure used to estimate both the pli2_unbiased and the wpli2_debi-

ased may lead to negative values. In this study we have tested different solutions (i.e., 

round to zero the negative values or normalize to the 0–1 range) that have led to very 

similar results. 

2.4. Network Measures 

The network analysis was performed using four different densities, FWEI (100% of 

weights preserved), WEI10 (10% of weights preserved), WEI15 (15% of weights pre-

served), and WEI50 (50% of weights preserved). Despite these thresholding procedures 

are far to represent an optimal solution [19], they are still very commonly used in network 

community. Furthermore, two methods to filtering information in complex brain network 

intended to overcome the problem of network density in network analytical studies, 

namely the minimum spanning tree (MST) [20] and the efficiency cost optimization (ECO) 

approach [21] were also added to the analysis. This analysis was performed using the 

Brain Connectivity Toolbox for MATLAB [23]. 

2.5. Cluster Analysis 

The cluster analysis was used to investigate the possible natural clusters, without any 

‘a priori’ assumptions, with an unsupervised approach to reveal the possible existence of 

different functional connectivity groups. For each connectivity metric and each subject, a 

feature vector, containing the connectivity profile (extracted as the triangular connectivity 

matrix), was obtained. The clustering approach was based on a k-means method, using 

the k-means++ algorithm for centroid initialization and squared Euclidean distance. A 

similar analysis was recently conducted on a smaller set of connectivity metrics [36]. The 

silhouette analysis [37], which can be employed to study the separation distance between 

the clusters, was used to define the optimal number of clusters. In particular, this analysis 

allows us to understand how well each object lies within its cluster by comparing the sim-

ilarity between an object and its own cluster (cohesion) versus the similarity between an 

object and other clusters (separation), where the higher the silhouette value the better the 

objects are well matched to their own cluster. In this study, we used the mean silhouette 

value over all points to measure how appropriately the data have been clustered. Succes-

sively, to evaluate the clustering quality on the basis of the discovered common properties 



Entropy 2021, 23, 5 4 of 13 
 

 

between the different connectivity metrics, the purity evaluation measure was used. To 

compute purity, each cluster is assigned to the most frequent class in the cluster, and then 

the accuracy of this assignment is measured by calculating the number of correctly as-

signed objects divided by the numerosity of the cluster. Bad clustering purity value tends 

to 1/n where n indicates the number of classes, perfect clustering has a purity of 1. Finally, 

to investigate the possibility that the natural groupings may result in clusters which in-

clude more than one metric, we associated to each metric a pseudo-label that is the index 

of the cluster in which this measure is most represented. If n�,� is the number of connec-

tivity profiles of measure i present in cluster j we can define ������_������ =

arg max
�

���,��. In other words, if most of the connectivity profiles of the metric i belongs to 

the cluster j, we associated the pseudo-label j to this metric. The purity computed with the 

new ‘pseudo-labels’ for several k values are later reported. 

2.6. Statistical Analysis 

In order to contrast the two conditions, namely eyes-closed and eyes-open resting 

state, separately for each connectivity metric, the Wilcoxon signed-rank test was used. The 

statistical results were reported in terms of p-value, effect size, and direction of the effect. 

The alpha level, equals to 0.05, was corrected for the number of measures extracted for 

each analysis. 

3. Results 

3.1. Global Connectivity Patterns 

In order to have a reference for the different connectivity metrics, the global connec-

tivity patterns (averaged over all the subjects) for each metric and for each condition (eyes-

closed and eyes-open) are depicted in Figure 1. We decided to depict the connectivity 

patterns using different scales across the different metrics to simplify the visual inspection 

of those differences. The distribution of connectivity weights for each metric (averaged 

over the 109 subjects) are depicted in Figure 2. 

 

Figure 1. Global connectivity patterns (averaged over all the subjects) for each connectivity metric and for each condition: 

(A) eyes-closed; (B) eyes-open. 
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Figure 2. Weights distribution for all the connectivity metrics (weights are averaged across the 109 subjects). 

