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ABSTRACT

On the one hand, Industrie 4.0 has recently emerged as the
keyword for increasing productivity in the 21st century. On
the other hand, production scheduling in a Complex Job
Shop (CJS) environment, such as wafer fabrication facilities,
has drawn interest of researchers dating back to the 1950s
[65, 18]. Although both research areas overlap, there seems
to be very little interchange of ideas. This review presents
and assesses production scheduling techniques in complex
job shops from an Industrie 4.0 perspective. Based on the
literature review, the authors’ experience in the semiconduc-
tor industry and feedback and discussions with industry ex-
perts!, this paper identifies challenges in production control.
We identify four future directions: Decentralization and au-
tonomous decisions, flexibility and adaptability, integration
and networking and human aspects in an environment with
rising complexity. While this review and certain challenges
are motivated by semiconductor fabrication plants, the pa-
per serves as a general overview of the state-of-the-art in job
shop scheduling.
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1. INTRODUCTION

In media, politics and science, Industrie 4.0, also called the
fourth industrial revolution, has become the synonym for in-
creasing productivity in the 21st century by applying digital
technologies in manufacturing. While the term Industrie 4.0
is mainly used in Germany, similar ideas can be found in the
concepts of the Industrial Internet, Smart Manufacturing or
Made-In-China 2025. The main idea of Industrie 4.0 is that
Cyber-Physical Systems (CPS), which interlink the digital
and physical world, are connected in an infrastructure of
the Internet of Things and Services (IoT&S) [19]. Indus-
trie 4.0 is a “collective term embracing a number of con-
temporary automation, data exchange and manufacturing
technologies” [23], including new Human-Machine-Interfaces
(HMIs). Bischoff et al. [19] identified five functional areas
which group research and application projects according to
their main functions and usage:

e Assistance systems
e Networking and integration
e Decentralization and service-orientation

e Self-organization and autonomy



e Data collection and processing.

Modern production control systems in job shops, such as
semiconductor fabrication plants, are a perfect example for
Industrie 4.0, as they touch all five functional areas. Three
aspects are already an integral part of the production schedul-
ing: It serves as assistance system for shop floor operators.
Data collection and processing play a crucial role in auto-
mated decision making in the control systems. Machine-2-
Machine communication covers the networking aspect. Mod-
ern control systems exhibit a close integration into a supply
chain network [51]. The remaining two aspects, decentral-
ization and service-orientation and self-organization and au-
tonomy, are being actively discussed in the field.

Over decades the semiconductor industry has been driven
by Moore’s law, which states that the number of structures
per IC doubles every twelve months [79] (later revised to 24
months). After decades of exponential improvements, ex-
perts predict a slowdown of Moore’s law with increasingly
longer development cycles for new technology nodes [97].
Additional cost reductions have been achieved by increasing
silicon wafer sizes and improving yield. However, a wafer di-
ameter of 450mm in production has been repeatedly delayed
[2] and yield is already in most production plants clearly
above 90%. The potentials in these three areas are nearly
exploited.

Therefore, operational excellence has been gaining impor-
tance in the semiconductor industry, as it promises further
cost reductions and thereby a competitive advantage. Indus-
trie 4.0 (or Smart Manufacturing) has become the heading
for these activities [38, 42]. The semiconductor industry
offers a good foundation for Industrie 4.0: Already in the
1970s, the industry started using it’s own products in it’s
production facilities. Starting in the 1990s, semiconductor
manufacturing has been used as an application scenario for
job shop scheduling solutions [32]. In the early 2000s, semi-
conductor wafer facilities had a very high level of digitization
and automation [51]. This high level of implementation of
Computer Integrated Manufacturing (CIM), associated with
the third industrial revolution, is the foundation for Indus-
trie 4.0.

This review assesses job shop scheduling techniques in
complex job shops, such as wafer fabrication plants, un-
der the aspects of Industrie 4.0. The problem description
is given in Section 2. Since many different solutions have
shown good results for the scheduling problem, the frontiers
and areas of research are vast. This paper focuses on general
solutions which are used in or targeted towards semiconduc-
tor manufacturing. The main methodologies and techniques
in practice and science are presented based on relevant exam-
ples: Section 3 starts with dispatching heuristics, in Section
4 hyper-heuristics and scheduling with machine learning are
presented, Section 5 focuses on mathematical programming
and Section 6 is dedicated towards promising approaches.
To the best of our knowledge, this is the first time these
approaches are discussed with respect to Industrie 4.0.

