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Abstract: Multiscale Permutation Entropy (MPE) analysis is a powerful ordinal tool in the mea-
surement of information content of time series. MPE refinements, such as Composite MPE (cMPE)
and Refined Composite MPE (rcMPE), greatly increase the precision of the entropy estimation by
modifying the original method. Nonetheless, these techniques have only been proposed as algo-
rithms, and are yet to be described from the theoretical perspective. Therefore, the purpose of this
article is two-fold. First, we develop the statistical theory behind cMPE and rcMPE. Second, we
propose an alternative method, Refined Composite Downsampling Permutation Entropy (rcDPE) to
further increase the entropy estimation’s precision. Although cMPE and rcMPE outperform MPE
when applied on uncorrelated noise, the results are higher than our predictions due to inherent
redundancies found in the composite algorithms. The rcDPE method, on the other hand, not only
conforms to our theoretical predictions, but also greatly improves over the other methods, showing
the smallest bias and variance. By using MPE, rcMPE and rcDPE to classify faults in bearing vibration
signals, rcDPE outperforms the multiscaling methods, enhancing the difference between faulty and
non-faulty signals, provided we apply a proper anti-aliasing low-pass filter at each time scale.

Keywords: multiscale permutation entropy; downsampling; bearing faults

1. Introduction

Information entropy, as described by the seminal paper by Shannon [1], provides
a measure of information content. A high entropy level implies a high degree of “un-
predictability” in a system. Conversely, a system whose each subsequent state can be
easily predicted from the previous ones is said to have low entropy. Shannon defined this
measure in the context of communications, by defining and measuring entropy in a digital
binary array. Nonetheless, any time series can be analyzed using this type of technique, as
long as the “states” of the signal are properly defined in advance.

In particular, ordinal entropy methods have been extensively used for engineering [2],
financial [3], and biomedical [4] applications. Ordinal methods, like Permutation Entropy
(PE) [5] have the advantage of noise-robustness and invariance to non-linear monotonous
transformations. Furthermore, the implementation of the multiscale approach [6] leads
to the Multiscale Permutation Entropy (MPE) [7] technique. This allows us to search for
information contained in long trends within a signal, which can be lost if we analyze its
raw data points directly. PE and MPE relies on the pattern counts inside a signal, which
itself is just a sample series from a wider phenomenon. Therefore, the entropy content
measured is not a deterministic measure, but an estimator.

Several refinements to MPE have been proposed [8,9], providing a better precision
over the original MPE formulation. These approaches rely on the composite multiscale
techniques by Wu [10], which is able to extract more information from a signal than
classical multiscaling.
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In our previous work, we provided a theoretical expression of the MPE bias [11]
and variance [12]. Furthermore, we proved the MPE statistic is approximately efficient,
approaching the Cramér-Rao lower bound. Nonetheless, composite ordinal multiscale
techniques have not been properly addressed in the literature from the statistical point
of view.

Therefore, the aim of this article is twofold. First, we will develop the statistical
properties of MPE refinements, Composite MPE (cMPE) [8], and Refined Composite MPE
(rcMPE) [13], in order to properly characterize their performance from the theoretical
perspective. Second, and most importantly, we propose an alternative to the composite
multiscaling process, based on downsampling, to further refine the precision of these
ordinal permutation entropy methods. We will provide the theoretical statistical characteri-
zation of this proposal, as well as examples of its application in real-life scenarios

In Section 2, we will lay out the necessary background theory, including the formal
definitions of PE, MPE, and their refinements. In Section 3, we will develop the proper
mathematical expressions for the expected value, bias and variance of the refined MPE
methods. Furthermore, we will propose the alternative Composite Downsampling, as
well as their corresponding statistical characterization. Lastly, in Section 4 we will test the
performance of each of the methods discussed using uncorrelated noise signals, as well as
real signals from bearing fault recordings [14].

2. Theoretical Framework

This section will cover the necessary background for the PE methods. We will present
the original formulation of PE in [5], as the MPE proposal by [7]. Subsequently, we will
provide a brief summary of the MPE statistical moments, which we originally developed
in [11,12].

2.1. Permutation Entropy

For a signal x = [x1, x2, ..., xN ]
T with N data samples, we define ordinal patterns of

embedded dimension d as any possible ordinal permutation between d points of the signal.
For example, for d = 2, only two possible ordinal patterns exist: xt < xt+1 and xt > xt+1; if
dimension d = 3, we could obtain pattern any of the six possible ordinal permutations of
xt, xt+1, and xt+2 (for example, xt < xt+1 < xt+2). In general, for embedded dimension d,
there are d! possible patterns.

For the aforementioned signal, we will assume no particular structure or statistical
properties and establish that said signal must be uniformly sampled as the only restriction.
Since this assumption implies that no further information is known, we can only estimate
the probability of each pattern by measuring the pattern counts inside the signal; in other
words, we measure the cardinality of each pattern i = 1, . . . , d! [5],

yi = #{n| n < N − (d− 1)τ,(xn, xn+τ . . . , xn+(d−1)τ) has pattern i}, (1)

where yi is the number of patterns of type i in the signal x, and τ ∈ N+ is a downsampling
parameter, as defined by [15]. Some examples of possible ordinal patterns are shown in
Figure 1. We can use yi to build an estimate of the pattern probability p̂i:

p̂i =
#{n| n < N − (d− 1)τ, (xn, xn+τ . . . , xn+(d−1)τ) has pattern i}

N − (d− 1)τ
, (2)

We use the symbol p̂i here to denote that this is an estimation of the pattern probability, as
opposed to pi, which represents the true value.
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Figure 1. Ordinal pattern examples for τ = 1. The figures represent discrete data points from a uniformly sampled signal.
There are 24 possible patterns for d = 4.