3.2. Cluster Analysis 

The cluster analysis, performed to investigate the existence of possible natural clus-

ters, without any ‘a priori’ assumptions on possible grouping, was conducted separately 

for each experimental condition (i.e., eyes-closed and eyes-open resting-state). In Figure 3 

we show the set of connectivity profiles (used as feature vectors) for each connectivity 

metric and each condition. The mean silhouette values for all possible k values ranging 

from 2 to 10 (i.e., the number of connectivity metrics) are summarized in Table 1. The 

mean silhouette value is a measure of how appropriately the data have been clustered. If 

each metric was represented in a different cluster, we would expect the higher silhouette 

value for k = 10. Conversely, for k = 10 we have observed the lowest silhouette value, 

whilst the higher value is obtained for k = 2. These findings represent a strong evidence 

that the clustering obtained with k = 10 doesn’t represent the correct, natural aggregation 

of the data. The purity values for k = 10 are reported in Table 2 and confirmed that while 

some clusters are predominantly populated by the elements of a single measure (see clus-

ters 2, 4, 8, 10 for the eyes-closed condition and clusters 1, 2, 4, 9, 10 for the eyes-open 

condition), other clusters show a mixture of metrics. For example, in the clusters 1, 3, 5 for 

the eyes-closed condition the most represented metric constitutes less than 40% of the 

cluster elements. 

  

(A) (B) 

Figure 3. Connectivity profiles for all the connectivity metrics for eyes-closed (A) and eyes-open; (B) resting-state. 
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Table 1. Silhouette values for eyes-open and eyes-closed conditions at different k. 

k 2 3 4 5 6 7 8 9 10 

silhouette (eyes-closed) 0.413 0.314 0.343 0.305 0.271 0.232 0.221 0.191 0.177 

silhouette (eyes-open) 0.455 0.290 0.349 0.318 0.300 0.261 0.210 0.186 0.164 

Table 2. Purity values for eyes-open and eyes-closed conditions with k = 10. 

Cluster 1 2 3 4 5 6 7 8 9 10 

purity (eyes-closed) 0.361 0.885 0.364 0.939 0.391 0.590 0.657 0.869 0.733 0.982 

purity (eyes-open) 0.905 0.980 0.427 1.000 0.780 0.517 0.593 0.459 0.915 0.983 

These results encourage us to investigate the possibility that the natural groupings, 

if they exist, are less than 10, with each natural group composed of more than one meas-

ure. To verify this hypothesis’s correctness, as described in the Section 2.5, we associate to 

each measure a pseudo-label (i.e., the index of the cluster in which this measure is most 

represented) and the corresponding purity values, for different k, are summarized in Ta-

ble 3. 

Table 3. Purity computed using pseudo-labels. Eyes-closed (left columns) and eyes-open condition (right columns). 

k. Purity Majority Cluster Purity Majority Cluster 

2 
0.854 [ciplv,coh,cohy,imcoh,pli2,ppc,wpli2] 0.999 [ciplv,coh,cohy,imcoh,pli,pli2,ppc,wpli2] 

0.756 [pli,plv,wpli] 0.709 [plv,wpli] 

3 

0.938 [ciplv,coh,cohy,pli,ppc,wpli2] 0.956 [ciplv,coh,cohy,pli,ppc,wpli2] 

0.788 [imcoh,pli2] 0.867 [imcoh,pli2] 

0.829 [plv,wpli] 0.945 [plv,wpli] 

4 

0.841 [ciplv,pli,wpli2] 0.856 [ciplv,pli,wpli2] 

0.823 [coh,cohy,ppc] 0.934 [coh,cohy,ppc] 

0.997 [plv,wpli] 1 [plv,wpli] 

0.900 [imcoh,pli2] 0.961 [imcoh,pli2] 

5 

0.627 [wpli] 0.750 [wpli] 

0.800 [plv] 0.932 [plv] 

0.837 [ciplv,pli,wpli2] 0.871 [ciplv,pli,wpli2] 

0.936 [imcoh,pli2] 0.994 [imcoh,pli2] 

0.997 [coh,cohy,ppc] 1 [coh,cohy,ppc] 

6 

0.649 [pli,wpli] 0.755 [wpli] 