From the authors’ experience at Infineon Technologies AG,
an exchange and feedback from Elmos Semiconductor AG
and the literature review challenges in shop job schedul-
ing and industry-specific challenges for production control
in wafer facilities are derived in Section 7. Motivated by new
concepts in Industrie 4.0, this paper proposes directions for
future research.

For a complete review of scheduling in semiconductor manu-

facturing we refer to more extended reviews [32, 88, 73, 74,
11] and for scheduling in general to the following books [90,
16].

2. COMPLEX JOB SHOPS
AND OBJECTIVES

A job shop is characterized by a layout which groups simi-
lar production devices or work systems in closed units [106].
Different products can take different routes through the fab
[106]. A job shop is called flexible, if processes can be han-
dled by several tools (identical tools work in parallel). Under
the following conditions, a flexible job shop is considered a
complex job shop [67, 46, 74]:

e Re-entrant flow of the jobs (e.g. one job needs to be
processed on one equipment several times)

e Sequence-dependent setup times
e Time coupling between processes

e Frequent machine breakdowns and other types of dis-
turbances

e Unequal process times of the jobs at one equipment
e Prescribed due dates of the jobs

e Different types of processes, e.g. single job vs. batch
processing

e Different lot sizes

The properties are explained in figure 2.

The semiconductor manufacturing process consists of four
main steps: wafer fabrication, probing, assembly or packag-
ing and final test. In this review the focus lies on wafer fab-
rication as this step is considered the most complex. Wafer
fabrication plants satisfy the conditions of a complex job
shop environment. A semiconductor fabrication produces
lots of 25 wafers, which can contain over 10,000 Integrated
Circuits (ICs). The main processes are deposition (phys-
ical/chemical vapor deposition, electrochemical deposition,
molecular beam epitaxy), patterning (lithography), removal
(wet /dry etching, chemical-mechanical polishing, plasma ash-
ing) and modification of electric properties (ion implanta-
tion, furnace annealing).

The factory scheduling problem is often decomposed into
tool scheduling problems (single machine), work center
scheduling (parallel machines), work area scheduling (flex-
ible job shop) and full wafer fab scheduling (complex job
shop) [73]. This paper will focus on the full wafer fab schedul-
ing, which needs to integrate the other layers. All timing
constraints which have to be respected are modeled with
a disjunctive graph (nodes represent tasks, edges represent
time constraints), which is the starting point for more com-
plex models [12].

Scheduling is the planning process that “deals with the
allocation of resources to tasks over given time periods and
its goal is to optimize one or more objectives” [90]. In the
context of job shop scheduling, jobs will be assigned to ma-
chines for a specific period in the future [7], “with the basic
aim to ensure an effective and efficient use of the available
resources” [11]. In contrast to the planning process “schedul-
ing”, dispatching is a JIT activity: When a machine becomes
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Figure 1: Definition of a complex job shop [67, 46, 74].

available, the dispatching algorithm assigns the job with the
highest priority from a set of waiting jobs to the machine.
The priorities may be determined by schedules or by dis-
patching rules.

Deterministic scheduling assumes fixed input values, while
stochastic scheduling replace the deterministic values with
probability distributions [90]. For static problems, all jobs
are already available, while in dynamic problem settings the
system has to deal with different ready-times of jobs. The
mathematical scheduling literature focuses on deterministic
scheduling in both static and dynamic cases.

Logistic objectives can be divided in logistic performance
and logistic costs, both with an external and internal view
(following [110, 64]). Logistical performance from an exter-
nal view for a Build To Order (BTO) production can be
evaluated by the lead time, deviation from the delivery date
and the delivery reliability, which is the percentage of on
time deliveries within a certain delivery tolerance. For a
Build To Stock (BTS) production, the only external per-
formance indicator is the service level. For both BTO and
BTS the objective for logic costs is the price. Internal objec-
tives for the logistic performance are cycle time, cycle time
deviations and due date reliability. Internal logistic costs
are the inventory, the utilization of resources and opportu-
nity cost and default. For optimization problems either one
key objective has to be chosen, or the objectives have to
be weighted. In the job shop scheduling literature for semi-
conductor manufacturing the most used objectives are Total
Weighted Tardiness (TWT), cycle time and throughput [73].
The tardiness for job j is defined as T; = max(C; — d;,0),
where C; is the completion time and d; presents the due
date. The TWT can then be written as wj - T}
with weights w;.