For a given dimension d, the estimate probabilities for all possible patterns i form
a mass probability distribution function (pmf). Therefore, it is possible to obtain an
estimation of the permutation entropy measurement, denoted by Ĥ, using Shannon’s
entropy definition [5],

Ĥ = −
d!

∑
i=1

p̂i ln p̂i. (3)

Here, the value Ĥ is an estimation, and thus, a statistic. We can also write the normalized
version of (3) as follows,

Ĥ =
Ĥ

ln(d!)
=
−1

ln(d!)

d!

∑
i=1

p̂i ln p̂i (4)

which guarantees an entropy value between zero and one.
From the algorithmic point of view, PE is easy to implement and fast to compute given

a signal x and a dimension d. Since the nature of this procedure is ordinal, PE is invariant
to nonlinear monotonous transformations [5], which is in turn a desired property when
we expect to work with signals containing different amplitudes, noise, or outliers. On the
other hand, this robustness works against us if we intent to extract information from the
signal’s amplitude.

Another obvious constraint is the length of the signal. For very short signals, the
pattern counts in (2) are not sufficient to provide a precise estimation of the pattern distri-
bution. There are several proposed guidelines for the minimum length required, with the
condition N � d! [5] being the most notable one—this, however, offers no practical guide-
lines to the proper size of N. Other possible length constrain formulations are N ≥ 5d! [16]
and N > (d + 1)! [17].

This technique, of course, only deals with a single set of data points, τ spaces apart.
In order to measure the information content on long-range correlations, it is necessary to
introduce the multiscale approach.

2.2. Multiscale Permutation Entropy

Using the original signal x, we can construct coarse-grained signals for a fixed
time scale m. We partition the data points in consecutive, non-overlapping segments
of size m, computing the average of each segment afterwards and constructing x(m) =

[x(m)
1 , . . . , x(m)

N/m]
T , where each element is,

x(m)
j =

1
m

jm

∑
i=m(j−1)+1

xi, (5)

where j ∈ N and m ∈ N. The MPE measurement consists on calculating the permutation
entropy of x(m) for different time scales.

As pointed out in [18], this process can be regarded as a two-step procedure: (a) a
moving average filter, and (b) a downsampling. The motivation behind the coarse-graining
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procedure is to capture long-term information, usually lost in the ordinal comparisons
between adjacent data points. The assessment of this information can be useful in detecting
trends or recurring patterns that are not usually evident in raw data.

However, MPE also has the disadvantage of being sensitive to signal length: as N
decreases, the estimation of MPE will be less reliable. This effect becomes more pronounced
with increasing scales, where the size of the coarse-grained signal decreases by a factor of
1/m. The general condition N/m� d! must be satisfied.

2.3. MPE Statistics

In our previous work [11,12], we developed some of the statistical properties of the
MPE, including the expected value and variance. In this section we will briefly summarize
these findings.

For mathematical convenience, we will restate the pattern counts (1) and pattern
probability estimations (2) in vectorial form. For any coarse grained signal x(m) of length
nm ≈ N/m at time scale m and dimension d, we can define the random vector Y of size d! as
the vector of pattern counts, and p̂ as the vector of pattern probabilities from Equation (2):

Y =

Y1
...

Yd!

 =

 nm p1 + ∆Y1
...

nm pd! + ∆Yd!

 = nm p + ∆Y , Y ∼ Mu(nm, p) (6)

p̂ = 1
nm

Y = p + 1
nm

∆Y . (7)

A realization Y is assumed to follow a multinomial distribution for each of the random
variables Y1, . . . , Yd!, will give the cardinality of each pattern count y1, . . . , yd! defined in (1).
If we further define the vector

l̂ = ln p̂, (8)

then we can rewrite the PE in vectorial form,

Ĥ = H(p̂) = −
d!

∑
i=1

p̂i ln( p̂i) = −l̂ T p̂, (9)

where T is the transpose symbol. In order to obtain the statistical moments of Ĥ, it is
convenient to expand this expression into its second order Taylor series approximation [19]:

H(p̂) ≈ H(p)− m
N
(1 + l)T∆Y − 1

2

(m
N

)2(
p◦−1

)T
∆Y◦2 + O(∆Y◦3), (10)

where ∆Y is the random part of the pattern count in (7), and ∆Y◦2 is the Hadamard square
of ∆Y . This expression leads directly to the MPE expected value [11,12],

E[H(p̂)] ≈ H(p)− 1
2
(d!− 1)

(m
N

)
(11)

and variance [12]

var(H(p̂)) ≈ (m
N )l′TΣpl + (m

N )2
(

1Tl + d!H(p) + 1
2 (d!− 1)

)
. (12)

Here, the term,

(m
N )lTΣpl = (m

N )

(
d!

∑
i=1

pi ln2 pi − H2(p)

)
, (13)
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corresponds to the Cramér-Rao lower bound for H [12]. This shows that it is still approxi-
mately efficient for H.

The fact that we have an approximate measure for the bias and variance of H allows us
to assess the error in our estimation, and properly gauge the precision of our measurements.
This is useful when comparing entropy content between two different groups, especially
when we have signals of different length.

Although the Cramér-Rao lower bound for the MPE statistic suggests minimum
variance, it is still possible to increase the precision of the entropy measurement even
further. The composite MPE methods provide a way to increase the number of samples,
and thus, reduce the variation of our estimations.

2.4. Composite MPE Methods

Composite coarse-graining (CCG) stems from the notion that, for a given time series x
and a set time scale m, we can build an m different coarse signals if we change the starting
element for the coarse-graining procedure. Up to this moment, original MPE assumes that
the starting point is equal to the first element of the time series (x1). At most, we can have
an m number of difference signals for the same time scale that are similar to one another
yet contain slightly different information. We apply the general procedure to build all the
possible coarse signals for m,

x(m)
k,j =

1
m

jm+(k−1)

∑
i=m(j−1)+k

xi, (14)

with k = 1, . . . , m for the starting element, which also refers to the kth coarse signal for scale
m. Applying the procedure in (14) gives us coarse signals x(m)

1 , . . . , x(m)
m for any given m. A

schematic example is show in in Figure 2.