0.716 [plv] 0.973 [plv] 

0.807 [ciplv,pli2,wpli2] 0.871 [ciplv,pli,wpli2] 

0.690 [imcoh] 0.994 [imcoh,pli2] 

0.549 [cohy] 0.562 [ppc] 

0.890 [coh,ppc] 0.814 [coh,cohy] 

7 

0.643 [pli,wpli] 0.748 [wpli] 

0.691 [plv] 0.973 [plv] 

0.806 [ciplv,pli2,wpli2] 0.871 [ciplv,pli,wpli2] 

0.690 [imcoh] 0.994 [imcoh,pli2] 

0.766 [coh,ppc] 0.897  

0.744  0.876 [coh,ppc] 

0.626 [cohy] 0.611 [cohy] 

8 

0.658 [pli,wpli2] 0.815 [wpli] 

0.967 [plv] 0.982 [plv] 

0.724 [ciplv,pli2] 0.955 [ciplv,pli,wpli2] 

0.900 [imcoh] 0.991 [imcoh] 
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0.759 [coh,ppc] 0.897  

0.764  0.876 [coh,ppc] 

0.652 [cohy] 0.611 [cohy] 

0.864 [wpli] 0.593 [pli2] 

9 

0.475 [pli] 0.905 [wpli] 

0.967 [plv] 0.982 [plv] 

0.661 [ciplv,wpli2] 0.467 [pli] 

0.939 [imcoh] 1 [imcoh] 

0.759 [coh,ppc] 0.897  

0.764  0.876 [coh,ppc] 

0.652 [cohy] 0.611 [cohy] 

0.869 [wpli] 0.740 [ciplv,wpli2] 

0.733 [pli2] 0.915 [pli2] 

10 

0.475 [pli] 0.905 [wpli] 

0.885  0.980  

0.661 [ciplv,wpli2] 0.427 [pli] 

0.934 [imcoh] 1 [imcoh] 

0.391 [coh] 0.780 [ppc] 

0.560 [ppc] 0.517 [coh] 

0.657 [cohy] 0.593 [cohy] 

0.869 [wpli] 0.740 [ciplv,wpli2] 

0.733 [pli2] 0.915 [pli2] 

0.982 [plv] 0.983 [plv] 

3.3. Network Analysis 

The results from the FWEI approach (where the 100% of weights were preserved) are 

summarized in Table 4. A significant difference between the two conditions in global ef-

ficiency was observed for all the connectivity metrics. Moreover, all the connectivity met-

rics allowed to observe a significant difference for the clustering coefficient and for the 

modularity. The results from the WEI10 approach (where the 10% of weights were pre-

served) are summarized in Table 5. A significant difference between the two conditions 

in global efficiency was observed for two out of the ten connectivity metrics, namely cohy 

(p = 1.28 × 10−5 ES = 0.42) and imcoh (p = 1.14 × 10−5, ES = 0.24). All the connectivity metrics 

allowed to observe a significant difference for the clustering coefficient, whilst five out of 

ten allowed to observe a significant difference for the assortativity and seven out of ten 

for the modularity. 

Table 4. Statistical results for the FWEI (100% of weights preserved) approach where eyes-open and eyes-closed conditions 

were contrasted. For each connectivity and network measure is reported the p-value, the effect size (ES) and the direction 

(D) of the effect. 

FWEI Global Efficiency CC Assortativity Modularity 
 p-value ES D p-value ES D p-value ES D p-value ES D 

ciplv 1.94 × 10−17 0.81 EC < EO 5.38 × 10−18 0.83 EC > EO ns   2.55 × 10−4 0.35 EC < EO 

coh 1.11 × 10−18 0.85 EC < EO 6.82 × 10−19 0.85 EC > EO ns   7.17 × 10−16 0.77 EC < EO 

cohy 2.39 × 10−17 0.81 EC < EO 8.42 × 10−18 0.82 EC > EO ns   1.58 × 10−12 0.68 EC < EO 

imcoh 2.46 × 10−17 0.81 EC < EO 2.46 × 10−17 0.81 EC > EO ns   9.26 × 10−8 0.51 EC < EO 