For an assessment of the performance of a complex job
shop production or general decisions on a management level
tools from Factory Physics [41] are often used, which are
based on mathematical queuing theory (Little’s law [63],

j€{all jobs}

Kingman’s formula [53]). These stochastic measures can
give guidance on controlling the general Work-In-Progress
(WIP) level, on the stability of the production or on capac-
ity planning, but have hardly any implications on specific
scheduling decisions.

Deterministic job shop scheduling problems can be solved
optimally by mathematical programming. Still, real world
systems often exhibit a high level of complexity which makes
these methods unsuitable for practical problems, mainly due
to a high implementation effort and long computational run-
times [11]. Especially in a stochastic and dynamic envi-
ronment, the computational time to get a solution becomes
crucial. Job shop scheduling and most variants are NP-
hard (non-deterministic polynomial-time hard) [29], which
is the most difficult complexity class in computational com-
plexity theory. In a semiconductor wafer fabrication facility
these events might be machine breakdowns, new job arrivals,
stochastic processing times or changes of due dates. There-
fore the use of heuristics is common [11].

This is also a position which Industrie 4.0 takes: Rising
complexity and volatility of markets prevents planning over
long time periods [101]. Instead of investing in more ad-
vanced planning capabilities, the approach of Industrie 4.0
is to increase the flexibility and adaptability of production to
enable Just In Time (JIT) decision making[101]. For exam-
ple, SEW-EURODRIVE has reduced their planning horizon
in their Sm@art Factory, an Industrie 4.0 showcase factory,
from weeks to a maximum of three hours [48].

3. DISPATCHING HEURISTICS

Dispatching rules are still the dominant shop floor con-
trol method for wafer manufacturing. Advantages are the
real-time capabilities and the fact, that results are easily
comprehensible for operators. Normally a hierarchy of sev-
eral dispatching rules is used [25]. E.g. if two processes have
a time coupling for proper execution, the time coupling over-
rules other dispatching approaches targeting the due date.



Approaches to use a single set of dispatching rules for all
tools have not proven successful [25]. Popular dispatching
rules are [32]:

e First In First Out (FIFO): The rule describes simple
queuing. The lot with the longest waiting time is pro-
cessed first.

e Shortest Processing Time (SPT) [99]: The lot with the
shortest processing time has the highest priority. This
policy reduces the WIP in front of the machine.

e Shortest Setup Time (SST)/ Least Setup Cost (LSC):
The rule minimizes setup times. This is especially rel-
evant for tools with sequence-dependent setup times,
e.g. ion implanters in semiconductor manufacturing.
In practice SST leads to batch processing.

e Shortest Remaining Process Time (SRPT): This policy
reduces the total WIP in the production.

e Earliest Due Date (EDD) [45]: The job with the ear-
liest delivery date has the highest priority.

e Operation Due Date (ODD): The expected total cy-
cle time is divided proportional to the single process
times of individual process steps. In practice, the sin-
gle process time is multiplied by a Flow-Factor (FF),
also called X-factor, to determine the expected total
completion time of each process step. Based on the
delivery due date a planed starting date for each pro-
cess step is calculated. The priority of a lot rises if the
actual date deviates from the planned date.

e Least Slack (LS): For a due date d; and a remain-
ing total processing time p; (including minimum inter-
operations times) the slack is defined as s; = d; — p;.
The lot with the least slack has the highest priority.

e Apparent Tardiness Cost (ATC) [105]: Weighted com-
bination of SPT and Least Slack (LS). By setting
weights and a scaling parameter x the rule can be ad-
justed to different settings.

e Critical Ratio (CR): The ratio between EDD and SRPT.

The performance of the dispatching rule is mainly in-
fluenced by a realistic due date setting [91].

A special case of dispatching heuristics are look-ahead
rules “that take information related to future job arrivals
into account” [74]. Their advantages are particularly re-
vealed in batching or sequence-dependent setup times sce-
narios. An early example for batching is the Dynamic Batch-
ing Heuristic (DBH) [30]. Already the consideration of the
next arrival unlocks half of the potential of DBH [30]. Mo-
tivated by this insight are the Next Arrival Control Heuris-
tic (NACH) for several different products [26] and NACH+,
which controls “incoming inventory into the batch operation”
[35].