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12

𝑥1,1
(𝑚)

𝑥1,2
(𝑚)

𝑥1,3
(𝑚)

𝑥1,4
(𝑚)

…

…

𝑥2,1
(𝑚)

𝑥2,2
(𝑚)

𝑥2,3
(𝑚)

𝑥2,4
(𝑚)

𝑥3,1
(𝑚)

𝑥3,2
(𝑚)

𝑥3,3
(𝑚)

…

…

𝒙

𝒙1
(𝑚)

𝒙2
(𝑚)

𝒙3
(𝑚)

𝑥2,1
(𝑚)

=
𝑥2 + 𝑥3 +𝑥4

𝑚
𝑥3,2
(𝑚)

=
𝑥6 + 𝑥7 +𝑥8

𝑚
𝑚 = 3

Figure 2. Schematic representation of the composite coarse-graining procedure at m = 3: we segment the original signals

in nonoverlapping segments of size m; if we shift the initial position, we can build m different coarse signals x(m)
1 , x(m)

2 ,

and x(m)
3 .
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This composite approach allows us to access previously unaccounted ordinal patterns
in the series, thus increasing their number for the purposes of building the empirical
pattern probability distribution. Therefore, by applying the PE method on composite
coarse signals, it is possible to partially overcome the length constraints, especially in the
context of multiscaling.

In the following subsections, we will outline the most common composite methods:
composite MPE (cMPE) [8] and the refined composite MPE (rcMPE) [9].

2.4.1. Composite MPE

Following the composite coarse-graining procedure in Equation (14) [8] makes it
possible to achieve better precision by averaging the MPE result for all the composite signals
with the same time scale. Even though this approach was originally named “improved
multiscale permutation entropy” [8], we will refer to this procedure as composite MPE
(cMPE) due to its shared similarities with composite multiscale entropy—as proposed by
Wu et al. [18] using SampEn—in its mathematical approach.

Given the original time series x and embedding dimension d, we compute the classical
MPE on each of the possible composite coarse signals x(m)

1 , . . . , x(m)
m for each time scale m to

obtain the cMPE. The cMPE value is the average of each of the resulting MPE measurements
of all m coarse signals:

HcM(p̂(m)) =
1
m

m

∑
k=1

Hk(p̂(m)), (15)

where Hk(p̂(m)) are the k = 1, . . . , m possible MPE values. The approach of this method
relies on reducing the variance by taking the average of multiple MPE measurements, each
calculated on a coarse composite signal.

The authors applied the cMPE technique both in synthetic signals and in EEG record-
ings, obtaining improved results in terms of stability (variance), which improves the use of
ordinal entropy technique for the purposes of diagnosis and biomedical signal classifica-
tion.

2.4.2. Refined Composite MPE

Originally proposed by Humeau-Heutier et al. [9], rcMPE approaches composite
coarse signals through a different mechanism. Instead of using the average MPE, this
method counts all the ordinal patterns contained in composite coarse signals for a given
scale m. This results in a single pattern probability estimation (16), which is used thereafter
to obtain the entropy measurement. Computing rcMPE requires us to first take the average
estimation for each pattern probability,

̂̄p(m)
=


̂̄p(m)

1̂̄p(m)
2
...̂̄p(m)

d!

 =


1
m ∑m

k=1 p̂(m)
k,1

1
m ∑m

k=1 p̂(m)
k,2

...
1
m ∑m

k=1 p̂(m)
k,d!

, (16)

where the pattern probability estimator p̂(m)
k,i is obtained using Equation (2) for each com-

posite coarse signal k, from Equation (14). At this point, it is enough to make a single MPE
computation over this pattern probability,

HrcM(̂̄p(m)
) = −

d!

∑
i=1

̂̄p(m)
i ln ̂̄p(m)

i = −̂̄l T ̂̄p, (17)

following the same procedure as the original MPE definition (4) and (8), using ̂̄p(m) instead
of p̂(m).
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When applied to laser Doppler flowmetry and bearing fault signals [9], rcMPE shows
not only a reduced variance compared to the MPE and cMPE algorithms, but it is also less
affected by the length constrains explained in Section 2.2. In Section 3.1, we will expand the
analysis of the MPE statistical properties—which we previously did in [12]—to the cMPE
and rcMPE methods, in order to understand the source of this improved performance.

3. Methods

In this section, we will explicitly develop the statistical moments of the cMPE and
rcMPE, as well as discussing some of the implications of these results.

3.1. cMPE and rcMPE Statistics

In this section we will expand the results from [11] and variance [12] in order to
properly describe these statistics using the CCG approach. Here, we derive the theoretical
statistic development which supports the increased precision of the cMPE and rcMPE
found by [9].