pli 3.10 × 10−17 0.81 EC < EO 8.42 × 10−18 0.82 EC > EO ns   9.20 × 10−3 0.25 EC < EO 

pli_unbiased 1.69 × 10−12 0.68 EC < EO 7.85 × 10−13 0.69 EC > EO ns   2.25 × 10−7 0.50 EC < EO 

plv 2.73 × 10−17 0.81 EC < EO 7.38 × 10−18 0.82 EC > EO ns   6.26 × 10−15 0.75 EC < EO 

ppc 4.47 × 10−16 0.78 EC < EO 6.14 × 10−18 0.83 EC > EO ns   3.23 × 10−16 0.78 EC < EO 

wpli 2.80 × 10−18 0.84 EC < EO 1.95 × 10−18 0.84 EC > EO ns   6.63 × 10−7 0.48 EC < EO 

wpli_debiased 1.63 × 10−16 0.79 EC < EO 2.76 × 10−15 0.76 EC > EO ns   5.15 × 10−10 0.60 EC < EO 
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Table 5. Statistical results for the WEI10 (10% of weights preserved) approach where eyes-open and eyes-closed conditions 

were contrasted. For each connectivity and network measure is reported the p-value, the effect size (ES) and the direction 

(D) of the effect. 

WEI10 Global Efficiency CC Assortativity Modularity 
 p-value ES D p-value ES D p-value ES D p-value ES D 

ciplv ns   1.91 × 10−7 0.50 EC > EO 6.30 × 10−5 0.38 EC < EO 5.19 × 10−3 0.27 EC < EO 

coh ns   4.51 × 10−11 0.63 EC > EO ns   ns   

cohy 1.28 × 10−5 0.42 EC < EO 2.06 × 10−12 0.67 EC > EO ns   7.49 × 10−3 0.26 EC < EO 

imcoh 1.14 × 10−2 0.24 EC < EO 8.05 × 10−6 0.43 EC > EO ns   7.03 × 10−3 0.26 EC < EO 

pli ns   1.80 × 10−6 0.46 EC > EO 1.03 × 10−4 0.37 EC < EO 2.41 × 10−3 0.29 EC < EO 

pli_unbiased ns   7.79 × 10−9 0.55 EC > EO 1.14 × 10−5 0.42 EC < EO 3.05 × 10−4 0.35 EC < EO 

plv ns   5.69 × 10−5 0.39 EC > EO ns   ns   

ppc ns   1.25 × 10−6 0.46 EC > EO ns   ns   

wpli ns   1.24 × 10−3 0.31 EC > EO 1.07 × 10−2 0.24 EC < EO 1.61 × 10−3 0.30 EC < EO 

wpli_debiased ns   2.21 × 10−7 0.50 EC > EO 4.18 × 10−3 0.27 EC < EO 8.40 × 10−4 0.32 EC < EO 

The results from the WEI15 approach (where the 15% of weights were preserved) are 

summarized in Table 6. A significant difference between the two conditions in global ef-

ficiency was observed for seven out of the ten connectivity metrics. All the connectivity 

metrics allowed to observe a significant difference for the clustering coefficient, whilst 

four out of ten allowed to observe a significant difference for the assortativity and six out 

of ten for the modularity. In this case, four out of ten connectivity metrics, namely ciplv, 

pli, pli_unbiased and wpli_debiased, allowed to observe differences between the two con-

ditions for all the network measures. 

Table 6. Statistical results for the WEI15 (15% of weights preserved) approach where eyes-open and eyes-closed conditions 

were contrasted. For each connectivity and network measure is reported the p-value, the effect size (ES) and the direction 

(D) of the effect. 