Except as examples for look-ahead rules, dedicated batch-
ing heuristics are not discussed here. For a more complete
overview of common dispatching rules we refer to Sarin et
al. [95].

In science, dispatching rules are normally evaluated in
simulations and computational studies (e.g. [104] ). The
rules are assessed under the objectives of mean cycle time,

average tardiness, number of tardy jobs and maximum late-
ness. Uzsoy et al. [104] conclude that no rule performs well
under all objectives. In an extensive and rigorous simula-
tion study, Holthaus and Rajendran [40] also conclude that
no rule optimizes all measures. An additive combination of
different rules perform well in certain scenarios. Wiendahl
and Nyhuis investigate the influence of the WIP level on
the performance of different dispatching rules and conclude,
that the performance of different rules with regard to cycle
time depends on the WIP level [82, 110].

In industry, dispatching rules are either modeled using
expert knowledge of operators or sometimes in simulation
studies. The industry standard for semiconductor manu-
facturing is the Real-Time Dispatcher (RTD) by Applied
Materials, Inc. [34, 3]. The RTD has “ greatly improved
productivity for the last two decades” [34]. Even if more ad-
vanced techniques like mathematical programming are used,
they normally determine priority lists which are executed
by the RTD. Applied Materials offers an optimization based
scheduling system SmartSched [4] and a simulation environ-
ment AutoSched AP [5], which are both integrated into the
RTD.

Dispatching heuristics are a part of Computer Integrated
Manufacturing, today often called Industrie 3.0. The sys-
tems are not adaptive, learning or flexible, but they can
serve as the foundation for more advanced solutions in In-
dustrie 4.0.

4. HYPER-HEURISTICS AND
MACHINE LEARNING

Modeling dispatching rules for certain tools or processes
can be tedious and time consuming. Hyper-heuristics have
emerged as a way to automate the design of heuristics. Hyper-
heuristics are defined as “an automated methodology for se-
lecting or generating heuristics to solve hard computational
search problems” [13]. The process of automated genera-
tion of heuristics is frequently performed with current ma-
chine learning techniques. Here, hyper-heuristics and pure
machine learning for semiconductor scheduling are merging
into each other. Theoretically hyper-heuristics are starting
from a set of given heuristics which are recombined, while
machine learning is about the discovery of new rules without
existing knowledge. Still, in practice these notions are often
not separable.

For simple hyper-heuristics, the weighted sum is often
used to calculate a priority I;,+ as a superposition of sev-
eral dispatching rules:

F
Ilot = § w; - fi,lot
=1

where f; ot is one of the F features of the job and w; is
the corresponding weight. Hyper-heuristics can be divided
into systems that select one specific rule (w; € {0,1}) or
generate a new heuristic [13]. Still, a weighted sum is often
too restrictive and more advanced combinations are used.
These include arithmetic, logic and standard mathematical
operators (max, min, avg,...) to combine existing heuristics
[10].

Hyper-heuristics which have been trained on static, de-
terministic instances can be applied to a stochastic environ-
ment. Although it has been shown, that hyper-heuristics
trained on dynamic, stochastic problems perform better in



an stochastic environment [37, 80]. Still, the definition of
stochastic benchmarking problems is harder than for static
problem sets.

In general, learning of hyper-heuristics can be supervised
or unsupervised. Supervised learning strategies suffer from
the limitation that an optimal solution has to be obtained
first, which is not always possible. Still, supervised ma-
chine learning techniques such as neural networks [22, 21,
109, 10] or logistic regression [43] have been used success-
fully as learning algorithms. Olafsson and Li have used de-
cision trees with an genetic algorithm by Wu [111] to derive
new single machine dispatching rules from optimal schedul-
ing data [84].

Ménch et al. [78] use a neural network to adjust the k-
value in the ATC dispatching rule for parallel batch ma-
chines. The ATC dispatching supported by the neural net-
work performs only 1-2% under “schedules that are calcu-
lated by using a near-to-optimal look-ahead parameter k”
[78] but, “the computational effort is much smaller by fol-
lowing the machine learning approach” [78].