3.1.1. cMPE Moments

In the case of cMPE statistics, we can obtain the expected value of Ĥ using Equa-
tion (15),

E[HcM(p̂(m))] =
1
m

m

∑
k=1

E[Hk(p̂(m))] ≈ H(p(m))− 1
2
(d!− 1)

(m
N

)
. (18)

This mean value is exactly the same as the classical MPE mean (11), and therefore, we
should expect the same results in average. In the case of the variance, if we suppose all
Ĥk(p̂(m)) are independent for k = 1, . . . , m, the general expression of the cMPE variance
can be written as,

var
(

HcM(p̂(m))
)
=

1
m2 var(

m

∑
k=1

Hk(p̂(m)))

=
1

m2

m

∑
k=1

var(Hk(p̂(m))) +
1

m2

m

∑ ∑
k1 6=k2

cov(Hk1
(p̂(m)), Hk2 (p̂(m)))

=
1
m

var(Hk(p̂(m))) +
1

m2

m

∑ ∑
k1 6=k2

cov(Hk1
(p̂(m)), Hk2 (p̂(m))), ∀k

≈ ( 1
N )l(m)T

Σ
(m)
p l(m) + ( 1

N )( m
N )
(

1Tl(m) + d!H(p(m)) + 1
2 (d!− 1)

)
,

(19)

where k1 = 1, . . . , m and k2 = 1, . . . , m. Note that the first term is equal to the CRLB
from Equation (13).The measure of equality should be reached when the Hk(p̂(m)) are not
correlated.

When comparing MPE and cMPE, it should not come as a surprise that the expected
value (18) does not change. Nonetheless, the variance in Equation (19) is indeed reduced
by a factor of 1/m from Equation (12). This has a visible effect on the polynomial approxi-
mation (12), reducing the degree by one. Now the first element is constant with respect to
m, and the second term is linear. Equation (19) provides a benchmark for the minimum
variance the cMPE can obtain in the presence of uncorrelated coarse signals.

3.1.2. rcMPE Moments

For the rcMPE statistics, the explicit representation of the first two moments HrcM(p̂(m))
require further explanation. First, we modify the original multinomial pattern count ex-
pression from Equations (6) and (7), such that we can describe each one of the composite
coarse-grained signals for scale m,
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Yk =


Yk,1
Yk,2

...
Yk,d!

 =


nm p1 + ∆Yk,1
nm p2 + ∆Yk,2

...
nm pd! + ∆Yk,d!

 = nm p + ∆Yk, ∼ Mu(nm, p)

p̂k = 1
nm

Yk = p + 1
nm

∆Yk. (20)

The random variable Yk represents the counts for each possible ordinal pattern and nm ≈
N/m. We then obtain the average of all the pattern counts along all the composite signals:

Y =
1
m

m

∑
k=1

Yk =
1
m

m

∑
k=1

N
m p +

1
m

m

∑
k=1

∆Yk

Y =
N
m

p +
1
m

m

∑
k=1

∆Yk (21)

If we rearrange Equation (21) we can obtain an expression for the expected value of p,

̂̄p = p + 1
N

m

∑
k=1

∆Yk. (22)

Rewriting the refined composite technique in such a way is revealing: Equation (22) is
identical to the probability estimation in (16) and this formulation shows explicitly that
the estimation is now independent of the time scale value in m. However, we cannot
guarantee that Ȳ has a multinomial distribution, since all the ∆Yk in (21) are not necessarily
uncorrelated.

If we use (22) in the classical MPE Taylor series approximation (10), we obtain

HrcM(̂̄p(m)
) ≈ HrcM(p)− 1

N
(1 + l)T

m

∑
k=1

∆Yk −
1
2

(
1
N

)2(
(p(m))◦−1

)T m

∑
k=1

∆Y◦2k , (23)

where l = ln(p). Obtaining the expected value of (23) is enough to also obtain the mean
rcMPE. We can clearly write the expected value as,

E[HrcM(̂̄p(m)
)]≈H(p(m))− 1

2
(d!− 1)

(
1
N

)
. (24)

The variance has some additional complication. Since Ȳ is not strictly multinomial,
the moments of ∑m

k=1 ∆Yk do not follow the corresponding moments. If we take the
naïve approach of assuming all ∆Yk are mutually independent, we can write the rcMPE
variance as,

var(HrcM(̂̄p(m)
))≈( 1

N )l(m)T
Σ
(m)
p l(m) + ( 1

N )2
(

1Tl(m) + d!H(p(m)) + 1
2 (d!− 1)

)
. (25)

As we can observe from (24) and (25), we have eliminated the m dependence, so we
now have a constant value of the mean, bias, and variance, which relies solely on the
signal’s original length and the embedded dimension. Thanks to this refinement, it is
possible for us now to explore higher m values without worrying about loss of precision
due to signal length reduction. Nonetheless, we still have to address the deviation from
the variance in Equation (25), where we have no guarantee of independent pattern counts
across all composite signals.
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3.1.3. Composite MPE Statistics—Discussion

At this point, we must remark one of the main shortcomings in this approach that is
not mentioned in the existing literature. If we compare the same elements from different
coarse signals at a given m and revisit the definition in (14), we observe that the elements
between signals share information and that segments from different coarse signals overlap.
For example, a closer look at Figure 2 reveals that the first elements of the coarse signals
x(m)

1 and x(m)
2 are

x(m=3)
k=1,j=1 = 1

m (x1 + x2 + x3)

x(m=3)
k=2,j=1 = 1

m (x2 + x3 + x4).

Since elements x2 and x3 appear in both signals, all the information that we could
measure from coarse signals x(m)

1 and x(m)
2 will have some level of redundancy. This

becomes more evident as we increase the value of m, and consequently, the number of
shared elements increases.

This redundancy is bound to create cross-correlation between coarse signals, even if
the original signal is uncorrelated. This effect will influence the overall MPE estimators that
rely on composite signals, possibly resulting in an increased variance due to this redundant
information. Here, we refer to this effect as an artifact cross-correlation: the presence of
correlation between coarse signals originating from shared elements and not from the
inherent dynamics of the original signal.

The existence of artifact cross-correlation implies that our measurement of variance in
(19) and (25) will not be satisfied. For these expressions to be true, we must guarantee that
no artifact cross-correlations appear between the composite coarse signals as a consequence
of the CCG procedure.