WEI15 Global Efficiency CC Assortativity Modularity 
 p-value ES D p-value ES D p-value ES D p-value ES D 

ciplv 8.20 × 10−3 0.25 EC < EO 2.10 × 10−8 0.54 EC > EO 1.45 × 10−5 0.42 EC < EO 3.71 × 10−4 0.34 EC < EO 

coh 3.16 × 10−4 0.35 EC < EO 2.39 × 10−12 0.67 EC > EO ns   ns   

cohy 3.24 × 10−10 0.60 EC < EO 5.64 × 10−13 0.69 EC > EO ns   1.26 × 10−5 0.42 EC < EO 

imcoh 3.48 × 10−4 0.34 EC < EO 5.10 × 10−11 0.63 EC > EO ns   ns   

pli 4.86 × 10−3 0.27 EC < EO 4.96 × 10−9 0.56 EC > EO 4.01 × 10−5 0.39 EC < EO 5.83 × 10−5 0.38 EC < EO 

pli_unbiased 9.32 × 10−5 0.37 EC < EO 7.91 × 10−12 0.66 EC > EO 2.72 × 10−6 0.45 EC < EO 3.08 × 10−5 0.40 EC < EO 

plv ns   9.19 × 10−7 0.47 EC > EO ns   ns   

ppc ns   1.59 × 10−8 0.54 EC > EO ns   ns   

wpli ns   5.81 × 10−6 0.43 EC > EO ns   9.26 × 10−4 0.32 EC < EO 

wpli_debiased 8.88 × 10−3 0.25 EC < EO 2.49 × 10−11 0.64 EC > EO 9.96 × 10−3 0.25 EC < EO 1.17 × 10−4 0.37 EC < EO 

The results from the WEI50 approach (where the 50% of weights were preserved) are 

summarized in Table 7. A significant difference between the two conditions in global ef-

ficiency was observed for all the connectivity metrics. All the connectivity metrics allowed 

to observe a significant difference for the clustering coefficient, whilst five out of ten al-

lowed to observe a significant difference for the assortativity and seven out of ten for the 

modularity. In this case, five out of ten connectivity metrics, namely ciplv, cohy, pli, 

pli_unbiased and wpli_debiased, allowed to observe differences between the two condi-

tions for all the network measures. 
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Table 7. Statistical results for the WEI50 (50% of weights preserved) approach where eyes-open and eyes-closed conditions 

were contrasted. For each connectivity and network measure is reported the p-value, the effect size (ES) and the direction 

(D) of the effect. 

WEI50 Global Efficiency CC Assortativity Modularity 
 p-value ES D p-value ES D p-value ES D p-value ES D 

ciplv 3.10 × 10−17 0.80 EC < EO <0.0001 0.78 EC > EO ns   1.49 × 10−6 0.46 EC < EO 

coh 1.30 × 10−18 0.84 EC < EO <0.0001 0.79 EC > EO 1.84 × 10−5 0.41 EC < EO 4.25 × 10−10 0.59 EC < EO 

cohy 2.46 × 10−17 0.81 EC < EO <0.0001 0.75 EC > EO 7.39 × 10−6 0.42 EC < EO 2.89 × 10−6 0.44 EC < EO 

imcoh 2.46 × 10−17 0.81 EC < EO <0.0001 0.77 EC > EO 0.0008 0.31 EC < EO 2.97 × 10−6 0.44 EC < EO 

pli 5.07 × 10−17 0.80 EC < EO <0.0001 0.78 EC > EO 0.0014 0.30 EC < EO 0.0001 0.36 EC < EO 

pli_unbiased 1.88 × 10−12 0.67 EC < EO <0.0001 0.70 EC > EO 0.0004 0.33 EC < EO 3.15 × 10−7 0.48 EC < EO 

plv 2.33 × 10−16 0.78 EC < EO <0.0001 0.68 EC > EO 0.0002 0.34 EC < EO ns   

ppc 5.19 × 10−16 0.77 EC < EO <0.0001 0.72 EC > EO 3.60 × 10−5 0.39 EC < EO 2.67 × 10−8 0.53 EC < EO 

wpli 5.82 × 10−18 0.82 EC < EO <0.0001 0.78 EC > EO 0.0081 0.25 EC < EO 9.26 × 10−6 0.42 EC < EO 

wpli_debiased 1.68 × 10−16 0.78 EC < EO <0.0001 0.75 EC > EO 0.0070 0.25 EC < EO 2.91 × 10−7 0.49 EC < EO 

The results from the ECO approach are summarized in Table 8. A significant differ-

ence between the two conditions in global efficiency was observed for the only one con-

nectivity metric, namely cohy (p = 5.90 × 10−4, ES = 0.33). Three out of the ten connectivity 

metrics allowed to observe a significant difference for the clustering coefficient, whilst six 

out of ten allowed to observe a significant difference for the assortativity and none the 

modularity. 