Like all learning algorithms, feature selection is a hot topic
for hyper heuristics [11]. From an extensive literature study,
Branke et al. conclude that “it appears that it is best to pro-
vide hyper-heuristics with attributes in their most basic form
and let the hyper-heuristics search for good combinations”
[11]. Only the eligible jobs are taken into consideration -
normally only the waiting jobs before a machine (e.g. [89,
102]), but sometimes future job arrivals are also included
(e.g. [58, 6]).

The concepts of decentralization, autonomy and
self-organization, which are closely associated with Indus-
trie 4.0, are also part of the hyper-heuristics research. Ma-
chine learning techniques make hard-coded heuristics flexi-
ble and adaptive to changes in the production and enable
faster learning and improvement cycles. The automated
generation and discovery of heuristics, previously a task of
a skilled engineer, is an example for “automation of knowl-
edge work” [69], which in Industrie 4.0 is the next step of
automation beyond robotics.

Big data solutions are quickly gaining importance in semi-
conductor manufacturing. The applications are usually con-
nected to data lakes, which collect data from various sources.
This is especially relevant for machine learning applications.
With an increased availability of training data, the perfor-
mance of machine learning methods is expected to increase
in industry applications.

S. MATHEMATICAL PROGRAMMING

Research on mathematical programming dates back to
the 1950s, but only in the last 10 years increases in com-
putational power made the algorithms interesting for in-
dustry applications. Problems are formulated using Lin-
ear Programming (LP), Mixed Integer Programming (MIP),
Constrained Programming (CP) or Dynamic Programming
(DP). Normally commercial optimization software such as
Gurobi Optimizer [33], IBM ILOG CPLEX [44] and FICO
Xpress [24], which have all demonstrated an impressive in-
crease in performance in recent years [70, 57], are then used
to determine the optimal solution.

Still, the NP-hardness of the problem [29], which leads to
exponential scaling of computational runtimes with problem
size, limits the approaches to smaller problem sizes. In liter-
ature and in industry (to the best of the authors’ knowledge)

there doesn’t exist a semiconductor wafer production which
is only controlled by mathematical optimization. A com-
mon approach in industry is to use mathematical program-
ming only for bottlenecks (single machines or work centers)
and heuristic dispatching for all other operations [36, 31,
34]. The optimal schedule is then integrated by determining
priorities based on the schedule and executes the schedule
according to the priorities at the bottleneck work center.
Another approach is to couple deterministic methods, here
MIP, with Discrete Event Simulation (DES) with a rolling
horizon [54]. The DES employs heuristics and simulation
based optimization to speed up the MIP with boundaries
for optimization parameters and a good initial solution.

Another approach are decomposition methods, where a
problem is decomposed into a number of smaller sub-problems.
These solutions are then assembled to represent a solution to
the initial problem [54, 85]. For example, lots are distributed
into groups and the optimal sequence is determined for each
group separately. Decomposition is normally motivated by
physical attributes of the jobs [54, 85]:

e Temporal decomposition

e Work center-based decomposition
e Job-based decomposition

e Operation-based decomposition

Problem formulations tend to be quite complex and time
consuming. Results may be counter-intuitive for operators,
which requires a certain level of trust [11].

Optimization to increase productivity is a hot topic in In-
dustrie 4.0, but it hardly refers to mathematical optimiza-
tion. A possible explanation would be, that most industries
are only starting to digitize their production and mathemat-
ical optimization will be the next step. Still, most processes
can not to be described in a mathematical way. “Soft” ap-
proaches like Continuous Improvement Processes (CIP) are
more common in production than rigorous mathematical op-
timization. As formulations and implementations of math-
ematical optimization are complicated, they require very
stable processes which do not change over years. Mathe-
matical optimization has proven to deliver some remarkable
improvements in the semiconductor industry [55, 54], but
only plays a minor role in Industrie 4.0.

6. FURTHER PROMISING APPROACHES

The job shop scheduling problems has attracted many re-
searchers from different fields. In this section three spe-
cific approaches are presented: Shifting Bottleneck Heuris-
tics (SBH), Genetic Algorithms (GA) and Multi-Agent Sys-
tems (MAS).

6.1 Shifting Bottleneck Heuristic

The Shifting Bottleneck Heuristic is an iterative heuristic
that tries to minimize the influence of bottlenecks on the
production. Shifting bottleneck heuristics with disjunctive
graphs can be used to relieve critical scheduling problems
(e.g. single tools groups) within the factory wide scheduling
problem [67]. The identified sub-problems can be optimized
with different approaches. A shifting bottleneck heuristic
combined with a genetic algorithm has been assessed with a
rolling horizon setting in a DES, which outperforms common



dispatching rules [75]. Sub-problems can be rescheduled
with an event-driven approach to handle dynamic events
[86].