3.2. Composite Downsampling

Instead of fully characterizing this artifact cross-correlation effect, a complex and
time-consuming mathematical endeavor, we will present an alternative that is exempt of
this redundancy from the beginning: composite downsampling.

Downsampling in the context of PE is not a new concept, as it is shown in Equation (2)
by including the downsampling parameter τ [15]. Moreover, a form of composite downsam-
pling has already been proposed in [20] in the context of the measurement of information
content in chaotic signals. This approach has been replaced by the cMPE approach pro-
posed in [8], since the application of a downsampling instead of a moving average filter
incurs in the risk of aliasing. Nonetheless, refs [8,20] do not discuss the artifact cross-
correlation effect, nor the statistical properties of these approaches. Thus, revisiting these
concepts from this perspective is worth the effort.

From the cardinal point of view, the coarse-graining procedure represents a better
smoothing filter than a simple downsampling procedure, since the former incorporates
more signal information and the latter implies a loss of resolution as a trade-off. Nonethe-
less, both procedures behave similarly for the purpose of ordinal patterns.

For this purpose, the composite downsampled signals [20], are defined as follows for
k = 1, . . . , τ:

x(τ)k,j = xk+τ(j−1). (26)

Changing the starting element k allows us to obtain a τ number of downsampled
signals from the original signal x. This implies no information loss, since all the elements
in x are still present in the composite signals x(τ)k (see Figure 3). Additionally, since we can
also appreciate that the resulting signals have no elements in common, we know that the
artifact cross-relation effect will not be present. This is justified if we regard the process (26)
as a systematic sampling, where each downsampled signal is a sample of the “population”
signal x, with the constraint that no sample groups share mutual elements.
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For a signal x of length N, the MPE estimator is expected to have the moments found
in Equations (11) and (12). Both the expected value and the variance depend on time scale
m, both implicitly (by means of p̂(m)) and explicitly. It is also worth mentioning that these
moments are heavily dependent on the signal length N and the embedding dimension d.

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12
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(𝜏)
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…

…
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(𝜏) 𝑥2,2

(𝜏)
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(𝜏)
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…

…

𝒙
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𝒙2
(𝜏)

𝒙3
(𝜏)

𝑥2,1
(𝜏)

= 𝑥2 𝑥3,2
(𝜏)

= 𝑥6 𝜏 = 3

𝑥3,4
(𝜏)

Figure 3. Schematic representation of the composite downsampling procedure at τ = 3: we downsample the original
signals by taking data points that are τ spaces apart; if we shift the initial position, we can build τ signals. The present
downsampling signals share no mutual data points between them.

Since the downsampling procedure also reduces the signal length in a similar fashion,
it stands to reason that applying a classical downsampling procedure with any given τ
value will present the moments as follows:

E[H(p̂(τ))] ≈ H(p(τ))− 1
2
(d!− 1)

( τ

N

)
(27)

var
(

H(p̂(τ))
)
≈ ( τ

N )l′(τ)Σ(τ)
p l(τ) + ( τ

N )2
(

1′l(τ) + d!H(p(τ)) + 1
2 (d!− 1)

)
. (28)

Given that the only explicit change is switching from τ instead of m, we can capitalize
on the MPE theory and apply it to the downsampling case.

Certainly, we cannot expect to obtain the same pattern probabilities from these two
procedures due to the fact that, in general, p(τ) 6= p(m). Still, we expect to get the exact
same pattern distribution (i.e., uniform) for both procedures in some specific circumstances,
such as a signal consisting of uncorrelated noise.

In the following subsections we will develop the theoretical framework for two new
entropy measurements: composite downsampling permutation entropy (cDPE) and refined
composite downsampling permutation entropy (rcDPE).

3.2.1. Composite Downsampling PE

Similarly to the case of cMPE, utilizing the composite downsampling procedure (26)
allows us to define cDPE as:

HcD(p̂(τ)) =
1
τ

τ

∑
k=1

Hk(p̂(τ)). (29)

This definition is identical to the one proposed in [20], named Modified MPE (MMPE).
It is by means of the downsampling procedure (26) that we can deduce that all Hk(p̂(τ))
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are independent for k = 1, . . . , τ. Therefore, we find the traditional moments for the mean
of Ĥ, namely

E[HcD(p̂(τ))] =
1
τ

τ

∑
k=1

E[Hk(p̂(τ))] ≈ H(p(τ))− 1
2
(d!− 1)

( τ

N

)
, (30)

and

var
(

HcD(p̂(τ))
)
=

1
τ2 var(

τ

∑
k=1

Hk(p̂(τ)))

=
1
τ2

τ

∑
k=1

var(Hk(p̂(τ)))

=
1
τ

var(Hk(p̂(τ))), ∀k

≈ ( 1
N )l(τ)

T
Σ
(τ)
p l(τ) + ( 1

N )( τ
N )
(

1Tl(τ) + d!H(p(τ)) + 1
2 (d!− 1)

)
.

(31)

Once again, the cDPE expected value (30) does not change with respect to classical
MPE, and we still have a downward bias whose only dependencies are the embedding
dimension d, signal length N, and the downsampling parameter τ. Conversely, the cDPE
variance (31) is reduced by a factor of 1/τ in this case, and we expect it to be close to (31)
due to the lack of an artifact cross-correlation by virtue of the definition shown in (26). This
implies an improvement over the cMPE variance (19), where the cross-correlations will
invariably reduce the estimator’s precision.

Although the definition in (29) is not new [20], we present here the mathematical
expressions for the mean and variance for the first time. As previously discussed in [8], this
particular procedure has the shortcoming of being prone to aliasing due to the downsam-
pling procedure been applied without any previous filtering. Nonetheless, the particular
advantage of not having redundant information has not been previously addressed in
the literature.