Table 8. Statistical results for the ECO approach where eyes-open and eyes-closed conditions were contrasted. For each 

connectivity and network measure is reported the p-value, the effect size (ES) and the direction (D) of the effect. 

ECO Global Efficiency CC Assortativity Modularity 
 p-value ES D p-value ES D p-value ES D p-value ES D 

ciplv ns   ns   1.45 × 10−4 0.36 EC < EO ns   

coh ns   6.72 × 10−3 0.26 EC > EO ns   ns   

cohy 5.91 × 10−4 0.33 EC < EO ns   ns   ns   

Imcoh ns   ns   3.87 × 10−3 0.28  ns   

pli ns   ns   1.32 × 10−4 0.37 EC < EO ns   

pli_unbiased ns   ns   5.28 × 10−4 0.33 EC < EO ns   

Plv ns   1.56 × 10−3 0.30 EC > EO ns   ns   

Ppc ns   5.44 × 10−3 0.27 EC > EO 6.91 × 10−3 0.26  ns   

Wpli ns   ns   9.61 × 10−3 0.25  ns   

wpli_debiased ns   ns   ns   ns   

The results from the MST approach are summarized in Table 9. A significant differ-

ence between the two conditions in leaf fraction was observed for the six out of ten met-

rics. Six out of the ten connectivity metrics allowed to observe a significant difference for 

the kappa parameter, whilst none for the diameter, eccentricity and hierarchy parameters. 
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Table 9. Statistical results for the MST approach where eyes-open and eyes-closed conditions were contrasted. For each 

connectivity and network measure is reported the p-value, the effect size (ES) and the direction (D) of the effect. 

MST Leaf Fraction Diameter Eccentricity Hierarchy Kappa 
 p-value ES D p-value ES D p-value ES D p-value ES D p-value ES D 

ciplv 6.30 × 10−4 0.33 EC > EO ns   ns   ns   5.91 × 10−5 0.38 EC > EO 

coh ns   ns   ns   ns   ns   

cohy ns   ns   ns   ns   ns   

imcoh 4.00 × 10−6 0.44 EC > EO ns   ns   ns   3.41 × 10−8 0.53 EC > EO 

pli 7.25 × 10−4 0.32 EC > EO ns   ns   ns   4.31 × 10−7 0.48 EC > EO 

pli_unbiased 6.02 × 10−4 0.33 EC > EO ns   ns   ns   6.79 × 10−7 0.48 EC > EO 

plv ns   ns   ns   ns   ns   

ppc ns   ns   ns   ns   ns   

wpli 2.94 × 10−5 0.40 EC > EO ns   ns   ns   4.88 × 10−6 0.44 EC > EO 

wpli_debiased 1.92 × 10−3 0.30 EC > EO ns   ns   ns   1.99 × 10−5 0.41 EC > EO 

4. Discussion 

In this study, we compared ten different connectivity metrics in a realistic scenario 

where two resting-state conditions, namely eyes-closed and eyes-open, were contrasted. 

As a first step, we performed a cluster analysis to understand how the metrics naturally 

arrange themselves into clusters. Later, to assess the possible differences induced by the 

different connectivity metrics, we reported the results in terms of statistical significance, 

effect size and direction of the effect (eyes-closed–eyes-open), using four different densi-

ties (preserving 10%, 15%, 50% and 100% of the weights) and two methods to filtering 

information in complex brain network that help to overcome the problem of network den-

sity in network analytical studies, namely the minimum spanning tree (MST) [20] and the 

efficiency cost optimization (ECO) [21]. 