Mason et al. present a Modified Shifting Bottleneck
Heuristic (MSBH), “that accommodates the various types of
machine-tool group sub-problems that arise within a wafer
fab (CJS)” [67]. Ménch and Driessel [72] implemented a two-
layer hierarchical approach, the Distributed Shifting Bottle-
neck Heuristics (DSBH) based on MSBH. On an aggregated
model due dates are determined and then used to optimize
the base layer with a shifting bottleneck heuristic. DSBH
shows a “similar solution quality” [72] as MSBH.

Shifting bottleneck heuristics can outperform MIP solvers
with limited time (best solution found after a certain time
span, sometimes called MIP heuristic) for larger problem in-
stances [66]. Shifting bottleneck heuristics are an interesting
approach for decomposition and iterative improvements of
large-scale complex job shop problems.

6.2 Genetic Algorithms

Genetic algorithms are a class of meta-heuristic optimiza-
tion algorithms which are inspired by biological evolution
[80, 32]. The iterative process starts with one (or several
candidate) solution(s), whose properties are encoded into
chromosomes. New candidate solutions are created out the
initial candidate(s) by recombination and/or mutations of
the chromosomes. A fitness function then evaluates the per-
formance of the new candidates and selects the fittest.

Wang and Uzsoy [108] combine dynamic programming
with a genetic algorithm for batch processing machines with
“excellent average performance with reasonable computa-
tional burden” [108]. Cavalieri et al. [15] presented a ge-
netic algorithm which solves job shop scheduling problems
in a semiconductor production of STMicroelectronics N.V.,
which outperforms the FIFO approach used in the plant.

Genetic algorithms may also be combined with hyper-
heuristics [89] (see Section 4). They show very good results
at single machines and cluster tools (e.g. in [20]). Since ge-
netic algorithms have low computational time, they are an
interesting field for factory-wide scheduling solutions.

6.3 Intelligent Multi-Agent Systems

A multi-agent system is a software system which consists
of multiple interacting autonomous entities (agents), which
are able to perceive their surrounding and perform certain
actions [93, 98].

Krishnaswamy and Nettles [56] suggest that multi-agent
systems may be a promising approach for full wafer fab
scheduling [73]. The feasibility has been demonstrated with
a hierarchical prototype called FABMAS with ten different
types of agents [76, 77]. An implementation by Yoon and
Shen [112] controls the Intel Mini Fab model [52], but the
logic is encapsulated in scheduling agents.

Closely related to the Multi-Agent System Approach is
Ant Colony Optimization (ACO), metaheuristic optimiza-
tion based on swarm intelligence. Several successful imple-
mentations exist for unrelated parallel machines [62], par-
allel batch processing machines [61, 47] and decomposition-
based wafer fabrication systems [61].

Mutli-agent systems are decentralized and involve
autonomous decisions. They are a perfect showcase of Indus-
trie 4.0 as reconfiguration on the fly and self-organization are
fundamentally build into the systems [50]. Industrial com-

panies tend to be careful concerning the systems, as they
require a radical change of paradigms.

7. CHALLENGES AND FUTURE
DIRECTIONS

This section will discuss challenges identified in the litera-
ture review and derived from industry experience at Infineon
Technologies AG and Elmos Semiconductor AG. The chal-
lenges are grouped under four headings: Decentralization
and autonomous decisions, flexibility and adaptability, inte-
gration and networking and human aspects in an environ-
ment with rising complexity. The four topics are inspired by
the vision of Industrie 4.0 and serve as directions for further
research.

The research project “IWePro - Intelligente selbstorgan-
isierende  Werkstattproduktion”  (engl.: Intelligent
self-organizing job shop production) by Fraunhofer IPK (In-
stitute for Production Systems and Design Technology) and
an industry consortium designs a self-organizing, decentral-
ized job shop production for automotive transmission [59,
39]. Although the project focuses on job shops for the auto-
motive sector with different characteristics than in the semi-
conductor industry, the research directions of this Industrie
4.0 project align well with the first three research directions
identified in this paper.