3.2.2. Refined Composite Downsampling PE

In this section, here we propose the rcDPE algorithm as a new alternative to both
the MPE methods, and the cDPE/MMPE algorithm. Here we combine the composite
downsampling approach with the refined algorithm proposed by [9]. By following the
same reasoning, rcDPE takes the average pattern probability distribution from all the
downsampled signals for the parameter τ.

As with (16), we proceed to define the probability vector,

̂̄p(τ)
=


̂̄p(τ)1̂̄p(τ)2

...̂̄p(τ)d!

 =


1
τ ∑τ

k=1 p̂(τ)k,1
1
τ ∑τ

k=1 p̂(τ)k,2
...

1
τ ∑τ

k=1 p̂(τ)k,d!

. (32)

where the pattern probability estimator p̂(τ)k,i is obtained using Equation (2) for each com-
posite downsampled signal k. At this point, it suffices to apply a single PE computation to
produce this pattern probability.

For the composite downsampling procedure, we present rcDPE by using the exact
same approach as before,

HrcD(̂̄p(τ)
) = −

d!

∑
i=1

̂̄p(τ)i ln ̂̄p(τ)i , (33)
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and following the same procedure as the original MPE definition, using ̂̄p(τ) instead of ̂̄p(m).
Once again we can enunciate the explicit moments of rcDPE, for the downsampled

signals display no artifact cross-correlation. By following the procedure outlined for rcMPE
in Section 3.1, we obtain the rcDPE expected value,

E[HrcD(̂̄p(τ)
)] ≈ H(p(τ))− 1

2
(d!− 1)

(
1
N

)
, (34)

and the rcDPE variance,

var(HrcD(̂̄p(τ)
)) ≈ ( 1

N )l(τ)
T

Σ
(τ)
p l(τ) + ( 1

N )2
(

1Tl(τ) + d!H(p(τ)) + 1
2 (d!− 1)

)
. (35)

In contrast to rcMPE, we do not expect in this case for the expected value (34) and
its variance (35) to raise above the aforementioned mathematical expressions, since the
artifact cross-correlation is not present. We still have the advantage of taking the explicit τ
parameter dependence out of the equation, which heavily suggests a stable behavior across
τ ∈ N+.

4. Results and Discussion

Here, we will proceed to test the statistical theory we developed in the previous
section, in order to assess the performance of the aforementioned entropy methods. In
order to do this, we will perform the MPE, cMPE, rcMPE, cDPE and the proposed rcDPE
techniques over test signals. We will first analyze uncorrelated white noise, in order to
characterize the artifact cross-correlation effect on each technique. We will then proceed
to apply these entropy methods to real signals (bearing fault recordings [14]), in order to
compare their performance for classification purposes. We will also take a close look at the
effect on the frequency content on each method.

4.1. Uncorrelated Signals

In this section, we will apply all the entropy techniques discussed on simulated white
Gaussian noise, with 500 signals of length N = 1000 for d = 3. Each signal was set
to have an expected value of µ = 0 and variance σ2 = 1, although this works for any
chosen variance, due to the PE invariance to amplitude, discussed in Section 2.1. We will
perform the analysis for the first 20 time scales. We will set m = τ in order to compare the
coarse-graining and the downsampling entropy techniques.

We can see the mean PE results in Figure 4a for all methods, and Figure 4b for the
rcMPE and rcDPE methods only. As we expected from Equations (11), (18) and (30),
the MPE, cMPE and cDPE all present the same downward trend with increasing scale.
This, however, do not completely follow the predicted values (shown by the black dotted
line). One possible explanation comes from the fact that the pattern counts are not strictly
independent between each other [21]. Nonetheless, this still shows the original MPE, as
well as the composite methods, having a time scale dependency, even for uncorrelated
white noise, where no such trend is expected. As it is clearly seen in Figure 4b, even the
rcMPE presents a reduced downward drift, not accounted by Equation (24). This effect
is due to the artifact cross-correlation between coarse-grained segments. We support this
claim by observing the behavior of rcDPE, which is the only method whose entropy value
is completely independent of time scale, as shown in Equation (34). Since (24) and (34) are
functionally the same equation, the only difference comes from the artifact cross-correlation
effect. The non-independent patterns consideration [21], on the other hand, can explain the
difference between the measured rcDPE and the theoretical horizontal PE line shown in
Figure 4b. Finally, Figure 4c shows the PE bias for each method.



Entropy 2021, 23, 30 13 of 19

0 5 10 15 20 25

m

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

H

MPE

cMPE

cDPE

rcMPE

rcDPE

(a) Mean entropy—all methods

0 5 10 15 20 25

m

0.999

0.9991

0.9992

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

H

rcMPE

rcDPE

(b) Mean entropy—rcMPE and rcDPE

0 5 10 15 20 25

m

0

1

2

3

4

5

B
ia

s
(H

)

10-3

MPE

cMPE

cDPE

rcMPE

rcDPE

(c) Entropy bias—all methods

0 5 10 15 20 25

m

0

0.5

1

1.5

2

v
a
r(

H
)

10-5

MPE

cMPE

cDPE

rcMPE

rcDPE

(d) Entropy variance—all methods

0 5 10 15 20 25

m

0

0.2

0.4

0.6

0.8

1

1.2

1.4

v
a
r(

H
)

10-6

cMPE

cDPE

rcMPE

rcDPE

(e) Entropy variance—all composite methods

0 5 10 15 20 25

m

0

1

2

3

4

5

6

v
a
r(

H
)

10-7

rcMPE

rcDPE

(f) Entropy variance—rcMPE and rcDPE

Figure 4. Permutation entropy methods applied to 500 white Gaussian noise signals at µ = 0 and σ2 = 1, with signal length
N = 1000 and m = 1, . . . , 25. (a) shows the mean PE value of all methods, respect to time scale m = τ. (b) showcases the
mean rcMPE and rcDPE methods only. (c–f) show the comparisons between the variance each method, where (c) present all
methods, (d) present all the composite and refined composite methods, and (f) shows rcMPE and rcDPE only. Black dotted
lines show the theoretical values predicted from Section 3.