The cluster analysis pointed out that the natural aggregation differs from the one we 

could initially expect (where each connectivity metric ideally represents a separate and 

distinct cluster). Indeed, if we consider the silhouette analysis results as the best way the 

different metrics naturally reorganize in clusters, we should conclude that it is possible to 

observe only two main clusters from the ten connectivity metrics. Nevertheless, as re-

ported by the purity values across different k values, we have observed a strong variabil-

ity in the quality of the clusters (expressed by the purity), suggesting that some connec-

tivity metric spread over different clusters. In particular, if we take a closer look at the 

purity values for k equal to 10, it is possible to observe that some metrics, namely pli, coh, 

ppc and cohy, tend to be present in different clusters, while others, namely imcoh, plv and 

wpli, are mainly present into one single cluster. In any case, we do not think this latest 

finding may be considered as evidence of better quality of some specific metric over the 

others. 

As for the network analysis, the main result of this study shows that different con-

nectivity metrics, especially when thresholding approaches are implemented, may lead to 

relevant differences in the final outcomes, also in the case of a very simple realistic sce-

nario where the underlying effect should be particularly straightforward [38–40]. In par-

ticular, the results show that for the clustering coefficient only it is possible to observe a 

statistical significance for all the connectivity metrics, but only in the case proportional 

thresholding is implemented. Moreover, the effect size shows a relevant variance among 

the different connectivity metrics and thresholding methods. A slightly more pronounced 

consistency among the connectivity metrics can be observed with a density increase, 

where for WEI15 and WEI50 the number of metrics that show similar results is higher. 

This is also confirmed by the results obtained using all the connections, thus preserving 

100% of the weights, where we observed a significant difference over all the connectivity 

metrics. In contrast, the use of efficiency cost optimization and minimum spanning tree 

tend to amplify the differences between the connectivity metrics. It is, however, important 
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to highlight that the direction of the effect is always consistent for all the metrics and for 

all the thresholding approaches. 

In our opinion, these findings confirm that the (often arbitrary) choice of the adopted 

connectivity metric may have an important impact on the outcomes reported in the cur-

rent literature on functional connectivity in EEG. As a consequence, we suggest caution 

when using the term functional connectivity interchangeably for different connectivity 

metric since this may lead to an erroneous belief of the generalizability of the results. We 

also would like to stress that this problem, the generalization of the results based on one 

arbitrary connectivity metric, may be also more relevant when the underlying effects are 

more subtle and less trivial (i.e., effects of treatment or comparison between healthy and 

pathological groups) or when the individual variability may have an even more robust 

effect [41,42]. 

An important limitation of the present study is related to the possible influence due 

to the source localization and parcellation methods. In fact, it has been previously shown, 

in a simulation study [14], that the choice of the inverse method and source imaging pack-

age may induce a considerable variability in the functional connectivity estimate. In any 

case, we may speculate that this possible effect adds even more variability and uncertainty 

on the reported findings. It is also important to highlight that there are several other issues 

that may play a relevant role in network analysis [43] that still remain to be addressed. 

Furthermore, it is even more important to stress the importance to replicate the reported 

findings in other EEG datasets to understand to what extent these results depend on this 

specific set of EEG recordings. Finally, it is also relevant to recognize that the use of thresh-

olding approaches in functional networks are still debated since there are evidences that 

even weak connections are particularly meaningful. On the other hand, the interpretation 

of networks measures extracted from functional connectivity patterns (including the 

measures used in the present paper) are not easy to interpret and may be considered 

vague at least as the term functional connectivity that we debate in this study. This study 

was not intended to directly compare these metrics with the aim to understand if any of 

them outperforms the others or may represent the best choice to unveil specific network 

differences. In brief, we only would like to stress how the reported results, on any exper-

imental design, may be affected by the arbitrary choice of the connectivity metric. 

5. Conclusions 

In conclusion, our results show that, even though all the metrics tend to show an 

effect on the same direction, source-level EEG functional connectivity estimates and the 

derived network measures may display a considerable dependency on the (often arbi-

trary) choice of the selected metric. This variability may reflect uncertainty and ambiguity 

in the final results, especially in less trivial scenarios. We suggest that this issue should be 

always discussed when reporting findings based on functional connectivity in EEG and 

ideally, it would be important to report and discuss the final outcomes based on more 

than one metric, making always explicit the adopted approach. 
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