7.1 Decgr_ltralization and Autonomous
Decisions

In order to deal with the rising complexity in semicon-
ductor production and supply chains [1], decisions should -
if possible - be taken on a local level. Still, many local de-
cisions might not lead to a global optimum. Modern semi-
conductor production facilities produce an amount of data
which can not be centrally analyzed in real time. There-
fore, suitable data black boxes need to be defined, which
are able to take some decisions on there own and only pro-
vide a limited number of information to the outside. As
computational complexity is an issue (especially for mathe-
matical programming, see Section 5), this approach ensures
real time capabilities of IT systems. Future research needs
to show that decisions in data black boxes lead to a global
optimum. This topic can be addressed by two specific as-
pects:

e Feature selection/ Attribute selection/ Eligible jobs:
The performance, but also the computational time,
of dispatching and scheduling approaches depend on
the selection of information available to them. Espe-
cially the next incoming jobs and the equipments in
the next processing steps can influence the decision in
one queue. Machine learning systems may be able to
choose relevant parameters themselves. This is also a
relevant topic if more data sources become available
(see Section 7.3).

e Decomposition of scheduling problems: As already dis-
cussed in Section 5, the success of fab-wide mathe-
matical optimization will depend on the ability to de-
compose a large problem into sub-problems and still
achieve a global optimal solution.

Industrie 4.0 promotes a dehierarchization to enable “com-
plexity management in times of Industrie 4.0” [96]. Still,



the semiconductor industry rather tends towards hierarchi-
cal structures [71].

7.2 Flexibility and Adaptability

Increasing uncertainty and volatility in markets, like the
dot-com bubble or the financial crisis of 2007-08, force com-
panies to react faster to changing demand. Flexibility is
the property of having the potential to change in an ap-
propriate way. An adaptive system is able to readjust to
changes autonomously, meaning it has a certain level of self-
organization. Modern manufacturing systems need to show
these properties. There are several steps which lead in this
direction:

e Rescheduling strategies [68, 73]: Schedules in semi-
conductor fabrication plants are normally rescheduled
after a defined time period. Rescheduling strategies
evaluate which events require a rescheduling and which
events do not influence the current schedule. Govind
et al [31] determine that the majority of events which
require rescheduling in a lithography work center is
under five minutes. A rescheduling strategy could in-
crease flexibility in presence of stochastic disturbances.

e Process Qualification Management (PQM). A dedica-
tion matrix contains the information which tools are
qualified to run certain processes. The dedication ma-
trix limits the number of possible schedules. Active
PQM allows for the needed flexibility in case of ma-
chine breakdowns. On the other hand, it ensures high
Overall Equipment Effectiveness (OEE, SEMI E10 Stan-
dard): First results look promising [27, 92].

e Influence of hot/rocket lots: Hot/rocket lots are pro-
duced considerably faster by reducing all waiting times.
Companies use hot/rocket lots for faster development
cycles and urgent customer orders. In our experience,
already a small number of hot/rocket lots can signifi-
cantly influence production performance. Modern con-
trol systems for complex job shop scheduling need to
integrate different speed corridors without compromis-
ing capacity.

e Adaptability to different product portfolios: Most dis-
patching systems in industry can not adapt automat-
ically to changing production portfolios. Creation of
dispatching rules is often made by experts, but with-
out a proper review of “before” and “after” metrics [25].
It is time-consuming and complex to capturing tool
and process characteristics and customize dispatching
or scheduling to specific case. Self-organizing systems
do no manual interference to react to changes in the
product portfolio or new machines.

e Robustness towards missing data: Automated decision
systems rely on a high availability of data. In prac-
tice, data might sometimes be available with delay,
corrupted or even missing completely. Modern control
systems have to detect corrupted data and be able to
deal with missing data, for example by statistical inter-
polation. Fuzzy logic may also be a suitable approach
[8, 87].