Figure 4d–f show the variance obtained from the PE methods over simulated un-
correlated noise signals. As we can see from Figure 4d, the original MPE presents the
highest variance from all the methods, which confirms the need for composite and re-
fined composite MPE instead of the classical algorithm. Moreover, the MPE variance
increases quadratically (12), as expected from our previous work [12] for uncorrelated
signals. Figure 4e takes the MPE variance out, in order to compare the refined methods.
As we can see, cMPE has the highest variance, followed by rcDPE, rcMPE, and rcDPE, in
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that order. The black dotted line represents the theoretical variance for cMPE and cDPE.
We can see here that cDPE actually performs sightly better than expected. Finally, Figure 4f
shows only the best performing methods, rcMPE and rcDPE. From Figure 4f, we can see
that rcDPE is not only the method with the lowest variance (three orders of magnitude less
than the variance of MPE), but the only one which does not increase with scale. Moreover,
rcDPE variance runs along the predicted theoretical value from Equation (35). The fact
that rcMPE still presents a variance increase with respect to m is explained by the artifact
cross-correlations, which we know from Section 3.1.3, are scale-dependent.

Therefore, from this initial experiment, we observe rcDPE is the only method which
minimizes bias and variance, as well as having the desirable property of not introducing
scale-dependent behaviors. This is particularly useful if we want to avoid any distortion
due to the entropy calculation algorithms. From the statistical perspective, rcDPE is the
method we recommend for PE analysis.

The rcDPE main constraint does not come from its statistical behavior, but from the
frequency properties. In contrast to multiscaling, the downsampling procedure does not
add any kind of filter to the signal, which renders the method particularly prone to aliasing
effects. This problem is not evident from the study of uncorrelated noise, and will be
discussed the next section.

4.2. Applications on Fault Bearing

Our goal in this section is to showcase the application of the entropy methods here
discussed to classify the base and the fault signals. We are especially interested in the
performance of rcMPE and rcDPE, since these two methods have the least amount of bias
and variance. Therefore, we will apply MPE (for reference), rcMPE, and rcDPE algorithms
in the bearing fault data set provided by [14], using the parameters d = {3, 4, 5, 6} and
m = 1, . . . , 20 (higher values of m do not provide additional information in this case). For
simplicity, we will set the downsampling parameter as τ = m.

The bearing fault data set [14] consist of signals from a bearing test rig, with a load
of 270 lbs, input shaft rate of 25 Hz, and a sampling rate of fs = 97, 656 Hz for 6 seconds
(N = 585, 936). The data set has three signals at baseline conditions (labeled “base”), and
three signals with outer race fault conditions (labeled “fault”). A further explanation of the
data set is available at [14]. Some example periodograms are shown in Figure 5.

Before going further, we should revisit the problem of aliasing. As pointed by [8], a
pure downsampling method is particularly prone to aliasing frequencies. This is particu-
larly notorious at high time scales, where the Nyquist frequency gets reduced by a factor of
1/τ, as seen in Figure 5. Therefore, we will also perform an anti-aliasing low-pass filtering
before using rcDPE, with a cutoff frequency of fN,m = fs/(2τ). Even if the analysis of
aliased signals is not useful in practice, we will keep the unfiltered (rcDPE) procedure,
for the purpose of comparison. We do not perform this filter preprocessing on MPE and
rcMPE, since the algorithms perform a moving average filter [18] as part of their procedure.

As our last steps, we will perform an exploratory analysis in order to select the
values of m (or τ) in which the difference between classes base/fault are most evident.
The results of this exploration are shown on Figure 6. Based on these scale selection,
we will perform normality and homoscedasticity tests in order to select and perform the
appropriate statistical factor analysis.
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Figure 6. Mean entropy values for (a) Base and (b) Fault signals, for the MPE, rcMPE, rcDPE (unfiltered), and rcDPE
(filtered) methods. (c,d) present the standard deviation SH for Base and Fault signals, respectively.

We observe in Figure 6a,b the average entropy values for base and fault signals,
respectively, for dimension d = 3. The base signals present lower entropy values at m = 1,
which suggest more regular behavior than the fault signals. As we increase time scale, base
signals quickly approach maximum entropy, while the fault signals still preserve some
long-range regularities. The notable exception to this is the unfiltered rcDPE method, which
presents a similar high entropy for both base and fault signals, at almost all time scales
used. Figure 6c,d show the standard deviation measured from the base and fault signals.
Here, we do not observe scale-dependent effects on the entropy measured, since the sample
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size N ≈ 585,000 is high compared to the dimensions used (N � d!). We observe the base
signals to have a significant lower variation than the fault set, which is to be expected from
bearings in optimal conditions. We can also observe, in particular from Figure 6d, that the
unfiltered rcDPE shows the least variation among all methods. The filtered rcDPE, on the
other hand, presents a similar curve as the MPE and rcMPE methods, both in the mean
entropy and its standard deviation. This strongly suggest that the structures we observe
from MPE, rcMPE, and filtered rcDPE are sensitive to the frequency content. Moreover, the
fact that the unfiltered rcDPE leads to relatively uniform entropy readings does not come
from randomness, but from aliasing. Even though the unfiltered rcDPE has the lowest
overall standard deviation, the entropy values themselves are unexpectedly high due to
effects not related to the statistical properties of the problem. Therefore, proper filtering is
necessary for multiscale entropy analysis.

Since our main goal in this section is to differentiate between base and fault signals,
we should also take a closer look at the mean entropy difference ∆H, for d = 3. Figure 7
shows this measurement with respect to time scale for each entropy method. First, we can
observe that, at m = 1, all methods can differentiate between base and fault signals. Except
for unfiltered rcDPE, all methods increase their error for high time scales. Although the
difference between mean entropy measurements is not high at m = 4, this is the time scale
with the minimum overall standard deviation for all cases. Therefore, for the purposes
of classification, we will choose m = 4. Furthermore, even if the unfiltered rcDPE offers
significantly less error overall, the reduced ∆H, product of aliasing, makes this approach
unsuitable for this classification problem. Therefore, we will include unfiltered rcDPE
results just for reference.
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Figure 7. Difference between Base and Fault mean entropy ∆H for (a) MPE, (b) rcMPE, (c) rcDPE unfiltered and (d) rcDPE

filtered. Error bars are computed using S∆H = ±1.96
√

S2
H,Base + S2

H,Fault, assuming a normal distribution with α = 0.05
significance level.
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Now, we proceed to make a factor analysis for the entropy results at m = 4. We
are interested in the type (base/fault signals), method (MPE, rcMPE, rcDPE, and filtered
rcDPE), and dimension (d = {3, 4, 5, 6}). First, we performed the Shapiro–Wilk normality
test and the Levene’s homoscedasticity test. We found no statistically significant evidence
of deviation from normality or equal variance. Therefore, we performed a three-way
ANOVA test for the aforementioned factors. We found all main factors and interactions to
be statistically significant with α = 0.05.

The presence of heavy interaction effects render the interpretation difficult, but we can
still comment on the overall effects using Figure 8. Here we can first observe that dimension
d = 3 is the most suited for the classification of this particular data set, since all the entropy
measurements are different, statistically speaking. As we increase in dimension, only the
rcDPE methods remain significant. At d = 6, only the filtered rcDPE method still present
significantly differences in entropy between base and fault signals. Figure 8 also shows
that filtered rcDPE has a notoriously higher difference between mean entropy than the
other methods. This fact implies a better classification power using this technique.

Therefore, the best parameters for classification in this particular data set are m = 4,
d = 3 (since higher dimensions do not bring better performance), using the rcDPE method
with a low-pass frequency filter adjusted with scale. These results are by not means
universal, since statistical and frequency characteristics of the phenomenon play a major
role in the overall entropy behavior. Nonetheless, this example shows how the multiscale
permutation entropy statistical development can be used for the purpose of classification,
as well as highlight the advantages of the downsampling techniques combined with the
appropriate filtering.
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Figure 8. Base-fault classification for scale m = τ = 4 for MPE, rcMPE, and rcDPE (unfiltered and filtered), for dimensions
d = {3, 4, 5, 6}. Asterisks mark statistically significant differences between signal types, with α = 0.05. (a) d = 3; (b) d = 4;
(c) d = 5; (d) d = 6.
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5. Conclusions

In the present work, we addressed the characterization of the composite MPE (cMPE) [8]
and refined composite MPE (rcMPE) [9] statistical properties, with a special emphasis on an
explicit, theoretical expected value, bias, and variance. This allowed us to better understand
the improved results obtained [8,9], respect to the original MPE. We also identified the
problem of artifact cross-correlation, inherent of the composite coarse-graining procedure,
which leads to redundant information, and thus, an sub-estimation of the real entropy
content within a signal. In order to address this problem, we revisited and re-framed the
downsampling MPE procedure [20]. On top of this, we proposed a new PE method named
Refined Composite Downsampling Permutation Entropy (rcDPE), which combines the
composite downsampling approach with the refinements proper of the rcMPE technique.
We also tested the performance of these techniques by measuring the expected entropy
result and variance from uncorrelated noise. Finally, we showcased an example of practical
application on real bearing fault recordings [14], for the purposes of classification.

Results from the analysis of uncorrelated noise showed the downsampling methods
present less variance compared to the corresponding entropy methods found in the litera-
ture. In particular the rcDPE method is the best performing algorithm in terms of reduced
bias and variance. Furthermore, rcDPE is the only method where we found no time scale
dependency, in accordance to the theoretical predictions.

When applied to bearing fault recordings, we found the optimal scale and dimension
to maximize the statistical difference in entropy between baseline operation and faulty
components. The MPE, rcMPE and rcDPE were selected for comparison. Although it is
possible to find significant results with the multiscaling procedures, we found the rcDPE,
with an appropriate anti-alias low-pass filter, to outperform the MPE and rcMPE. The use of
a naïve, non-filtered rcDPE, although minimizing the variance of the entropy results at all
scales, also over-estimates the entropy values due to white noise spectrum occurring at high
frequencies. This decreases the signal-to-noise ratio, increasing the signal’s randomness.
The anti-aliasing low-pass filter with rcDPE presents a better option in terms of statistical
efficiency and proper management of aliasing frequencies.

It is notable to find a procedure, such as rcDPE, which can maintain a constant
minimum bias and variance across all time scales. This fact actually implies that the
signal length constraint—the most cited limitation—is greatly diminished, specially at high
time scales, where the downsampled signals get short and the estimations high on error.
Since the results match the theoretical calculations we provide for the rcDPE estimator’s
moments, we can guarantee stable results for short signals and high time scales.

With this work, we expect to provide a greater picture—through theoretical devel-
opment —regarding the expected statistical properties of multiscale permutation entropy
methods. The proposed downsampling permutation entropy techniques allow researchers
to achieve higher precision in the entropy estimation, by avoiding artifacts introduced by
the methods themselves. These techniques cannot be applied blindly, since the method
is sensitive to frequency effects. Consequently, the appropriate application of signal
pre-processing is needed to extract results closer to the real information content of the
phenomenon in question.
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cDPE Composite Downsampling Permutation Entropy
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