7.3 Integration and Networking

Horizontal and vertical Integration of IT systems are key
elements of Industrie 4.0 [94, 9]. The quality of dispatch-
ing and scheduling decisions will profit from additional data
sources, but realtime abilities may be affected by the addi-
tional computational complexity. We see a high potential
for the following data sources:

e Integration of supply chain data into scheduling and
dispatching decisions: Changes in demand or produc-
tion promises concerning due dates have to be consid-
ered in the production automatically. A first approach
for a simulation of multiple coupled wafer productions
can be found in Gan et al. [28]. For an extended re-
view of challenges and future research see Chien et al.
[17].

e Integration of automated material handling system
(AMHS) data into dispatching systems [107]. AMHS
are quickly gaining significance due to increased head-
count cost, higher reliability of automated systems com-
pared to human operators and a growing lot weight
due to an increase in wafer size [107]. Dispatching and
scheduling systems need to take the rising importance
of AMHS into account and integrate its properties.
The behavior of AMHS can be better predicted and
surveyed than the behavior of human operators which
leads to less uncertainty and fluctuations.

e Integration of Cluster Tools into fab-wide scheduling:
Cluster tools in semiconductor manufacturing often
have very sophisticated scheduling algorithms
(e.g. [103]), but operate like black boxes. First ap-
proaches can be found in Niedermayer et al. [81] and
for performance metrics in Oechsner et al. [83].

e Integration of Statistical/Advanced Process Control
(SPC/APC): New objectives like expected yield could
add a new layer to the scheduling systems. A first in-
tegration of APC Data into single-machine scheduling
is presented by Cai et al. [14]. A literature review
and an outlook on APC and scheduling is presented
by Yugma et al. [113].

7.4 Human Aspects in an Environment of Ris-
ing Complexity

Human operators take an important role in Industrie 4.0,
although their tasks change from repetitive actions to cre-
ative elements which require a good knowledge of produc-
tion [101]. Assistance systems are necessary to help opera-
tors and white-collar workers to deal with higher complex-
ity and uncertainty. This requires a high level of trust into
the systems. New forms of Human-Computer Interactions
(HCI) - like spoken dialogues - might enable workers and
experts to better understand automated decisions. Next to
human-computer interactions, human-2-human communica-
tion is also challenging in complex environments:

e Trust and interpretability [11]: In wafer fabrication
plants with a high manual effort for operators dispatch-
ing compliance is a major issue. Experts in local areas
might perceive decisions of the global systems as sub-
optimal and reject the solutions of the automated deci-
sion making system. Kuyumcu presents an algorithm
to calculate and analyze dispatch compliance [60]. The
influence of comprehensiveness on dispatching compli-
ance of operators and line experts is still an open topic.



e Transfer from science to industry [73]: Wafer fabrica-
tion facilities require a stable and reliable operation.
The willingness to try out new measures is often low.
The simulated systems in science often do not cap-
ture the complexity of semiconductor fabrication fa-
cilities. A closer cooperation and knowledge transfer
might solve this issue.

8. CONCLUSIONS

This paper reviewed existing production control methods
for complex job shops from an Industrie 4.0 perspective.
While there already exist successful solutions for dispatch-
ing heuristics and mathematical programming, new possi-
bilities, e.g. machine learning, and concepts from Industrie
4.0 offer new opportunities and potentials for an increase
in operations efficiency. The paper highlights four direc-
tions for future research: Decentralization and autonomous
decisions, flexibility and adaptability, integration and net-
working and human aspects in an environment with rising
complexity. From a methodological view machine learning
and multi-agent systems are promising approaches.

Although there has been little interchange of ideas be-
tween job shop scheduling and Industrie 4.0, the main ideas
and directions in both fields are the same. Interestingly, we
found a discrepancy in the area of mathematical program-
ming: While semiconductor manufacturers have increased
productivity by employing mathematical programming in
manufacturing control systems, it plays a minor role in In-
dustrie 4.0. Reasons may be the availability of production
data and the flexibility considerations.

In practice, hybrid approaches, which combine several of
the methods and techniques presented in this paper in one
complex job shop, show the best results. Therefore, a stan-
dardized, robust and flexible Manufacturing Execution Sys-
tem (MES) for provisioning of data and for execution is
needed. Different dispatching and scheduling algorithms can
then easily be implemented on this platform. Furthermore,
a standardized simulation environment which can load the
MES data is needed to benchmark different approaches be-
fore implementation in production.

The paper shall foster the exchange with other industries
which manufacture in high-volume job shops such as the
chemical, pharmaceutical, textile, printing and metal pro-
cessing industries [49, 100]. Researchers are provided with
an abstract definition of a complex job shop, a model that
covers all major features of a semiconductor wafer fabrica-
tion in terms of production control. Furthermore, industry
challenges and further directions are highlighted, which may
guide future research. Practitioners find a review of the state
of the art of methods in production control for complex job
shops.
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